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ABSTRACT

Motivation: Current advances in DNA synthesis, cloning and sequen-

cing technologies afford high-throughput implementation of artificial

sequences into living cells. However, flexible computational tools for

multi-objective sequence design are lacking, limiting the potential of

these technologies.

Results: We developed DNA-Tailor (D-Tailor), a fully extendable

software framework, for property-based design of synthetic DNA

sequences. D-Tailor permits the seamless integration of multiple

sequence analysis tools into a generic Monte Carlo simulation that

evolves sequences toward any combination of rationally defined prop-

erties. As proof of principle, we show that D-Tailor is capable of

designing sequence libraries comprising all possible combinations

among three different sequence properties influencing translation

efficiency in Escherichia coli. The capacity to design artificial se-

quences that systematically sample any given parameter space

should support the implementation of more rigorous experimental

designs.

Availability: Source code is available for download at https://source

forge.net/projects/dtailor/

Contact: aparkin@lbl.gov or cambray.guillaume@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online (D-Tailor Tutorial).
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1 INTRODUCTION

The accumulation of genomic data has fueled the development of

numerous computational tools that infer functional behavior

from biological sequences. These algorithms essentially capture

our understanding of how functional information is encoded in

nucleic acid and protein sequences. As a result, molecular biolo-

gists can now access a plethora of sequence analysis tools to help

them predict functional behaviors from plain sequences (Altschul

et al., 1997; Bailey et al., 2009; Giardine et al., 2005; Hofacker,

2003; Kingsford et al., 2007; Markham and Zuker, 2008;

Thomas-Chollier et al., 2011). Common tasks comprise the iden-

tification of sequence motifs from nucleic acid (DNA/RNA) or

protein sequences (e.g. promoter or termination activity, recom-

bination or splicing sites), as well as the computation of sequence

properties that are mechanistically linked to particular

phenotypes (e.g. codon usage or propensity to form transmem-

brane protein domains).
Such sequence-analysis tools are usually used to inform biolo-

gical discovery in natural genomic sequences. However, consider-

ing recent advances in DNA technologies and the concomitant

rise of synthetic biology applications (Cambray et al., 2011; Carr

and Church, 2009; Czar et al., 2009; Endy, 2005; Ma et al., 2012),

these same tools may also be leveraged to guide the design of

artificial sequences satisfying predefined functions of interest.

Ideally, elementary biological functions should be contained

within well-defined sequence parts that could be re-used with ac-

ceptable reliability in different contexts [e.g. Davis et al. (2011)

and Mutalik et al. (2013)]. However, it is becoming increasingly

clear that many molecular behaviors result from the combined

influence of several sequence determinants that cannot be neatly

encapsulated within the physical boundaries of a single part, but

rather emerge at the interface between the different parts

(Cambray et al., 2013; Kosuri et al., 2013; Mutalik et al., 2012;

Salis et al., 2009). In this context, the multidimensional examin-

ation of DNA sequences becomes necessary to better capture the

inherent complexity of biological behavior and further enable

predictive design of synthetic sequence functions and activities

[e.g. Allert et al. (2010), Dvir et al. (2013), Kinney et al. (2010),

Na et al. (2013), Rhodius and Mutalik (2010), Rodrigo et al.

(2012), Salis et al. (2009), Seelig et al. (2006), Welch et al. (2009)].
Valuable sequence-design tools implementing heuristic

searches have been successfully developed for multi-objective

optimization within specific applications [e.g. protein synthesis

optimization (Chung and Lee, 2012; Dana and Tuller, 2012;

Gaspar et al., 2012, 2013; Raab et al., 2010; Racle et al., 2012;

Salis et al., 2009; Welch et al., 2011)]. However, application of

such optimization procedures requires an objective function

relating computed sequence properties to an expected perform-

ance score. Unfortunately, the data and models required to de-

scribe these relationships are generally not sufficient to support

truly reliable functional design.

Interestingly, sequence-design tools can also be used upstream

of the optimization process to produce libraries of sequences that

are more suited for the development of predictive models.

