UC San Diego

Technical Reports

Title
On-line Parallel Tomography

Permalink
https://escholarship.org/uc/item/7gs5m3wg

Author
Smallen, Shava

Publication Date
2001-06-05

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7gs5m3ws
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

On-line Parallel Tomography

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science in

Computer Science

Shava Smallen

Committee in charge:
Professor Francine Berman, Chair

Professor Scott B. Baden
Professor Mark Ellisman

2001

The thesis of Shava Smallen is approved, and it is accept-

able in quality and form for publication on microfilm:

Chair

University of California, San Diego

2001

1ii

To my family.

v

IT

III

TABLE OF CONTENTS

Signature Page oL iii
Dedication iv
Table of Contents Y
List of Tables vii
List of Figures viii
Acknowledgements X
Abstract L xii
Introductiono 1
A. Off-line Parallel Tomography 4

1. GTOMO 6
B. On-line Parallel Tomography 7
C. Thesis Summary e 10
D. Organization of Thesis 10
Tunable On-line Parallel Tomography 12
A. GTOMO Extension 12
B. Tunable Parameters L. 17

1. Reduction Factor. 18

2. Projections Per Refresh 20

3. Cost . . .o 20
C. Summary 21
User-Directed AppLeS oo 22
Ao Design . . . oL 22
B. Searching for Triples oo 25
C. Work Allocation Experiments 26

1. Application Model 28

2. Computation L 29

3. Communication 31

4. Cost 35

5. Putting it all together 36
D. Summaryo 37

[V Experiments e 39

A. Introduction 39

B. Work Allocation 39

1. Performance Metric 40

2. Simulation 42

3. Case Study: NCMIR cluster 44

a. Partially Trace-driven Simulations 49

b. Completely Trace-driven Simulations 53

4. Synthesized Grid Experiments 56

a. Grid Construction 57

b. Scheduler Comparisons 64

c. Partial Orders, 68

d. Scoring 71

S.oSummary 75

C. Tunability Experiments 75

1. Grid Construction 76

2. Experiments 7

3. User Model 78

4. Tunability Resultso 0oL 79

5. Partial Order Results 83

6. Summary 84

D. Scheduling Latency 0. 86

LooSummary 88

V Related Work 89

VI Conclusion e 91
Appendices

A Tables 94

Bibliography 97

vi

LIST OF TABLES

II.1 Example configurations 23
IV.1 Summary of scheduler characteristics. 40
IV.2 NCMIR machine descriptions. 46
IV.3 Summary statistics for NCMIR bandwidth traces 46
IV.4 Summary statistics for NCMIR CPU availability traces 49
IV.5 Summary statistics for NCMIR simulations with perfect load pre-
dictions. o0
IV.6 Summary statistics for NCMIR simulations with imperfect load
predictions.o 23
IV.7 Number of Grids generated for each Grid type pipops. 62
IV.8 Scheduler ranking based on cumulative A; for synthetic Grid sim-
ulations 64
IV.9 Average deviation from best scheduler based on cumulative A; for
synthetic Grid simulations. 65
IV.10 Summary statistics for synthetic Grid simulations. 66
IV.11 Summary statistics for AppLeS search times.. 88
A.1 Feasible triples for a highly variable Grid 94

Vil

[.1
[.2
[.3
[4

IT.1
I1.2
I1.3
I1.4

II1.1
I11.2
ITI.3
II1.4
IIL.5
ITI.6
IT1.7

IV.l
IV.2
IV.3
IV4
IV.5
IV.6
IV.7
IV.8
IV.9

LIST OF FIGURES

Spiny dendriteo
Parallelism of tomography

Processing steps of tomography

GTOMO architecture.

R-weighted backprojection algorithm
Architecture of GTOMO on-line parallel tomography extension . .
Reduction algorithm.

Sample reduction illustration

Flow diagram for a user-directed AppLeS
AppLeS triple search algorithm.
Ptomo processing algorithm.
Fully connected network
Example LAN network topology.
Example ENV logical representation.

The model of on-line parallel tomography.

NCMIR topology
ENV representation of NCMIR topology
NCMIR bandwidth traces.
NCMIR CPU availability traces
NCMIR partially trace-driven simulations: mean 4,
NCMIR partially trace-driven simulations: A; CDF
NCMIR completely trace-driven simulations: mean A;
NCMIR completely trace-driven simulations: A, CDF

Grid topology for work allocation simulations

IV.10 Coefficient of variance histogram for bandwidth traces

IV.11 Correlation between cv and e, for bandwidth traces

viil

IV.12 Coefficient of variance histogram for CPU availability traces. . . . 61

IV.13 Correlation between cv and e, for CPU availability traces 63
IV.14 Scheduler ranking based on cumulative A,. 65
IV.15 Synthetic Grid simulation results: A, CDF 67
IV.16 Histogram of mean trace CPU availability 68
IV.17 Synthetic Grid simulations grouped by partial order P, 70
IV.18 Synthetic Grid simulations grouped by partial order P, 72
IV.19 Low predictability trace segment 73
IV.20 Synthetic Grid simulations: A; CDF grouped by I 75
IV.21 Grid topology for tunability experiments 77
IV.22 Triples found for (61,1024, 1024, 300) experiment. 80
IV.23 Triples found for (61,2048,2048,600) experiment. 81
IV.24 Frequency of parameter changes for E; experiments 82
IV.25 Frequency of parameter changes for Fy experiments 83
IV.26 Partial order results: frequency of triple changes 85
IV.27 AppLeS scheduling latency for E; experiments. 87
IV.28 AppLeS scheduling latency for Ey experiments. 87

1X

ACKNOWLEDGEMENTS

Working on this thesis has been a really great learning experience for me.
It has also been an enjoyable experience largely in part to all of the great people
[have met and interacted with while working on this project.

First, I would like to thank my advisor, Fran Berman, for all of her
support and inspiration. She has been a great role model and her guidance has
allowed me to grow a lot over these past three years.

[am also extremely grateful to my co-advisor, Henri Casanova, who has
been a great mentor and has been there to provide feedback and encouragement
whenever I needed it.

Special thanks to Rich Wolski for his insightful comments and always
clear (and entertaining) explanations.

Furthermore, I would like to thank the members of my committe, Scott
Baden and Mark Ellisman.

[would also like to express my gratitude to all the folks that I have worked
with on the Telescience project for which this work grew out of. I would especially
like to thank Mei-Hui Su from IST who wrote the original GTOMO code and has
been incredibly wonderful to work with. From NCMIR, I would especially like to
thank Steve Lamont who wrote the original tomography code and has graciously
answered many tomography-related questions for me; Dave Foster and Mona Wong
for providing NCMIR systems support; and Marty Hadida-Hassan.

The experiment results presented in this thesis were run in parallel using
APST (AppLeS Parameter Sweep Template) developed by Henri Casanova and a
number of workstation clusters. I would like to thank Satoshi Matsuoka for use
of the Prospero and Presto clusters at the Tokyo Institute of Technology, Phil
Papadopoulos for use of the Meteor cluster at SDSC, and David Hutches for use
of the Active Web cluster at UCSD.

Additionally, I would like to thank Robert Ellis, Roummel Marcia, and
Tucker McElroy from the Graduate Mathematics Consulting Group at UCSD.

