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Genome Sequence of the Photoarsenotrophic Bacterium
Ectothiorhodospira sp. Strain BSL-9, Isolated from a Hypersaline
Alkaline Arsenic-Rich Extreme Environment

Jaime Hernandez-Maldonado,a Brendon Stoneburner,a Alison Boren,a Laurence Miller,b Michael Rosen,c Ronald S. Oremland,b

Chad W. Saltikova

Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USAa; U.S. Geological Survey, Menlo Park, California,
USAb; U.S. Geological Survey, Carson City, Nevada, USAc

The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-
type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic pho-
tosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G�C content.
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Arsenic-rich soda lakes are ideal environments for culturing
microorganisms with unique metabolic capabilities for cou-

pling cellular energy production to arsenic oxidation and reduc-
tion (1–6). Here, we report the assembled genome of an anoxy-
genic photosynthetic arsenite-oxidizing (“photoarsenotrophic”)
bacterium, Ectothiorhodospira sp. strain BSL-9. This microbe was
isolated from Big Soda Lake, an arsenic-rich (~25 �M), hypersa-
line (26 to 88 g/liter total dissolved solids), alkaline (pH 9.7) lake
located in Nevada (39°31=N 118°52=W) (7–9). Moreover, this cra-
ter lake has a well-defined seasonal bloom of purple sulfur bacteria
(Chromatium and Ectothiorhodospira species) (10) that are pro-
posed to contribute to the arsenic geochemical cycle.

Assessment of the BSL-9 genome revealed an arsenic gene is-
land, arxB2AB1CD (11), which is predicted to encode the arsenite
oxidase gene arxA. Moreover, arxB2AB1CD encodes a [4Fe-4S]-
containing protein (arxB2), a second [4Fe-4S]-containing protein
(arxB1), a membrane protein (arxC), and a TorD-like protein
involved in molybdenum enzyme biogenesis (arxD). In the che-
moautotrophic bacterium Alkalilimnicola ehrlichii sp. strain
MLHE-1, arxA is required for anaerobic arsenite oxidation cou-
pled to nitrate (12). The BSL-9 genome lacks the AioA-type arsen-
ite oxidase. A BSL-9 arxA mutant strain shows that arxA is the sole
arsenite oxidase for photoarsenotrophy (13).

Ectothiorhodospiraceae are common anoxygenic phototrophs
with versatile abilities to metabolize inorganic and organic electron
donors (14–16), which enables them to occupy distinct euphotic hy-
persaline alkaline environments. In addition to arsenite, BSL-9 can
grow photoautotrophically with sulfide or thiosulfate. This is consis-
tent with the presence of sox and dsr genes, which are involved in
sulfur oxidation (17, 18). Moreover, BSL-9 can also grow as a
photoheterotroph with various organic acids (e.g., acetate, malate,
propionate, lactate, fumarate, succinate, and pyruvate). BSL-9 is
sensitive to chloramphenicol, resistant to kanamycin, carbenicil-
lin, gentamicin, and tetracycline, and grows optimally at 35°C at
pH 8, 2% NaCl; these growth patterns are consistent with other

Ectothiorhodospira species (14–16). Although BSL-9 is an anaer-
obe, the presence of cytochrome c oxidase genes (e.g. cbb3) found
in BSL-9 may explain its tolerance to atmospheric oxygen. For
example, cytochrome c oxidases (cbb3) are known for having high
oxygen affinity, and cytochrome c peroxidases protect cells from
reactive oxygen species. The BSL-9 genome also encodes photo-
synthetic complex genes, such as bacteriochlorophyll a synthase,
the light-harvesting complex pucAB, and two copies of the carbon
fixation-related gene rbcL (type III RuBisCO). Having the full
genome sequence of BSL-9 opens numerous possibilities for
studying the metabolic abilities, physiology, and the ecological
environmental impact of photoarsenotrophy to the arsenic bio-
geochemical cycle.

The genome was done at the UC Davis Genome Sequencing
Center using PacBio technology. The Hierarchical Genome As-
sembly Process (HGAP_v2) assembly pipeline (19) was used with
~300� sequence coverage. For annotation, the NCBI Public Ge-
nome Annotation Pipeline service was used. The resulting assem-
bly was 3.5 Mb, with 63% G�C content.

Accession number(s). The genome sequence of Ectothiorho-
dospira sp. strain BSL-9 was deposited in the GenBank database
under the accession no. CP011994, NCBI BioProject accession no.
PRJNA232800, and BioSample accession no. SAMN03795182.
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