
UC San Diego
Technical Reports

Title
On-line Parallel Tomography

Permalink
https://escholarship.org/uc/item/7gs5m3ws

Author
Smallen, Shava

Publication Date
2001-06-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gs5m3ws
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

On-line Parallel Tomography

A thesis submitted in partial satisfa
tion of the

requirements for the degree Master of S
ien
e in

Computer S
ien
e

by

Shava Smallen

Committee in
harge:

Professor Fran
ine Berman, Chair

Professor S
ott B. Baden

Professor Mark Ellisman

2001

The thesis of Shava Smallen is approved, and it is a

ept-

able in quality and form for publi
ation on mi
ro�lm:

Chair

University of California, San Diego

2001

iii

To my family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedi
ation . iv

Table of Contents . v

List of Tables . vii

List of Figures . viii

A
knowledgements . x

Abstra
t . xii

I Introdu
tion . 1

A. O�-line Parallel Tomography . 4

1. GTOMO . 6

B. On-line Parallel Tomography . 7

C. Thesis Summary . 10

D. Organization of Thesis . 10

II Tunable On-line Parallel Tomography 12

A. GTOMO Extension . 12

B. Tunable Parameters . 17

1. Redu
tion Fa
tor . 18

2. Proje
tions Per Refresh . 20

3. Cost . 20

C. Summary . 21

III User-Dire
ted AppLeS . 22

A. Design . 22

B. Sear
hing for Triples . 25

C. Work Allo
ation Experiments . 26

1. Appli
ation Model . 28

2. Computation . 29

3. Communi
ation . 31

4. Cost . 35

5. Putting it all together . 36

D. Summary . 37

v

IV Experiments . 39

A. Introdu
tion . 39

B. Work Allo
ation . 39

1. Performan
e Metri
 . 40

2. Simulation . 42

3. Case Study: NCMIR
luster . 44

a. Partially Tra
e-driven Simulations 49

b. Completely Tra
e-driven Simulations 53

4. Synthesized Grid Experiments 56

a. Grid Constru
tion . 57

b. S
heduler Comparisons . 64

. Partial Orders . 68

d. S
oring . 71

5. Summary . 75

C. Tunability Experiments . 75

1. Grid Constru
tion . 76

2. Experiments . 77

3. User Model . 78

4. Tunability Results . 79

5. Partial Order Results . 83

6. Summary . 84

D. S
heduling Laten
y . 86

1. Summary . 88

V Related Work . 89

VI Con
lusion . 91

Appendi
es

A Tables . 94

Bibliography . 97

vi

LIST OF TABLES

III.1 Example
on�gurations . 23

IV.1 Summary of s
heduler
hara
teristi
s. 40

IV.2 NCMIR ma
hine des
riptions. 46

IV.3 Summary statisti
s for NCMIR bandwidth tra
es 46

IV.4 Summary statisti
s for NCMIR CPU availability tra
es 49

IV.5 Summary statisti
s for NCMIR simulations with perfe
t load pre-

di
tions. 50

IV.6 Summary statisti
s for NCMIR simulations with imperfe
t load

predi
tions. 53

IV.7 Number of Grids generated for ea
h Grid type p

1

p

2

p

3

. 62

IV.8 S
heduler ranking based on
umulative �

l

for syntheti
 Grid sim-

ulations . 64

IV.9 Average deviation from best s
heduler based on
umulative �

l

for

syntheti
 Grid simulations. 65

IV.10 Summary statisti
s for syntheti
 Grid simulations. 66

IV.11 Summary statisti
s for AppLeS sear
h times. 88

A.1 Feasible triples for a highly variable Grid 94

vii

LIST OF FIGURES

I.1 Spiny dendrite . 2

I.2 Parallelism of tomography . 3

I.3 Pro
essing steps of tomography . 5

I.4 GTOMO ar
hite
ture. 8

II.1 R-weighted ba
kproje
tion algorithm 14

II.2 Ar
hite
ture of GTOMO on-line parallel tomography extension . . 16

II.3 Redu
tion algorithm. 19

II.4 Sample redu
tion illustration . 19

III.1 Flow diagram for a user-dire
ted AppLeS 24

III.2 AppLeS triple sear
h algorithm. 27

III.3 Ptomo pro
essing algorithm. 30

III.4 Fully
onne
ted network . 33

III.5 Example LAN network topology. 33

III.6 Example ENV logi
al representation. 34

III.7 The model of on-line parallel tomography. 38

IV.1 NCMIR topology . 45

IV.2 ENV representation of NCMIR topology 45

IV.3 NCMIR bandwidth tra
es. 47

IV.4 NCMIR CPU availability tra
es 48

IV.5 NCMIR partially tra
e-driven simulations: mean �

l

. 51

IV.6 NCMIR partially tra
e-driven simulations: �

l

CDF 52

IV.7 NCMIR
ompletely tra
e-driven simulations: mean �

l

. 54

IV.8 NCMIR
ompletely tra
e-driven simulations: �

l

CDF 55

IV.9 Grid topology for work allo
ation simulations 57

IV.10 CoeÆ
ient of varian
e histogram for bandwidth tra
es 59

IV.11 Correlation between
v and �e

p

for bandwidth tra
es 60

viii

IV.12 CoeÆ
ient of varian
e histogram for CPU availability tra
es. . . . 61

IV.13 Correlation between
v and �e

p

for CPU availability tra
es 63

IV.14 S
heduler ranking based on
umulative �

l

. 65

IV.15 Syntheti
 Grid simulation results: �

l

CDF 67

IV.16 Histogram of mean tra
e CPU availability 68

IV.17 Syntheti
 Grid simulations grouped by partial order P

1

. 70

IV.18 Syntheti
 Grid simulations grouped by partial order P

2

. 72

IV.19 Low predi
tability tra
e segment 73

IV.20 Syntheti
 Grid simulations: �

l

CDF grouped by � 75

IV.21 Grid topology for tunability experiments 77

IV.22 Triples found for (61; 1024; 1024; 300) experiment. 80

IV.23 Triples found for (61; 2048; 2048; 600) experiment. 81

IV.24 Frequen
y of parameter
hanges for E

1

experiments 82

IV.25 Frequen
y of parameter
hanges for E

2

experiments 83

IV.26 Partial order results: frequen
y of triple
hanges 85

IV.27 AppLeS s
heduling laten
y for E

1

experiments. 87

IV.28 AppLeS s
heduling laten
y for E

2

experiments. 87

ix

ACKNOWLEDGEMENTS

Working on this thesis has been a really great learning experien
e for me.

It has also been an enjoyable experien
e largely in part to all of the great people

I have met and intera
ted with while working on this proje
t.

First, I would like to thank my advisor, Fran Berman, for all of her

support and inspiration. She has been a great role model and her guidan
e has

allowed me to grow a lot over these past three years.

I am also extremely grateful to my
o-advisor, Henri Casanova, who has

been a great mentor and has been there to provide feedba
k and en
ouragement

whenever I needed it.

Spe
ial thanks to Ri
h Wolski for his insightful
omments and always

lear (and entertaining) explanations.

Furthermore, I would like to thank the members of my
ommitte, S
ott

Baden and Mark Ellisman.

I would also like to express my gratitude to all the folks that I have worked

with on the Teles
ien
e proje
t for whi
h this work grew out of. I would espe
ially

like to thank Mei-Hui Su from ISI who wrote the original GTOMO
ode and has

been in
redibly wonderful to work with. From NCMIR, I would espe
ially like to

thank Steve Lamont who wrote the original tomography
ode and has gra
iously

answered many tomography-related questions for me; Dave Foster and Mona Wong

for providing NCMIR systems support; and Marty Hadida-Hassan.

The experiment results presented in this thesis were run in parallel using

APST (AppLeS Parameter Sweep Template) developed by Henri Casanova and a

number of workstation
lusters. I would like to thank Satoshi Matsuoka for use

of the Prospero and Presto
lusters at the Tokyo Institute of Te
hnology, Phil

Papadopoulos for use of the Meteor
luster at SDSC, and David Hut
hes for use

of the A
tive Web
luster at UCSD.

Additionally, I would like to thank Robert Ellis, Roummel Mar
ia, and

Tu
ker M
Elroy from the Graduate Mathemati
s Consulting Group at UCSD.

x

Last, but de�nitely not least, thanks to all the folks in the Grid Comput-

ing Lab. This group has been in
redibly supportive, a great sour
e of te
hni
al

information, and just fun to be around. I would espe
ially like to thank Holly Dail

and Alan Su for always being there to provide feedba
k. Thanks to Walfredo Cirne

and Jaime Frey who worked with me on the o�-line GTOMO
ode, Jim Hayes for

providing software engineering advi
e, and Graziano Obertelli for administering

the
ir
us ma
hines and supporting my laptop whenever it was in trouble. Spe
ial

thanks to Mar
io Faerman, Gary Shao, Otto Sievert, Renata Teixeira, and Dmitrii

Zagorodnov. Also, thanks to Nadya Williams for providing
ho
olate support.

xi

ABSTRACT OF THE THESIS

On-line Parallel Tomography

by

Shava Smallen

Master of S
ien
e in Computer S
ien
e

University of California, San Diego, 2001

Professor Fran
ine Berman, Chair

Tomography is a
omputationally intensive pro
ess by whi
h the three-

dimensional stru
ture of an obje
t
an be re
onstru
ted from a series of two-

dimensional proje
tions. In this thesis, we address on-line exe
ution of tomography

to provide real-time feedba
k to users
olle
ting data from an on-line instrument.

Context for this work is provided by a powerful ele
tron mi
ros
ope lo
ated at

the National Center for Mi
ros
opy and Imaging Resear
h (NCMIR). A
quiring

data from NCMIR's mi
ros
ope is a lengthy pro
ess and is sus
eptible to
on�g-

uration errors. Thus, real-time tomography feedba
k will allow users to qui
kly

identify
on�guration problems and intera
t with the mi
ros
ope in order to more

eÆ
iently a
quire data from it.

We present an implementation of on-line parallel tomography whi
h al-

lows for produ
tion runs in Computational Grid environments. Developing ap-

pli
ations that leverage this type of platform is diÆ
ult be
ause resour
es are

heterogenous and dynami
. In our approa
h, on-line parallel tomography is de-

signed to be tunable su
h that it
an be
on�gured to adapt to di�erent resour
e

availabilities. It is
oupled with an user-dire
ted, appli
ation-level s
heduler whi
h

exploits the tunability of the appli
ation to determine a s
hedule for soft real-

time exe
ution. The s
heduler utilizes user
onstraints, an appli
ation model, and

dynami
 resour
e load predi
tions to determine feasible run-time
on�gurations.

xii

The
on�gurations are displayed as
hoi
es to the user where ea
h
on�guration

involves trade-o�s between resolution of the re
onstru
tion, frequen
y of feedba
k,

and
ost of exe
ution. On
e an appropriate
on�guration is
hosen by the user,

the s
heduler sele
ts resour
es, allo
ates work, and exe
utes the appli
ation.

xiii

Chapter I

Introdu
tion

Re
onstru
ting the three-dimensional stru
ture of an obje
t from a se-

ries of two-dimensional proje
tions is
alled tomography. Tomography has been

applied to many �elds su
h as medi
al imaging, earth s
ien
e, and astronomy [27℄.

In this thesis, we
on
entrate on the appli
ation of tomography to ele
tron mi-

ros
opy. Context for this work is provided by the National Center for Mi
ros
opy

and Imaging Resear
h (NCMIR) where tomography is run on data
olle
ted from

an intermediate-high voltage transmission ele
tron mi
ros
ope (IVEM). NCMIR's

ele
tron mi
ros
ope allows s
ientists to study spe
imens at the
ellular and sub-

ellular level and is one of the few of its kind in the United States that is available

to the biologi
al resear
h
ommunity [25℄. During a session with the ele
tron mi-

ros
ope, a spe
imen is rotated about a single axis while proje
tions are a
quired

from a CCD (
harge-
oupled devi
e)
amera. Typi
ally 61 proje
tions are a
-

quired, where the size of ea
h proje
tion depends on the resolution of the CCD

amera,
urrently either 1k� 1k or 2k� 2k. In Figure I.1, we show an example of

a tomographi
 volume generated from a spiny dendrite data set that was
olle
ted

from NCMIR's ele
tron mi
ros
ope.

The tomographi
 algorithms used by NCMIR are
omputationally inten-

sive. They in
lude the R-weighted ba
kproje
tion algorithm whi
h performs the

tomographi
 re
onstru
tion; it is optionally followed by iterative ART (Algebrai

1

2

Figure I.1: Spiny dendrite.

Re
onstru
tion Te
hnique) or SIRT (Simultaneous Iterative Re
onstru
tion Te
h-

nique) algorithms whi
h further re�ne the volume [38℄. Fortunately these algo-

rithms are also embarrassingly parallel whi
h fa
ilitates a parallel implementation

of tomography [39℄. Figure I.2 illustrates the parallelism of these tomographi
 algo-

rithms. The information required to produ
e the ith X-Z sli
e of the volume is the

ith s
anline from all proje
tions. Therefore, the three-dimensional volume
an be

de
omposed into a series of X-Z sli
es where ea
h sli
e is
omputed independently

of the others.

There are two s
enarios for whi
h NCMIR is interested in using parallel

tomography: o�-line parallel tomography and on-line parallel tomography. In o�-

line parallel tomography, a user is interested in running tomography on a dataset

that resides somewhere on se
ondary storage. The user's goal is to obtain a sin-

gle, high-resolution tomogram as soon as possible. Conversely, in on-line parallel

tomography, a user is interested in running tomography on data as it is
olle
ted

from the mi
ros
ope. The user's goal is to
ompute su

essive tomograms in quasi-

real-time in order to obtain feedba
k on the quality of the data a
quisition.

3

X

Y

scanline

slice

specimen

projection

Z

Figure I.2: Parallelism of tomography (adapted from [21℄). The information re-

quired to re
onstru
t the ith X-Z sli
e is the ith s
anline from all proje
tions.

4

I.A O�-line Parallel Tomography

Traditionally, NCMIR s
ientists have run parallel tomography on data

sets previously
olle
ted from the ele
tron mi
ros
ope. This pro
edure is referred

to as o�-line parallel tomography and is illustrated in Figure I.3. A data set

of p proje
tions, ea
h of size x � y, is a
quired from the mi
ros
ope and then

prepro
essed to
orre
t for imperfe
tions of the data a
quisition pro
ess (e.g. �du-

ial alignment, normalization) [39℄. Next, the proje
tions are transformed into y

sinograms of dimension x � p, where the ith sinogram is
omposed from the ith

s
anlines of ea
h proje
tion. The sinograms will then be parallel pro
essed into

sli
es of the tomogram. A sli
e is of dimension x � z, where the value for z is

derived from the a
tual physi
al thi
kness of the spe
imen in pixels. Finally, the

sli
es are
olle
ted into a tomogram, a three-dimensional volume, and viewed by

the user.

We de�ne an o�-line parallel tomography experiment, E

off

, using the

parameters that determine the amount of data and
omputation involved in the

tomographi
 re
onstru
tion.

De�nition I.1

E

off

= (p; x; y; z)

where

� p is the total number of proje
tions a
quired from the mi
ros
ope,

� x is the width of the proje
tion,

� y is the height of the proje
tion (also the number of sli
es to
om-

pute), and

� z is the thi
kness of the spe
imen.

Given NCMIR's 1k�1k and 2k�2k CCD
ameras, the following are representative

examples of the size of experiments run by NCMIR users: (61, 1024, 1024, 300)

and (61, 2048, 2048, 600).

5

y

x
p

1

y

x

p
1

y
x

z

xz

y

projections sinograms slices tomogram

(a) (b) (c) (d)

Figure I.3: Pro
essing steps of tomography.

6

I.A.1 GTOMO

We and our
ollaborators implemented a version of o�-line parallel to-

mography
alled GTOMO [46℄ whi
h is targeted to a Computational Grid [18℄.

Traditionally, it
an be
hallenging to develop appli
ations that leverage this type

of platform be
ause resour
es are heterogeneous, dynami
, and governed by di�er-

ent administrative poli
ies (i.e., a

ounting, lo
al s
heduler, se
urity, et
.). Fortu-

nately, there are several Grid infrastru
ture proje
ts [19, 24, 30, 6, 43℄ available

to fa
ilitate running an appli
ation a
ross di�erent administrative domains. In

GTOMO, we use servi
es from the Globus toolkit [19℄ for remote pro
ess
ontrol

and interpro
ess
ommuni
ation. We then implemented a s
heduler for running

o�-line parallel tomography in a heterogeneous, dynami
 environment.