Although large-scale studies have mostly used random

approaches to introduce variability in the synthetic sequences to

be interrogated (Dvir et al., 2013; Quan et al., 2011), similar en-

deavours have greatly benefited from following well-established

design of experiments (DoE) (Allert et al., 2010; Antony, 2003;

Kosuri et al., 2013; Sharon et al., 2012; Smith et al., 2013).*To whom correspondence should be addressed.
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DoE is a general framework that fully integrates planning and

analysis phases, and comprises three major steps. The first one

consists in identifying the factors of interest and defining the

range of values for each factor. In the case of molecular se-

quences, factors are properties of the primary sequence itself

and can be typically identified by reanalysing available functional

genomic data and published mechanistic studies. The second

step consists in implementing a particular experimental design

wherein multiple combinations of factor levels are selected to

create an experimental dataset providing maximal information

to relate the design factors to the response variable(s). For

example, one of the most informative DoE is the full-factorial

design, where all possible combinations of factor levels across

the different factors are performed. The resulting dataset not

only permits to estimate the contribution of each factor to the

measured response variable, but also robustly captures the inter-

actions between the different factors (Antony, 2003; Mutalik

et al., 2013). Last, the third step includes the collection of experi-

mental data and definition of a model relating the multiple fac-

tors to the response variable(s). Of note, this can be an iterative

process wherein models derived from the third phase can inform

the design of a new set of experiments.

Although implementation of experimental designs systematic-

ally varying easily manipulated factors can be straightforward

(e.g. growth medium, pH, temperature or oxygen levels), the

ability to design artificial sequences whose intrinsic properties

can be systematically varied is not necessarily trivial (e.g. binding

site affinity or the strength of an RNA secondary structure).
Here, we present D-Tailor, an extendable framework support-

ing integration of multiple sequence analysis tools to mine and

design biological sequences. D-Tailor uses a heuristic search
algorithm to enable flexible design of synthetic sequences varying

multiple properties of interest so as to satisfy complex DoE.

We have validated our tool by successfully designing artificial

sequence libraries conforming to full-factorial designs, which rep-

resent the upper bound of experimental design complexity. More

specifically, we have designed libraries systematically varying
multiple sequence properties known to impact translation

efficiency in E.coli. To further demonstrate the versatility of

the algorithm, we also used D-Tailor to design artificial bacterial

promoter sequences varying multiple cis-regulatory properties

(see Supplementary Material).

2 METHODS

D-Tailor essentially implements the two-step planning process outlined

above (Fig. 1). The analysis mode computes property scores from plain

biological sequences. Here, the user specifies input sequences and a pre-

defined set of properties to be computed. The design mode integrates the

analysis routines with a parameterizable Monte Carlo algorithm that

evolves an input sequence (seed) so as to match the specified combin-

ations of property scores. In a typical workflow, users can use the analysis

mode to identify sequence properties and operational ranges that seem

worth exploring in design mode.

2.1 Sequence analyzer

D-Tailor provides a generic interface for multidimensional interrogation

of DNA sequences. The software is designed with a modular architecture,

so that users with basic programing skills can easily implement or extend

modules for handling any sequence property of interest. Such modules

can be implemented using custom Python code or scripts connecting to

Fig. 1. D-Tailor enables multidimensional analysis and design of DNA sequences. D-Tailor provides a flexible and extendable architecture to interrogate

different sequence properties (box in the middle). The left panel depicts an example of the retrieval process of two properties (RNA structure and motif

prediction) from multiple input sequences that can come from either FASTA or CSV files. The resulting score profile can be used to identify general

trends and further define ideal parameter ranges for the design objectives. The right panel shows the design mode of D-Tailor, wherein a seed sequence is

evolved to meet a user-defined combination of sequence properties. The figure depicts a full-factorial design for two different properties of interest (RNA

structure and motif scores) with three levels each (low, medium and high), which yields a total of nine different combinations (colored areas).
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third party software (see the Tutorial available in the Supplementary

Material). In analysis mode, D-Tailor reads a set of sequences in either

delimiter separated (e.g. CSV) or FASTA format files. A property profile

is then computed for each of the input sequences by successively calling

the analysis modules specified by the user (Fig. 1, left panel).

D-Tailor currently comprises 14 different modules to compute various

sequence properties involved in diverse mechanisms of gene regulation.

This collection of sequence property evaluators includes algorithms to

score promoter regions or transcription factor binding sites based on

sequence logos (Thomas-Chollier et al., 2011), estimate translation initi-

ation rates based on the Shine–Dalgarno (SD) sequence (Shine and

Dalgarno, 1975), predict propensity to form RNA structures, calculate

nucleotide composition or compute the codon adaptation index (CAI) for

a given gene sequence (Sharp and Li, 1987). Although the implementation

of the different sequence property evaluators is usually self-contained

within D-Tailor, the computation of specific properties may rely on

third party softwares [e.g. UNAfold (Markham and Zuker, 2008) for

the prediction of RNA secondary structure]. Together, these modules

illustrate diverse implementation modalities and provide useful examples

to guide future extensions (see Supplementary Material). The specifica-

tion of adequate analysis routines is an essential prerequisite to running

the design mode.