Last, but definitely not least, thanks to all the folks in the Grid Comput-
ing Lab. This group has been incredibly supportive, a great source of technical
information, and just fun to be around. I would especially like to thank Holly Dail
and Alan Su for always being there to provide feedback. Thanks to Walfredo Cirne
and Jaime Frey who worked with me on the off-line GTOMO code, Jim Hayes for
providing software engineering advice, and Graziano Obertelli for administering
the circus machines and supporting my laptop whenever it was in trouble. Special
thanks to Marcio Faerman, Gary Shao, Otto Sievert, Renata Teixeira, and Dmitrii

Zagorodnov. Also, thanks to Nadya Williams for providing chocolate support.

xi

ABSTRACT OF THE THESIS
On-line Parallel Tomography
by

Shava Smallen
Master of Science in Computer Science
University of California, San Diego, 2001

Professor Francine Berman, Chair

Tomography is a computationally intensive process by which the three-
dimensional structure of an object can be reconstructed from a series of two-
dimensional projections. In this thesis, we address on-line execution of tomography
to provide real-time feedback to users collecting data from an on-line instrument.
Context for this work is provided by a powerful electron microscope located at
the National Center for Microscopy and Imaging Research (NCMIR). Acquiring
data from NCMIR’s microscope is a lengthy process and is susceptible to config-
uration errors. Thus, real-time tomography feedback will allow users to quickly
identify configuration problems and interact with the microscope in order to more
efficiently acquire data from it.

We present an implementation of on-line parallel tomography which al-
lows for production runs in Computational Grid environments. Developing ap-
plications that leverage this type of platform is difficult because resources are
heterogenous and dynamic. In our approach, on-line parallel tomography is de-
signed to be tunable such that it can be configured to adapt to different resource
availabilities. It is coupled with an user-directed, application-level scheduler which
exploits the tunability of the application to determine a schedule for soft real-
time execution. The scheduler utilizes user constraints, an application model, and

dynamic resource load predictions to determine feasible run-time configurations.

xil

The configurations are displayed as choices to the user where each configuration
involves trade-offs between resolution of the reconstruction, frequency of feedback,
and cost of execution. Once an appropriate configuration is chosen by the user,

the scheduler selects resources, allocates work, and executes the application.

xlil

Chapter I

Introduction

Reconstructing the three-dimensional structure of an object from a se-
ries of two-dimensional projections is called tomography. Tomography has been
applied to many fields such as medical imaging, earth science, and astronomy [27].
In this thesis, we concentrate on the application of tomography to electron mi-
croscopy. Context for this work is provided by the National Center for Microscopy
and Imaging Research (NCMIR) where tomography is run on data collected from
an intermediate-high voltage transmission electron microscope (IVEM). NCMIR’s
electron microscope allows scientists to study specimens at the cellular and sub-
cellular level and is one of the few of its kind in the United States that is available
to the biological research community [25]. During a session with the electron mi-
croscope, a specimen is rotated about a single axis while projections are acquired
from a CCD (charge-coupled device) camera. Typically 61 projections are ac-
quired, where the size of each projection depends on the resolution of the CCD
camera, currently either 1k x 1k or 2k x 2k. In Figure 1.1, we show an example of
a tomographic volume generated from a spiny dendrite data set that was collected
from NCMIR'’s electron microscope.

The tomographic algorithms used by NCMIR are computationally inten-
sive. They include the R-weighted backprojection algorithm which performs the
tomographic reconstruction; it is optionally followed by iterative ART (Algebraic

I..'\.

¥

Figure [.1: Spiny dendrite.

Reconstruction Technique) or SIRT (Simultaneous Iterative Reconstruction Tech-
nique) algorithms which further refine the volume [38]. Fortunately these algo-
rithms are also embarrassingly parallel which facilitates a parallel implementation
of tomography [39]. Figure .2 illustrates the parallelism of these tomographic algo-
rithms. The information required to produce the ith X-Z slice of the volume is the
1th scanline from all projections. Therefore, the three-dimensional volume can be
decomposed into a series of X-Z slices where each slice is computed independently
of the others.

There are two scenarios for which NCMIR is interested in using parallel
tomography: off-line parallel tomography and on-line parallel tomography. In off-
line parallel tomography, a user is interested in running tomography on a dataset
that resides somewhere on secondary storage. The user’s goal is to obtain a sin-
gle, high-resolution tomogram as soon as possible. Conversely, in on-line parallel
tomography, a user is interested in running tomography on data as it is collected
from the microscope. The user’s goal is to compute successive tomograms in quasi-

real-time in order to obtain feedback on the quality of the data acquisition.

specimen

Figure 1.2: Parallelism of tomography (adapted from [21]). The information re-

quired to reconstruct the ith X-Z slice is the ¢th scanline from all projections.

I.A Off-line Parallel Tomography

Traditionally, NCMIR scientists have run parallel tomography on data
sets previously collected from the electron microscope. This procedure is referred
to as off-line parallel tomography and is illustrated in Figure 1.3. A data set
of p projections, each of size x x y, is acquired from the microscope and then
preprocessed to correct for imperfections of the data acquisition process (e.g. fidu-
cial alignment, normalization) [39]. Next, the projections are transformed into y
stnograms of dimension = X p, where the ith sinogram is composed from the ith
scanlines of each projection. The sinograms will then be parallel processed into
slices of the tomogram. A slice is of dimension x x z, where the value for z is
derived from the actual physical thickness of the specimen in pixels. Finally, the
slices are collected into a tomogram, a three-dimensional volume, and viewed by
the user.

We define an off-line parallel tomography experiment, E,f¢, using the
parameters that determine the amount of data and computation involved in the

tomographic reconstruction.

Definition I.1
Eoff = (pa z,Yy, Z)
where

e p is the total number of projections acquired from the microscope,
e 1 is the width of the projection,

e y is the height of the projection (also the number of slices to com-
pute), and

e 2z is the thickness of the specimen.

Given NCMIR’s 1k x 1k and 2k x 2k CCD cameras, the following are representative
examples of the size of experiments run by NCMIR users: (61, 1024, 1024, 300)
and (61, 2048, 2048, 600).

projections

(a)

O

(

) (€)

tomogram

(d)

Figure [.3: Processing steps of tomography.

ILA1 GTOMO

We and our collaborators implemented a version of off-line parallel to-
mography called GTOMO [46] which is targeted to a Computational Grid [18].
Traditionally, it can be challenging to develop applications that leverage this type
of platform because resources are heterogeneous, dynamic, and governed by differ-
ent administrative policies (i.e., accounting, local scheduler, security, etc.). Fortu-
nately, there are several Grid infrastructure projects [19, 24, 30, 6, 43] available
to facilitate running an application across different administrative domains. In
GTOMO, we use services from the Globus toolkit [19] for remote process control
and interprocess communication. We then implemented a scheduler for running
off-line parallel tomography in a heterogeneous, dynamic environment.

Since the tomographic algorithms used by NCMIR are embarrassingly
parallel, we can employ a self-scheduling [26] strategy. In GTOMO, we use a sim-
ple work queue algorithm where one slice of work is assigned to a processor at a
time until all slices have been processed. However, effective resource selection is
more complicated because NCMIR'’s platform includes space-shared resources (su-
percomputers). On space-shared resources, jobs execute on dedicated processors
but typically have to wait in a queue before execution. Depending on the number
of processors requested and the load of the machine, the queue time of a job can
range from seconds to days. In GTOMO, we implemented a coallocation strat-
egy that avoids queue time delays entirely by adaptively submitting job requests
that can start running immediately. To submit a job request that starts imme-
diately, we utilize availability information exported from a supercomputer’s batch
scheduler such as the Maui Scheduler [33]; this information includes the number
of nodes available for immediate use and, more importantly, the length of time for
which they are available. Therefore, we say our strategy coallocates the execution
of parallel tomography over workstations and immediately available supercomputer
processors. The coallocation strategy implemented in GTOMO was implemented

as an AppLeS. An AppLeS (application-level scheduler) [1] integrates with the

target application to develop a schedule for deploying the application in a Grid
environment. The scheduler makes predictions of the performance the application
may experience on prospective resources at execution time. Using these predic-
tions, a potentially performance-efficient schedule for the application is identified
and deployed [49, 48, 16, 46]. In [46], we showed that the GTOMO AppLeS strategy
improved the turnaround time of off-line parallel tomography over strategies that
targeted either workstations or supercomputers alone. Currently, GTOMO is used
in production at NCMIR on multi-user workstation clusters and supercomputers.