Sin
e the tomographi
 algorithms used by NCMIR are embarrassingly

parallel, we
an employ a self-s
heduling [26℄ strategy. In GTOMO, we use a sim-

ple work queue algorithm where one sli
e of work is assigned to a pro
essor at a

time until all sli
es have been pro
essed. However, e�e
tive resour
e sele
tion is

more
ompli
ated be
ause NCMIR's platform in
ludes spa
e-shared resour
es (su-

per
omputers). On spa
e-shared resour
es, jobs exe
ute on dedi
ated pro
essors

but typi
ally have to wait in a queue before exe
ution. Depending on the number

of pro
essors requested and the load of the ma
hine, the queue time of a job
an

range from se
onds to days. In GTOMO, we implemented a
oallo
ation strat-

egy that avoids queue time delays entirely by adaptively submitting job requests

that
an start running immediately. To submit a job request that starts imme-

diately, we utilize availability information exported from a super
omputer's bat
h

s
heduler su
h as the Maui S
heduler [33℄; this information in
ludes the number

of nodes available for immediate use and, more importantly, the length of time for

whi
h they are available. Therefore, we say our strategy
oallo
ates the exe
ution

of parallel tomography over workstations and immediately available super
omputer

pro
essors. The
oallo
ation strategy implemented in GTOMO was implemented

as an AppLeS. An AppLeS (appli
ation-level s
heduler) [1℄ integrates with the

7

target appli
ation to develop a s
hedule for deploying the appli
ation in a Grid

environment. The s
heduler makes predi
tions of the performan
e the appli
ation

may experien
e on prospe
tive resour
es at exe
ution time. Using these predi
-

tions, a potentially performan
e-eÆ
ient s
hedule for the appli
ation is identi�ed

and deployed [49, 48, 16, 46℄. In [46℄, we showed that the GTOMOAppLeS strategy

improved the turnaround time of o�-line parallel tomography over strategies that

targeted either workstations or super
omputers alone. Currently, GTOMO is used

in produ
tion at NCMIR on multi-user workstation
lusters and super
omputers.

The ar
hite
ture of GTOMO is displayed in Figure I.4. There are four

types of pro
esses in GTOMO: driver, reader, writer, and ptomo. The driver is

invoked by the user and starts up all other pro
esses using the AppLeS
oallo
ation

strategy. It also
oordinates intera
tions among the di�erent pro
esses and
ontrols

the work queue. The reader and writer are multi-threaded I/O pro
esses and have

dire
t a

ess to the user's �le system. The reader reads input �les o� the disk and

sends them to the ptomos for pro
essing. The writer re
eives output �les from

ptomos and writes them to disk. Note that the reader and writer enable GTOMO

to run a
ross di�erent �le systems. The ptomo re
eives input �les from a reader,

does all the
omputational work, and sends the output to a writer. Sin
e data is

typi
ally read and written to one disk (not ne
essarily the same disk), we use one

reader, one writer, and any number of ptomos.

I.B On-line Parallel Tomography

The time to a
quire a single proje
tion from NCMIR's ele
tron mi
ro-

s
ope ranges from 45 se
onds to 3 minutes. Therefore, it
an take at least 45

minutes to a
quire a
omplete data set of 61 proje
tions. When the user visualizes

the data at the end of the a
quisition pro
ess, they might dis
over that the data is

awed or might �nd a better area of the spe
imen to study. In this
ase, the user

will restart the whole experiment with di�erent parameters. It would therefore

8

writerreader

driver

slicesinogram

sinogram

ptomo ptomo ptomo

disk disk

slice

Figure I.4: Ar
hite
ture of GTOMO, the o�-line parallel tomography implemen-

tation.

9

be useful to
ompute tomograms during data a
quisition to provide users with

feedba
k on the quality of their data; ea
h su

essive tomogram would reveal more

information about the three-dimensional stru
ture of the spe
imen. This would

allow for more eÆ
ient use of the mi
ros
ope be
ause users would be able to make

hanges to their experiment early during the a
quisition pro
ess. Furthermore, it

ould potentially redu
e the amount of spe
imen damage by limiting exposure to

the ele
tron beam [47℄.

The pro
edure of on-line parallel tomography is as follows: When the �rst

proje
tion is
olle
ted from the mi
ros
ope, a
oarse tomogram of the spe
imen

is generated. Ea
h proje
tion is then su

essively pro
essed in order to re�ne the

tomogram with additional data. We de�ne the a
quisition period as the time to

a
quire a proje
tion from NCMIR's ele
tron mi
ros
ope. NCMIR is
urrently tar-

geting an a
quisition period of 45 se
onds; therefore, we use this value throughout

this thesis.

We de�ne an on-line parallel tomography experiment, E

on

, using a set of

parameters whi
h des
ribe the data
olle
ted from the ele
tron mi
ros
ope.

De�nition I.2

E

on

= (a; p; x; y; z)

and

� a is the time to a
quire a proje
tion from the mi
ros
ope,

� p is the total number of proje
tions a
quired from the mi
ros
ope,

� x is the width of the proje
tion,

� y is the height of the proje
tion (also the number of sli
es to
om-

pute), and

� z is the thi
kness of the spe
imen.

Note that the re�nement pro
ess involves
hanging the values of pixels within sli
es

of the tomogram. Therefore, the size of the tomogram is
onstant throughout data

10

a
quisition.

I.C Thesis Summary

In this thesis, we des
ribe an extension to GTOMO to support on-line

parallel tomography. Be
ause on-line parallel tomography is resour
e-intensive and

our target platform is dynami
, we implemented on-line parallel tomography as a

tunable appli
ation. A tunable appli
ation is
hara
terized by the availability of

alternate
on�gurations, where ea
h
on�guration
orresponds to a di�erent exe
u-

tion path and resour
e usage [9℄. For on-line parallel tomography, a
on�guration

is de�ned by the resolution of the tomogram, frequen
y of re�nements to the to-

mogram, and
ost of exe
ution. These parameters allow
on�guration of on-line

parallel tomography to a

ommodate di�erent resour
e availabilities.

Se
ond, we des
ribe the implementation of an user-dire
ted AppLeS that

exploits the tunability of on-line parallel tomography in order to adaptively s
hed-

ule its exe
ution onto a set of resour
es. The AppLeS is implemented as multiple

onstrained optimization problems derived from an appli
ation model, user infor-

mation, and dynami
 resour
e load information. This methodology is
exible and

an be solved eÆ
iently using linear programming.

I.D Organization of Thesis

In Chapter II, we dis
uss the motivation and implementation of on-line

parallel tomography as a tunable appli
ation. Chapter III details the design and

implementation of the user-dire
ted AppLeS. Three sets of experimental results are

des
ribed in Chapter IV. The �rst set of experiments des
ribed in Se
tion IV.B

shows that dynami
 resour
e load information, in parti
ular bandwidth informa-

tion, is key to real-time exe
ution performan
e. In Se
tion IV.C, we show that

tunability is an important appli
ation
hara
teristi
 for running on-line parallel

11

tomography in a multi-user, dynami
 environment. Finally, in Se
tion IV.D we

evaluate the s
heduling laten
y introdu
ed by the AppLeS. We dis
uss related work

in Chapter V and
on
lude the thesis in Chapter VI.

Chapter II

Tunable On-line Parallel

Tomography

As dis
ussed in Chapter I, we have implemented on-line parallel tomog-

raphy as a tunable appli
ation; i.e., an appli
ation whose
on�guration is deter-

mined by a set of parameters whi
h
an be varied or "tuned". Tunability is an

important appli
ation
hara
teristi
 for running on-line parallel tomography in a

dynami
 Grid environment sin
e resour
e availability
hanges over time. Tuning

parameters allow the appli
ation to be
on�gured to adapt to run-time resour
e

availability. In Se
tion II.A, we dis
uss the motivation and implementation of

the GTOMO extension to allow for tunable on-line parallel tomography. In Se
-

tion II.B, we dis
uss the three parameters that de�ne a
on�guration of on-line

parallel tomography: resolution of the tomogram, frequen
y of re�nements to the

tomogram, and
ost. s

II.A GTOMO Extension

To motivate the required
hanges to GTOMO to allow for on-line parallel

tomography, we �rst dis
uss how the
urrent o�-line GTOMO design is insuÆ
ient

for on-line parallel tomography. Suppose that a NCMIR user wants to run an

12

13

on-line parallel tomography experiment E = (45; 61; 2048; 2048; 600) as des
ribed

in De�nition I.2 and Se
tion I.A. If NCMIR had a

ess to resour
es of in�nite

apability (i.e., in�nite bandwidth links and in�nite pro
essor speed), we would be

able to run the o�-line implementation of parallel tomography after ea
h proje
tion

was a
quired from the mi
ros
ope and have it
omplete instantaneously. Thus,

users would be able to obtain the highest resolution tomogram possible and would

see re�nements of the tomogram at the highest frequen
y possible, the mi
ros
ope

a
quisition rate. Now, let us
onsider E for a set of more realisti
 resour
es.

Using De�nition I.2, there will be 2048 sli
es of work to pro
ess for ex-

periment E. To pro
ess a single s
anline of a proje
tion into a sli
e using the

R-weighted ba
kproje
tion method [41℄ takes approximately .33 se
onds on a ded-

i
ated 700 MHz AMD Athlon pro
essor (see Figure II.1 for a des
ription of the

R-weighted ba
kproje
t algorithm). Using this as an average pro
essor speed,

the �rst re�nement of the tomogram (or refresh) would take :33 � 2048 � 676

se
onds. Under the
urrent implementation of GTOMO, ea
h su

essive tomo-

gram refresh
omputation would repeat the work done to
ompute the previous

tomogram refresh. This is due to GTOMO's s
heduling strategy (work queue);

a ptomo pro
esses one sli
e of work at a time, sends it to the writer, and then

deletes it (i.e., a ptomo is stateless). Therefore, when a new proje
tion is a
quired

from the mi
ros
ope, all data must be sent out again and pro
essed. Conse-

quently, the se
ond refresh of the tomogram would take 2 � :33 � 2048 � 1352

se
onds sin
e ptomo must repro
ess the s
anline from the previous proje
tion

and then pro
ess the s
anline from the new proje
tion. Likewise, the third re-

fresh would take 3 � :33 � 2048 � 2028 se
ond; the last refresh would take

61� :33 � 2048 � 41; 226 se
onds. To exe
ute in real-time, we want the pro
ess-

ing of one proje
tion to
omplete before the next one arrives. Assuming optimal

parallelization speedup, the �rst refresh would require d676=45e = 16 pro
essors,

the se
ond refresh would require d1352=45e = 31 pro
essors, and the last refresh

would require d41; 226=45e = 917 pro
essors. This te
hnique requires an in
reas-

14

Algorithm : ba
kproje
tS
anline(s
anline; sli
e; angle)

lo
al height; width

height getSli
eHeight(sli
e)

width getSli
eWidth(sli
e)

RWeightS
anline(s
anline)

for y 0 to height� 1

for x 0 to width� 1

sli
e[y℄[x℄ sli
e[y℄[x℄ +
al
ulateContribution(angle; s
anline)

Figure II.1: Algorithm for ba
kproje
ting a single s
anline of a proje
tion (at

angle) into a sli
e of the volume. First, the s
anline is modi�ed using the

RWeightS
anline fun
tion to smooth the data. Then, every pixel of the sli
e is

updated to
onsider the
ontribution of the s
anline.

ing amount of
omputational power; furthermore it is ineÆ
ient be
ause it is not

augmentable. To be augmentable, a te
hnique should allow ea
h su

essive
om-

putation to build upon the previous
omputation without repeating work. Hen
e,

a more eÆ
ient te
hnique would be to store all previous
omputation so that re-

freshes do not repeat work. Therefore, we added an extension to GTOMO so

that the R-weighted ba
kproje
tion algorithm
an be exe
uted as an augmentable

te
hnique.

Our approa
h is to use a stati
 work allo
ation strategy. A stati
 work

allo
ation is a �xed assignment of
omputation to a set of resour
es. In this

ontext, a stati
 work allo
ation is an assignment of y sli
es of work among a set

of ptomos. We then modify the ptomos so that they are stateful. In parti
ular,

whenever a proje
tion is a
quired from the mi
ros
ope, the ith s
anline is sent

to the ptomo that has been allo
ated the ith sli
e so that it may pro
ess the

new data. The advantage of this te
hnique is that we redu
e the
omputation

by a fa
tor

p

X

i=1

i, where p is the total number of proje
tions a
quired from the

mi
ros
ope. Therefore, in the example presented in the previous paragraph, ea
h

15

refresh would require 672 se
onds sin
e we only pro
ess the s
anline data from the

new proje
tion for ea
h refresh. Therefore, we need 16 pro
essors for the entire

omputation. The drawba
k of this approa
h is that we use lose the run-time

adaptive s
heduling advantage of work queue [26℄ used in the o�-line GTOMO

ase; we address this tradeo� in Chapter VI.

The stru
ture of GTOMO on-line parallel tomography extension is shown

in Figure II.2. As in the o�-line parallel tomography mode, the driver is invoked

by the user and starts up all other pro
esses. The ele
tron mi
ros
ope sends a

proje
tion to the prepro
essor every a se
onds. The prepro
essor divides the pro-

je
tion into se
tions, where ea
h se
tion
ontains multiple s
anlines. The se
tions

are allo
ated to ptomo pro
esses su
h that the s
anlines in ea
h se
tion
an be

pro
essed in parallel. All ptomos will periodi
ally send their sli
es to the writer in

order to update the tomogram. A visualization program will then display updated

tomograms to the user.

As a �nal note, re
all from Chapter I that the optional iterative ART and

SIRT algorithms operate on the spe
imen data after the R-weighted ba
kproje
-

tion
ompletes. In ea
h iteration, the tomogram is
orre
ted based on di�eren
es

between the original proje
tion data and re
onstru
ted volume. For the ART [23℄

algorithm, pixels in the sli
es are
orre
ted p times during a single iteration; the

orre
tion for a pixel (from the ith sli
e) is
al
ulated from the ith s
anline from

one of the proje
tions. For the SIRT [22℄ algorithm, ea
h pixel in the ith sli
e

gets updated on
e during a single iteration using a
orre
tion based on the ith

s
anlines from all proje
tions (also known as a sinogram). Therefore, sin
e both

the ART and SIRT algorithms assume all data has been a
quired from the mi
ro-

s
ope (ea
h iteration involves data from all proje
tions), these algorithms are not

augmentable. Hen
e, for on-line parallel tomography we only use the R-weighted

ba
kproje
tion whi
h
omputes suÆ
iently re�ned tomographi
 re
onstru
tions to

provide feedba
k on the quality of the data a
quisition. Note that if the user wants

to re�ne their tomogram with the ART or SIRT algorithms, they
an run GTOMO

16

writerpreprocessor

driver

slice

projection

scanlines

tomogram

ptomo ptomo ptomo

Figure II.2: Ar
hite
ture of GTOMO on-line parallel tomography extension. The

ele
tron mi
ros
ope sends data to the prepro
essor. The data is then allo
ated to

the ptomos to be pro
essed in parallel. The output data is
olle
ted by a writer

pro
ess where it
an be visualized.

17

in o�-line parallel tomography mode after data a
quisition is
omplete.

II.B Tunable Parameters

We now de�ne the parameters that de�ne a
on�guration of on-line paral-

lel tomography. These parameters will allow the appli
ation to be tuned to adapt

to di�erent resour
e availabilities.

Consider the
ommuni
ation asso
iated with the experiment E = (45, 61,

2048, 2048, 600). Ea
h sli
e will be about 4.7 MB, yielding a tomogram of 9.6 GB.

If we pla
e our writer on a ma
hine with an observable bandwidth of 300 Mb/s,

it will take 1024 se
onds (17 minutes) to transfer the whole tomogram. Note that

sin
e ptomos prefet
h sli
es into memory using multi-threading, we negle
t disk

a

ess time. Given that we do not want to overload the network by sending a

tomogram before the transfer of the previous tomogram has
ompleted, we
an

send a re�ned tomogram to the writer every d1024=45e = 23 proje
tions. We

therefore say the number of proje
tions per refresh is 23 and the refresh period is

23� 45 = 1035 se
onds (17.25 minutes). Sin
e NCMIR users would like refreshes

to
omplete within 10 minutes, this is una

eptable. One solution is to redu
e

the size of the proje
tions. Suppose we redu
e the proje
tions by a fa
tor of 2

in ea
h dimension.

1

We will then have an experiment E' = (45, 1024, 1024, 300)

to pro
ess. Therefore, ea
h sli
e will be about 1.2 MB, yielding a tomogram of

1.2 GB, 8 times smaller than the 2k � 2k data set. If we again assume 300 Mb/s

bandwidth, it will take 128 se
onds to transfer ea
h tomogram whi
h would redu
e

the number of proje
tions per refresh to 3. Similarly, if we were to redu
e by a

fa
tor of 4, it would take 16 se
onds to transfer ea
h tomogram whi
h would redu
e

the proje
tions per refresh to 1, the best refresh frequen
y possible. Given that

we
annot predi
t what trade-o�s will be preferable to a user, we let ea
h user

1

Note that it takes about 1.3 se
onds to redu
e a 2k � 2k proje
tion on a 700 MHz AMD

Athlon pro
essor. Therefore, we introdu
e a laten
y of 1.3 se
onds in the time to a
quire the

initial proje
tion from the mi
ros
ope. However, the period between su

essive proje
tions will

not be a�e
ted; therefore, the a
quisition period will also not be a�e
ted.

18

individually de
ide whi
h
on�guration is best for them.

Note that the
ommuni
ation asso
iated with the input data is relatively

small
ompared with that of the output data. For example, in a 2k� 2k data set,

proje
tions are 16 MB, whereas a tomogram is 9.6 GB. For a 1k� 1k experiment,

ea
h proje
tion would then be only 4 MB whereas ea
h tomogram would be 1.2

GB. In both
ases, the output data is two orders of magnitude larger than the

input data set.