2.2 Sequence designer

As capacities for DNA synthesis increase exponentially, the ability to

computationally design artificial sequences need to become more auto-

mated and transparent. The most innovative feature of D-Tailor is to

provide a generic solution of designing synthetic sequences constrained by

multiple properties of interest (Fig. 1, right panel).

The design process in D-Tailor starts with the specification of a seed

sequence and the desired design objective (i.e. the DoE) (Fig. 1, right

panel). Seed sequences serve as a template to bootstrap the evolutionary

design process. Typically, users would use a particular sequence of inter-

est from which they want to derive a mutational series. The DoE enu-

merates combinations of sequence properties that need to be generated,

each of which constitutes a design target. D-Tailor provides a flexible

scheme for the definition of DoE, which can vary from full-factorial to

entirely customized designs.

The definition a finite number of targets requires the discretization of

continuous property scores into a finite number of nominal or ordinal

levels. For example, Figure 1 shows the discretization of two sequence

property scores into three ordinal levels (low, medium and high). This

framework markedly differs from usual multi-objective optimization

approaches (Chung and Lee, 2012; Raab et al., 2010; Racle et al.,

2012), which operate to optimize a single continuous and integrated per-

formance score rather than explicitly target different regions of the

parameter space. As illustrated in the Section 3, natural feature profiles

extracted from available genomic sequences can be used to guide the

discretization processes and ensure biological relevance of the sampled

space. For each sequence property, users may define as many levels as

necessary to attain the desired degree of resolution in the designed se-

quences. However, since the number of possible combinations increases

geometrically with the number of properties/levels, their definition must

be mindful of downstream experimental capacities.

Finding a sequence that conforms to an arbitrary combination of

property levels is often computationally infeasible using a brute force

approach. Indeed, the sequence space to be searched is gigantic

(4N where N is the number of nucleotides in the sequence to be designed,

more if indels are allowed). To optimize the search process, D-Tailor uses

a Monte Carlo algorithm to evolve a given seed sequence towards the set

of design targets (Fig. 2).

More specifically, the algorithm loops through cycles of evolution until

all target combinations of property levels specified by the DoE are found.

Each cycle consists in three consecutive steps: (i) a target combination of

property levels is randomly selected; (ii) a template sequence is chosen

from the repository of previously generated sequences using fitness pro-

portionate selection (only seed sequences are available at the very first

iteration); and (iii) a predefined number of mutational iterations are per-

formed until a sequence satisfying the target combination of the property

level is found (Fig. 2, sequence evolver). We use the inverse of the

cumulative Euclidean distance (D) between property levels, as a gen-

eric fitness measure of a sequence relative to a given design target in

Equation (1)

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

di � tið Þ
2

s
ð1Þ

where n represents the number of sequence properties; di and ti represent

the levels of the i-th sequence property in the designed sequence and the

desired combination, respectively.

Each iteration of the sequence evolver also comprises three steps: (i) the

sequence being evolved is analyzed and a property requiring optimization

(i.e. not within the target level) is randomly selected; (ii) the template se-

quence is then mutated following user-specified mutational rules (see

below); and (iii) the feature scores of the resulting sequence are analyzed

and evaluated with respect to the current design target [Equation (1)].

Every generated sequence is also screened for compliance to a user-defined

set of rules meant to prevent the emergence of undesired properties in the

final designed sequences (e.g. restriction sites, unexpected promoters or

terminators). Only validated sequences are stored in the database.

Next, if the new sequence matches the target combination (D¼ 0), then

the target is marked as completed and the evolution cycle is terminated.

Otherwise, the algorithm updates the template for the next mutational

iteration, choosing between retaining the current template sequence or

accepting the mutant just derived. At this point, we defined three different

selective regimes: (i) directional selection, where the sequence with the

lower Euclidean distance to the target combination is chosen; (ii) neutral

selection, where any of the two sequences is selected with predefined

probabilities; or (iii) temperature selection, as inspired by simulated

annealing optimization (Kirkpatrick et al., 1983), where the sequence is

selected based on a temperature schedule that allows worse sequences

(longer distances) to also be selected with a probability that decreases

with the number of iterations performed.