The architecture of GTOMO is displayed in Figure 1.4. There are four
types of processes in GTOMO: driver, reader, writer, and ptomo. The driver is
invoked by the user and starts up all other processes using the AppLeS coallocation
strategy. It also coordinates interactions among the different processes and controls
the work queue. The reader and writer are multi-threaded I/O processes and have
direct access to the user’s file system. The reader reads input files off the disk and
sends them to the ptomos for processing. The writer receives output files from
ptomos and writes them to disk. Note that the reader and writer enable GTOMO
to run across different file systems. The ptomo receives input files from a reader,
does all the computational work, and sends the output to a writer. Since data is
typically read and written to one disk (not necessarily the same disk), we use one

reader, one writer, and any number of ptomos.

I.B On-line Parallel Tomography

The time to acquire a single projection from NCMIR’s electron micro-
scope ranges from 45 seconds to 3 minutes. Therefore, it can take at least 45
minutes to acquire a complete data set of 61 projections. When the user visualizes
the data at the end of the acquisition process, they might discover that the data is
flawed or might find a better area of the specimen to study. In this case, the user

will restart the whole experiment with different parameters. It would therefore

—
©
—+
o
3
o
—/
)
o
~—+
o
3
o
—/
[]
[]
[]
. ©
—+
o
: 3
o

sinogram slice
- —0[reader] [writer } - — =
sihogram slice

Figure I.4: Architecture of GTOMO, the off-line parallel tomography implemen-

tation.

be useful to compute tomograms during data acquisition to provide users with
feedback on the quality of their data; each successive tomogram would reveal more
information about the three-dimensional structure of the specimen. This would
allow for more efficient use of the microscope because users would be able to make
changes to their experiment early during the acquisition process. Furthermore, it
could potentially reduce the amount of specimen damage by limiting exposure to
the electron beam [47].

The procedure of on-line parallel tomography is as follows: When the first
projection is collected from the microscope, a coarse tomogram of the specimen
is generated. Each projection is then successively processed in order to refine the
tomogram with additional data. We define the acquisition period as the time to
acquire a projection from NCMIR’s electron microscope. NCMIR is currently tar-
geting an acquisition period of 45 seconds; therefore, we use this value throughout
this thesis.

We define an on-line parallel tomography experiment, F,,, using a set of

parameters which describe the data collected from the electron microscope.

Definition 1.2
Eon - (aapa x,Y, Z)
and

e a is the time to acquire a projection from the microscope,
e p is the total number of projections acquired from the microscope,
e 1 is the width of the projection,

e y is the height of the projection (also the number of slices to com-
pute), and

e 2z is the thickness of the specimen.

Note that the refinement process involves changing the values of pixels within slices

of the tomogram. Therefore, the size of the tomogram is constant throughout data

10

acquisition.

I.C Thesis Summary

In this thesis, we describe an extension to GTOMO to support on-line
parallel tomography. Because on-line parallel tomography is resource-intensive and
our target platform is dynamic, we implemented on-line parallel tomography as a
tunable application. A tunable application is characterized by the availability of
alternate configurations, where each configuration corresponds to a different execu-
tion path and resource usage [9]. For on-line parallel tomography, a configuration
is defined by the resolution of the tomogram, frequency of refinements to the to-
mogram, and cost of execution. These parameters allow configuration of on-line
parallel tomography to accommodate different resource availabilities.

Second, we describe the implementation of an user-directed AppLeS that
exploits the tunability of on-line parallel tomography in order to adaptively sched-
ule its execution onto a set of resources. The AppLeS is implemented as multiple
constrained optimization problems derived from an application model, user infor-
mation, and dynamic resource load information. This methodology is flexible and

can be solved efficiently using linear programming.

I.D Organization of Thesis

In Chapter II, we discuss the motivation and implementation of on-line
parallel tomography as a tunable application. Chapter III details the design and
implementation of the user-directed AppLeS. Three sets of experimental results are
described in Chapter IV. The first set of experiments described in Section IV.B
shows that dynamic resource load information, in particular bandwidth informa-
tion, is key to real-time execution performance. In Section IV.C, we show that

tunability is an important application characteristic for running on-line parallel

11

tomography in a multi-user, dynamic environment. Finally, in Section IV.D we
evaluate the scheduling latency introduced by the AppLeS. We discuss related work
in Chapter V and conclude the thesis in Chapter VI.

Chapter 11

Tunable On-line Parallel
Tomography

As discussed in Chapter I, we have implemented on-line parallel tomog-
raphy as a tunable application; i.e., an application whose configuration is deter-
mined by a set of parameters which can be varied or ”tuned”. Tunability is an
important application characteristic for running on-line parallel tomography in a
dynamic Grid environment since resource availability changes over time. Tuning
parameters allow the application to be configured to adapt to run-time resource
availability. In Section II.A, we discuss the motivation and implementation of
the GTOMO extension to allow for tunable on-line parallel tomography. In Sec-
tion II.B, we discuss the three parameters that define a configuration of on-line
parallel tomography: resolution of the tomogram, frequency of refinements to the

tomogram, and cost. s

II.A GTOMO Extension

To motivate the required changes to GTOMO to allow for on-line parallel
tomography, we first discuss how the current off-line GTOMO design is insufficient

for on-line parallel tomography. Suppose that a NCMIR user wants to run an

12

13

on-line parallel tomography experiment E = (45,61, 2048, 2048,600) as described
in Definition .2 and Section I.A. If NCMIR had access to resources of infinite
capability (i.e., infinite bandwidth links and infinite processor speed), we would be
able to run the off-line implementation of parallel tomography after each projection
was acquired from the microscope and have it complete instantaneously. Thus,
users would be able to obtain the highest resolution tomogram possible and would
see refinements of the tomogram at the highest frequency possible, the microscope
acquisition rate. Now, let us consider £ for a set of more realistic resources.
Using Definition 1.2, there will be 2048 slices of work to process for ex-
periment E. To process a single scanline of a projection into a slice using the
R-weighted backprojection method [41] takes approximately .33 seconds on a ded-
icated 700 MHz AMD Athlon processor (see Figure II.1 for a description of the
R-weighted backproject algorithm). Using this as an average processor speed,
the first refinement of the tomogram (or refresh) would take .33 x 2048 ~ 676
seconds. Under the current implementation of GTOMO, each successive tomo-
gram refresh computation would repeat the work done to compute the previous
tomogram refresh. This is due to GTOMO’s scheduling strategy (work queue);
a ptomo processes one slice of work at a time, sends it to the writer, and then
deletes it (i.e., a ptomo is stateless). Therefore, when a new projection is acquired
from the microscope, all data must be sent out again and processed. Conse-
quently, the second refresh of the tomogram would take 2 x .33 x 2048 ~ 1352
seconds since ptomo must reprocess the scanline from the previous projection
and then process the scanline from the new projection. Likewise, the third re-
fresh would take 3 x .33 x 2048 = 2028 second; the last refresh would take
61 x .33 x 2048 ~ 41,226 seconds. To execute in real-time, we want the process-
ing of one projection to complete before the next one arrives. Assuming optimal
parallelization speedup, the first refresh would require [676/45] = 16 processors,
the second refresh would require [1352/45] = 31 processors, and the last refresh

would require [41,226/45] = 917 processors. This technique requires an increas-

14

Algorithm : BACKPROJECTSCANLINE(scanline, slice, angle)

local height, width

height < getSliceHeight(slice)
width < getSliceWidth(slice)

