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Abstract 
 
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as 
the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over 
the excitability of neurons. We will discuss various factors that have been shown to drastically 
alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, 
calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of 
action potential initiation and propagation. Moreover, we will explore the dynamic surface 
expression of the channel modulated by neurotransmitters and neural activity. We will also focus 
on known principle functions of neural Kv7 channels: control of resting membrane potential and 
spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta 
resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-
current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as 
epilepsy and cognitive deficits. 
 
Introduction 
 
Potassium channels, being the most diverse of all ion channels, underlie a robust number of 
functions controlling the excitability of neurons. They are responsible for such aspects as setting 
the resting membrane potential, reducing excitability as well as controlling the duration, shape 
and firing frequency of action potentials. Potassium channels are localized to all subcellular 
compartments critical for electrical conduction of excitatory inputs. Therefore, it is not surprising 
that many of these channels are gated by specific activators (such as membrane potential or 
neurotransmitters) and regulated by complex molecular pathways.  
Kv7 channels produce an outward potassium current, distinct from other voltage-gated potassium 
channels [1,2], that lacks inactivation, with slow gating kinetics (an order of magnitude slower 
than other voltage-gated potassium channels at room temperature as well as physiological 
temperatures [3,4]) and are activated near resting membrane potential [5,6]. Neuronal Kv7 
subunits are widely expressed in the central as well as peripheral nervous system [7,8], where its 
steady outwardly rectifying current functions as “brakes” for neurons receiving persistent 
excitatory input. A somewhat unique characteristic of the M-current is derived from the 
circumstances by which it was discovered. Namely, upon activation of muscarinic acetylcholine 
receptors (M1 and M3), both of which being Gq-coupled receptors, there is subsequent robust 
suppression of the M-current, leading to a transient increase in excitability. Suppression of the 
M-current has been shown to lower the action potential threshold, increase afterdepolarization 
and depolarize axonal resting potential [2,9]. Over the past several years it has been revealed that 
activation of numerous Gq/11-coupled receptors suppress the channel [10-12]. 
Since the initial discovery of the M-current in bullfrog sympathetic ganglion neurons there have 
been numerous breakthroughs identifying neuronal types expressing the M-current as well as 
mediators of the channel [9,13]. However, it took nearly two decades to determine the molecular 



identity [7]. The lapse in time that was required to elucidate Kv7 as the underling subunits of the 
M-current was largely due to the lack of available tools able to link cloned channels to native M-
current [14]. On the heels of this discovery numerous facets involved in the modulation of the 
Kv7 channel complex have also been uncovered. However, though the M-current has 
consistently been discussed as playing a pivotal role in neuroplasticity, due to its prominent 
expression throughout the brain and its pronounced suppression via neurotransmitters, only 
recently have we begun to understand how dynamic Kv7 channel function contributes to higher 
brain functions.  
 
Components of the Kv7 channel complex 
 
The M-current is conducted through a voltage-gated potassium channel comprised of tetrameric 
assemblies by members of Kv7 α subunit homomers or heteromers derived from KCNQ1-5 
genes. Kv7.1 is the predominant subunit of the Kv7 family that is found in cardiomyocytes 
[15,16] (Fig 1A). Kv7.1 channel generates the slowly activating delayed rectifier current (IKs) 
that contributes to the repolarization phase after action potential initiation. Kv7.1 channel is also 
expressed in the cochlea of the inner ear [17], and vascular smooth muscles [18]. 
A wide variety of neurons in the CNS as well as peripheral neurons express Kv7.2, 7.3, and 7.5 
subunits, which are considered to generate the neuronal M-current [1,2].  It is widely believed 
that heteromeric Kv7.2/3 or Kv7.3/5 channels are the dominant subunit composition (Fig 1B) 
[1,2] since Kv7.3 has been shown to facilitate surface expression of other Kv7 subunits 
especially in Xenopus oocytes [19] and immunohistochemical studies show co-localization of 
these subunits in many areas [8,20]. However, a recent study using conditional knock-out mice 
of KCNQ2 or 3 genes showed abolished M-current in Kv7.2 deficient neurons, but normal M-
current in Kv7.3 deficient neurons, which suggests that Kv7.2 homomeric channels can be fully 
functional without Kv7.3 subunit in the CNS neurons [21].  
Kv7.4 is a subtype selectively expressed in the auditory pathway including hair cells of the inner 
ear (Fig 1A) [22-24]. In addition to neurons, Kv7.4 and K7.5 are also expressed in various 
smooth muscle cells including vascular [18,25] as well as gastrointestinal tract (Fig 1A) [26,27]. 
 