We now formally de�ne two parameters that determine the quality of

an exe
ution of on-line parallel tomography: redu
tion fa
tor (f) and proje
tions

per refresh (r). We then de�ne a third
ost parameter, servi
e units (su). The

on�guration of on-line parallel tomography is de�ned by a triple (f; r; su). We

des
ribe ea
h of these in more detail below.

II.B.1 Redu
tion Fa
tor

The redu
tion fa
tor (f) is a s
alar integer value that results in a redu
-

tion of the size of a proje
tion in ea
h dimension. For example, if we redu
e a

proje
tion of size x� y by f , we will have a proje
tion of size

x

f

�

y

f

. An in
rease

in the redu
tion fa
tor de
reases both the number of sli
es to
ompute and the

amount of
omputation per sli
e. For the time being, we
onsider just a simple

averaging redu
tion method. We modi�ed the averaging algorithm given in [28℄ so

that it works for arbitrary redu
tion fa
tors. The modi�ed averaging algorithm,

given in Figure II.3, works by �rst dividing the x�y proje
tion into square windows

of size f � f . For ea
h window, the values of the pixels are averaged to
reate a

single pixel in the redu
ed proje
tion. Figure II.4 shows an 8�8 proje
tion redu
ed

by a fa
tor of 2. Note that in order to yield a suÆ
iently detailed tomogram for

NCMIR users, proje
tions should not be redu
ed beyond 256� 256. For example,

the maximum f for a 1k � 1k experiment is 4 and the maximum f for a 2k � 2k

experiment is 8.

19

Algorithm : redu
e(proje
tion; x; y; f)

for i 1 to y=f

for j 1 to x=f

sum 0

for m 1 to f

for n 1 to f

sum = sum+ proje
tion[i � f +m℄[j � f + n℄

redu
edProje
tion[i℄[j℄ = sum=(f � f)

return (redu
edProje
tion)

Figure II.3: Redu
tion algorithm.

reduce

Figure II.4: A 8� 8 proje
tion being redu
ed by a fa
tor of 2.

20

II.B.2 Proje
tions Per Refresh

The proje
tions per refresh (r) parameter refers to the number of new

proje
tions pro
essed into ea
h su

essive tomogram re�nement or refresh. For ex-

ample, if r = 3, a user would see a refreshed tomogram after every third proje
tion

was a
quired from the mi
ros
ope. We refer to the time to
omplete a refresh as

the refresh period. The refresh period
an be determined by multiplying r by the

a
quisition period, a. In
reasing r redu
es the frequen
y of refreshes sent to the

user and thus redu
es the amount of
ommuni
ation. As mentioned previously, an

upper bound on the time between su

essive tomogram refresh is 10 minutes for

NCMIR users. Therefore, for an a
quisition period of 45 se
onds, r should be no

more than b600=45
 = 13.

II.B.3 Cost

Thus far, we have assumed that all resour
es are free. While this model

may be appropriate for workstations where resour
e usage is not monitored, it is not

appropriate for many super
omputers. At super
omputer
enters, resour
e usage

is generally monitored through allo
ation [13, 10, 35, 37, 34℄. Usually a resear
h

group is given an allo
ation of super
omputer time per quarter. If the group

ex
eeds their allo
ation, they will no longer be allowed to run on that resour
e

for the duration of that quarter. Therefore, a group may want to moderate their

super
omputer usage. We de�ne a parameter, servi
e units (su), for on-line parallel

tomography to indi
ate how mu
h super
omputer time will be
onsumed by a run.

Servi
e units are
al
ulated using the following equation based on the wall
lo
k

harging poli
ies of �ve super
omputer
enters [13, 10, 35, 37, 34℄.

su =
harge fa
tor � number of CPUs� wall
lo
k time (II.1)

The
harge fa
tor is simply a generi
 integer value to a

ount for di�erent
harging

poli
ies enfor
ed by super
omputer
enters. The
harge fa
tor
ould be based on

21

the type of user, the queue type, or some other fa
tor spe
i�
 to the super
omputer

enter.

II.C Summary

In this
hapter, we des
ribed an extension to GTOMO to allow for on-

line parallel tomography. The extension enables the R-weighted ba
kproje
tion

method to exe
ute as an augmentable te
hnique. This is more eÆ
ient than run-

ning o�-line parallel tomography multiple times but loses the run-time adaptive

s
heduling advantage of work queue. We then de�ned a
on�guration of on-line

parallel tomography as a triple of tunable parameters, (f; r; su). These parameters

represent resolution of the tomogram, frequen
y of re�nements to the tomogram,

and
ost. As des
ribed in the next
hapter, these parameters will allow the AppLeS

to adapt the appli
ation
on�guration to the availability of a set of resour
es.

Chapter III

User-Dire
ted AppLeS

In the previous
hapter, we dis
ussed the design of on-line parallel tomog-

raphy as a tunable appli
ation. However, it is diÆ
ult to
hoose a
on�guration

and work allo
ation that eÆ
iently utilize multi-user, dynami
 sets of resour
es at

run time. First, determining an appropriate work allo
ation requires availability

information for ea
h resour
e (e.g. CPU, bandwidth). Se
ond, sin
e these are

dynami
 resour
es, the best
on�guration will vary over time. In this
hapter, we

dis
uss the design of an user-dire
ted AppLeS for on-line parallel tomography. In

Se
tion III.A, we motivate and de�ne a user-dire
ted AppLeS. We then des
ribe

the design of the AppLeS in Se
tion III.B and III.C.

III.A Design

In Se
tion II.B, we de�ned a triple (f; r; su) that determined the
on-

�guration of on-line parallel tomography. If enough resour
es are available, users

will always want to run using the best
on�guration, (1; 1; 0). This would result

in the highest resolution tomogram being refreshed at the highest frequen
y pos-

sible for zero
ost. Yet, in pra
ti
e, resour
e availability may prevent users from

a
hieving this
on�guration. In this
ase, users will need to
hoose an alternate

on�guration. However, it is is not always obvious whi
h
on�guration is the best

22

23

f = 1 f = 2 f = 2

r = 6 r = 2 r = 1

su = 4 su = 8 su = 20

(a) (b) (
)

Table III.1: Three example
on�gurations available for a tomographi
 re
onstru
-

tion and resour
e platform.

alternative.

Suppose the
on�gurations listed in Table III.1 are three possible
on-

�gurations for a tomographi
 re
onstru
tion and target platform. Without some

knowledge of the user's
riteria, it is not obvious whi
h
on�guration is the best.

Furthermore,
hoosing a
on�guration that favors one parameter may involve trad-

ing o� the bene�ts of another parameter. For example, a higher f would allow for

a smaller r (sin
e there would be less data to transfer). Also, a higher su
ould re-

sult in a lower f and/or lower r (sin
e there would be more
omputational power).

In the example presented in Table III.1, if resolution was the most important pa-

rameter, (a) would be the best
hoi
e for a user. On the other hand, if frequen
y

of refreshes was more important, (b) or (
) would be better
hoi
es; (
) would be

the best
hoi
e if spending 20 servi
e units was a

eptable.

Automating the pro
ess of determining the best
on�guration for a user

is beyond the s
ope of this thesis. In this work, the AppLeS assists users in

sele
ting a
on�guration that works for them and is thus referred to as a user-

dire
ted AppLeS. The design of the user-dire
ted AppLeS s
heduler is illustrated

in the
ow diagram shown in Figure III.1. The grayed shapes
orrespond to user

a
tions while the white shapes
orrespond to AppLeS a
tions. We detail ea
h step

in the following des
ription.

(i) The user spe
i�es bounds on ea
h
on�gurable parameter: f; r, and su. This

orresponds to the maximum and minimum value the user is willing to tol-

erate for a parameter.

24

generate
request

display
triples

adjust
request

review
triples

process
request

find
work

allocation

execute

accepts one

rejects all

infeasible

feasible

Figure III.1: Flow diagram for a user-dire
ted AppLeS. The grayed shapes
orre-

spond to user a
tions while the white shapes
orrespond to AppLeS a
tions.

25

(ii) The AppLeS sear
hes the parameter spa
e for feasible triples; ea
h triple

orresponds to a feasible
on�guration of the tunable appli
ation. If no
on-

�gurations
an be found, the user will need to adjust the request.

(iii) The user
onsiders all
on�gurations and then sele
ts a single triple for exe-

ution.

(iv) The AppLeS will determine an appropriate work allo
ation for the user-

sele
ted triple and then exe
ute.

This approa
h allows the user to sele
t the best
on�guration for them from the set

of feasible
on�gurations determined by the AppLeS. In the following subse
tions,

we des
ribe how the user-dire
ted AppLeS �nds feasible triples and determines

work allo
ation.

III.B Sear
hing for Triples

In order for the AppLeS to sear
h for available
on�gurations, the user

supplies it with a lower and upper bound on ea
h parameter; this indi
ates the

range of values the user �nds a

eptable for a parameter. Therefore, we say a

triple (f; r; su) is a
andidate if,

f

min

� f � f

max

r

min

� r � r

max

(III.1)

su

min

� su � su

max

For an experiment, E, and a set of resour
es, M , we say a
andidate triple is

feasible if there exists a work allo
ation, W , for it (see Se
tion III.C); if no W
an

be found, we say the triple is infeasible.

26

As dis
ussed in the previous se
tion, our goal is to present the user with a

set of feasible triples (f; r; su). One approa
h is exhaustive sear
h. For ea
h triple

(f; r; su), one
an sear
h for a possible work allo
ation. A more eÆ
ient approa
h

is to solve three optimization problems:

(i) �x f and r, minimize su;

(ii) �x r and su, minimize f ; and

(iii) �x f and su, minimize r.

This approa
h has the added advantage of �ltering out suboptimal triples. For

example, suppose that triples (1; 1; 0) and (1; 2; 0) are feasible. We assume that

users would alway
hoose (1; 1; 0) over (1; 2; 0).

We display the AppLeS sear
h algorithm in Figure III.2.

There are three loops that
orrespond to the three optimization prob-

lems outlined above. The three fun
tions findOptimalServi
eUnits,

findOptimalProje
tionsPerRefresh, and findOptimalRedu
tionFa
tor

sear
h for a work allo
ation given two �xed input parameters; this is a

omplished

by solving a
onstrained optimization problem as des
ribed in the next se
tion. If

a work allo
ation is found, the optimized parameter is returned and the triple is

added to a list. For added eÆ
ien
y, we stop sear
hing whenever the optimized

parameter found stops improving. Sin
e the three loops may result in dupli
ate

triples, we add a pro
edure at the end to remove dupli
ates from the list.

III.C Work Allo
ation Experiments

Consider an experiment E = (a; p; x; y; z). The goal is to �nd a work

allo
ation for a set of resour
es, M . We de�ne a work allo
ation as a set W :

W = fw

m

: m 2Mg (III.2)

27

Algorithm : sear
h(f

min

; f

max

; r

min

; r

max

; su

min

; su

max

)

triples ;

for i f

min

to f

max

optimal su 1

for j r

min

to r

max

if findOptimalServi
eUnits(i; j;&su) == FOUND

if su < optimal su

triples:add(i; j; su)

else

break

for i f

min

to f

max

optimal r 1

for j su

min

to su

max

if findOptimalProje
tionsPerRefresh(i; j;&r) == FOUND

if r < optimal r

triples:add(i; r; j)

else

break

for i r

min

to r

max

optimal f 1

for j su

min

to su

max

if findOptimalRedu
tionFa
tor(i; j;&f) == FOUND

if f < optimal f

triples:add(f; i; j)

else

break

triples:removeDupli
ates()

return (triples)

Figure III.2: AppLeS triple sear
h algorithm.

28

where w

m

is the number of tomogram sli
es allo
ated to resour
e m. We have the

following two
onstraints:

8m 2M w

m

� 0 (III.3)

X

m2M

w

m

= y: (III.4)

Re
all that there are a total of y tomogram sli
es to
ompute, i.e., we assume that

there is no work repli
ation. To �nd W , we �rst
reate a model of the appli
ation;

the model is simply a system of equalities and inequalities. We then plug dynami

resour
e load information into the model and solve the system using the method

des
ribed in Se
tion III.C.5.

III.C.1 Appli
ation Model

The model for on-line parallel tomography frames it as a soft real-time

appli
ation. A soft real-time appli
ation is
hara
terized by the exe
ution of tasks

whi
h have soft deadlines [31℄. That is, the usefulness of a task with a soft deadline

de
reases as the lateness of the task in
reases [31, 4℄. Given the dis
ussion in

Se
tion II, our soft-deadlines are:

(i) The
omputation time of one proje
tion will be less than the a
quisition

period.

(ii) The transfer time of a tomogram will be less than the refresh period.

If one of these deadlines is missed, performan
e degrades. Therefore, our goal is to

�nd a work allo
ation for whi
h all deadlines are met. We express the problem as

a
onstrained optimization problem. In Se
tions III.C.2 and III.C.3 we translate

the deadlines expressed above into inequalities. In Se
tion III.C.4, we add in a set

of equalities to express the
ost of exe
ution. Finally, we add in the user's bounds

de�ned in Equation III.1. The
omplete system of equalities and inequalities is

displayed in Figure III.7.

29

III.C.2 Computation

In order to satisfy the soft
omputation deadline outlined above, we in-

trodu
e the following inequality into our model:

8m 2M T

omp

(m) � a; (III.5)

where T

omp

(m) is the time to
ompute w

m

sli
es on resour
e m and a is the

a
quisition period. In other words, we want the
omputation of one proje
tion to

omplete before the next proje
tion is a
quired. Otherwise, the proje
tions will

queue up and we will lose real-time exe
ution (i.e., refreshes to the tomogram). To

determine T

omp

(m), we examine the ptomo algorithm displayed in Figure III.3.

Suppose a resour
e m is assigned w

m

sli
es � to �. Ea
h time a proje
tion is

a
quired from the mi
ros
ope, the prepro
essor will send it s
anlines � to � for

pro
essing. Resour
e m will re
eive the w

m

s
anlines and then ba
kproje
t ea
h

s
anline into its appropriate sli
e. The exe
ution time, t

b

, for ba
kproje
tS
anline

is approximately proportional to the number of pixels in the sli
e (see Figure II.1).

That is,

t

b

� tpp

m

�

x

f

�

z

f

; (III.6)

where tpp

m

(time per pixel) is the time in se
onds to pro
ess a s
anline into a

single pixel of the sli
e on a dedi
ated pro
essor of m and f is the redu
tion fa
tor.

Sin
e the
omputation time is dominated by ba
kproje
t, the time to
ompute w

m

sli
es on a dedi
ated pro
essor of m is

T

omp

(m) � tpp

m

�

x

f

�

z

f

� w

m

: (III.7)

Re
all that our set of resour
es, M ,
ontains two types of
ompute re-

sour
es: time-shared resour
es (workstations) and spa
e-shared resour
es (super-

30

Algorithm : pro
ess(�; �)

global proje
tionsPerRefresh; angleList

lo
al angle; s
anlines; sli
es

for proje
tionId 0 to p� 1

angle angleList[proje
tionId℄

s
anlines re
vS
anlines(�; �)

for i � to �

ba
kproje
tS
anline(s
anlines[i℄; sli
es[i℄; angle)

if (proje
tionId mod proje
tionsPerRefresh) = 0

sendSli
e(sli
es[i℄)

Figure III.3: Ptomo pro
essing algorithm.

omputers). Let TSR be the set of time-shared resour
es and SSR be the set of

spa
e-shared resour
es su
h that

TSR [SSR =M: (III.8)

On a time-shared resour
e,

T

omp

(m) �

tpp

m

pu

m

�

x

f

�

z

f

� w

m

; (III.9)

where
pu

m

is the fra
tion of CPU available on m. In pra
ti
e, we obtain a predi
-

tion of the value for
pu

m

from the Network Weather Servi
e (NWS) [55, 16℄. The

NWS is a resour
e monitoring system that provides dynami
 resour
e load fore-

asts (e.g. available CPU, bandwidth, and memory). Likewise, for a spa
e-shared

super
omputer,

T

omp

(m) �

tpp

m

u

m

�

x

f

�

z

f

� w

m

; (III.10)

where u

m

is the number of pro
essors on m that are unused (i.e., pro
essors imme-

diately available for exe
ution). We
an obtain u

m

from bat
h s
hedulers su
h as

the Maui S
heduler [33℄ as dis
ussed in Se
tion I.A.1 using the
ommand showbf.

31

In summary,

T

omp

(m) �

8

>

>

<

>

>

:

tpp

m

pu

m

�

x

f

�

z

f

� w

m

if m 2 TSR

tpp

m

u

m

�

x

f

�

z

f

� w

m

if m 2 SSR

(III.11)

III.C.3 Communi
ation

For
ommuni
ation, we introdu
e the following transfer
onstraint into

our model:

8m 2M T

omm

(m) � r � a; (III.12)

where T

omm

(m) is the time in se
onds for resour
e m to transfer w

m

sli
es to the

writer, r is the proje
tions per refresh, and a is the time to a
quire a proje
tion

from the mi
ros
ope. In other words, we want the transfer of a tomogram to

omplete within the refresh period.