RW eightScanline(scanline)
for y < 0 to height — 1
for x < 0 to width — 1
slicely]|x] < slicely][x] + calculateContribution(angle, scanline)

Figure II.1: Algorithm for backprojecting a single scanline of a projection (at
angle) into a slice of the volume. First, the scanline is modified using the
RWeightScanline function to smooth the data. Then, every pixel of the slice is
updated to consider the contribution of the scanline.

ing amount of computational power; furthermore it is inefficient because it is not
augmentable. To be augmentable, a technique should allow each successive com-
putation to build upon the previous computation without repeating work. Hence,
a more efficient technique would be to store all previous computation so that re-
freshes do not repeat work. Therefore, we added an extension to GTOMO so
that the R-weighted backprojection algorithm can be executed as an augmentable
technique.

Our approach is to use a static work allocation strategy. A static work
allocation is a fixed assignment of computation to a set of resources. In this
context, a static work allocation is an assignment of y slices of work among a set
of ptomos. We then modify the ptomos so that they are stateful. In particular,
whenever a projection is acquired from the microscope, the ith scanline is sent
to the ptomo that has been allocated the #th slice so that it may process the

new data. The advantage of this technique is that we reduce the computation
p

by a factor Zi, where p is the total number of projections acquired from the
i=1
microscope. Therefore, in the example presented in the previous paragraph, each

15

refresh would require 672 seconds since we only process the scanline data from the
new projection for each refresh. Therefore, we need 16 processors for the entire
computation. The drawback of this approach is that we use lose the run-time
adaptive scheduling advantage of work queue [26] used in the off-line GTOMO
case; we address this tradeoff in Chapter VI.

The structure of GTOMO on-line parallel tomography extension is shown
in Figure I1.2. As in the off-line parallel tomography mode, the driver is invoked
by the user and starts up all other processes. The electron microscope sends a
projection to the preprocessor every a seconds. The preprocessor divides the pro-
jection into sections, where each section contains multiple scanlines. The sections
are allocated to ptomo processes such that the scanlines in each section can be
processed in parallel. All ptomos will periodically send their slices to the writer in
order to update the tomogram. A visualization program will then display updated
tomograms to the user.

As a final note, recall from Chapter I that the optional iterative ART and
SIRT algorithms operate on the specimen data after the R-weighted backprojec-
tion completes. In each iteration, the tomogram is corrected based on differences
between the original projection data and reconstructed volume. For the ART [23]
algorithm, pixels in the slices are corrected p times during a single iteration; the
correction for a pixel (from the ith slice) is calculated from the ith scanline from
one of the projections. For the SIRT [22] algorithm, each pixel in the ith slice
gets updated once during a single iteration using a correction based on the ith
scanlines from all projections (also known as a sinogram). Therefore, since both
the ART and SIRT algorithms assume all data has been acquired from the micro-
scope (each iteration involves data from all projections), these algorithms are not
augmentable. Hence, for on-line parallel tomography we only use the R-weighted
backprojection which computes sufficiently refined tomographic reconstructions to
provide feedback on the quality of the data acquisition. Note that if the user wants
to refine their tomogram with the ART or SIRT algorithms, they can run GTOMO

16

r- - T T T T T T 1 driver]0 ——————————

I |
| i |
| ! |
| ! '
I ,_____________________________$_ ___________________________ - I
L b
1 | ptomo ptomo °c oo ptomo | :
| | |
I N ! |

|
: —— |

—

|
: — |
I I
- - 4[preprocessor writer l_

projectio

l —
@
o
Q

Figure 11.2: Architecture of GTOMO on-line parallel tomography extension. The
electron microscope sends data to the preprocessor. The data is then allocated to
the ptomos to be processed in parallel. The output data is collected by a writer

process where it can be visualized.

17

in off-line parallel tomography mode after data acquisition is complete.

II.B Tunable Parameters

We now define the parameters that define a configuration of on-line paral-
lel tomography. These parameters will allow the application to be tuned to adapt
to different resource availabilities.

Consider the communication associated with the experiment E = (45, 61,
2048, 2048, 600). Each slice will be about 4.7 MB, yielding a tomogram of 9.6 GB.
If we place our writer on a machine with an observable bandwidth of 300 Mb/s,
it will take 1024 seconds (17 minutes) to transfer the whole tomogram. Note that
since ptomos prefetch slices into memory using multi-threading, we neglect disk
access time. Given that we do not want to overload the network by sending a
tomogram before the transfer of the previous tomogram has completed, we can
send a refined tomogram to the writer every [1024/45] = 23 projections. We
therefore say the number of projections per refresh is 23 and the refresh period is
23 x 45 = 1035 seconds (17.25 minutes). Since NCMIR users would like refreshes
to complete within 10 minutes, this is unacceptable. One solution is to reduce
the size of the projections. Suppose we reduce the projections by a factor of 2
in each dimension.! We will then have an experiment E’ = (45, 1024, 1024, 300)
to process. Therefore, each slice will be about 1.2 MB, yielding a tomogram of
1.2 GB, 8 times smaller than the 2k x 2k data set. If we again assume 300 Mb/s
bandwidth, it will take 128 seconds to transfer each tomogram which would reduce
the number of projections per refresh to 3. Similarly, if we were to reduce by a
factor of 4, it would take 16 seconds to transfer each tomogram which would reduce
the projections per refresh to 1, the best refresh frequency possible. Given that

we cannot predict what trade-offs will be preferable to a user, we let each user

!Note that it takes about 1.3 seconds to reduce a 2k x 2k projection on a 700 MHz AMD
Athlon processor. Therefore, we introduce a latency of 1.3 seconds in the time to acquire the
initial projection from the microscope. However, the period between successive projections will
not be affected; therefore, the acquisition period will also not be affected.

18

individually decide which configuration is best for them.

Note that the communication associated with the input data is relatively
small compared with that of the output data. For example, in a 2k x 2k data set,
projections are 16 MB, whereas a tomogram is 9.6 GB. For a 1k x 1k experiment,
each projection would then be only 4 MB whereas each tomogram would be 1.2
GB. In both cases, the output data is two orders of magnitude larger than the
input data set.

We now formally define two parameters that determine the quality of
an execution of on-line parallel tomography: reduction factor (f) and projections
per refresh (r). We then define a third cost parameter, service units (su). The
configuration of on-line parallel tomography is defined by a triple (f,r, su). We

describe each of these in more detail below.