With the advent of discovering the molecular identity of the M-current many aspects of the Kv7 
channel complex have been brought to light (Fig. 1C-E): protein-protein and protein-lipid 
interactions , as well as channel phosphorylation [7,8,28]. Understanding the components of the 
Kv7 channel complex has provided the necessary insight for understanding the requirements for 
basal channel function, its modulation, as well as the pathways involved in neurotransmitter-
induced M-current suppression.  
 
Phosphatidylinositol-4,5-bisphosphate (PIP2) is an anionic phospholipid found on the 
intracellular leaflet of the plasma membrane. PIP2 is a co-factor for numerous ion channels and 
transporters [29], including Kv7, that alters channel function and often is obligatory for 



activation [30-33]. While it has been known that PIP2 interaction with Kv7 is mandatory for 
channel function [34,35], more recently it was shown that PIP2 has multiple sites of interaction 
within the channel, with varying effects [36]. One such PIP2 interaction modulates coupling the 
voltage-sensing to the pore-gating domain [37-40]. Functionally, PIP2 interaction within the 
voltage-sensing domain of the S4-S5 linker has been attributed to increasing open probability 
thus voltage-conductance [40]. Another key interaction site lies within the proximal C-terminus 
of the Kv7.2 subunit that overlaps with the calmodulin (CaM) binding site, a key target for M-
current suppression [39,41,42]. Notably, while depletion of PIP2 in Kv7.2 and Kv7.5 homomeric 
channels leads to profound current suppression, heteromeric assemblies incorporating the Kv7.3 
subunit, with its higher affinity to PIP2, offers resistance to PIP2 turnover [40]. 
 
Both N and C termini of Kv7 subunits locate within the intracellular side and are rich with sites 
of protein interaction . Within the amino terminus lies a consensus site for phosphorylation by 
protein kinase A, which in Xenopus oocytes has been shown to increase Kv7 currents [19]. 
Protein kinase CK2 and protein phosphatase 1 (PP1) also tether to Kv7 subunits (Fig. 1C), and 
modulate the channel through the phosphorylation state of an essential auxiliary unit CaM [43]. 
The carboxyl terminus is relatively long compared to other potassium channels, containing 
numerous sites of interaction [42]. Among these are the aforementioned sites for PIP2, CaM, A-
kinase anchoring protein 5, AKAP5 (also known as AKAP79/150), as well as ankyrin G (Fig. 
1D). Interaction of the channel with many of these factors is highly modulated by 
neurotransmitters activating Gq/11–coupled receptors [44,45].  
 
AKAPs are facilitators of second messenger signaling events that tether signaling enzymes to 
target substrates at the plasma membrane, such as Kv7 channels (Fig.1C) [28,46,47]. This 
anchoring protein is located to the plasma membrane through PIP2 binding and a dynamic post-
translational fatty acid modification known as palmitoylation [48]. AKAP5-bound Protein kinase 
C (PKC) is kept in proximity to neuronal Kv7 channels, which has been shown to be important 
for the specificity of PKC-induced dissociation of CaM from Kv7.2 subunits [8,28,46].  
 
CaM plays roles in the trafficking of Kv7 channels to the plasma membrane [49,50], functions as 
the Ca2+ sensor, and promotes channel interaction with PIP2 (Fig 1C) [44,51] . CaM interacts 
with Kv7 subunits through two α helical regions (A and B) running antiparallel in the C-terminal 
tail. There has been controversy regarding whether calcium facilitates or reduces CaM binding to 
Kv7 [52,53]. A recent crystal structure study using Kv7.1 suggests that the story is not that 
simple [54]. The study shows that the calcium-free C-lobe of CaM interacts with helix A of Kv7 
and the calcium-containing N-lobe of CaM interacts with helix B of Kv7 [54]. However, Kv7.2 
has been shown to have higher affinity for CaM at helix B, regardless of [Ca2+] [55], whereas the 
C-lobe of CaM has higher affinity to [Ca2+] and is dynamically bound to helix A in a calcium-
dependent manner [56]. 
 