We model the transfer time, T

omm

(m), using the equation given in [14℄,

T

omm

(m) = T

o

+

B

m

; (III.13)

where T

o

is the message overhead,
 is the amount of data transferred, and B

m

(b/s) is the transfer rate from resour
e m to the writer. However, sin
e sli
es are

generally megabytes in size (e.g. 1.2 MB, 4.7 MB), we treat T

o

as a nominal value.

Therefore, we say

T

omm

(m) �

B

m

: (III.14)

Given w

m

sli
es of size x� z,

 = w

m

� (

x

f

�

z

f

� sz) (III.15)

32

where sz is the number of bits used to represent a pixel. In our
urrent implemen-

tation, a pixel is stored as a
oat (e.g. 32 bits). We obtain a predi
tion on the

value of B

m

(b/s) from the NWS [56, 54℄. Therefore,

T

omm

(m) �

w

m

� (

x

f

�

z

f

� sz)

B

m

: (III.16)

Note that this model assumes a fully
onne
ted network su
h as that

displayed in Figure III.4. However, in pra
ti
e, many resour
es are
onne
ted by

way of a shared network link [51, 40℄ . For example, Figure III.5 shows a 10 Mb/s

ethernet subnet and a 100 Mb/s ethernet subnet
onne
ted via a swit
h. Using our

urrent model, the AppLeS would s
hedule as if both A and B had a bandwidth

of 10 Mb/s to the writer even though they a
tually share the 10 Mb/s bandwidth.

Therefore, we in
orporate network topology information into our model in order

to determine a more e�e
tive work allo
ation. We group resour
es into subnets,

where a subnet
ontains a set of
ompute resour
es whi
h share a network link to

the writer. Let S be the set of subnets su
h that

[

S

i

2S

S

i

=M: (III.17)

where S

i

is a subnet. In pra
ti
e, the subnet groupings in S
an be obtained using a

tool like ENV [44℄. ENV (E�e
tive Network View) uses a number of heuristi
s (e.g.

bandwidth tests) to determine a logi
al representation of the network topology

relative to a sour
e ma
hine. In our
ase, ENV groups M into subnets using the

writer as the sour
e ma
hine; it also returns a subnet bandwidth to the sour
e

ma
hine. For example, Figure III.6 shows the ENV representation of the network

topology shown in Figure III.5. Using the logi
al network information provided by

ENV, the following additional transfer
onstraint
an then be introdu
ed into our

model:

33

Figure III.4: Example of a fully
onne
ted network.

A B

writer

100 Mb/s

10 Mb/s

100 Mb/s

Figure III.5: Example of a LAN network topology.

34

writer

10 100100

A B

Figure III.6: ENV logi
al representation of the network topology shown in Fig-

ure III.5.

8S

i

2 S T

omm

(S

i

) � r � a (III.18)

where T

omm

(S

i

) is the time in se
onds for all
ompute resour
es in S

i

to transfer

X

m2S

i

w

m

sli
es to the writer. Therefore, we write

T

omm

(S

i

) �

X

m2S

i

w

m

!

�

x

f

�

z

f

� sz

B

S

i

(III.19)

where B

S

i

is the
apa
ity (b/s) of the subnet link obtained from ENV. In other

words, we want to allo
ate work to resour
es su
h that their
umulative transfers

do not ex
eed the
apa
ity of the subnet. Note that be
ause we assume a het-

erogeneous network, Equations III.18 and III.19
omplement Equations III.12 and

III.16 rather than invalidating them.

In pra
ti
e, there is no automated way to determine the bandwidth of the

writer link using ENV unless one
an ensure there is at least one other ma
hine

in M that is sharing the same link. Therefore, we do not in
lude a
onstraint on

the sum of the subnet transfers to the writer. However, if the bandwidth of the

35

writer link was available, it would be straightforward to add this
onstraint into

the model.

Finally, we also do not introdu
e any transfer
onstraints into our model

involving input data (i.e., proje
tion data sent from the prepro
essor to the pto-

mos). For the NCMIR s
enarios, the input data is two orders of magnitude smaller

than the output data (as noted in Se
tion II.B) and its transfer time is amortized

into the a
quisition period. For other s
enarios, this model
ould be extended in

a straightforward way to in
lude
onstraints on input data transfer.

III.C.4 Cost

In Se
tion II.B.3, we de�ned
ost in servi
e units using the following

equation:

su =
harge fa
tor � number of CPUs� wall
lo
k time (III.20)

Therefore, we add Equation III.20 to our system. Re
all that in our model, a

spa
e-shared resour
e m is represented as a single resour
e (see Equation III.10).

It is therefore possible that a spa
e-shared resour
e will be allo
ated an amount

of work that does not require the
omputational power of all u

m

immediately

available pro
essors. In this
ase, we want to
al
ulate how many pro
essors are

required to
omplete the
omputation for
harging purposes. This is a

omplished

by
al
ulating the time it would take to
ompute w

m

on one pro
essor of m and

then dividing by the a
quisition period, a.

n

m

=

tpp

m

�

x

f

�

z

f

� w

m

a

(III.21)

Sin
e super
omputer
enters do not
harge for fra
tional pie
es of CPU, we
om-

pute dn

m

e. To express this in our equations, we add a sla
k variable, l

m

, to the

equation, where 0 � l

m

< 1, and
onstrain n

m

to be an integer. Thus, n

m

an be

found using,

36

tpp

m

�

x

f

�

z

f

� w

m

a

+ l

m

� n

m

= 0 (III.22)

Therefore, the following
onstraint
an now be added to our model:

su =

X

m2SSR

h

m

� n

m

� p� a (III.23)

where h

m

is the
harge fa
tor, n

m

is the number of CPUs used on m, and p � a

is the wall
lo
k time of exe
ution. In other words, we sum together the servi
e

units using the
harging poli
y of all resour
es in SSR. Note that,

8m 2 SSR n

m

� u

m

: (III.24)

III.C.5 Putting it all together

The last set of
onstraints are the user
onstraints expressed in Equa-

tion III.1. We
an now summarize our model in Figure III.7. Given this system

of equalities and inequalities, determining W be
omes an optimization problem.

Re
all from Se
tion III.B, that we sear
h for feasible triples by �xing two of the

parameters and optimizing for the third. For
onvenien
e, we rewrite the three

optimization problems from Se
tion III.B here:

(i) �x f and r, minimize su;

(ii) �x r and su, minimize f ; and

(iii) �x f and su, minimize r.

For both (i) and (iii), the system be
omes linear upon substition of f . This is

a
lear advantage be
ause there are numerous linear programming solvers freely

available [29℄. However, the system remains nonlinear for (ii). While nonlinear

37

programming solvers are also freely available [36℄, we opt to use a simpler te
hnique.

As a �rst approa
h, we exploit the dis
reteness and small range of f to redu
e

the nonlinear program to multiple linear programs using substitution. All linear

systems are then solved using the lp solve pa
kage [32℄ and the one with the

optimal solution is
hosen.

Ideally, an optimal solution would be found by formulating the linear

program as an integer program.

1

An integer program is a linear program where all

variables are
onstrained to be integers [2℄. However, integer programs are harder

to solve than linear programs [29℄. Our experiments indi
ate that a mixed-integer

approa
h, where w

m

and l

m

are expressed as
ontinuous variables and all others

as integer variables, is eÆ
ient. The drawba
k of this approa
h is that we have

to round the values found for w

m

2 W sin
e we
annot allo
ate fra
tional sli
es

to ptomos. Therefore, the result is an approximate solution; we assess this in the

following
hapter.

III.D Summary

In this
hapter, we de�ned a user-dire
ted AppLeS. The AppLeS works

by dis
overing feasible triples at run-time based on
urrent resour
e availability

and displays them as
hoi
es to the user. On
e the user pi
ks a triple, the Ap-

pLeS determines a work allo
ation. We then des
ribed how the AppLeS sear
hes

for triples and determines work allo
ation by
hara
terizing s
heduling/tuning as

multiple
onstrained optimization problems. In the next
hapter, we evaluate the

performan
e of the AppLeS using simulations.

1

Equation III.22
an be rewritten without l

m

, the only
ontinuous variable in our system.

38

8m 2 M w

m

� 0 (1)

X

m2M

w

m

= y (2)

8m 2 TSR

tpp

m

pu

m

�

x

f

�

z

f

� w

m

� a (3)

8m 2 SSR

tpp

m

u

m

�

x

f

�

z

f

� w

m

� a (4)

8m 2 M

w

m

� (

x

f

�

z

f

� sz)

B

m

� r � a (5)

8S

i

2 S

X

m2S

i

w

m

�

x

f

�

z

f

� sz

B

S

i

� r � a (6)

8m 2 SSR

tpp

m

�

x

f

�

z

f

� w

m

a

+ l

m

� n

m

= 0 (7)

8m 2 SSR n

m

� u

m

(8)

su =

X

m2SSR

h

m

� n

m

� p� a (9)

f

min

� f � f

max

(10)

r

min

� r � r

max

(11)

su

min

� su � su

max

(12)

Figure III.7: The model of on-line parallel tomography.

Chapter IV

Experiments

IV.A Introdu
tion

In this se
tion we show three sets of results. In Se
tion IV.B, we show

that using dynami
 load information improves s
heduler performan
e. In the se
-

ond set of results, des
ribed in Se
tion IV.C, we demonstrate that tunability is an

important
hara
teristi
 for running on-line parallel tomography in a Computa-

tional Grid. Finally, we evaluate the s
heduling laten
y of the AppLeS s
heduler

in Se
tion IV.D.

IV.B Work Allo
ation

The goal of the �rst set of experiments was to investigate the impa
t

of dynami
 information on s
heduler performan
e for on-line parallel tomography.

For an experiment (45, 61, 1024, 1024, 300) as des
ribed in Se
tions I.A and I.B,

we �x the appli
ation
on�guration (f; r; su) and
ompare the work allo
ation

strategy of the AppLeS s
heduler to s
hedulers whi
h use no or partial dynami

information. In Table IV.1, we summarize the
hara
teristi
s of the s
hedulers.

The �rst s
heduler, wwa (weighted work allo
ation),
orresponds to a very

simple s
heduling strategy that a user might employ to perform load balan
ing in

39

40

in�nite bandwidth dynami
 bandwidth

dedi
ated
pu wwa wwa+bw

dynami

pu wwa+
pu AppLeS

Table IV.1: Summary of s
heduler
hara
teristi
s.

a heterogenous system. It performs work allo
ation based only on the relative

pro
essor ben
hmarks of the appli
ation in dedi
ated mode. This te
hnique is

onsidered simple be
ause the only overhead is performing an appli
ation ben
h-

mark for ea
h pro
essor; this is a one-time only pro
ess and is something any user

an perform.

1

In parti
ular, this s
heduling te
hnique assumes no dynami
 load

information; i.e., it assumes dedi
ated pro
essors and in�nite bandwidth links.

The remaining s
hedulers build upon the wwa approa
h by assuming in-

reasingly realisti

hara
teristi
s about Grid resour
es. The s
heduler wwa+
pu

assumes that
ompute resour
es are shared among multiple users. It extends wwa

by utilizing dynami
 CPU load information. This
orresponds to users who might

run a system tool su
h as the UNIX
ommand uptime on ea
h ma
hine to �nd

out CPU availability before exe
uting their appli
ation. The AppLeS s
heduler,

as des
ribed in Chapter III, assumes both
ompute and network resour
es are

shared among multiple users. It builds upon wwa+
pu, by also utilizing dynami

bandwidth information. As explained in se
tion III.C, dynami
 CPU load and

bandwidth information are obtained from the NWS. Note that some e�ort on the

part of the user is required to set up and maintain the NWS sensors. The wwa+bw

s
heduler assumes only dynami
 bandwidth information and no CPU load infor-

mation.

IV.B.1 Performan
e Metri

Given the soft-real time requirement for on-line parallel tomography, we

say that performan
e degrades when either the
omputation or
ommuni
ation

1

The UNIX system
all,
lo
k,
an be used to determine the approximate length of CPU

time used by a pro
ess whi
h
an be used to approximate dedi
ated time.

41

soft deadlines, as des
ribed in Se
tion III.C, are violated. Sin
e the lateness of a

omputation deadline will e�e
t the lateness of the
ommuni
ation deadline, we

an summarize performan
e based on the refresh
ompletion times. Therefore, we

say that performan
e degrades when a refresh is late; that is, when a refresh's

ompletion time is greater than the refresh period, r � a. For ea
h refresh, we

measure the lateness relative to the lateness of the previous refresh. We
all this

relative refresh lateness (�

l

) and use this as our performan
e metri
 for on-line

parallel tomography. We now de�ne �

l

formally.

Let R = f1; :::;

p

r

g be a set of refreshes for a single exe
ution of on-line

parallel tomography. Also, let d(i) be the expe
ted
ompletion time (deadline) of

a refresh i 2 R su
h that

d(i)� d(i� 1) = r � a: (IV.1)

In other words, ea
h refresh is expe
ted to
omplete within the refresh period.

Note that we assign d(0) = 0. Now let,
(i) be the a
tual
ompletion time of

refresh i with respe
t to d(0). If refresh i � 1 is not late, then �

l

(i) is simply

the di�eren
e between the a
tual refresh
ompletion time,
(i), and the expe
ted

refresh
ompletion time, d(i):

�

l

(i) =
(i)� d(i): (IV.2)

Substituting Equation IV.1 into Equation IV.2 gives

�

l

(i) =
(i)� d(i� 1)� r � a: (IV.3)

Now, if refresh i� 1 is late, then
(i� 1) > d(i� 1) and we measure the lateness

of refresh i relative to
(i� 1). Therefore,

�

l

(i) =
(i)�
(i� 1)� r � a: (IV.4)

42

Combining Equations IV.3 and IV.4 gives the de�nition of �

l

(i):

�

l

(i) =
(i)�max(d(i� 1);
(i� 1))� r � a: (IV.5)

If
(i) arrives early, then refresh i is not late and we de�ne �

l

= 0. Therefore,

�

l

(i) = max[
(i)�max(d(i� 1);
(i� 1))� r � a; 0℄: (IV.6)

Note that if all refreshes arrive on time, ea
h run will have

p

r

refreshes.

However, if any refreshes are late, it is likely that only a fra
tion of the refreshes

will
omplete within data a
quisition. Therefore, the total number of
ompleted

refreshes
an also be a performan
e metri
.

IV.B.2 Simulation

In order to
ompare s
heduler performan
e, we must exe
ute the appli-

ation with ea
h s
heduler under the same environmental
onditions. However,

a
hieving reprodu
ible environmental
onditions is diÆ
ult in a dynami
 environ-

ments [20℄. One approa
h is to run experiments ba
k-to-ba
k in order to a
hieve

similar environmental
onditions [48, 46, 16℄. Another approa
h is to use simula-

tion [7℄.

Given the long makespan of on-line parallel tomography, a
hieving re-

produ
ible environmental
onditions with ba
k-to-ba
k experiments is infeasible.

Therefore, we
ondu
ted our experiments using simulation. This had the added

bene�t of allowing us to study the behavior of the s
hedulers in many di�erent

environments. We wrote a simulator using the Simgrid toolkit whi
h provides

a simulation API for studying s
heduling algorithms in distributed systems [5℄.

Simgrid allows us to implement a dis
rete-event simulator and provides a notion

of tasks (e.g.
omputation, data transfer) and resour
es (e.g. pro
essors, network

links). Tasks
an have dependen
ies among them and are s
heduled on resour
es.

43

Resour
es behaviors are modeled by servi
e rates that
an be modeled by tra
es

from real resour
es (e.g. CPU availability, bandwidth of network link). Su
h tra
es

are
ommonly available by existing resour
e monitoring tools su
h as the NWS.

Furthermore, Simgrid makes it possible to
reate arbitrary resour
e inter
onne
t

topologies. The Simgrid approa
h has been veri�ed in [5℄ and has been used

to evaluate s
heduling algorithms for parameter sweep appli
ations [7, 8℄. Similar

tra
e-based resour
e simulation approa
hes have also been applied in proje
ts su
h

as Bri
ks [50℄.

In our simulator, we model four types of tasks based on pro�le information

from the appli
ation:

a
quire: a
quire a proje
tion from the mi
ros
ope

s
anline transfer: send a s
anline from the prepro
essor to a ptomo

ba
kproje
t
omputation: ba
kproje
t a s
anline to a sli
e

sli
e transfer: send a sli
e from a ptomo to the writer

For a single simulation, there are p a
quires. For ea
h a
quire, there are y s
an-

line transfers and y ba
kproje
tion
omputations. Given the value of r, there
an

also be y sli
e transfers following the ba
kproje
tion
omputations. Resour
es are

modeled as a Computational Grid
ontaining multi-user workstations and spa
e-

shared super
omputers. The servi
e rates workstations are modeled using NWS

CPU availability tra
es taken from real ma
hines. Similarly, the number of pro
es-

sors available on a super
omputer is taken from tra
es from a real super
omputer.

Note that sin
e we are modeling super
omputers as spa
e-shared, pro
essors of the

super
omputer are modeled as having a
onstant servi
e rate (i.e., no load). Sim-

grid allows us to
reate topologies in whi
h workstations share the same network

link to the prepro
essor and writer; depending on the network topology, multi-

ple workstations
an also share the same network link to the prepro
essor/writer.

Similarly, dedi
ated pro
essors on a super
omputer are modeled as sharing the

44

same network link to the prepro
essor and writer. The servi
e rates for network

links are modeled using NWS bandwidth tra
es taken from real pairs of ma
hines.