II.B.1 Reduction Factor

The reduction factor (f) is a scalar integer value that results in a reduc-
tion of the size of a projection in each dimension. For example, if we reduce a
projection of size x X y by f, we will have a projection of size % X % An increase
in the reduction factor decreases both the number of slices to compute and the
amount of computation per slice. For the time being, we consider just a simple
averaging reduction method. We modified the averaging algorithm given in [28] so
that it works for arbitrary reduction factors. The modified averaging algorithm,
given in Figure [1.3, works by first dividing the x xy projection into square windows
of size f x f. For each window, the values of the pixels are averaged to create a
single pixel in the reduced projection. Figure [1.4 shows an 8 X8 projection reduced
by a factor of 2. Note that in order to yield a sufficiently detailed tomogram for
NCMIR users, projections should not be reduced beyond 256 x 256. For example,
the maximum f for a 1k x 1k experiment is 4 and the maximum f for a 2k x 2k

experiment is 8.

Algorithm : REDUCE(projection, x,y, f)

for i< 1tovy/f
for j < 1tox/f
sum < 0
for m<+1to f
for n<1to f
sum = sum + projection|i * f + m|[j * f + n]
reducedProjection|i|[j] = sum/(f * f)
return (reducedProjection)

Figure I1.3: Reduction algorithm.

reduce

—

Figure II1.4: A 8 x 8 projection being reduced by a factor of 2.

19

20

I1.B.2 Projections Per Refresh

The projections per refresh (r) parameter refers to the number of new
projections processed into each successive tomogram refinement or refresh. For ex-
ample, if = 3, a user would see a refreshed tomogram after every third projection
was acquired from the microscope. We refer to the time to complete a refresh as
the refresh period. The refresh period can be determined by multiplying r by the
acquisition period, a. Increasing r reduces the frequency of refreshes sent to the
user and thus reduces the amount of communication. As mentioned previously, an
upper bound on the time between successive tomogram refresh is 10 minutes for
NCMIR users. Therefore, for an acquisition period of 45 seconds, r should be no

more than |600/45| = 13.

I11.B.3 Cost

Thus far, we have assumed that all resources are free. While this model
may be appropriate for workstations where resource usage is not monitored, it is not
appropriate for many supercomputers. At supercomputer centers, resource usage
is generally monitored through allocation [13, 10, 35, 37, 34]. Usually a research
group is given an allocation of supercomputer time per quarter. If the group
exceeds their allocation, they will no longer be allowed to run on that resource
for the duration of that quarter. Therefore, a group may want to moderate their
supercomputer usage. We define a parameter, service units (su), for on-line parallel
tomography to indicate how much supercomputer time will be consumed by a run.
Service units are calculated using the following equation based on the wall clock

charging policies of five supercomputer centers [13, 10, 35, 37, 34].

su = charge factor x number of CPUs x wall clock time (IL.1)

The charge factor is simply a generic integer value to account for different charging

policies enforced by supercomputer centers. The charge factor could be based on

21

the type of user, the queue type, or some other factor specific to the supercomputer

center.

II.C Summary

In this chapter, we described an extension to GTOMO to allow for on-
line parallel tomography. The extension enables the R-weighted backprojection
method to execute as an augmentable technique. This is more efficient than run-
ning off-line parallel tomography multiple times but loses the run-time adaptive
scheduling advantage of work queue. We then defined a configuration of on-line
parallel tomography as a triple of tunable parameters, (f,r, su). These parameters
represent resolution of the tomogram, frequency of refinements to the tomogram,
and cost. As described in the next chapter, these parameters will allow the AppLeS

to adapt the application configuration to the availability of a set of resources.

Chapter 111

User-Directed AppLeS

In the previous chapter, we discussed the design of on-line parallel tomog-
raphy as a tunable application. However, it is difficult to choose a configuration
and work allocation that efficiently utilize multi-user, dynamic sets of resources at
run time. First, determining an appropriate work allocation requires availability
information for each resource (e.g. CPU, bandwidth). Second, since these are
dynamic resources, the best configuration will vary over time. In this chapter, we
discuss the design of an user-directed AppLeS for on-line parallel tomography. In
Section III.A, we motivate and define a user-directed AppLeS. We then describe
the design of the AppLeS in Section II1.B and III.C.

III.A Design

In Section II.B, we defined a triple (f,r, su) that determined the con-
figuration of on-line parallel tomography. If enough resources are available, users
will always want to run using the best configuration, (1,1,0). This would result
in the highest resolution tomogram being refreshed at the highest frequency pos-
sible for zero cost. Yet, in practice, resource availability may prevent users from
achieving this configuration. In this case, users will need to choose an alternate

configuration. However, it is is not always obvious which configuration is the best

22

23

f=1 f=2 f=2
r==06 r=2 r=1
su=+4 su=28 su = 20

Table III.1: Three example configurations available for a tomographic reconstruc-

tion and resource platform.

alternative.

Suppose the configurations listed in Table III.1 are three possible con-
figurations for a tomographic reconstruction and target platform. Without some
knowledge of the user’s criteria, it is not obvious which configuration is the best.
Furthermore, choosing a configuration that favors one parameter may involve trad-
ing off the benefits of another parameter. For example, a higher f would allow for
a smaller 7 (since there would be less data to transfer). Also, a higher su could re-
sult in a lower f and/or lower r (since there would be more computational power).
In the example presented in Table III.1, if resolution was the most important pa-
rameter, (a) would be the best choice for a user. On the other hand, if frequency
of refreshes was more important, (b) or (¢) would be better choices; (c¢) would be
the best choice if spending 20 service units was acceptable.

Automating the process of determining the best configuration for a user
is beyond the scope of this thesis. In this work, the AppLeS assists users in
selecting a configuration that works for them and is thus referred to as a wuser-
directed AppLeS. The design of the user-directed AppLeS scheduler is illustrated
in the flow diagram shown in Figure I1I.1. The grayed shapes correspond to user
actions while the white shapes correspond to AppLeS actions. We detail each step

in the following description.

(i) The user specifies bounds on each configurable parameter: f,r, and su. This
corresponds to the maximum and minimum value the user is willing to tol-

erate for a parameter.

24

generate
request

Y
process infeasible adjust
request request
A

display
triples

review rejects all

triples

accepts one

find
work
allocation

\ 4

execute

Figure II1.1: Flow diagram for a user-directed AppLeS. The grayed shapes corre-

spond to user actions while the white shapes correspond to AppLeS actions.

25

(ii) The AppLeS searches the parameter space for feasible triples; each triple
corresponds to a feasible configuration of the tunable application. If no con-

figurations can be found, the user will need to adjust the request.

(iii) The user considers all configurations and then selects a single triple for exe-

cution.

(iv) The AppLeS will determine an appropriate work allocation for the user-

selected triple and then execute.

This approach allows the user to select the best configuration for them from the set
of feasible configurations determined by the AppLeS. In the following subsections,
we describe how the user-directed AppLeS finds feasible triples and determines

work allocation.

III.B Searching for Triples

In order for the AppLeS to search for available configurations, the user
supplies it with a lower and upper bound on each parameter; this indicates the
range of values the user finds acceptable for a parameter. Therefore, we say a

triple (f,r, su) is a candidate if,

fmin S f S fmaa}
T'min S r S Tmax (III].)

SUmin S SU S SUmaz

For an experiment, E, and a set of resources, M, we say a candidate triple is
feasible if there exists a work allocation, W, for it (see Section II1.C); if no W can

be found, we say the triple is infeasible.

26

As discussed in the previous section, our goal is to present the user with a
set of feasible triples (f,r, su). One approach is exhaustive search. For each triple
(f,r, su), one can search for a possible work allocation. A more efficient approach

is to solve three optimization problems:
(i) fix f and r, minimize su;

(i) fix r and su, minimize f; and

(iii) fix f and sw, minimize r.

This approach has the added advantage of filtering out suboptimal triples. For
example, suppose that triples (1,1,0) and (1,2,0) are feasible. We assume that
users would alway choose (1,1,0) over (1,2,0).