At each of the mutational iterations, new sequences can be generated

through random mutation of the template sequence, as usual in many

sequence optimization tools (Chung and Lee, 2012; Gaspar et al., 2012;

Salis et al., 2009). In addition, D-Tailor offers the possibility to imple-

ment specialized mutation operators that aim at improving the likelihood

to generate desired property changes. Practically, a mutation operator
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Fig. 2. Sequence designer algorithm comprised by three different steps

described in the main text. Initially, a target combination of features is

selected and then a sequence that is close (i.e. short Euclidean distance) to

the desired target is chosen to serve as the template in the sequence evo-

lution step. This last step applies successive mutations until it finds a

sequence matching the target combination of features
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randomly selects a property amongst those that are non-optimal in the

current template (di – ti 6¼ 0). We then distinguish between: (i) targeted

operators, which restrict the mutational space to specific regions of the

sequence that are therefore more likely to affect the property that needs to

be evolved; and (ii) oriented operators, which further specify particular

mutation patterns to bias the production of variants toward the current

design target. For example, if the design goal specifies an increase in the

CAI of a gene, the targeted mutation operator restricts the mutable

region to the coding sequence and randomly replaces a codon by another

one irrespective of its usage score. The oriented mutation operator further

constrains the replacement of a randomly chosen codon with one asso-

ciated with a higher usage score, thereby enforcing the required increase.

For certain emergent features, the definition of oriented mutation might

not be so straightforward. For example, we implemented oriented muta-

tion operators for RNA secondary structure by specifically targeting

mutations to bases that are predicted to be paired or unpaired, to, respect-

ively, decrease or increase the strength of the mutated RNA structure.

Importantly, any mutation operator targeting gene-coding sequences can

be further constrained to only generate synonymous mutations, thereby

preserving the encoded protein sequence while modifying the underlying

DNA properties.

In some applications, it may be desirable to limit the overall divergence

between sequences in the designed library, so that it provides small vari-

ations with respect to a particular reference sequence. Conversely, users

might want to generate sequences that are as dissimilar as possible and,

therefore, share as few confounding factors as possible. In D-Tailor, users

can manipulate mutational patterns and the selective regime—two major

parameters of the evolutionary design process—to indirectly control se-

quence diversity, and consequently impact the rate of sequence evolution,

as well as the overall performance of the search algorithm (see below).

3 RESULTS AND VALIDATION

D-Tailor provides an integrated Python-scripting framework for

multidimensional analysis of sequence properties and for the

design of artificial sequences constrained by multiple sequence

properties of interest.
As a case study, we have chosen three different previously

reported sequence determinants of translation efficiency. In

E.coli, two major factors have been shown to modulate the
rate of translation initiation: (i) the strength and position of a

SD motif upstream of the start codon (Barrick et al., 1994; Shine

and Dalgarno, 1975); and (ii) the propensity of these sequence

signals to engage in mRNA secondary structures (de Smit and
van Duin, 1994; Hall et al., 1982; Kudla et al., 2009). Subsequent

to initiation, the rate of elongation may also affect the overall

translation efficiency and is mainly determined by the codon

usage of the gene (Gustafsson et al., 2004; Ikemura 1985;
Kane, 1995; Sharp and Li, 1987; Welch et al., 2009, 2011). We

first illustrate how D-Tailor analysis module can be used to

examine such sequence properties in the natural genome of

E.coli. Then, we demonstrate how to use D-Tailor design
module to generate artificial sequence libraries systematically

varying the three properties of interest according to a full-

factorial DoE.

3.1 Using D-Tailor to interrogate sequences

We used D-Tailor to re-analyze three different sequence proper-
ties across the entire E.coli W3110 genome (Fig. 3).

Mechanistically, the SD motif stabilizes the initial binding of

the 30S subunit of the ribosome by establishing canonical base

pairing with the 30-end of the 16S rRNA (anti-SD) (Shine and

Dalgarno, 1975). We applied a sequence property evaluator that

calculates the strength of the SD sequence by searching for a

subsequence within the 25 nucleotides upstream of a start

codon with highest affinity to the known anti-SD (Lithwick

and Margalit, 2003). The presence of secondary structures in

this region of the mRNA can hinder initiation by occluding

the SD motif or the nearby start codon from recognition by

the ribosomal subunits. For that purpose, we used an RNA-

structure evaluator to compute the minimum free energy of the

60 nucleotides subsequence centered on the start codon (Kudla

et al., 2009). Finally, we used a CAI calculator to score the codon

usage of a gene sequence (Sharp and Li, 1987). Practically, the

usage of these property evaluators and associated parameters

requires a standard interface, which is provided by extending

the abstract class Feature in D-Tailor (see Supplementary

Material).