Note, that in following Grid topology �gures, we display the writer as the only I/O

pro
ess even though we do simulate I/O from the prepro
essor. That is, we display

only relevant s
heduler information (re
all from Se
tion III.C.3 that s
hedulers do

not
onsider data transfers from the prepro
essor to ptomo).

In Se
tion IV.B.3, we show the results of simulations based on real tra
es

from a
luster of workstations at NCMIR. These results indi
ate a relationship

between the a

ura
y of predi
tions and s
heduler performan
e whi
h we study

for a wider range of s
enarios in Se
tion IV.B.4.

IV.B.3 Case Study: NCMIR
luster

We �rst simulated experiments over a set of resour
es modeled after a real

luster of workstations at NCMIR. The ma
hines are des
ribed in Table IV.2 and

the network topology is shown in Figure IV.1.

2

The ma
hine hamming was used as

the writer ma
hine be
ause it had the highest bandwidth
apa
ity. In Figure IV.2,

we show the ENV representation of the topology relative to hamming. Note that

due to the swit
hed network and hamming's 1 Gb/s NIC, almost all ma
hines

appeared as if they had dedi
ated network links to hamming. The ex
eptions were

golgi and
repitus whi
h both have 100 Mb/s NICs. In this
ase, the ENV tool

dete
ted some network interferen
e at the swit
h. We therefore modeled golgi and

repitus as sharing the same network link in our simulations.

To model the load on ea
h resour
e, we
olle
ted CPU availability and

bandwidth tra
es using the NWS on Mar
h 8th, 2001 from 8:00 A.M. to 4:00 P.M.

PST. This
orresponds to a workday during whi
h users at NCMIR would run

on-line parallel tomography. The sample period for both CPU availability and

bandwidth were set to the NWS defaults, 10 and 120 se
onds respe
tively. The

2

There are other ma
hines not in
luded in our simulation that are
onne
ted to both swit
hes;

two other ma
hines are
onne
ted to the Cis
o 2916 XL swit
h and 11 other ma
hines are

onne
ted to the Cis
o 6509 swit
h.

45

knackgappy hamming crepitusgolgi

camshaft hi ranvier

10010

1000
100

100

10
10

10

Cisco

2916XL

Cisco

6509

Figure IV.1: Network topology of a
luster of ma
hines at NCMIR.

hamming

6303 6496 6931700272163 89375

camshaft hi ranvier gappy knack golgi crepitus

Figure IV.2: ENV representation of NCMIR topology. The numbers in the dia-

monds are the subnet bandwidths (Kb/s) found by ENV.

46

Name Manufa
turer Model Pro
essor Speed Memory

amshaft Sun Ultra-60 UltraSPARC-II 295 MHz 384 MB

gappy SGI Indigo2 MIPS R10000 175 MHz 384 MB

golgi SGI O
tane MIPS R10000 250 MHz 2 GB

kna
k SGI Indigo2 MIPS R4400 200 MHz 128 MB

repitus SGI O
tane MIPS R10000 250 MHz 2 GB

ranvier SGI Indigo2 MIPS R4400 200 MHz 128 MB

hi SGI Indigo2 MIPS R10000 195 MHz 512 MB

hamming Sun Ultra-80 UltraSPARC-II 450 MHz (2) 4 GB

Table IV.2: NCMIR ma
hine des
riptions.

mean std
v min max

amshaft 43.432 3.988 0.092 10.758 51.925

gappy 7.122 2.309 0.324 2.764 9.126

kna
k 7.119 2.371 0.333 2.149 9.007

golgi/
repitus 77.218 8.845 0.115 5.113 80.179

ranvier 6.911 2.220 0.321 2.611 8.899

hi 8.921 0.376 0.042 3.618 9.072

Table IV.3: Summary statisti
s for the bandwidth tra
es (Mb/s) displayed in

Figure IV.3.

tra
es are displayed in Figures IV.3 and IV.4. Summary statisti
s for the tra
es

are displayed in Tables IV.3 and IV.4. For ea
h tra
e, the table shows the mean

(mean), the standard deviation (std), the
oeÆ
ient of varian
e (
v), the minimum

(min), and the maximum (max) tra
e values. We
ondu
ted two sets of simulations

at 10 minute intervals throughout the simulated 8 hour period. In the �rst set of

simulations des
ribed in Se
tion IV.B.3.1, we simulate runs where the s
hedulers

have perfe
t load predi
tions; this is a

omplished by running partially tra
e-driven

simulations. In the se
ond set of simulations des
ribed in Se
tion IV.B.3.2, we allow

the load on resour
es to vary a

ording to the tra
es.

4
7

0
50

100

camshaft

0
5

10

gappy

0
5

10

knack

ba
nd

w
id

th
 (

M
b/

s)

0
50

100
golgi
crepitus

0
5

10

ranvier

0 1 2 3 4 5 6 7 8
0
5

10

hours since 03/08/01 − 8:00 PST

hi

Figure IV.3: NWS Bandwidth tra
es taken from NCMIR ma
hines on Mar
h 8th, 2001 from 8:00 A.M. to 4:00 P.M. PST.

4
8

0

0.5

1

camshaft

0

0.5

1

gappy

0

0.5

1

golgi

0

0.5

1

knack

C
P

U
 a

va
ila

bi
lit

y

0

0.5

1

crepitus

0

0.5

1

ranvier

0 1 2 3 4 5 6 7 8
0

0.5

1

hours since 03/08/01 − 8:00 PST

hi

Figure IV.4: NWS CPU availability tra
es taken from NCMIR ma
hines on Mar
h 8th, 2001 from 8:00 A.M. to 4:00 P.M.

PST.

49

mean std
v min max

amshaft 0.988 0.013 0.013 0.824 0.997

gappy 0.988 0.017 0.017 0.878 0.993

golgi 0.902 0.157 0.174 0.376 0.984

kna
k 0.944 0.032 0.034 0.622 0.964

repitus 0.925 0.136 0.147 0.427 1.000

ranvier 0.958 0.047 0.049 0.582 0.987

hi 0.946 0.059 0.062 0.487 0.972

Table IV.4: Summary statisti
s for the CPU availability tra
es displayed in Fig-

ure IV.4.

IV.B.3.1 Partially Tra
e-driven Simulations

In this set of experiments, we simulated runs where the s
hedulers had a
-

ess to perfe
t load predi
tions. This represents the optimal running environment

for the s
hedulers sin
e the s
heduling de
ision made at the beginning of exe
ution

was good throughout exe
ution. At the start of ea
h simulation, we used the tra
e

to determine a
onstant resour
e load for the duration of the simulation. There-

fore, we say the simulations are partially tra
e-driven. In Figure IV.5, we show

the results of the simulations by plotting the mean relative refresh lateness for

ea
h s
heduler over the eight hour simulation period. From this �gure, it is
lear

that the AppLeS s
heduler outperforms all the other s
hedulers. It is followed by

the wwa+bw s
heduler whi
h outperforms both the wwa and wwa+
pu s
hedulers

indi
ating that
ommuni
ation is the dominant fa
tor in appli
ation performan
e.

The almost identi
al performan
e of the wwa and wwa+
pu s
hedulers further il-

lustrates this in that the performan
e degradation due to bandwidth mispredi
tion

experien
ed by the wwa s
heduler dominates the CPU availability mispredi
tion.

Note that for these resour
es, assuming 100% CPU availability does not result in

signi�
antly high errors due to the high fra
tion of CPU availability on the NCMIR

ma
hines (see Table IV.4).

In Figure IV.6, we show the distribution of �

l

for all refreshes. For ea
h

s
heduler, we plot the
umulative distribution fun
tion of �

l

. A point (x; y) on the

50

s
heduler wwa wwa+
pu wwa+bw AppLeS

ount 337 341 1383 1449

% late 0.8220 0.7419 0.2061 0.0524

mean 290.8878 285.4264 3.8361 0.0004

std 739.2997 735.2143 13.9819 0.0121

min 0.0000 0.0000 0.0000 0.0000

max 2610.0000 2610.0000 96.8300 0.4580

median 57.8400 53.7220 0.0000 0.0000

Table IV.5: Summary statisti
s for NCMIR simulations with perfe
t load predi
-

tions.

graph represents that y per
ent of the refreshes were less than x se
onds late. Here

again we see the almost identi
al performan
e of the wwa and wwa+
pu s
hedulers,

although wwa+
pu has a higher fra
tion of small �

l

. For the wwa+bw s
heduler,

we see that most refreshes are under 10 se
onds late with the rest under about 100

se
onds late. Finally, the AppLeS s
heduler shows the best performan
e with all

�

l

under one se
ond late.

Summary statisti
s for ea
h s
heduler are displayed in Table IV.5. For

ea
h s
heduler, the table shows the number of
ompleted refreshes over all runs

(
ount), the fra
tion of refreshes that were late (% late), the mean �

l

(mean),

the standard deviation of �

l

(std), the minimum �

l

(min), the maximum �

l

(max), and the median �

l

(median). The table shows more pre
isely that only

5% of the refreshes arrived late for the AppLeS s
heduler (in fa
t, all were under

a half a se
ond late). Therefore, the approximate solution approa
h des
ribed

in the previous
hapter only marginally a�e
ted performan
e. So, we
on
lude

that with perfe
t load predi
tions, the AppLeS s
heduler had near perfe
t real-

time performan
e. We now
onsider simulations where load predi
tions may be

imperfe
t.

51

0 1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

hours since 3/8/2001 − 8:00 PST

m
ea

n
re

la
tiv

e
re

fr
es

h
la

te
ne

ss

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.5: Simulation results with perfe
t load predi
tions. The mean relative

refresh lateness for ea
h s
heduler is plotted over an 8 hour simulation period.

52

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.6: Simulation results with perfe
t load predi
tions. The
umulative

distribution fun
tions of �

l

for ea
h s
heduler.

53

s
heduler wwa wwa+
pu wwa+bw AppLeS

ount 331 338 1160 1156

% late 0.87 0.88 0.58 0.58

mean 287.47 277.91 27.16 27.67

std 694.87 683.39 48.19 48.89

min 0.00 0.00 0.00 0.00

max 2610.00 2610.00 466.93 466.93

median 78.36 74.33 2.94 2.95

Table IV.6: Summary statisti
s for NCMIR simulations with imperfe
t load pre-

di
tions.

IV.B.3.2 Completely Tra
e-driven Simulations

In this set of experiments, we used tra
es to determine resour
e load

variation throughout simulation. Therefore, these simulations are
ompletely tra
e-

driven. Consequently, the initial load predi
tions may be imperfe
t throughout the

simulated period. The results of the simulations are displayed in a mean relative

refresh lateness plot shown in Figure IV.7 and a
umulative distribution fun
tion

plot shown in Figure IV.8. Here again, we see that the wwa and wwa+
pu s
hed-

ulers have nearly identi
al performan
e. Furthermore, the wwa+bw and AppLeS

s
heduler also have nearly identi
al performan
e. Comparing this to the previous

set of simulations, we see how imperfe
t predi
tions impa
t the performan
e of the

AppLeS s
heduler.

Summary statisti
s for the simulations are shown in Table IV.6. From

these numbers, we see that the wwa+
pu s
heduler outperforms the wwa s
heduler

indi
ating no and/or negligible CPU availability mispredi
tions. However, using

CPU availability predi
tions does not seem to bene�t the AppLeS s
heduler in the

same way.

In Figure IV.7, the mean relative refresh lateness is lowest for the wwa+bw

s
heduler �ve times (at .167, .333, .833, 2.833, and 3.333 hours). Upon further in-

vestigation, we found that the AppLeS' performan
e drop was not a result of CPU

availability mispredi
tions (the wwa+
pu s
heduler outperforms the wwa s
hed-

54

0 1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

hours since 3/8/2001 − 8:00 PST

m
ea

n
re

la
tiv

e
re

fr
es

h
la

te
ne

ss

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.7: Simulation results with imperfe
t load predi
tions. The mean relative

refresh lateness for ea
h s
heduler is plotted over an 8 hour simulation period.

55

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.8: Simulation results with imperfe
t load predi
tions. The
umulative

distribution fun
tions of �

l

for ea
h s
heduler.

56

uler). Rather the performan
e drop was a result of bandwidth mispredi
tions. In

all simulations, the wwa+bw and AppLeS s
hedulers allo
ated work to ma
hines

amshaft, gappy, and golgi. In the
ases where the AppLeS s
heduler dete
ted a

drop in CPU availability on the ma
hine golgi, work was also allo
ated to kna
k

and sometimes
repitus. From Figure IV.3, we
an see that network bandwidth

to kna
k is mu
h more variable than to golgi; as a result the AppLeS s
heduler

mispredi
ted the bandwidth availability resulting in a worse work allo
ation than

the wwa+bw's work allo
ation.

However, we note that the mispredi
tions made by the AppLeS s
hed-

uler resulted in marginal degradation for the most part
ompared to the wwa+bw

s
heduler; in the �ve
ases listed above, the di�eren
e in the average mean relative

refresh lateness was 26.7, 4.4, 1.4, 8.5, and 4.0 se
onds. However, we also note

that the the mean relative refresh lateness for the AppLeS s
heduler is 27.6710

se
onds higher than in the perfe
tly predi
ted simulations. This is most likely the

result of mispredi
ting bandwidth availability to gappy (one of the more variable

tra
es). Chapter VI dis
usses a
ouple of approa
hes to address this problem. In

the next se
tion, we further investigate the impa
t of bandwidth mispredi
tions

on s
heduler performan
e.

IV.B.4 Synthesized Grid Experiments

In the previous se
tion, we found that bandwidth predi
tions had a higher

impa
t on s
heduler performan
e than CPU availability predi
tions. Therefore, in

this se
tion, we provide a more general dis
ussion of the impa
t of bandwidth pre-

di
tability on s
heduler performan
e. Rather than studying additional snapshots

of real Grids as done in the previous se
tion, we synthesize Grids using real CPU

availability and bandwidth tra
es. This allows us to study a wider range of net-

work behaviors. In Se
tion IV.B.4.1, we dis
uss how we
ategorize and
onstru
t a

Grid using a bandwidth predi
tability metri
. Se
tion IV.B.4.2 dis
usses relative

s
heduler performan
e and Se
tions IV.B.4.3 and IV.B.4.4 dis
uss the results of

57

the simulations in terms of bandwidth predi
tability.

IV.B.4.1 Grid Constru
tion

In order to study the impa
t of bandwidth predi
tability on s
heduler

performan
e, we �xed the topology of the Grids in order to have
omparable results.

The topology we used is illustrated in Figure IV.9; it
ontains three
lusters of

workstations
omposed of 8, 8, and 16 hosts respe
tively. All hosts in the
luster

shared one network link to the writer ma
hine. We then varied the tra
es used

for ea
h Grid in order to exhibit di�erent network behaviors. For all simulations,

the CPU availability of ea
h host and the bandwidth of ea
h network link were

ompletely tra
e-based.

writer

cluster3

cluster2

cluster1

Figure IV.9: Grid topology for work allo
ation simulations.

The tra
es we used were
olle
ted from various resear
h sites a
ross the

United States and Europe using the NWS. For bandwidth, we
olle
ted 429 tra
es

from 66 ma
hines spread a
ross 12 sites using the NWS default sample period of

58

2 minutes. These tra
es were
olle
ted during the period February 10 - 27, 2001.

We then pro
essed these tra
es for gaps (i.e., missed measurements) and divided

them into 546
ontinuous tra
e segments su
h that the elapsed time between two

su

essive measurements was no more than 6 minutes. CPU availability tra
es

were taken from 100 ma
hines spread over 17 sites using the NWS default sample

period of 10 se
onds. These tra
es were
olle
ted during the period August 31

to O
tober 25, 1999 and were pro
essed into 1021 tra
e segments su
h that the

elapsed time between su

essive measurements was no more than 5 minutes.

In order to
lassify the tra
es we
olle
ted, we needed a method to
har-

a
terize the predi
tability of a tra
e. Determining the predi
tability of a tra
e for

on-line parallel tomography is diÆ
ult due to its long makespan and the la
k of

long-range fore
asters. Given that our s
heduler uses short-term fore
asts provided

by the NWS, we estimated that the predi
tability of a tra
e would be
orrelated

to the variability of a tra
e for appli
ations with long makespans. Therefore, we

approximate predi
tability using the
oeÆ
ient of varian
e.

For bandwidth, we plotted the histogram shown in Figure IV.10. The

histogram shows three
lusters whi
h we used to divide the tra
es into three
at-

egories: [0, 0.20), [0.20, 0.45), and [0.45, 0.70). We labeled the
ategories high,

medium, and low predi
tability respe
tively. We then pi
ked ten tra
e segments

from ea
h
ategory where ea
h tra
e ranged from two to eight days in length. To

substantiate the use of the
oeÆ
ient of varian
e, we
al
ulated the average pre-

di
tion error for ea
h of the ten tra
es. To determine the average predi
tion error,

we used the NWS fore
aster library to
al
ulate the predi
ted value, v

p

, for ea
h

a
tual tra
e value, v

a

. The average predi
tion error, �e

p

is then
al
ulated for n

measurements using

�e

p

=

n

X

i=1

jv

p

(i)� v

a

(i)j

n

: (IV.7)

In Figure IV.11, we plot the average predi
tion error versus the
oeÆ
ient

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

coefficient of variance

nu
m

be
r

of
 tr

ac
e

se
gm

en
ts

Figure IV.10: CoeÆ
ient of varian
e histogram for bandwidth tra
es.

of varian
e for ea
h tra
e. The highest
luster of green triangle points
orrespond

to the tra
es
ategorized as low predi
tability, the middle
luster of red diamond

points
orrespond to the tra
es of medium predi
tability, and the lowest
luster of

blue square points
orrespond to the tra
es of high predi
tability. From this graph,

we see that there is a high
orrelation between the
oeÆ
ient of varian
e and the

average predi
tion error. However, we emphasize that this te
hnique is a
oarse

measurement of predi
tability; we will dis
uss
ases where this te
hnique did not

suÆ
iently
apture the predi
tability of a tra
e in Se
tion IV.B.4.3.