We display the AppLeS search algorithm in Figure IIL.2.
There are three loops that correspond to the three optimization prob-
lems outlined above. The three functions findOptimalServiceUnits,
findOptimal ProjectionsPer Re fresh, and findOptimal ReductionFactor
search for a work allocation given two fixed input parameters; this is accomplished
by solving a constrained optimization problem as described in the next section. If
a work allocation is found, the optimized parameter is returned and the triple is
added to a list. For added efficiency, we stop searching whenever the optimized
parameter found stops improving. Since the three loops may result in duplicate

triples, we add a procedure at the end to remove duplicates from the list.

III.C Work Allocation Experiments

Consider an experiment E = (a,p,z,y,2). The goal is to find a work

allocation for a set of resources, M. We define a work allocation as a set W:

W ={wy,:me M} (I11.2)

Algorithm : SEARCH(fmin; fmax; T'mins "maz> SUmin, Sumax)

triples < ()
for i < fmm to fmax
optimal _su <— oo
for j < rpin tO s
if findOptimalServiceUnits(i, j, &su) == FOUND
if su < optimal_su
triples.add(i, j, su)
else
break
for i < f.in tO finas
optimal _r < o0
for j < Su,in tO SUes
if findOptimal ProjectionsPerRefresh(i, j, &r) == FOUN D
if r < optimal_r
triples.add(i,r, j)
else
break
for i <+ 7 tO Thax
optimal_f < oo
for j < Su,in tO SUes
if findOptimal ReductionFactor(i, j, & f) == FOUN D
if f < optimal_f
triples.add(f,1,7)
else
break
triples.removeDuplicates()
return (triples)

Figure I11.2: AppLeS triple search algorithm.

27

28

where w,, is the number of tomogram slices allocated to resource m. We have the

following two constraints:

VYm e M wy >0 (I11.3)
> wm=y. (I11.4)
meM

Recall that there are a total of y tomogram slices to compute, i.e., we assume that
there is no work replication. To find W, we first create a model of the application;
the model is simply a system of equalities and inequalities. We then plug dynamic
resource load information into the model and solve the system using the method

described in Section II1.C.5.

II1.C.1 Application Model

The model for on-line parallel tomography frames it as a soft real-time
application. A soft real-time application is characterized by the execution of tasks
which have soft deadlines [31]. That is, the usefulness of a task with a soft deadline
decreases as the lateness of the task increases [31, 4]. Given the discussion in

Section II, our soft-deadlines are:

(i) The computation time of one projection will be less than the acquisition

period.
(ii) The transfer time of a tomogram will be less than the refresh period.

If one of these deadlines is missed, performance degrades. Therefore, our goal is to
find a work allocation for which all deadlines are met. We express the problem as
a constrained optimization problem. In Sections III.C.2 and III.C.3 we translate
the deadlines expressed above into inequalities. In Section II1.C.4, we add in a set
of equalities to express the cost of execution. Finally, we add in the user’s bounds
defined in Equation III.1. The complete system of equalities and inequalities is

displayed in Figure I11.7.

29

II1.C.2 Computation

In order to satisfy the soft computation deadline outlined above, we in-

troduce the following inequality into our model:

Vm e M Tiomp(m) < a, (IIL.5)

where Tomp(m) is the time to compute w,, slices on resource m and a is the
acquisition period. In other words, we want the computation of one projection to
complete before the next projection is acquired. Otherwise, the projections will
queue up and we will lose real-time execution (i.e., refreshes to the tomogram). To
determine Tipp,(m), we examine the ptomo algorithm displayed in Figure IIL.3.
Suppose a resource m is assigned w,, slices « to 5. Each time a projection is
acquired from the microscope, the preprocessor will send it scanlines a to § for
processing. Resource m will receive the w,, scanlines and then backproject each
scanline into its appropriate slice. The execution time, t,, for backprojectScanline

is approximately proportional to the number of pixels in the slice (see Figure II1.1).

That is,

ty = tppy, X (I11.6)

r oz
P
where tpp,, (time per pixel) is the time in seconds to process a scanline into a
single pixel of the slice on a dedicated processor of m and f is the reduction factor.

Since the computation time is dominated by backproject, the time to compute w,,

slices on a dedicated processor of m is

Tromp(11) 2 tpppm ¥ ; % 2 X Wi (ILIL7)

Recall that our set of resources, M, contains two types of compute re-

sources: time-shared resources (workstations) and space-shared resources (super-

30

Algorithm : PROCESS(q, ()

global projectionsPerRefresh,angleList
local angle, scanlines, slices

for projectionld < 0 to p—1
angle < angleList[projectionld]
scanlines <— recvScanlines(a, [3)
for i < ato f3
backprojectScanline(scanlines|i], slices[i], angle)
if (projectionId mod projectionsPerRefresh) =0
sendSlice(slices|i])

Figure I11.3: Ptomo processing algorithm.

computers). Let 'SR be the set of time-shared resources and SSR be the set of

space-shared resources such that

TSRUSSR = M. (I11.8)

On a time-shared resource,

z
X — X = X Wy, I11.9
wim T X7 (1L9)

where cpu,, is the fraction of CPU available on m. In practice, we obtain a predic-

Teomp(m) ~

tion of the value for cpu,, from the Network Weather Service (NWS) [55, 16]. The
NWS is a resource monitoring system that provides dynamic resource load fore-
casts (e.g. available CPU, bandwidth, and memory). Likewise, for a space-shared

supercomputer,

ppm
Tomp(m) & L2 5 2 % 2 5 o, (I1L.10)

U ff

where u,, is the number of processors on m that are unused (i.e., processors imme-
diately available for execution). We can obtain u,, from batch schedulers such as

the Maui Scheduler [33] as discussed in Section I.A.1 using the command showbf.

31

In summary,

tppmxfxixwm ifmeTSR

Tegmp(m) 2 { Pim 3{ 5 (IIL.11)
PPm o L % 2 x wy, it me SSR
um — ff

I11.C.3 Communication

For communication, we introduce the following transfer constraint into

our model:

Vme M T.mm(m) <rxa, (IT1.12)

where Tipmm(m) is the time in seconds for resource m to transfer w,, slices to the
writer, r is the projections per refresh, and a is the time to acquire a projection
from the microscope. In other words, we want the transfer of a tomogram to
complete within the refresh period.

We model the transfer time, Tiomm(m), using the equation given in [14],

c

— I11.13
Bm7 ()

Tcomm (m) - To +

where T, is the message overhead, c is the amount of data transferred, and B,,
(b/s) is the transfer rate from resource m to the writer. However, since slices are
generally megabytes in size (e.g. 1.2 MB, 4.7 MB), we treat T, as a nominal value.