Studies during last several years identified an increasing number of accessory proteins for the 
Kv7.2 subunit (Fig. 1D). One of the earliest examples is ankyrin G, which is an underlying 
molecule for anchoring Kv7.2 at the axon initial segment as well as the Node of Ranvier [57,58]. 
The SNARE protein syntaxin 1A is a plasma membrane protein, which serves as a docking site 
for synaptic vesicles. Syntaxin 1A has been demonstrated to interact with both the cytoplasmic 
carboxyl and amino termini of Kv7.2 subunit, which slows channel activation and decreases 
current amplitude (Fig. 1D) [59,60]. Navβ1 was originally considered as a beta subunit unique to 
voltage-gated sodium channels (Nav) [61]. More recently the promiscuity of this auxiliary 
protein was uncovered, first in its modulation of Kv4 [62], and more recently Kv1 and Kv7 
subfamilies [63] (Fig. 1D). Navβ1 slows Kv7.2 channel activation at depolarized potentials [63]. 
An interesting addition to accessory proteins of the Kv7.2 subunit is β-site amyloid precursor 
protein cleaving enzyme 1 (BACE1), which was originally identified to produce neurotoxic β-
amyloid [64] and known to cleave Navβs and increases sodium currents [65]. Physical 
interaction of BACE1, even with enzymatic inactive BACE1, can change gating kinetics and 
functional expression of Kv7 channels with the exception of Kv7.3 homomeric channels [66]. 
However, effects through cleavage of Kv7.2-bound Navβ has not been characterized to date. 
Channel trafficking of Kv7 is another mechanism for regulating neuronal excitability (Fig. 1E). 
It has been noted that the majority of Kv7 channel subunits stay in cytoplasmic vesicles rather 
than being transported to the plasma membrane [49].	Detailed analyses of CaM-dependent 
regulation of Kv7 channel trafficking revealed that CaM regulates exit of Kv7 channels from ER 
[49,50]. In addition, our recent proteomic study identified tubulin dimer together with Collapsin 
response mediator protein-2 (CRMP-2) play a role in channel trafficking of Kv7.2 channels at 
post-Golgi vesicles (Fig. 1E) [67]. 	
 
Integrated channel suppression 
 
Various neurotransmitters activating Gq-protein coupled receptors induce profound transient 
suppression of the M-current [68-70]. It has been demonstrated that stimulation by luteinizing 
hormone releasing hormone [9], purinergic P2Y [13], substance P [71], 5-HT2 serotonin [72], as 
well as activation of M1/M3 muscarinic receptors [5,73,74], metabotropic glutamate receptors 
[75] , κ and δ opioid receptors [76], and AT1 angiotensin receptors [77,78] all suppress the M-
current. 
 
Gq/11 mediated pathway 
Perhaps most well characterized is M-current suppression subsequent to activation of Gq/11-
coupled muscarinic acetylcholine receptors [79,80]. It is well documented that reduction in PIP2 
leads to marked suppression of the M-current (Fig. 2A) [81-83]. Also, PKC was one of the first 
modulators proposed for neurotransmitter-induced M-current suppression [84]. This was for a 
time debated due to confounding and at times contradicting pharmacological data such as PKC 
inhibitors at times showing no interference with muscarinic suppression of the M-current 



[12,85]. These reports were reconciled once it was determined that AKAP-tethered PKC is 
protected from certain PKC inhibitors [86,87]. Indeed, a key PKC phosphorylation site on the 
Kv7.2 subunit has been shown to induce inhibition equivalent to muscarinic suppression of the 
channel [28,44,88]. Therefore, both depletion of PIP2 and activation of PKC are targeted 
downstream of Gq-coupled receptor activation.  
 