For CPU availability, we applied the same te
hnique as done for the band-

width tra
es. The
oeÆ
ient of varian
e histogram is plotted in Figure IV.12 whi
h

we used to divide the tra
es into three
ategories: [0, 0.2), [.2 .4), and [.4, .5℄. We

then pi
ked �fteen tra
es from ea
h
ategory. However, the CPU availability tra
es

did not exhibit the same
orrelation to average predi
tion error as the bandwidth

tra
es (see Figure IV.13). As a result of this and be
ause we are mostly inter-

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

coefficient of variance

av
er

ag
e

pr
ed

ic
tio

n
er

ro
r

low predictability

medium predictability

high predictability

Figure IV.11: Correlation between
oeÆ
ient of varian
e and average predi
tion

error for bandwidth tra
es.

61

ested in bandwidth predi
tability (see Se
tion IV.B.3.2), we therefore
hara
terize

a Grid by the types of tra
es used for bandwidth. In other words, a Grid
an be

des
ribed using a triple, (p

1

; p

2

; p

3

), where p

1

; p

2

; p

3

2 flow;medium; highg; p

1

is

the type of bandwidth tra
e used for the network link between
luster 1 and the

writer, p

2

is the type of tra
e used for
luster 2, and p

3

is the type of tra
e used

for
luster 3. For
onvenien
e, we abbreviate low;medium; and high as L;M , and

H respe
tively and write a tuple as p

1

p

2

p

3

(e.g. LHM).

Given the triple p

1

p

2

p

3

, there are 27 di�erent types of Grids. We randomly

generated a total of 2510 di�erent Grids (Table IV.7 shows the number of Grids

that were generated for ea
h Grid type). Sin
e there are four s
hedulers, this

resulted in a total of 10,040 simulations. The results of these simulations follow in

the next three subse
tions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

coefficient of variance

nu
m

be
r

of
 tr

ac
e

se
gm

en
ts

Figure IV.12: CoeÆ
ient of varian
e histogram for CPU availability tra
es.

62

Grid type # of Grids

LLL 100

LLM 130

LLH 140

LML 70

LMM 100

LMH 120

LHL 90

LHM 80

LHH 110

MLL 70

MLM 120

MLH 90

MML 70

MMM 100

MMH 90

MHL 50

MHM 100

MHH 100

HLL 60

HLM 120

HLH 80

HML 120

HMM 70

HMH 40

HHL 130

HHM 90

HHH 70

Table IV.7: Number of Grids generated for ea
h Grid type p

1

p

2

p

3

.

63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

12

coefficient of variance

av
er

ag
e

pr
ed

ic
tio

n
er

ro
r

Figure IV.13: No
orrelation between
oeÆ
ient of varian
e and average predi
tion

error for CPU availability tra
es.

64

1st 2nd 3rd 4th

wwa 182 97 1770 461

wwa+
pu 452 139 1164 755

wwa+bw 1105 900 412 93

AppLeS 2077 376 50 7

total 3816 1512 3396 1316

Table IV.8: S
heduler ranking based on
umulative �

l

for syntheti
 Grid simu-

lations. The table displays the number of times a s
heduler ranked �rst, se
ond,

third, and fourth pla
e.

IV.B.4.2 S
heduler Comparisons

To
ompare the simulation results for the s
hedulers on a run-to-run

basis, we plotted the number of times ea
h s
heduler ranked �rst, se
ond, third,

and fourth pla
e in a sta
ked bar graph in Figure IV.14; the ranking is based on

umulative relative refresh lateness (

P

�

l

) for ea
h run. Values for the graph are

displayed in Table IV.8. Ranking for this graph was performed as follows:

1. For a single run, s
heduler i re
eived a rank k if k � 1 s
hedulers beat it.

2. For a single run, if more than one s
heduler had the the same
umulative

relative refresh lateness, they re
eived the same rank.

Here it is
lear that the AppLeS s
heduler performed better than all other s
hed-

ulers. The wwa+bw s
heduler followed as se
ond. However, the relative perfor-

man
e between the wwa and wwa+
pu s
heduler is un
lear; wwa+
pu is �rst more

frequently than wwa but is also last more frequently than wwa. Therefore, for ea
h

s
heduler, we
al
ulated the average deviation from best s
heduler in Table IV.9.

Here, we see that wwa+
pu beat wwa by 46.98 se
onds; therefore, when wwa+
pu

is in last pla
e (from mispredi
tions), it is not far from third pla
e. Furthermore,

we see that the AppLeS s
heduler beat wwa+bw by 126.03 se
onds.

Figure IV.15 shows the
umulative distribution fun
tions of �

l

over all

10,040 simulations; the results are grouped by s
heduler. This shows that the Ap-

65

wwa wwa+cpu wwa+bw AppLeS
0

500

1000

1500

2000

2500

3000

scheduler

nu
m

be
r

of
 r

un
s

1st
2nd
3rd
4th

Figure IV.14: S
heduler ranking based on
umulative �

l

.

wwa wwa+
pu wwa+bw AppLeS

705.89 658.91 127.10 1.07

Table IV.9: Average deviation from best s
heduler based on
umulative �

l

for

syntheti
 Grid simulations.

66

s
heduler wwa wwa+
pu wwa+bw AppLeS

ount 29721 35024 64621 81583

% late 0.80 0.68 0.71 0.59

mean 145.11 116.93 36.76 18.54

std 400.00 348.38 106.55 50.75

min 0.00 0.00 0.00 0.00

max 2745.00 2745.00 2655.00 2655.00

median 16.27 1.075 7.88 0.37

Table IV.10: Summary statisti
s for syntheti
 Grid simulations.

pLeS s
heduler has the highest fra
tion of small �

l

and the lowest fra
tion of large

�

l

;
onversely the wwa s
heduler has the smallest fra
tion of small �

l

and the high-

est fra
tion of large �

l

. We also see that the wwa+
pu and wwa+bw's
umulative

distribution fun
tions
ross over ea
h other; this shows that the wwa+
pu s
hed-

uler has a higher fra
tion of low �

l

ompared to wwa+bw, but also has a higher

fra
tion of high �

l

. In Table IV.10, we display summary statisti
s for the simula-

tions. These statisti
s also show that the AppLeS s
heduler outperforms all other

s
hedulers. Furthermore, they show that the wwa+
pu s
heduler outperforms wwa.

However, the relative performan
e between the wwa+
pu and wwa+bw s
hedulers

is not as
lear. The wwa+
pu s
heduler has a smaller fra
tion of late refreshes and

a smaller median than wwa+bw; however, the wwa+bw s
heduler has
ompleted

signi�
antly more refreshes and exhibits a lower mean and standard deviation.

Therefore, we say that both CPU availability and bandwidth predi
tions
an im-

prove s
heduler performan
e. However, we
on
lude that bandwidth predi
tions

are more important be
ause when refreshes are late for wwa+bw, they are late by a

smaller amount than wwa+
pu's. This is further supported in Figure IV.14, where

the AppLeS and wwa+bw s
hedulers dominate �rst and se
ond pla
e.

Note that the bene�t of CPU availability predi
tions is more apparent in

these simulations be
ause of a more diverse set of CPU availability tra
es (re
all

that for the NCMIR simulations des
ribed in Se
tion IV.B.3 the mean CPU avail-

ability for ea
h ma
hine was at least .90). See Figure IV.16 for a histogram of the

67

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.15: Syntheti
 Grid simulation results: the
umulative distribution fun
-

tions of �

l

for ea
h s
heduler.

68

mean CPU availability of the tra
es.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

mean CPU availability

nu
m

be
r

of
 tr

ac
es

Figure IV.16: Mean of CPU availability for tra
es used in syntheti
 runs.

Given the importan
e of bandwidth predi
tions identi�ed above, we now

study how the quality of bandwidth predi
tions a�e
t s
heduler performan
e.

IV.B.4.3 Partial Orders

To study how quality of bandwidth predi
tions e�e
t s
heduler perfor-

man
e, we look at how s
heduler performan
e degrades as the quality of band-

width predi
tions degrades. Sin
e there is no
lear way to summarize bandwidth

predi
tability for a Grid, we
hara
terize a Grid's bandwidth predi
tability using

the triple p

1

p

2

p

3

. Then we
ompare simulation results that form a partial order.

For example, we say that

(HHL;HML;HLL; LLL)

69

forms a de
reasing partial order be
ause for ea
h su

essive triple, there is at

least one tra
e with lower predi
tability than its prede
essor and no tra
es with

a higher predi
tability (note that H > M > L). Therefore, we say all triples in

the partial order are
omparable and
ompare the simulation results only between

omparable triples. We make no assumptions about triples
ontaining lower and

higher predi
tability tra
es than the other. For example, we say the triples HLM

andHML are not
omparable be
ause HLM has a tra
e with a lower predi
tability

than HML's (L < M), and a tra
e with a higher predi
tability than HML's

(M > L). We de�ne the partial order more formally below.

As des
ribed in Se
tion IV.B.4.1, we denote the predi
tability of a tra
e

to be p, where p 2 P = fL;M;Hg. A total ordering on the set P is

(L;M;H): (IV.8)

For triples a; b 2 P

1

� P

2

� P

3

where a = (a

1

; a

2

; a

3

) and b = (b

1

; b

2

; b

3

), we de�ne

a relation R, a is more predi
table than b, as

a � b; if a

i

� b

i

; i = 1; 2; 3: (IV.9)

The relation R is re
exive, symmetri
, and transitive, and therefore is a partial

order [11℄. For example, HHM � HHL: However, HLM � LHM and LHM �

HLM . We say HLM and LHM are not
omparable.

We now look at the simulation results using de
reasing partial orders.

Figure IV.17 shows the results for 7 partially ordered triples:

P

1

= (HHH; HHM; HMM; HLM; MLM; LLM; LLL): (IV.10)

Ea
h triple in the partial order, P

1

, is represented by a group of 4 boxplots. The

boxplots are ordered from left to right and represent the wwa, wwa+
pu, wwa+bw,

70

and AppLeS s
hedulers respe
tively. Ea
h boxplot is
omputed from 70 simulations.

The square on the boxplot represents the mean �

l

, the lower bar represents the

minimum �

l

, and the upper bar represents the maximum �

l

. From this graph,

we see that the mean �

l

for the AppLeS s
heduler is quite good at 3 se
onds

for the HHH Grids. Then the �

l

in
reases by 14 se
onds for the HHM Grids

and
ontinues to in
rease until it levels o� at about 35 se
onds. This shows that

performan
e of the AppLeS and other s
hedulers degrades as Grid predi
tability

degrades.

HHH HHM HMM HLM MLM LLM LLL .
10

0

10
1

10
2

10
3

10
4

re
la

tiv
e

re
fr

es
h

la
te

ne
ss

 (
se

co
nd

s)

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.17: Simulation results grouped by partial order P

1

. Ea
h boxplot sum-

marizes 70 simulations.

However, not all de
reasing partial orders experien
e an in
rease in the

mean �

l

. Figure IV.18 shows a partial order, P

2

:

P

2

= (HMH; MMH; LMH; LLH): (IV.11)

71

Ea
h boxplot in Figure IV.18 is
omputed from 40 simulations. Here the mean �

l

of MML is 7 se
onds lower than LML and 4 se
onds lower than HML. In this

ase, the performan
e of the AppLeS s
heduler was not monotoni
ally de
reasing.

We attribute this is to our
oarse predi
tability
lassi�
ation te
hnique as noted

in Se
tion IV.B.4.1. For example, a low predi
table tra
e (using the
lassi�
ation

s
heme in Se
tion IV.B.4.1) does not always imply bad predi
tions. To illustrate,

onsider the tra
e segment
hara
terized as having low predi
tability displayed in

Figure IV.19. The upper plot shows a bandwidth tra
e taken from tor
8.
s.utk.edu

to tor
4.
s.utk.edu during the morning of February 12, 2001. The lower plot is a

predi
tion of the upper tra
e that was generated using the NWS fore
aster library.

Now
onsider the average bandwidth over a period of 45 minutes (the minimum

time it would take to a
quire a data set from NCMIR's ele
tron mi
ros
ope).

Depending on when the s
heduler queries for a bandwidth fore
ast, the s
heduler

might get point O, an overestimate of the average bandwidth; U , an underestimate

of the average bandwidth; or G, a good estimate of the average bandwidth.

In summary, we demonstrated that under the predi
tability
lassi�
ation

outlined in Se
tion IV.B.4.1, the performan
e of the AppLeS s
heduler degrades

as the quality of bandwidth predi
tions degrades. We also noted a
ase where

the performan
e of the AppLeS s
heduler did not monotoni
ally degrade thereby

illustrating the
oarseness of our predi
tability measurement. However, as we

dis
uss in the next se
tion, if we
onsider the results of all simulations, we see

that our predi
tability measurement does demonstrate that the performan
e of the

AppLeS s
heduler does degrade as the quality of bandwidth predi
tions degrades.

IV.B.4.4 S
oring

In this se
tion, we
onsider the performan
e of the AppLeS s
heduler and

quality of bandwidth predi
tions over all simulations. We use an arbitrary s
oring

te
hnique to
oarsely summarize the predi
tability of a Grid. Then, we assign a

predi
tability s
ore to ea
h type of Grid and group results with the same s
ore.

72

LML MML HML HHL
10

0

10
1

10
2

10
3

10
4

re
la

tiv
e

re
fr

es
h

la
te

ne
ss

 (
se

co
nd

s)

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.18: Simulation results grouped by partial order P

2

. Ea
h boxplot sum-

marizes 40 simulations.

73

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

ba
nd

w
id

th
 (

M
b/

s)

bandwidth

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

O

U

G

elapsed seconds

ba
nd

w
id

th
 (

M
b/

s)

predicted bandwidth

Figure IV.19: Bandwidth tra
e taken from tor
8.
s.utk.edu to tor
4.
s.utk.edu

during the morning of February 12, 2001.

74

We emphasize that this is not a pre
ise method for measuring Grid predi
tability

but is one way to represent the results of all simulations. We des
ribe our s
oring

te
hnique below.

For a tra
e with predi
tability p, we arbitrarily assign it the weight

using the following:

 =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if p = L

2 if p =M

3 if p = H

(IV.12)

For ea
h simulation with Grid type p

1

p

2

p

3

, we assign it the s
ore, �, using the

following:

� =

3

X

i=1

(p

i

) (IV.13)

Note that the weighting s
heme in Equation IV.12 results in the bound

3 � � � 9; (IV.14)

where '3' indi
ates a Grid with low predi
tability and '9' indi
ates a Grid with high

predi
tability. Next the simulation results are
ategorized into seven groups based

on their s
ore. The
umulative distribution fun
tions of �

l

for the simulations

in ea
h group are plotted in Figure IV.20. This �gure
learly shows that the

performan
e of the AppLeS s
heduler in
reases as predi
tability in
reases. Here,

we see that for Grids where � = 9, the AppLeS s
heduler performs really well

with over 90% of its refreshes having a �

l

under 10 se
onds. Similarly the AppLeS

s
heduler performs well when � = 8 and � = 7. Conversely, in Grids where � = 3,

only about 40% of refreshes have a �

l

under 10 se
onds.

75

10
0

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

relative refresh lateness (secs)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

Γ = 3
Γ = 4
Γ = 5
Γ = 6
Γ = 7
Γ = 8
Γ = 9

Figure IV.20: AppLeS
umulative distribution fun
tions for �

l

grouped by �.

IV.B.5 Summary

In this se
tion, we studied the impa
t of dynami
 load predi
tions on

s
heduler performan
e. We
ompared the AppLeS to three other s
hedulers whi
h

used no or partial dynami
 information. We found that dynami
 load predi
-

tions signi�
antly improved real-time exe
ution of on-line parallel tomography.

In parti
ular, we found that the performan
e gain was largely due to bandwidth

predi
tions. We then examined the impa
t of bandwidth predi
tions on the perfor-

man
e of the AppLeS. Our experiments show that the performan
e of the AppLeS

is largely dependent on the quality of bandwidth predi
tions.