Therefore, we say

(I1L.14)

X $z) (II1.15)

32

where sz is the number of bits used to represent a pixel. In our current implemen-
tation, a pixel is stored as a float (e.g. 32 bits). We obtain a prediction on the

value of B,, (b/s) from the NWS [56, 54]. Therefore,

Wy X (2 X 2 X sz
T romm (110) 2 (fB !). (111.16)

Note that this model assumes a fully connected network such as that
displayed in Figure I11.4. However, in practice, many resources are connected by
way of a shared network link [51, 40] . For example, Figure II1.5 shows a 10 Mb/s
ethernet subnet and a 100 Mb/s ethernet subnet connected via a switch. Using our
current model, the AppLeS would schedule as if both A and B had a bandwidth
of 10 Mb/s to the writer even though they actually share the 10 Mb/s bandwidth.
Therefore, we incorporate network topology information into our model in order
to determine a more effective work allocation. We group resources into subnets,
where a subnet contains a set of compute resources which share a network link to

the writer. Let S be the set of subnets such that

U si=m (IIL.17)
S; €S

where S; is a subnet. In practice, the subnet groupings in S can be obtained using a
tool like ENV [44]. ENV (Effective Network View) uses a number of heuristics (e.g.
bandwidth tests) to determine a logical representation of the network topology
relative to a source machine. In our case, ENV groups M into subnets using the
writer as the source machine; it also returns a subnet bandwidth to the source
machine. For example, Figure II1.6 shows the ENV representation of the network
topology shown in Figure I11.5. Using the logical network information provided by
ENV, the following additional transfer constraint can then be introduced into our

model:

33

{—aF

08

I

08

—

1
Jill

Figure 111.4: Example of a fully connected network.

A B

o8 o8 o8
L A L A L A

10 Mbl/s K

100 Mb/s

100 Mb/s

|
AR =

o8 o8 o8 08
L A L A L A L A

=

L A\

|
=

L A\

I
=
(1]

writer

Figure II1.5: Example of a LAN network topology.

34

Figure I11.6: ENV logical representation of the network topology shown in Fig-
ure [IL.5.

VS; €S Teomm(Si) <rxa (III.18)

where Tipmm(S;) is the time in seconds for all compute resources in S; to transfer

Z w,, slices to the writer. Therefore, we write

meS;
z
E W X —
meS; f

T (Si) ~ B (IIL.19)

2

X X 8z

|8

where Bg, is the capacity (b/s) of the subnet link obtained from ENV. In other
words, we want to allocate work to resources such that their cumulative transfers
do not exceed the capacity of the subnet. Note that because we assume a het-
erogeneous network, Equations I11.18 and III1.19 complement Equations III.12 and
II1.16 rather than invalidating them.

In practice, there is no automated way to determine the bandwidth of the
writer link using ENV unless one can ensure there is at least one other machine
in M that is sharing the same link. Therefore, we do not include a constraint on

the sum of the subnet transfers to the writer. However, if the bandwidth of the

35

writer link was available, it would be straightforward to add this constraint into
the model.

Finally, we also do not introduce any transfer constraints into our model
involving input data (i.e., projection data sent from the preprocessor to the pto-
mos). For the NCMIR scenarios, the input data is two orders of magnitude smaller
than the output data (as noted in Section II.B) and its transfer time is amortized
into the acquisition period. For other scenarios, this model could be extended in

a straightforward way to include constraints on input data transfer.

II1.C.4 Cost

In Section II.B.3, we defined cost in service units using the following

equation:

su = charge factor x number of CPUs x wall clock time (I11.20)

Therefore, we add Equation II1.20 to our system. Recall that in our model, a
space-shared resource m is represented as a single resource (see Equation I11.10).
It is therefore possible that a space-shared resource will be allocated an amount
of work that does not require the computational power of all u,, immediately
available processors. In this case, we want to calculate how many processors are
required to complete the computation for charging purposes. This is accomplished
by calculating the time it would take to compute w,, on one processor of m and

then dividing by the acquisition period, a.

tppm X % X & X w
Ty = —— fa . (11L.21)

Since supercomputer centers do not charge for fractional pieces of CPU, we com-
pute [n,,]|. To express this in our equations, we add a slack variable, [,,, to the
equation, where 0 < [,,, < 1, and constrain n,, to be an integer. Thus, n,, can be

found using,

36

tppm X & X 2 X wy,
7 T) (111.22)
a

Therefore, the following constraint can now be added to our model:

su = Z P, X N, X P X @ (II1.23)

meSSR
where h,, is the charge factor, n,, is the number of CPUs used on m, and p x a
is the wall clock time of execution. In other words, we sum together the service

units using the charging policy of all resources in SSR. Note that,

Ym € SSR n,, < Uy, (I11.24)

III.C.5 Putting it all together

The last set of constraints are the user constraints expressed in Equa-
tion II1.1. We can now summarize our model in Figure II[.7. Given this system
of equalities and inequalities, determining W becomes an optimization problem.
Recall from Section III.B, that we search for feasible triples by fixing two of the
parameters and optimizing for the third. For convenience, we rewrite the three

optimization problems from Section I1I.B here:
(i) fix f and r, minimize su;

(i) fix r and su, minimize f; and

(iii) fix f and su, minimize r.

For both (i) and (iii), the system becomes linear upon substition of f. This is
a clear advantage because there are numerous linear programming solvers freely

available [29]. However, the system remains nonlinear for (ii). While nonlinear

37

programming solvers are also freely available [36], we opt to use a simpler technique.
As a first approach, we exploit the discreteness and small range of f to reduce
the nonlinear program to multiple linear programs using substitution. All linear
systems are then solved using the lp_solve package [32] and the one with the
optimal solution is chosen.

Ideally, an optimal solution would be found by formulating the linear
program as an integer program.! An integer program is a linear program where all
variables are constrained to be integers [2]. However, integer programs are harder
to solve than linear programs [29]. Our experiments indicate that a mixed-integer
approach, where w,, and [,, are expressed as continuous variables and all others
as integer variables, is efficient. The drawback of this approach is that we have
to round the values found for w,, € W since we cannot allocate fractional slices
to ptomos. Therefore, the result is an approzrimate solution; we assess this in the

following chapter.

III.D Summary

In this chapter, we defined a user-directed AppLeS. The AppLeS works
by discovering feasible triples at run-time based on current resource availability
and displays them as choices to the user. Once the user picks a triple, the Ap-
pLeS determines a work allocation. We then described how the AppLeS searches
for triples and determines work allocation by characterizing scheduling/tuning as
multiple constrained optimization problems. In the next chapter, we evaluate the

performance of the AppLeS using simulations.

!Equation IIL.22 can be rewritten without /,,,, the only continuous variable in our system.

Vme M Wy, >0 (1)

meM
tppm X z
Vm e TSR X =X =X Wn < a 3
wun 7T)
tppm T 2
Vm € SSR — X Z—Xwy,<a 4
um — ff @
Wi X (§ X % X 52)
Vm e M <rxa (5)
B,
Wy X = X = X 82
="
VS, e S . <rxa (6)
Bg,
tPpm X % X 2 X wy,
Vm € SSR fa ! = =0 (7)
Vm € SSR M < Uy (8)

su = thxnmxpxa (9)

meSSR

fmin S f S fma:v (10)

T'min S r S Tmaz (]-]-)
SUmin < sU < SUpmas (12)

Figure I11.7: The model of on-line parallel tomography.

38

Chapter IV

Experiments

IV.A Introduction

In this section we show three sets of results. In Section IV.B, we show
that using dynamic load information improves scheduler performance. In the sec-
ond set of results, described in Section IV.C, we demonstrate that tunability is an
important characteristic for running on-line parallel tomography in a Computa-
tional Grid. Finally, we evaluate the scheduling latency of the AppLeS scheduler
in Section IV.D.

IV.B Work Allocation

The goal of the first set of experiments was to investigate the impact
of dynamic information on scheduler performance for on-line parallel tomography.
For an experiment (45, 61, 1024, 1024, 300) as described in Sections [.A and I.B,
we fix the application configuration (f,r, su) and compare the work allocation
strategy of the AppLeS scheduler to schedulers which use no or partial dynamic
information. In Table V.1, we summarize the characteristics of the schedulers.