The Gq-protein mediated pathway occurs as follows: subsequent to activation of Gq/11-coupled 
receptors, such as the M1 muscarinic receptor, comes activation of phospholipase C (PLC) 
causing hydrolysis of PIP2 into diacylglycerol (DAG) and inositol triphosphate (IP3), leading to 
the activation of PKC. Activated PKC, tethered to the M-channel complex through AKAP5, 
phosphorylates the C-terminus of the Kv7.2 subunit, which overlaps with the channel’s CaM 
binding site. Phosphorylation of the Kv7.2 subunit dissociates CaM from the channel, which 
destabilizes its interaction with PIP2 along with the concomitant reduction in PIP2 due to its 
hydrolysis. Together, these signaling pathways downstream of Gq/11 activation lead to an 
amplified response that synergistically suppresses the M-channel [44]. 
 
Calcium-CaM pathway 
Another well established pathway of M-current suppression is induced by increases in 
intracellular calcium sensed by channel-bound CaM (Fig. 2B) [44,89,90]. Bradykinin receptors 
have been demonstrated to use this pathway [90].  
The physical interaction of calcium-free CaM bound to helix A of Kv7 subunits is integral to 
maintaining channel affinity to PIP2 [44]. Consequently, calcium-bound CaM decreases Kv7.2 
channel efficacy for PIP2, thereby inhibiting the M-current [44,90,91]. On the other hand, a 
recent study showed that splicing variants of Kv7.4 are differentially modulated by CaM [92]. 
This mechanism may explain why bradykinin induced suppression of the M-current is usually 
smaller than that by muscarinic agonists. 
 
Kv7 channel physiology 
 
The voltage dependent characteristics of the M-current lend it to various roles associated with 
controlling excitability in the brain. Kv7 channels activate within subthreshold potentials, 
approximately at –60 mV. Additionally, unlike many other voltage-gated potassium channels, 
Kv7 does not inactivate, therefore, as long as the membrane remains depolarized Kv7 current 
will persist [7]. The outcome is the effective stabilization of the membrane potential throughout 
the duration that neurons receive subthreshold excitatory inputs [93]. Relatively slow activation 
kinetics indicate that Kv7 channels do not appreciably alter single action potential amplitude or 
duration [94]; rather, the functional consequence of M-current is to clamp the membrane at more 
negative potentials, preventing repetitive action potential firing. Moreover, the persistent 
outward current functions to control numerous aspects of neuronal excitability as follows: 
 



Setting membrane potential 
Due to its activation at subthreshold potentials, Kv7 channels have been implicated in controlling 
the resting membrane potential (RMP) at the axon initial segment (AIS) and unmyelinated 
portions of the axons, the nodes of Ranvier as well as axon terminals. Examples have been 
shown in sympathetic, cortical and hippocampal neurons such as visceral sensory neurons and 
within the calyx of Held [95-97].  M-current control of RMP is also a major determinant for 
increasing the recovery of inactivated channels (i.e. axonal Na+ and A-type K+ channels) at the 
nodes of Ranvier, allowing for consecutive action potential spiking [4,97,98]. Therefore, axonal 
Kv7 channels at nodes of Ranvier exert two contradicting functions: increasing the action 
potential threshold but also increasing excitability by promoting recovery of sodium channels 
from inactivation [4,20]. In addition, Kv7 channels are known to reach axon terminal and 
regulate synaptic release through regulating RMP [97,99]. Confusing is that inhibition of Kv7 
channel sometimes facilitate synaptic transmission such as in calyx of Held [97] and 
hippocampal synaptosomes [99], while suppressing synaptic transmission in Schaffer neurons 
[100]. These contradicting effects are assumed to be results of difference in inactivation of 
calcium channels and sodium channels [99,100]. On the other hand, post-synaptic responses can 
be also affected by perisomatic Kv7 channels by changing integration of excitatory postsynaptic 
potentials at the AIS, dampening synaptic transmission of prolonged subthreshold stimulus 
[101,102].  
 