The sequence property profiles resulting from a genome ana-

lysis give a solid basis to identify trends in the properties of

interest, and to further determine the relevant parameter space

to explore during the design step (Fig. 3A–C). Correlations

amongst property scores may also provide insights onto potential

functional interactions although some may be purely incidental.

For example, the modest correlation between RNA structure in

the translation initiation region and the affinity between ribo-

somes and the SD sequence (Fig. 3D) might merely reflect the

thermodynamic propensity of G-rich SD motifs to engage in

secondary structures. Similarly, the peculiar shape of the rela-

tionship between CAI and RNA secondary structure (Fig. 3E)

might stem from the joint contributions of independent evolu-

tionary pressures for expression levels acting on these two prop-

erties to tune expression levels [highly expressed genes being both

under selection for high CAI and for low structure (Gu et al.,

2010; Kudla et al., 2009; Plotkin and Kudla, 2011; Tuller et al.,

2010)]. It is then up to the user to define a DoE containing

A B C

D E F

Fig. 3. (A–C) Distribution of the three different sequence properties

(hybridization energy between the 16S rRNA and SD sequence (A), min-

imum folding energy of RNA structure in the translation initiation region

(B) and CAI of gene sequences (C)) influencing translation efficiency in

E.coli. The dashed lines indicate the quintile boundaries for the scores of

each property, which were later used in design mode to discretize the

parameter space. (D–F) Scatter plots showing the cross-correlation

between the three sequence properties of interest

J.C.Guimaraes et al.
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combinations of sequence property scores that are more

adequate to test the research hypothesis to be investigated.

3.2 Using D-Tailor to implement experimental design on

sequence properties

Although recent advances in DNA synthesis, cloning and

sequencing make it possible to generate and experimentally

probe thousands of custom DNA/RNA sequences (Dvir et al.,

2013; Kosuri et al., 2013; Patwardhan et al., 2009, 2012; Quan

et al., 2011; Sharon et al., 2012; Smith et al., 2013), the availabil-

ity of computational tools to aid the rational design of large

sequence libraries remains very limited.

The main purpose of D-Tailor is to provide a flexible compu-

tational tool to design custom sequences satisfying complex

specifications. Such task can be extremely laborious when the

properties of interest physically overlap in the sequence space.

For instance, in our case study, the subsequence containing the

SD motif influences the formation of RNA secondary structures

in that same region. Likewise, the secondary structure can be

affected when modifying codon usage at the beginning of the

gene. Typically, such optimization problems are best solved

using a trial-and-error approach wherein sequence variants are

generated using random mutations until a desired combination

of property scores is found (Allert et al., 2010; Gaspar et al.,

2013; Raab et al., 2010; Racle et al., 2012; Salis et al., 2009).

To generalize this process, the design mode of D-Tailor provides

a framework to integrate any sequence property evaluator into a

parameterizable Monte Carlo algorithm that iteratively evolves

sequences toward a specific set of design targets (or combinations

of property levels).
We used D-Tailor to design sequences that systematically

vary the three properties of interest (or factors) defined above

(Fig. 3). For each of these factors, we defined five contiguous

ordinal levels on the basis of the quintiles observed in the natural

genome (Fig. 3A–C, dashed lines). We then instructed D-Tailor

to search for sequences conforming to a full-factorial DoE based

on these levels. This DoE describes a total of 125 design targets

corresponding to all combinations of five levels across the three

different properties (53). To validate our approach, we compared

the performance of four increasingly complex evolutionary stra-

tegies available in D-Tailor at deriving full-factorial libraries for

30 different genes randomly selected in E.coli (Fig. 4A and B).

In these simulations, the algorithm was run for at most 3000

generations—with a single mutational event per generation—

allowing for unrestricted mutations in the 50 UTR but only for

synonymous mutations in the coding sequence.