IV.C Tunability Experiments

In Se
tion I.C, we motivated the design of on-line parallel tomography

as a tunable appli
ation for dynami
 Grid environments. In this se
tion, we as-

76

sess the usefulness of tunability; we say that tunability is useful if
hanging the

on�guration at run-time (from the previous
on�guration) results in a better
on-

�guration for the user and/or better real-time exe
ution than not
hanging the

on�guration. We
ondu
t a
ase study of tunability in Grids
omposed of two

lusters of workstations and a super
omputer. These Grids are
hara
terized by

the variability of their tra
es as des
ribed further in Se
tion IV.C.1. For ea
h Grid,

we study how the
on�guration of on-line parallel tomography would
hange for

a user running ba
k-to-ba
k experiments during a two-day period. Se
tion IV.C.2

des
ribes the experiments and Se
tion IV.C.3 des
ribes the user model used for

these experiments. The results des
ribed in Se
tions IV.C.4 and IV.C.5 show that

appli
ation tunability was exploited frequently and therefore provide a
ase for

tunability in dynami
 Grid environments.

IV.C.1 Grid Constru
tion

In order to have
omparable results, we study a �xed Grid topology
om-

posed of a
luster of 8 workstations, a
luster of 16 workstations, and a super-

omputer. Figure IV.21 illustrates the Grid topology. We then study tunability

under di�erent variability
onditions. In these experiments, we look at the vari-

ability of both bandwidth and CPU availability tra
es. To
olle
t tra
es for these

experiments, we use a similar method as that des
ribed in Se
tion IV.B.4.1. The

di�eren
e is that we label our tra
e
ategories in terms of variability, i.e., the

oeÆ
ient of varian
e is used as a
oarse measurement of tra
e variability rather

than predi
tability. A Grid
an be des
ribed using a tuple, (v

1

; v

2

; v

3

; v

4

; v

5

), where

v

1

; v

2

; v

3

; v

4

; v

5

2 fL;M;Hg; v

1

is the type of bandwidth tra
e used for the net-

work link between super
omputer and the writer, v

2

is the type of CPU availability

tra
es used for the
luster of 8 workstations, v

3

is the type of bandwidth tra
e used

for the network link between the
luster of 8 workstations and the writer, v

4

is is

the type of CPU availability tra
es used for the
luster of 16 workstations, and

v

5

is the type of bandwidth tra
e used for the network link between the
luster

77

of 16 workstations and the writer. For
onvenien
e, we abbreviate low;medium;

and high as L;M , and H respe
tively and write a tuple as v

1

v

2

v

3

v

4

v

5

. There are

a total of 243 di�erent types of Grids.

writer

supercomputer

cluster1

cluster2

Figure IV.21: Grid topology for tunability experiments.

Note that to model the load on the super
omputer, we
olle
ted immedi-

ately available information from SDSC's Blue Horizon [3℄ using the Maui S
hed-

uler's
ommand showbf [33℄; the tra
e was
olle
ted from February 9 to April 23,

2001 using a sample period of 5 minutes.

IV.C.2 Experiments

We
onsider two di�erent on-line parallel tomography experiments:

E

1

= (45; 61; 1024; 1024; 300) and E

2

= (45; 61; 2048; 2048; 600) (IV.15)

78

As des
ribed in Se
tions I.A and I.B, these two experiments are representative of

the size of experiments run by NCMIR users and
orrespond to datasets
olle
ted

from 1k � 1k CCD
amera and 2k � 2k CCD
amera respe
tively.

IV.C.3 User Model

In order to study the usefulness of tunability, we model how a user would

hoose a triple and then wat
h how it
hanges over time. For these experiments,

we
hose a simple user model. We assumed that the user would always
hoose

triples that have the lowest f , followed by the lowest r. We also used the following

harging model for servi
e units:

su = n

m

� p� a (IV.16)

Sin
e p = 61 and a = 45, su will always be a multiple of 61� 45 = 2745.

The parameter bounds for the (45, 61, 1024, 1024, 300) experiment, are

as follows:

1 � f � 4

1 � r � 13

0 � su � 137250 (IV.17)

Similarly, for the (61; 2048; 2048; 600), the bounds are:

1 � f � 8

1 � r � 13

0 � su � 137250 (IV.18)

In both
ases, the upper bound on su
orresponds to 50 pro
essors.

79

IV.C.4 Tunability Results

For ea
h experiment, E

1

and E

2

, we ran 243 simulations, one simulation

for ea
h of the 243 types of Grids. To simulate a user running ba
k-to-ba
k on-

line parallel tomography experiments, we exe
uted the s
heduler every 45 minutes

throughout the two-day period. For ea
h two-day period, there were a total of 61

on-line parallel tomography experiments. Ea
h time, we
hose one triple a

ord-

ing to the user model. There were a total of 14,823 on-line parallel tomography

experiments for all 243 simulations.

In Figure IV.22, we display the range of triples found by the AppLeS

s
heduler for the E

1

experiments in a 3D graph. Ea
h quadrant of Figure IV.22

displays a di�erent view of the 3D graph. Here we see that most of the refresh

fa
tors fall within 1 and 3. Furthermore, no more than 3 pro
essors are ever pi
ked

on the super
omputer. Similarly, we display the range of triples found for the E

2

experiments in Figure IV.23. Note, that sin
e the proje
tions are larger in this

experiment, we
an use a higher redu
tion fa
tor. Here we
an see that up to 25

pro
essors are used on the super
omputer. Note on these types of Grids, it is not

possible to get triples (1,1,x) or (1,2,x).

Now, we look at how the triples
hange within a single simulation. Sup-

pose T = f1; :::; 61g is a set of triples pi
ked by the user during a 2-day simulation.

For any t

i

; t

i+1

2 T , if t

i

6= t

i+1

, then we say that the user's triple
hanged. We use

the number of
hanges within a spe
i�ed time period to measure the usefulness

of tunability. For example, when the triple
hange frequen
y is low, we say that

tunability is not useful. That is, it is likely that a user
ould use the same
on�gu-

ration from run to run and not experien
e a signi�
ant drop in performan
e. This

was the
ase with the MLLLL Grid and E

1

; the user's triple remained
onstant

at (1; 1; 0) throughout the simulated 2-day period. Conversely, when the triple

hange frequen
y is high, we say that tunability is useful. We predi
t that a user

running with the same
on�guration from run to run would experien
e signi�
ant

performan
e drops and/or would under-utilize the resour
es. With E

2

the Grid,

80

0
1

2
3

4
5

0

5

10

15
0

2000

4000

6000

8000

fr

su

(a)

0 1 2 3 4 5
0

5

10

f

r

(b)

0 1 2 3 4 5
0

2000

4000

6000

8000

f

su

(
)

0 5 10
0

2000

4000

6000

8000

r

su

(d)

Figure IV.22: Triples found for (61; 1024; 1024; 300) experiment.

81

0
2

4
6

8

0

5

10

15
0

2

4

6

x 10
4

fr

su

(a)

0 2 4 6 8
0

5

10

f

r

(b)

0 2 4 6 8
0

2

4

6

x 10
4

f

su

(
)

0 5 10
0

2

4

6

x 10
4

r

su

(d)

Figure IV.23: Triples found for (61; 2048; 2048; 600) experiment.

82

MLMMH, exhibits this type of performan
e; the user's triple
hanged 44 times

during the 2-day period. We show the user's triples for the MLMMH Grid in

Table A.1; it also shows the other triples the AppLeS s
heduler found to be feasible.

Consider now the results of all simulations for both the E

1

and E

2

exper-

iments. Using the user model outlined in Se
tion IV.C.3, the triple
hanged 1910

out of 14823 times for the E

1

experiments and 3813 out of 14823 times for the E

2

experiments. Therefore, overall there was a 12.9%
han
e the triple
hanged from

run to run for the E

1

experiments and 25.7%
han
e for the E

2

experiments. For

ea
h simulation, we also
al
ulated how many times the parameters, f; r, and su

hanged over the 2-day period. The results for the E

1

experiments are displayed in

Figure IV.24 and the results for the E

2

experiments are displayed in Figure IV.25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n

of
 c

ha
ng

es

parameters

f
r
su

Figure IV.24: Frequen
y of parameter
hanges for E

1

experiments.

In both
ases, r was the parameter that
hanged the most frequently, followed by

su. Furthermore, we see that the frequen
y of
hange in redu
tion fa
tor more

than doubled from the E

1

to E

2

experiments.

83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n

of
 c

ha
ng

es

parameters

f
r
su

Figure IV.25: Frequen
y of parameter
hanges for E

2

experiments.

IV.C.5 Partial Order Results

In this se
tion, we study the relationship between frequen
y of triple

hanges and Grid variability. We pi
ked 7 partially ordered Grids whi
h in
rease

in variability:

84

LLLLL

LLLLM

LLLLH

LLLMH

LLLHH

LLMHH

LLHHH

LMHHH

LHHHH

MHHHH

HHHHH

We then generated 20 di�erent instantiations of ea
h Grid type and simulated both

E

1

and E

2

over a 2-day period. The results are displayed in Figures IV.26 and

IV.26 respe
tively. These �gures show that the frequen
y of triple
hanges does

in
reases as Grid variability in
reases. However, we note that the in
rease in not

monotoni
.

IV.C.6 Summary

In this se
tion, we did a
ase study on the usefulness of tunability in a

�xed Grid topology
omposed of two workstation
lusters and a super
omputer.

We looked at tunability for two types of experiments representative of NCMIR

users. We then ran simulations to study how the
on�guration of on-line parallel

tomography would
hange for a user running ba
k-to-ba
k experiments during a

two-day period. The goal was to measure the usefulness of tunability in Grids

that di�er in resour
e variability. We found that on average, there was a 12.9%

likelihood that user's triple would
hange from one run to another for the 1k �

1k experiments and 25.7%
han
e for the 2k � 2k experiments. We also found

that the usefulness of tunability in
reased as the variability of the Grid in
reased.

85

lllll llllm llllh lllmh lllhh llmhh llhhh lmhhh lhhhh mhhhh hhhhh
0

50

100

150

200

250

300

350

Grid type

nu
m

be
r

of
 c

ha
ng

es

(a)

lllll llllm llllh lllmh lllhh llmhh llhhh lmhhh lhhhh mhhhh hhhhh
0

50

100

150

200

250

300

350

400

450

500

Grid type

nu
m

be
r

of
 c

ha
ng

es

(b)

Figure IV.26: Partial order results: frequen
y of triple
hanges by (a) 1k� 1k and

(b) 2k � 2k

86

We
on
lude that tunability was useful in this �xed Grid topology and therefore

provided a
ase for tunable on-line parallel tomography.

IV.D S
heduling Laten
y

In this se
tion, we assess the AppLeS' s
heduling laten
y. We de�ne the

s
heduling laten
y to be the time it takes for the AppLeS s
heduler to dis
over a

set of feasible triples for an on-line parallel tomography experiment E and set of

resour
es M . The s
heduling laten
y is dependent on the size of the parameter

spa
e (see sear
h algorithm in Figure III.2) and the exe
ution time for the linear

program solver.

We timed all experiments outlined in Se
tion IV.C and grouped results by

the type of experiment, E

1

and E

2

. A histogram for the E

1

experiment sear
h times

is displayed in Figure IV.27 and a histogram for the E

2

experiment sear
h times is

displayed in Figure IV.28. From these results we see that for most experiments, the

s
heduling laten
y is nominal (88% of E

1

experiments and 63% of E

2

experiments

had a se
ond or less s
heduling laten
y). Table IV.11 displays summary statisti
s

for both E

1

and E

2

experiments. Here we see that the mean s
heduling overhead

is .35 se
onds for the E

1

experiments and .99 se
onds for the E

2

experiments.

Therefore, the s
heduler overhead more than doubled in time. This is warranted

given that the parameter spa
e for E

2

is larger than E

1

's. (Re
all that for E

2

the

bound on f is between and 1 and 8 while the bound on f for E

1

is between 1 and

4).

Finally, there were a handful of outliers in both the E

1

and E

2

experiments

that are too small to see on Figures IV.27 and IV.28. For the E

1

experiments,

.09% of the experiments had sear
h times between 3 and 8 se
onds; for the E

2

experiments, .5% of the experiments had sear
h times between 3 and 9 se
onds.

Due to time
onstraints, we were unable to determine the
ause. However, we note

that the per
entage of these higher sear
h times is nominal.

87

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

seconds

nu
m

be
r

of
 e

xp
er

im
en

ts

Figure IV.27: AppLeS s
heduling laten
y for E

1

experiments.

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

seconds

nu
m

be
r

of
 e

xp
er

im
en

ts

Figure IV.28: AppLeS s
heduling laten
y for E

2

experiments.

88

mean std min max median

E

1

0.35 0.45 0.04 7.85 0.13

E

2

0.99 0.68 0.11 8.68 0.92

Table IV.11: Summary statisti
s for AppLeS sear
h times.

IV.D.1 Summary

To assess the impa
t of the AppLeS s
heduler on appli
ation exe
ution

time, we studied the s
heduling laten
y introdu
ed by the AppLeS s
heduler. We

found that for the majority of exe
utions, the AppLeS s
heduler introdu
ed a nom-

inal s
heduling laten
y of less than two se
onds.

Chapter V

Related Work

On-line parallel tomography has also been addressed as part of the Com-

puted Mi
rotomography (CMT) proje
t [52, 53℄. Proje
tions are
olle
ted from

the Advan
ed Photon Sour
e (APS) at Argonne National Laboratory, pro
essed

by an SGI Origin 2000, and visualized on an ImmersaDesk [15℄ or in a CAVE [12℄.

The CMT on-line parallel tomography
ode spe
i�
ally targets high-speed net-

works and super
omputers and is a slightly extended version of the GTOMO
ode

des
ribed in Se
tion I.A.1

1

. The CMT extension enables data to be taken dire
tly

from APS and introdu
es pro
essing stages. Ea
h pro
essing stage re�lls the work

queue and results in a refresh to the tomogram. This is the same te
hnique that

was des
ribed in Se
tion II.A where work is repeated in ea
h stage. Thus, the

on-line parallel tomography implementation presented in this thesis di�ers from

CMT's in that it enables the R-weighted ba
kproje
tion method to exe
ute as an

augmentable te
hnique. Note that it would be straightforward to add the same ex-

tension to the CMT
ode in order to improve real-time exe
ution. Se
ond, our im-

plementation enables on-line parallel tomography to exe
ute a
ross a more diverse

set of resour
es (e.g. workstations, spa
e-shared super
omputers, lower-
apa
ity

networks) through the use of appli
ation tunability.

1

The base
ode for the CMT implementation of on-line parallel tomography and the base

ode for the implementation des
ribed in this thesis are the same. We refer to the base
ode as

GTOMO in this thesis.

89

90

Appli
ation tunability is a
on
ept that has been applied in the MILAN

proje
t [9℄ and in [17℄. In MILAN, tunability is used by the system s
heduler to

improve throughput. The system s
heduler is referred to as the QoS arbitrator and

is responsible for allo
ating pro
essors to appli
ation tasks. Ea
h appli
ation has

a QoS agent whi
h intera
ts with the QoS arbitrator to ensure that its exe
ution

requirements are being satis�ed. The QoS agent is automati
ally generated from

annotated
ode. Our work di�ers from MILAN's in that our obje
tive is to use tun-

ability to improve appli
ation performan
e rather than system performan
e. We

provide a single AppLeS pro
ess whi
h fun
tions as both the appli
ation's QoS

agent and QoS arbitrator. While MILAN provides a simpler API, it is
urrently

unable to suÆ
iently
apture the requirements of on-line parallel tomography be-

ause the QoS arbitrator does not s
hedule bandwidth on network links. Given the

large amount of data transfer required for on-line parallel tomography, the abil-

ity to express bandwidth requirements is
riti
al to a
hieving real-time exe
ution

performan
e.

The work presented in [17℄ also uses tunability to improve appli
ation

performan
e. Two appli
ations are presented and
lassi�ed as predi
tion-based,

best e�ort, real-time appli
ations. Using predi
tions of appli
ation performan
e

based on dynami
 load predi
tions, the appli
ation is mapped to a set of resour
es.

Our work di�ers from theirs in that predi
tions of appli
ation performan
e are

model-based rather than history-based.

Finally, the AppLeS des
ribed in this thesis builds upon other previous

AppLeS work [49, 48, 16, 46℄ in its strategies for resour
e sele
tion and work allo-

ation. These AppLeS have fo
used on improving the performan
e of appli
ations

with �xed
on�gurations. The AppLeS des
ribed herein distinguishes itself from

these s
hedulers in its ability to improve the performan
e of an appli
ation (with

multiple
on�gurations) by exploiting its tunability.

Chapter VI

Con
lusion

In this thesis, we implemented a Grid-enabled version of on-line parallel

tomography whi
h provides soft real-time feedba
k to users
olle
ting data from a

powerful ele
tron mi
ros
ope lo
ated at NCMIR. A
quiring data from NCMIR's

mi
ros
ope is a lengthy pro
ess and is sus
eptible to
on�guration errors. Soft

real-time tomography feedba
k, whi
h has been previously unavailable to NCMIR

users, is important be
ause it will allow users to qui
kly identify
on�guration

problems and intera
t with the mi
ros
ope in order to more eÆ
iently a
quire

data from it. In this se
tion, we summarize the
ontributions of the work for ea
h

hapter and
on
lude with future work.

In Chapter II, we motivated an extension to GTOMO to allow for on-line

parallel tomography. This extension signi�
antly redu
ed the amount of
omputa-

tion required for real-time exe
ution of on-line parallel tomography by enabling the

R-weighted ba
kproje
tion method to exe
ute as an augmentable te
hnique. This

required a
hange from a work queue s
heduling strategy to stati
 work allo
ation.