Afterhyperpolarization 
As a consequence of continuous spiking, numerous types of neurons produce three types of an 
afterhyperpolarization (AHP) that contribute to refractory periods: fast AHP lasting 2-5 ms, 
medium AHP with durations ranging from 50-100 ms (mAHP), and a slow AHP lasting 0.1-2 s 
(sAHP).  
Medium AHP is produced through slowly activating and long-lasting outward K+ current that is 
composed in part by a component that requires Ca2+ influx [103,104] and has been shown to 
control the time where neurons are refractory to further excitatory input. Channels contributing 
to the generation of mAHP are Kv7 channels as well as SK2 calcium-activated potassium 
channels and HCN channels [80,103,105]. However, it has been reported that distinct channels 
are responsible for mAHP depending on membrane potentials and neuronal types [104,106]. 
 
Slow AHP is involved in neuronal plasticity and is implicated as a major component during 
learning and establishing memory within the hippocampus [34,38]. The identity of the potassium 
channel responsible for the slow AHP had proven elusive until recently. While Kv7 has been 
suggested as a contributor of sAHP, as afferent cholinergic stimulation reduces effective sAHP 
amplitude [107], one confounding factor discredited its involvement: the sAHP is active at 
membrane potentials more negative than M-current activity is typically observed. Activation of 
the sAHP is known to have a Ca2+ dependent component, and neuronal calcium sensor proteins 
such as hippocalcin have been implicated in the activation of potassium channels that constitute 



the sAHP [108,109]. A physiological consequence of hippocalcin activation is the downstream 
production of PIP2. In a recent report evidence was given for shifting Kv7 open probability to 
more negative potentials through increased interaction with PIP2 [40,110]. Further support comes 
from the observation that BACE1 knockout mice have reduced sAHP. As BACE1 has been 
shown to cause a leftward shift in Kv7 voltage activation, within the voltage range where sAHP 
is active [66]. 
 
Interspike interval 
High frequency bursts of action potentials leads to Kv7 channel activation. Consequently, this 
gradually increases spike interval, which is also known as spike frequency adaptation [80,111]. 
Recently M-current was also shown to regulate the firing frequency of tonically firing neurons in 
rat entorhinal cortex layer II stellate cells [112], as well as neurons of the retrotrapezoid nucleus 
[113], which, during continuous current input, initially fire with short interspike intervals that 
quickly lead to refractory periods with minimal firing [112]. Furthermore, Kv7 current has also 
been shown to control the rate of firing in dopaminergic neurons of the ventral tegmental area 
[94] and hippocampal neurons [114]. Thus, the M-current robustly controls the frequency at 
which neurons are able to fire while receiving continuous excitatory input [115]. 
 
Theta-resonance 
Another physiological function of Kv7 channels, in conjunction with HCN channels, is 
facilitating the responsiveness to oscillating subthreshold membrane potential within theta 
frequencies  (2-7 Hz), which functions as a band pass filter [116]. This function has 
predominantly been characterized in pyramidal neurons in the hippocampus [116,117]. 
Interestingly, two distinct channel types with different ion species, gating kinetics, and 
subcellular localization (somatic Kv7 channels and dendritic HCN channels) produce a 
synergized function [116,117]. Theta resonance has been considered integral to inducing 
synchronous activity within the local circuit and shown to be a necessary component of 
neuroplasticity as well as learning and memory [118-120]. Network oscillations at the theta 
frequency have been shown to be important for hippocampal function, such as exploration [121] 
and working memory such as navigation of mazes [122,123]. As such, disruption of M-channel 
activity, such as conditional knockout of Kv7.2 subunits, reduces hippocampal theta resonance 
and consequently impairs animal performance in spatial memory tasks [124]. 
 
Transient neuronal hyperexcitability 
Suppression of Kv7 current leads to the transient removal of above functions, leading to neural 
hyperexcitability (Fig. 3). Consequently, channel suppression allows for the accumulation of 
excitatory inputs that lead to burst firing or “complex-spikes” [125]. In addition, suppression of 
Kv7 channel leads to concomitant reduction in action potential threshold such as what is seen in 
dentate granule cells after stimulation by cholinergic fibers [126]. Thus, reduction in action 
potential threshold by Kv7 channel suppression makes action potential propagation more 



permissive, where weaker stimuli can invoke neuronal spiking with higher probability, and 
increases the likelihood of spontaneous firing, which underlies burst firing in some neurons [4]. 
Alternatively, ablation of Kv7 current by conditional knock-out produces a similar effect [21]. 
Furthermore, since the M-current is activated during high frequency firing, M-current 
suppression allows neurons to respond to high frequency inputs. Moreover, This bursting has 
been shown to be one component of memory coding after learning in subcortical regions 
[14,127]. Suppression of axonal M-current also increases the likelihood of the back-propagation 
of action potential spikes into the apical dendrites, which has been demonstrated to promote 
long-term potentiation [101,128]. 
 