We first explored the most rudimentary evolutionary strategy

available in D-Tailor, random sampling, which does not imple-

ment any heuristic search and simply generates random se-

quences until all desired design objectives are completed. Every

attempt to complete the full-factorial design before the threshold

of 3000 generated sequences failed (Fig. 4A and B, black line,

54.2 generated sequences per target found [gspt] on average). The

second design strategy used D-Tailor’s generic heuristic algo-

rithm (Fig. 2 and Section 2) along with the simplest mutational

method wherein new sequence variants are generated by random

mutagenesis (Fig. 4A, yellow line). This strategy improved the

efficiency of the search algorithm by a factor of 2 as compared to

that of the random sampling method (24.8 versus 54.2 gspt on

average, Mann–Whitney test P-value¼ 2.3� 10�10, Fig. 4B).

Still, many sequences had to be generated to meet the various

design objectives. The third mutational strategy employed spa-

tially targeted mutation operators (see Section 2) and improved

the search algorithm efficiency by another factor of 2 (13.3 gspt

on average, Fig. 4B). The fourth strategy used more ‘rational’

mutation operators that explicitly orient mutations toward the

desired objective (see Section 2) and provided slightly faster dy-

namics (Fig. 4A, orange line, 11.8 versus 13.3 gspt on average,

Mann–Whitney test P-value¼ 0.129, Fig. 4B). Since the compu-

tational time necessary to achieve a given set of design targets is

dependent on the number of generated sequences per target,

these results illustrate the advantage of defining specific mutation

operators whenever it is possible.
When designing synthetic sequences, users may want to limit

the divergence of the designed sequences with respect to the ini-

tial seed. To roughly control the spread of the generated se-

quences during the evolutionary process, users can manipulate

A B

C D

Fig. 4. D-Tailor design simulations. (A) We performed simulations of

full-factorial design using 30 different initial sequences (seeds) and four

different design strategies: random sampling (black) and heuristic search

using random (yellow), targeted (blue) and oriented (orange) mutations.

The different lines represent the average number (across 30 simulations)

of target combinations found (out of 125) as a function of the number of

generated sequences (up to 3000) for the four different strategies. We

observed sizeable variation between seeds (not shown for clarity, see

Supplementary Material for details). (B) Number of generated sequences

per target found (gspt) for the four different mutational strategies

(n¼ 30). (C) We used the same 30 different seeds to find six different

target combinations at various Euclidean distances. The different lines

show the average hamming distance between the seed and the sequence

matching the target combination as a function of the Euclidean distance

to the target combination using neutral (light blue), directional (orange)

or temperature selection (black). (D) The number of generated sequences

until the desired target is found as a function of the Euclidean distance to

the target combination using either neutral (light blue), directional

(orange) or temperature (black) selection
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the strength of selection toward the desired target(s). To better
illustrate this point, we evolved each of the 30 seeds previously
selected toward six different target combinations bearing differ-

ent Euclidean distances from the seeds (Fig. 4C and D). We then
examined the behavior and results of the algorithm in response
to three contrasted selective regimes: neutral, directional and

temperature selection (Section 2).
As expected, we observed that a more relaxed selection process

(neutral) is able to generate sequences matching the desired

target that are more similar to the seed sequence than those re-
sulting from the directional or temperature selection approach
(average hamming distance of 21 versus 31.3 and 39.2, respect-

ively; Mann–Whitney test P-value¼ 0.0005 and 1.03e – 13;
Fig. 4C). Nonetheless, the limitation of sequence diversity
comes at the cost of longer computation time (Fig. 4D).

In fact, for the 30 seed sequences, the neutral selection process
requires the generation of eight and six times more sequences per

target than the directional and temperature selection approach,
respectively and on average. For large designs, users may have to
balance the desired divergence of the designed sequences with the

available computational power. A hybrid approach, wherein the
algorithm is initially set with weak selection and hard constraints
to limit divergence, and then progressively configured with

increased selection bias and/or relaxed mutational constraints
(e.g. allow non-synonymous mutations in coding sequences if it
is acceptable by the user) as the rate of target discovery slows

down may then be recommended. The details of such procedure
are likely specific for each application, and therefore we have not
sought to implement an automatic schedule to control this

behavior. Since the state of a D-Tailor design mode run is per-
manently stored in a database, we suggest users to manually

experiment with adjusting these parameters.