This extension is more
omputationally eÆ
ient than adapting the o�-line par-

allel tomography algorithm to on-line exe
ution, but does not have the run-time

adaptive s
heduling advantage of work queue. We then de�ned a
on�guration

of on-line parallel tomography as a triple, (f; r; su). These parameters represent

resolution of the tomogram, frequen
y of re�nements to the tomogram, and
ost

91

92

of exe
ution. These tunable parameters allow the appli
ation to be adapted to

di�erent resour
e availabilities.

In Chapter III, we de�ned a user-dire
ted AppLeS. The AppLeS exploits

the tunability of on-line parallel tomography to determine a s
hedule for soft real-

time exe
ution of the appli
ation over a set of resour
es at run-time. The s
heduler

utilizes user
onstraints, an appli
ation model based on soft deadlines, and dynami

resour
e load predi
tions to formulate multiple
onstrained optimization problems

whi
h are solved to determine feasible run-time
on�gurations. We showed that

ea
h optimization problem
ould be eÆ
iently and e�e
tively solved using mixed-

integer programming. The
on�gurations are displayed as
hoi
es to the user

where ea
h
on�guration involves trade-o�s between resolution of the tomogram,

frequen
y of refreshes, and
ost of exe
ution. On
e an appropriate
on�guration

is
hosen by the user, the s
heduler sele
ts resour
es, allo
ates work, and exe
utes

the appli
ation.

Finally in Chapter IV, we evaluated the impa
t of dynami
 information

on s
heduler performan
e. We �rst ran experiments that simulated on-line parallel

tomography at NCMIR. We found that the AppLeS a
hieved near perfe
t real-time

exe
ution when it used perfe
t load predi
tions. These results also showed that

bandwidth predi
tions were the most signi�
ant fa
tor to improving s
heduler per-

forman
e. We then ran experiments that simulated on-line parallel tomography at

NCMIR with imperfe
t load predi
tions. These results indi
ated that the s
hed-

uler's performan
e was sus
eptible to the quality of the bandwidth predi
tions.

Further experiments showed that s
heduler performan
e degraded as the quality

of bandwidth predi
tions degraded. Se
ond, we ran a set of experiments where we

examined the usefulness of tunability on Computational Grids. Our results showed

that the usefulness of tunability in
reased as Grid variability in
reased. Finally,

we showed that the s
heduling laten
y introdu
ed by the AppLeS was nominal.

Future work on this resear
h would be to redu
e the impa
t of bad pre-

di
tions on real-time exe
ution performan
e. One approa
h would be to extend

93

the AppLeS to res
hedule the appli
ation during run-time (sin
e our
urrent stati

work allo
ation strategy does not perform run-time adaptive s
heduling). This

strategy would allow the appli
ation to better tolerate bad predi
tions by
hang-

ing the work allo
ation during run-time. The �rst step would be to dete
t a need

for res
heduling by weighing the potential bene�t of res
heduling with the overhead

of res
heduling su
h as in [45℄. The AppLeS would then �nd a new work allo
ation

using
urrent dynami
 resour
e load information. The new work allo
ation would

be
ompared to the old work allo
ation to �nd an eÆ
ient way to shu�e the sli
es

among ptomos.

A se
ond way to redu
e the impa
t of bad predi
tions would be to use

a sto
hasti
 approa
h as outlined in [42℄. In this work, NWS predi
tion error

information was used to represent the load on a resour
e using a range of values.

For on-line parallel tomography, the value we
hoose to represent the load on a

resour
e
ould be based on how
onservative the user wanted to be with their

s
heduling strategy. That is, a user
ould
hoose a more
onservative, but possibly

less eÆ
ient s
heduling strategy or a less
onservative, but possibly more eÆ
ient

s
heduling strategy. The user's
onservativeness
ould be represented as a fourth

parameter of the on-line parallel tomography
on�guration.

Finally, we would like to deploy the implementation of on-line parallel

tomography des
ribed in this thesis into produ
tion at NCMIR. We expe
t that

real-time feedba
k will allow NCMIR users to intera
t with the mi
ros
ope to more

e�e
tively a
quire data from the it. Overall, this will allow for more eÆ
ient usage

of this powerful, s
ar
e resour
e.

Appendix A

Tables

Table A.1: Feasible triples for highly variable Grid,

MLMMH.

Time (s) Triple
hosen Other feasible triples

0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)

2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)

5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

10980 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

13725 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

16470 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

19215 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

21960 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

24705 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

27450 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

30195 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

32940 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

35685 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Continued on next page

94

95

Table A.1 {
ontinued from previous page

Time (s) Triple
hosen Other feasible triples

38430 (1, 13, 10980) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

41175 (1, 12, 13725) (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

43920 (1, 13, 10980) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

46665 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

49410 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

52155 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

54900 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

57645 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

60390 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

63135 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

65880 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

68625 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

71370 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

74115 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

76860 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

79605 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

82350 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

85095 (1, 12, 13725) (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

87840 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

90585 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

93330 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

96075 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

98820 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

101565 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

104310 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

107055 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Continued on next page

96

Table A.1 {
ontinued from previous page

Time (s) Triple
hosen Other feasible triples

109800 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

112545 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

115290 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

118035 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

120780 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

123525 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

126270 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

129015 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

131760 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

134505 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

137250 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

139995 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

142740 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

145485 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

148230 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

150975 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

153720 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

156465 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

159210 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

161955 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Bibliography

[1℄ Fran
ine Berman, Ri
hard Wolski, Silvia Figueira, Jennifer S
hopf, and Gary

Shao. Appli
ation Level S
heduling on Distributed Heterogeneous Networks.

In Pro
eedings of Super
omputing 1996 , 1996.

[2℄ Dimitri P. Bertsekas. Nonlinear Programming,
hapter 1, page 2. Athena

S
ienti�
, 1999.

[3℄ Blue Horizon User Guide at http://www.npa
i.edu/Horizon.

[4℄ Stefan D. Bruda and Selim G. Akl. Real-Time Computation: A Formal De�-

nition and its Appli
ations. Te
hni
al Report 435, Queen's University, 2000.

[5℄ Henri Casanova. Simgrid: A Toolkit for the Simulation of Appli
ation

S
heduling. In Pro
eedings of the IEEE/ACM International Symposium on

Cluster Computing and the Grid , May 2001.

[6℄ Henri Casanova and Ja
k Dongarra. NetSolve: A Network Server for Solving

Computational S
ien
e Problems. The International Journal of Super
omput-

ing Appli
ations and High Performan
e Computing, 1996.

[7℄ Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov, and Fran
ine Berman.

Heuristi
s for S
heduling Parameter Sweep appli
ations in Grid environments

. In Pro
eedings of the 9th Heterogenous Computing Workshop, May 2000.

[8℄ Henri Casanova, Graziano Obertelli, Fran
ine Berman, and Ri
h Wolski. The

AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. In

Pro
eedings of the Super
omputing 2000, 2000.

[9℄ Fangzhe Chang, Vijay Karam
heti, and Zvi Kedem. Exploiting Appli
ation

Tunability for EÆ
ient, Predi
table Resour
e Management in Parallel and

Distributed Systems. Journal of Parallel and Distributed Computing, 60:1420{

1445, 2000.

[10℄ CHPC webpage at http://www.
hp
.utah.edu.

[11℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion

to Algorithms,
hapter 5, page 83. M.I.T. Press, Third edition, 1990.

97

98

[12℄ C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-S
reen Proje
tion-

Based Virtual Reality: The Design and Implementation of the CAVE. ACM

Computer Graphi
s, 27(2):135{142, July 1993.

[13℄ CTC webpage at http://www.t
.
ornell.edu.

[14℄ David E. Culler and Jaswinder Pal Singh. Parallel Computer Ar
hite
ture,

hapter 1, pages 60{61. Morgan Kaufmann Publishers, In
., 1999.

[15℄ Marek Czernuszenko, Dave Pape, Daniel Sandin, Tom DeFanti, Gregory L.

Dawe, and Maxine D. Brown. The ImmersaDesk and In�nity Wall Proje
tion-

Based Virtual Reality Displays. Computer Graphi
s, 31(2):46{49, 1997.

[16℄ Holly Dail, Graziano Obertelli, Fran
ine Berman, Ri
h Wolski, and Andrew

Grimshaw. Appli
ation-Aware S
heduling of a Magnetohydrodynami
s Ap-

pli
ation in the Legion Metasystem. In Pro
eedings of the 9th Heterogenous

Computing Workshop, May 2000.

[17℄ Peter A. Dinda, Bru
e Lowekamp, Loukas Kallivokas, and David R.

O'Hallaron. The Case for Predi
tion-based Best-e�ort Real-time Systems

. Te
hni
al Report CMU-CS-98-174, Carnegie Mellon University, 1999.

[18℄ I. Foster, C. Kesselman, and S. Tue
ke. The Anatomy of the Grid: Enabling

S
alable Virtual Organizations. To be published in Intl. J. Super
omputer

Appli
ations, 2001.

[19℄ Ian Foster and Carl Kesselman. The Globus Proje
t: A Status Report. In

Pro
. IPPS/SPDP '98 Heterogeneous Computing Workshop, 1998.

[20℄ Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastru
ture,
hapter 12. Morgan Kaufmann Publishers, In
.,

1999.

[21℄ J. Frank and M. Raderma
her. Three-Dimensional Re
onstru
tion of Non-

periodi
 Ma
romole
ular Assemblies from Ele
tron Mi
rographs . In J. K.

Koehler, editor, Advan
ed Te
hniques in Biologi
al Ele
ton Mi
ros
opy III.

Springer-Verlag, 1986.

[22℄ P. Gilbert. Iterative Methods for the Three-dimensional Re
onstru
tion of

an Obje
t from Proje
tions . J. Theoret. Biol., 36:105{117, 1972.

[23℄ R. Gordon, R. Bender, and G.T. Herman. Algebrai
 Re
onstru
tion Te
h-

niques (ART) for Three-dimensional Ele
tron Mi
ros
opy and X-ray Photog-

raphy . J. Theoret. Biol., 29:471{481, 1970.

[24℄ A. Grimshaw, A. Ferrari, F.C. Knabe, and M. Humphrey. Wide-Area Com-

puting: Resour
e Sharing on a Large S
ale. IEEE Computer, 32(5), May

1999.

99

[25℄ M. Hadida-Hassan, S.J. Young, S.T. Peltier, M. Wong, S. Lamont, and M.H.

Ellisman. Web-based Telemi
ros
opy. J. Stru
. Biology, 125:235{245, 1999.

[26℄ T. Hagerup. Allo
ating Independent Tasks to Parallel Pro
essors: An Exper-

imental Study. Journal of Parallel and Distributed Computing, 47:185{197,

1997.

[27℄ A. C. Kak and M. Slaney. Prin
iples of Computerized Tomography Imaging.

IEEE Press, 1998.

[28℄ Reinhard Klette and Piero Zamperoni. Handbook of Image Pro
essing Oper-

ators,
hapter 4, pages 120{125. John Wiley and Sons, Ltd., 1996.

[29℄ Linear Programming FAQ webpage at http://www-unix.m
s.anl.gov/ot
/

Guide/faq/linear-programming-faq.html.

[30℄ M. J. Litzkow, M. Livny, and M. W. Mutka. Condor|A Hunter of Idle Work-

stations. In Pro
. of the 8th Int'l Conf. on Distributed Computing Systems,

pages 104{111, 1988.

[31℄ Jane W.S. Liu. Real-Time Systems,
hapter 2, pages 26{33. Prenti
e-Hall,

In
., 2000.

[32℄ lp solve FTP site at ftp://ftp.es.ele.tue.nl/pub/lp_solve.

[33℄ Maui S
heduler webpage at http://www.mhp

.edu/ maui.

[34℄ Robert Dant - MHPCC (personal
ommuni
ation, Jan 02, 2001).

[35℄ NCSA webpage at http://www.n
sa.uiu
.edu.

[36℄ Nonlinear Programming FAQ webpage at http://www-unix.m
s.anl.gov/

ot
/Guide/faq/nonlinear-programming-faq.html.

[37℄ NPACI webpage at http://www.npa
i.edu.

[38℄ G.A. Perkins, C.W. Renken, J.Y. Song, T.G. Frey, S.J. Young, S. Lamont,

M.E. Martone, S. Lindsey, and M.H. Ellisman. Ele
tron Tomography of

Large, Multi
omponent Biologi
al Stru
tures. Journal of Stru
tural Biology,

120:219{227, 1997.

[39℄ G.A. Perkins, C.W. Renken, S.J. Young, S.P. Lamont, M.E. Martone, S. Lind-

sey, T.G Frey, and M.H. Ellisman. Ele
tron tomography of large multi
om-

ponent biologi
al stru
tures. J. Stru
t.Biol., 120:219{227, 1997.

[40℄ Radia Perlman. Inter
onne
tions,
hapter 2, page 19. Addison Wesley Long-

man, In
., se
ond edition, 2000.

100

[41℄ M. Raderma
her. Three-dimensional re
onstru
tion of single parti
les from

random and nonrandom tilt series. J. Ele
tron Mi
ros
. Te
h., 9:359{394,

1988.

[42℄ J. S
hopf. Performan
e Predi
tion and S
heduling for Parallel Appli
ations

on Multi-User Clusters. PhD thesis, University of California, San Diego, 1998.

[43℄ S. Sekigu
hi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf :

Network based Information Library for Globally High Performan
e Comput-

ing. In Pro
. of Parallel Obje
t-Oriented Methods and Appli
ations (POOMA),

pages 39{48, February 1996.

[44℄ Gary Shao, Fran Berman, and Ri
h Wolski. Using E�e
tive Network Views

to Promote Distributed Appli
ation Performan
e. In Pro
eedings of the 1999

International Conferen
e on Parallel and Distributed Pro
essing Te
hniques

and Appli
ations , 1999.

[45℄ Gary Shao, Ri
h Wolski, and Fran Berman. Predi
ting the Cost of Redistri-

bution in S
heduling. In Pro
eedings of the 8th SIAM Conferen
e on Parallel

Pro
essing for S
ienti�
 Computing , 1997.

[46℄ Shava Smallen, Walfredo Cirne, Jaime Frey, Fran
ine Berman, Ri
h Wolski,

Mei-Hui Su, Carl Kesselman, Steve Young, and Mark Ellisman. Combining

Workstations and Super
omputers to Support Grid Appli
ations: The Parallel

Tomography Experien
e. In Pro
eedings of the 9th Heterogenous Computing

Workshop, May 2000.

[47℄ Gabriel E. Soto, Stephen J. Young, Maryann E. Martone, Thomas J. Deer-

in
k, Stephan Lamont, Bridget O. Carragher, Kiyoshi Hamma, and Mark H.

Ellisman. Serial se
tion ele
tron tomography: A method for three-dimensional

re
onstru
tion of large stru
tures. Neuroimage, 1:230{243, 1994.

[48℄ Neil Spring and Ri
h Wolski. Appli
ation Level S
heduling of Gene Sequen
e

Comparison on Meta
omputers. 12th ACM International Conferen
e on Su-

per
omputing , July 1998.

[49℄ Alan Su, Fran
ine Berman, Ri
hard Wolski, and Mi
helle Mills Strout. Using

AppLeS to S
hedule Simple SARA on the Computational Grid. International

Journal of High Performan
e Computing Appli
ations , 13(3):253{262, 1999.

[50℄ A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima. Overview

of a performan
e evaluation system for global
omputing s
heduling algo-

rithms. In Pro
eedings of 8th IEEE International Symposium on High Per-

forman
e Distributed Computing, 1999.

[51℄ Andrew S. Tanenbaum. Computer Networks,
hapter 1, page 8. Prenti
e Hall,

In
., Third edition, 1996.

101

[52℄ Gregor von Laszewski, Mei-Hui Su, Joseph Insley, Ian Foster, John Bresna-

han, Carl Kesselman, Mar
us Thiebaux, Mark Rivers, Steve Wang, Brian

Tieman, and Ian M
Nulty. Real-time analysis, visualization, and steering of

tomography experiments at photon sour
es. In Ninth SIAM Conferen
e on

Parallel Pro
essing for S
ienti�
 Computing, Apr 1999.

[53℄ Yuxin Wang, Fran
es
o De Carlo, Ian Foster, Joseph Insley, Carl Kesselman,

Peter Lane, Gregor von Laszewski, Derri
k Man
ini, Ian M
Nulty, Mei-Hui

Su, and Brian Tieman. A quasi-realtime xray mi
rotomography system at the

Advan
ed Photon Sour
e. In Pro
eedings of SPIE, volume 3772, 1999.

[54℄ Ri
h Wolski. Dynami
ally Fore
asting Network Performan
e to Support Dy-

nami
 S
heduling Using the Network Weather Servi
e. In Pro
. 6th IEEE

Symp. on High Performan
e Distributed Computing, August 1997.

[55℄ Ri
h Wolski, Neil Spring, and Chris Peterson. Implementing a Performan
e

Fore
asting System for Meta
omputing: The Network Weather Servi
e. In

Pro
eedings of Super
omputing 1997 , 1997.

[56℄ Ri
h Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Servi
e:

A Distributed Resour
e Performan
e Fore
asting Servi
e for Meta
omputing.

The Journal of Future Generation Computing Systems , 1999.