Kv7 channel augmentation 
 
Just as there are multiple mediators of M-current suppression, so to for M-channel preservation 
as well as enhancers of M-current activity. Early examples include neurotransmitters such as 
somatostatin [129], corticostatin [130] and dynorphin [131]. Since phosphorylation of certain 
residues of Kv7 channels are known to cause robust suppression it follows that some protein 
phosphatases preserve neuronal Kv7 channel activity. One example is Protein Phosphatase 2A, 
(PP2A), which was demonstrated to counteract channel inhibition via phosphorylation by 
Glycogen Synthase Kinase 3β, (GSK3β) [132,133]. While phosphorylation of Kv7 subunits is 
typically associated with channel suppression, phosphorylation of Kv7-bound CaM by protein 
kinase CK2 has been shown to facilitate CaM interaction with the channel, increasing PIP2 
efficacy and increasing channel amplitude while remaining sensitive to increases in intracellular 
Ca2+ [43,134]. Another signaling pathway known to augment the M-current (specifically, 
channels containing Kv7.2/4/5 subunits) is through the increase in an intracellular reactive 
oxygen species, ROS [135,136]. It has been shown that the oxidation of three cysteine residues 
lying within the S2-S3 linker increase the Po of Kv7 channels [135]. Another recently identified 
pathway for ROS induced augmentation is methylation of arginine residues of Kv7.2 subunit by 
arginine methyltransferase 1 (Prmt1), which promotes Kv7.2 interaction with PIP2 [136].  This 
study also suggests that partial methylation of arginine residues in Kv7 channels is essential for 
maintaining basal M-current [136].  
	

Auxiliary units of potassium channels such as members of the KCNE family are common co-
factors that associate with pore-forming subunits and alter channel activity, such as voltage 
dependence of activation. Recently β-secretase BACE1 was revealed to associate with members 
of the Kv7 family in neurons (Fig. 1D). Interestingly, it is the physical interaction and not the 
enzymatic activity of BACE1 protein that is responsible for the leftward shift in the voltage 
conductance of the M-current. This leftward shift was accompanied by a change in Kv7 channel 
kinetics, accelerating activation as well as slowing channel deactivation [66]. While PIP2 is 
necessary for M-current function, it has also been revealed that increasing PIP2 levels caused 
Kv7 channels to open at deeper potentials, similar to the effect seen with BACE1 [40,110]. 



Interestingly, the combination of BACE1 interaction with the channel along with elevating PIP2 
levels causes even greater leftward shift in channel activation [40]. These revelations bring 
credence to the growing consensus that Kv7 channels are a major part of the burst firing-
activated outward current underlying sAHP, which is known to be active at membrane potentials 
lower than where the M-current has been thought to be active.  
 
Another association with Kv7.4 subunits has recently been uncovered. Kv7 channels in vascular 
smooth muscle are positively regulated by G-protein βγ subunits, enhancing the rate of Kv7 
channel activation and shifting the voltage dependence of activation so that the channel is open 
at deeper potentials [137]. While it is important to note that this phenomenon has yet to be 
confirmed in CNS neurons, G-protein βγ subunits may prove to be an underlying factor 
responsible for enhancement of Kv7 activity by as seen with G-protein coupled receptor 
activation by somatostatin [129] and dynorphins [131]. 
 