4 CONCLUSION

Advances in DNA-reading/writing technologies readily enable
the construction and validation of complex genetic systems
(Gibson et al., 2010). However, rules to successfully design syn-

thetic sequences to functional specifications have been limited by
measurements from biased natural samples and/or small scale
controlled synthetic samples comprising at most hundreds of se-

quences (e.g. Allert et al. (2010), Amit et al. (2011), Barrick et al.
(1994), Garcia et al. (2012); Mutalik et al. (2012); Na et al.
(2013); Rhodius and Mutalik (2010); Rodrigo et al. (2012),

Salis et al. (2009)]. This lack of knowledge strongly restrains
the practical applications of ab initio design. Innovative experi-

mental methodologies based on high-throughput technologies
are scaling the characterization process up to tens of thousands
of designed sequence variants, providing larger datasets to better

understand sequence/activity relationships (Dvir et al., 2013;
Kinney et al., 2010; Patwardhan et al., 2009, 2012; Sharon
et al., 2012; Smith et al., 2013). However dramatic, this increase

in throughput remains limited in comparison to the sheer im-
mensity of the sequence space. It is therefore crucial to reduce the
dimensionality of the design space to a set of sequence properties

of interest that can be independently varied to facilitate estima-
tion of their individual contribution to the measured phenotype
and further support predictable design of synthetic variants

(Allert et al., 2010; Sharon et al., 2012; Smith et al., 2013).

We developed D-Tailor as an extendable and flexible software
platform for the multi-objective design of artificial sequences.
It provides a generic interface to integrate multiple sequence

analysis tools into a heuristic Monte Carlo search procedure
capable of evolving sequences towards pre-defined design targets
(Fig. 1). D-Tailor presents significant differences to other multi-

objective sequence optimization tools (Allert et al., 2010; Chung
and Lee, 2012; Dana and Tuller, 2012; Gaspar et al., 2012; Raab
et al., 2010; Racle et al., 2012; Salis et al., 2009). First, it allows

the definition of multiple design targets as combinations of se-
quence properties that embody particular DoE. A DoE can
range anywhere from one specific combination of property

levels to a full-factorial design, where the parameter space is
fully explored. In contrast, traditional optimization tools de-
scribe design objectives in terms of desired response perform-

ances, which are linked to the sequence properties by a
complex and pre-defined static objective function. Such formal-
ization is suited for functional optimization, but do not explicitly
support systematic exploration of the parameter space. Second,

D-Tailor provides an evolutionary algorithm to optimize both
coding and non-coding regions. Third, D-Tailor supports the
implementation of advanced mutational strategies that can sig-

nificantly enhance the heuristic search performance (Fig. 4B).
Finally, our tool is not application-specific and provides an
open source solution based on an extendable architecture, such

that new sequence property evaluators can be easily implemented
and integrated into the sequence design engine.
We demonstrate that D-Tailor can efficiently design artificial

sequences to systematically vary any given set of properties
of interest. To this end, we successfully derived full-factorial
sequence libraries, starting from 30 different seed sequences,

exploring the entire parameter space of three intertwined se-
quence properties affecting translation efficiency. Interestingly,
we observed that the dynamics of target discovery varies slightly

depending on the input seed (see Supplementary Material for
details). This illustrates that different sequences may have
distinct evolutionary landscapes; some being more amenable to

generate widely variable profiles of property scores, with fewer
mutational cycles than others (Cambray and Mazel, 2008;
Wagner, 2008). For both targeted and oriented mutational meth-

ods, the average dynamics of target discovery revealed a rela-
tively steady rate for the first �80% of targets, followed by a
sharp decrease in efficiency—presumably because the remaining

targets specify combinations of property levels that are harder to
attain (Fig. 4A, orange and light blue lines). We also confirmed
that more simplistic design approaches—such as generation of

random sequences—perform poorly in comparison to a heuristic
search (Fig. 4A and B).
In addition to the case study detailed here, we have used

D-Tailor to systematically design synthetic bacterial promoter
sequences varying multiple cis-regulatory properties (see
Tutorial in Supplementary Material for details), that way

demonstrating the generality and flexibility of our methods
and tool.
D-Tailor permits the implementation of advanced experimental

designs into artificial sequence samples that can serve as a basis
to rigorously and consistently test sets of molecular hypothesis.
We believe that comprehensive full-factorial libraries of sequences

are needed to investigate complex biochemical activities and
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robustly dissect the contribution of individual factors as well as

their interactions. Such libraries will aid characterizing complex

multifactorial phenotypes and eventually derive quantitative rela-

tionships between sequence and activity.
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