Subcellular localization 
 
A key characteristic determining the roles of neuronal Kv7 channels lies in their subcellular 
localization. Kv7 channels are highly concentrated at the distal end of the AIS and nodes of 
Ranvier by the protein ankyrin-G. The AIS functions as the gatekeeper of action potential 
initiation by controlling the threshold at which excitatory presynaptic potentials transmit action 
potentials down the axon. Ankyrin G also functions to localize Kv7.2 and to a lesser extent 
Kv7.3 channels at unmyelinated regions of the axon, known as Nodes of Ranvier [57,58,138]. At 
these nodes, Kv7 channels (Kv7.2/7.3) co-cluster with voltage gated sodium channels and are 
thought to underlie the slow outward potassium current, stabilizing RMP [4,98]. In agreement 
with its axonal localization, selective suppression of axonal Kv7 channel increases spike 
afterdepolarization, facilitating action potential firing [125]. Interestingly, in a study where 
myelination of the axon was removed, Kv7 channels dispersed along the axon, which had the net 
effect of increasing neural excitability [139]. This was postulated to be through stabilizing the 
RMP throughout the axon, thereby increasing the availability of Nav channels as previously 
described [4,20]. 
 
Kv7 channels have also been reported to be expressed in the perisomatic region outside the AIS 
[57,140,141]. Somatic function of the M-current is implicated in excitatory synaptic potential 
integration as well as counteracting afterdepolarization [57,142,143]. Perisomatic Kv7 channel 
has been shown to change the amplitude and shape of somatic EPSPs [102]. There is also 
accumulating evidence that Kv7 channels may be expressed at apical dendrites [140,142,144]. 
Due to their relative scarcity at this location, the function of Kv7 channels within dendrites is 
still controversial, though it has been proposed to contribute to conditions where there is 
dendritic hyperexcitability, as in the case of persistent excitatory presynaptic input [142,144], 
however, further clarification of Kv7 channel function outside the axon is still needed. 



 
Finally, Kv7.2 has been shown to localize to presynaptic terminals [99]. Augmentation of Kv7 
channels at this location attenuates neurotransmitter release [99] whereas suppression of Kv7 
current by Gq activation increases activation of voltage-gated calcium channels leading to 
increased transmission [145]. 
 
Surface expression 
 
Under basal conditions, Kv7 channels have very low turnover rate throughout the axon [146]. 
However, surface expression of Kv7 channels is upregulated after neuronal stimulation [147]. 
Paradoxically, persistent excitation of neurons leads to pronounced internalization of Kv7 
channel at the AIS, which is largely irreversible [148]. Li and colleagues demonstrated that 
persistent activation through glutamate induced a Ca2+ and PKC-dependent internalization of 
Kv7 channel. Similar irreversible suppression of Kv7 channel was observed with cholinergic 
stimulation onto dentate granule cells, causing an increase in their intrinsic excitability [126]. It 
was revealed that cholinergic stimulation onto the AIS of dentate granule neurons leads to 
persistent activation of T-type Ca2+ channels, causing robust M-current suppression that does not 
recover after washout. Conversely, deprivation of afferent axonal stimulus, as shown in neurons 
of the avian cochlear nucleus leads to pronounced increase in surface expression of Kv7.2 
channels and concomitant reduction of Kv1 channels at the AIS [149]. This reduces the fast 
activating Kv1 currents, thereby increasing excitability, while preserving axonal RMP by Kv7 
channels.  
 
CaM tethered to Kv7 subunits is important for of Kv7 channel exit from the endoplasmic 
reticulum and is necessary for basal surface expression of the channel at the plasma membrane 
[49,55]. Alternatively, a recent study uncovered a form of induced surface translocation 
subsequent to muscarinic suppression of the channel tested in a heterologous system in which 
Kv7 channels in post-Golgi vesicles were determined to be the predominant source of this form 
of over-recovery of the M-current, mediated through a CRMP-2 pathway [67] (Fig. 1E). 
 
Pathology 
 
The genes encoding Kv7.2 and Kv7.3 have been shown to have numerous mutations that induce 
epilepsies and encephalopathies. Most common of these pathologies is known as benign familial 
neonatal seizures (BFNS), a form of autosomal dominant idiopathic epileptic syndrome. The 
generalized seizures induced by these mutations occur within the first days after birth and have a 
high likelihood of spontaneously receding within the first two months [150-153]. Mutations 
leading to epileptic activity are predominantly autosomal dominant, inducing loss of channel 
function such as from missense, truncation, and non-native splice variants that reduce functional 
Kv7 channel at the plasma membrane [154,155]. Many of these mutations lead to reduction in 



basal M-current and subsequent hyperexcitability [156]. This is also true in the cases of early 
onset epileptic encephalopathy, though usually with more severe channel suppression [152]. As 
of yet, encephalopathies have only been detected from missense mutations in KCNQ genes and 
tend to occur de novo [152,157,158]. One example is through an alternative substitution of a 
previously described select amino acid mutation, which is known to cause BFNS, instead leading 
to a severe form of encephalopathy. It was determined that the functional difference in this 
severe form of single amino acid mutation is derived from not only a reduction of functional 
expression of Kv7 channels but also loss of localization of Kv7 channels to the AIS [152]. As a 
consequence of the growing literature on pathologies associated with Kv7 mutations there has 
been an effort to develop genetically engineered animals to recapitulate and understand the 
pathologies of the numerous implicated mutations and better understand underlying causes 
[159,160] as well as the effectiveness of potential therapies [161]. 
 
M-current activity is an important obstacle for seizure onset [162,163]. However, gain of 
function mutations in Kv7 channels have also been uncovered in patients suffering from epileptic 
encephalopathies [164-166]. One such mutation was found within the voltage-sensing domain of 
Kv7.2 and Kv7.3 subunits, stabilizing the channel in the open conformation, reducing the voltage 
dependence of activation [165]. Interestingly, while these mutations decrease the intrinsic 
excitability in neurons where they are expressed, there is a marked increase in network 
excitability within the CA1 of the hippocampus. This suggests the grave importance in Kv7 
channel control of action potential propagation, particularly at its axonal localization. 
 
Conclusion 
 
The specific characteristics of Kv7 channels lend it to function as powerful brakes against 
continuous neural activity. As an extreme example, retigabine-induced augmentation of the M-
current has seen great success as an antiepileptic therapy [167], and more recently it was 
determined that one of the predominant antiepileptic drugs, valproic acid, owes part of its 
protective activity to the preservation of the M-current during seizures [168]. In contrast, 
removal of Kv7.2 increases susceptibility to seizures and leads to deficits in hippocampal-
dependent spatial memory [124] as well as fear memory in mice [169]. However, continuous 
ablation of hyperactivity in neurons expressing Kv7 channels may disrupt cognitive functions 
such as memory encoding, indicating the importance of transient channel suppression. 
Neurotransmitters are intricately involved in higher brain functions and acetylcholine-induced 
suppression of the M-current was among the first examples of modulating neuronal excitability 
[79]. It would follow, therefore, that suppressing the activity of Kv7 channels such as what is 
seen by afferent cholinergic stimulation [126] would provide a means to allow plasticity in 
neural excitability with great spatial and temporal resolution. Even so, work is ongoing to 
determine the intricacies of M-current suppression in higher brain functions.  
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Figure legends 

 
Figure 1. Summary of Kv7 channel family and their binding proteins. A) Subtypes of Kv7 
channel family and their expression pattern. B) Summary of subunit composition with Kv7.2. 7.3 
and 7.5 subunits, which is widely observed in neurons. C) Schematic summary of signaling 
proteins that are tethered to Kv7.2 subunit. PP1, protein phosphatase 1. CK2, CK2 proetin kinse. 
CaM, calmodulin. PKC, protein kinse C. PP2B, protein phosphatase 2B. PKC, protein kinse A. 
D) Schematic summary of accessory proteins for Kv7.2 subunit. Navnβ1, sodium channel β 
subunit 1. BACE1,β-site amyloid precursor protein cleaving enzyme 1. E) Schematic summary 
of identified regulator proteins for Kv7.2 channel trafficking. CRMP2, collapsin response 
mediator protein 2. 



 

 
Figure 2. Schematic summary of molecular configuration of Kv7 channel and its 
modulation modified from ref 29. A) Activation of Gq/11 coupled receptor induces depletion 
of PIP2 as well as activation of PKC, which phosphorylates Kv7 channel leading to dissociation 
of CaM and unstabilized PIP2 interaction. B) Increase in cytosolic calcium induces change in 
CaM conformation, and configuration between CaM and Kv7 channel, which leads to unstalized 
PIP2 interaction. 



 
Figure 3. Summary of physiological relevance of neuronal Kv7 channel and its modulation. 
 