The first scheduler, wwa (weighted work allocation), corresponds to a very

simple scheduling strategy that a user might employ to perform load balancing in

39

40

infinite bandwidth | dynamic bandwidth
dedicated cpu wwa wwa-+bw
dynamic cpu wwa-+-cpu AppLeS

Table IV.1: Summary of scheduler characteristics.

a heterogenous system. It performs work allocation based only on the relative
processor benchmarks of the application in dedicated mode. This technique is
considered simple because the only overhead is performing an application bench-
mark for each processor; this is a one-time only process and is something any user
can perform.! In particular, this scheduling technique assumes no dynamic load
information; i.e., it assumes dedicated processors and infinite bandwidth links.
The remaining schedulers build upon the wwa approach by assuming in-
creasingly realistic characteristics about Grid resources. The scheduler wwa+cpu
assumes that compute resources are shared among multiple users. It extends wwa
by utilizing dynamic CPU load information. This corresponds to users who might
run a system tool such as the UNIX command uptime on each machine to find
out CPU availability before executing their application. The AppLeS scheduler,
as described in Chapter III, assumes both compute and network resources are
shared among multiple users. It builds upon wwa-+cpu, by also utilizing dynamic
bandwidth information. As explained in section III.C, dynamic CPU load and
bandwidth information are obtained from the NWS. Note that some effort on the
part of the user is required to set up and maintain the NWS sensors. The wwa+bw
scheduler assumes only dynamic bandwidth information and no CPU load infor-

mation.

IV.B.1 Performance Metric

Given the soft-real time requirement for on-line parallel tomography, we

say that performance degrades when either the computation or communication

!The UNIX system call, clock, can be used to determine the approximate length of CPU
time used by a process which can be used to approximate dedicated time.

41

soft, deadlines, as described in Section III.C, are violated. Since the lateness of a
computation deadline will effect the lateness of the communication deadline, we
can summarize performance based on the refresh completion times. Therefore, we
say that performance degrades when a refresh is late; that is, when a refresh’s
completion time is greater than the refresh period, r x a. For each refresh, we
measure the lateness relative to the lateness of the previous refresh. We call this
relative refresh lateness (A;) and use this as our performance metric for on-line
parallel tomography. We now define A; formally.

Let R = {1,...,2} be a set of refreshes for a single execution of on-line
parallel tomography. Also, let d(i) be the expected completion time (deadline) of
a refresh 7+ € R such that

d(i) —d(i—1) =1 x a. (IV.1)

In other words, each refresh is expected to complete within the refresh period.
Note that we assign d(0) = 0. Now let, ¢(i) be the actual completion time of
refresh @ with respect to d(0). If refresh ¢ — 1 is not late, then A(¢) is simply
the difference between the actual refresh completion time, ¢(i), and the expected

refresh completion time, d(i):

A(i) = i) — d(i). (IV.2)

Substituting Equation IV.1 into Equation IV.2 gives

A7) =c¢(i) —d(i—1) —7r X a. (IV.3)

Now, if refresh i — 1 is late, then ¢(i — 1) > d(i — 1) and we measure the lateness

of refresh i relative to ¢(i — 1). Therefore,

Ay(i) =c(i) —c(i—1) —r X a. (IV.4)

42

Combining Equations IV.3 and IV.4 gives the definition of A;(7):

A7) = (i) —max(d(i — 1),c¢(i— 1)) — r X a. (IV.5)

If ¢(i) arrives early, then refresh i is not late and we define A, = 0. Therefore,

A (7) = mazxlc(i) — max(d(i — 1),c(i — 1)) —r x a,0]. (IV.6)

Note that if all refreshes arrive on time, each run will have £ refreshes.
However, if any refreshes are late, it is likely that only a fraction of the refreshes
will complete within data acquisition. Therefore, the total number of completed

refreshes can also be a performance metric.

IV.B.2 Simulation

In order to compare scheduler performance, we must execute the appli-
cation with each scheduler under the same environmental conditions. However,
achieving reproducible environmental conditions is difficult in a dynamic environ-
ments [20]. One approach is to run experiments back-to-back in order to achieve
similar environmental conditions [48, 46, 16]. Another approach is to use simula-
tion [7].

Given the long makespan of on-line parallel tomography, achieving re-
producible environmental conditions with back-to-back experiments is infeasible.
Therefore, we conducted our experiments using simulation. This had the added
benefit of allowing us to study the behavior of the schedulers in many different
environments. We wrote a simulator using the Simgrid toolkit which provides
a simulation API for studying scheduling algorithms in distributed systems [5].
Simgrid allows us to implement a discrete-event simulator and provides a notion
of tasks (e.g. computation, data transfer) and resources (e.g. processors, network

links). Tasks can have dependencies among them and are scheduled on resources.

43

Resources behaviors are modeled by service rates that can be modeled by traces
from real resources (e.g. CPU availability, bandwidth of network link). Such traces
are commonly available by existing resource monitoring tools such as the NWS.
Furthermore, Simgrid makes it possible to create arbitrary resource interconnect
topologies. The Simgrid approach has been verified in [5] and has been used
to evaluate scheduling algorithms for parameter sweep applications [7, 8]. Similar
trace-based resource simulation approaches have also been applied in projects such
as Bricks [50].

In our simulator, we model four types of tasks based on profile information

from the application:

acquire: acquire a projection from the microscope
scanline transfer: send a scanline from the preprocessor to a ptomo
backproject computation: backproject a scanline to a slice

slice transfer: send a slice from a ptomo to the writer

For a single simulation, there are p acquires. For each acquire, there are y scan-
line transfers and y backprojection computations. Given the value of r, there can
also be y slice transfers following the backprojection computations. Resources are
modeled as a Computational Grid containing multi-user workstations and space-
shared supercomputers. The service rates workstations are modeled using NWS
CPU availability traces taken from real machines. Similarly, the number of proces-
sors available on a supercomputer is taken from traces from a real supercomputer.
Note that since we are modeling supercomputers as space-shared, processors of the
supercomputer are modeled as having a constant service rate (i.e., no load). Sim-
grid allows us to create topologies in which workstations share the same network
link to the preprocessor and writer; depending on the network topology, multi-
ple workstations can also share the same network link to the preprocessor/writer.

Similarly, dedicated processors on a supercomputer are modeled as sharing the

44

same network link to the preprocessor and writer. The service rates for network
links are modeled using NWS bandwidth traces taken from real pairs of machines.
Note, that in following Grid topology figures, we display the writer as the only I/O
process even though we do simulate I/O from the preprocessor. That is, we display
only relevant scheduler information (recall from Section II1.C.3 that schedulers do
not consider data transfers from the preprocessor to ptomo).

In Section IV.B.3, we show the results of simulations based on real traces
from a cluster of workstations at NCMIR. These results indicate a relationship
between the accuracy of predictions and scheduler performance which we study

for a wider range of scenarios in Section 1V.B.4.

IV.B.3 Case Study: NCMIR cluster

We first simulated experiments over a set of resources modeled after a real
cluster of workstations at NCMIR. The machines are described in Table IV.2 and
the network topology is shown in Figure IV.1.2 The machine hamming was used as
the writer machine because it had the highest bandwidth capacity. In Figure IV.2,
we show the ENV representation of the topology relative to hamming. Note that
due to the switched network and hamming’s 1 Gb/s NIC, almost all machines
appeared as if they had dedicated network links to hamming. The exceptions were
golgi and crepitus which both have 100 Mb/s NICs. In this case, the ENV tool
detected some network interference at the switch. We therefore modeled golgi and
crepitus as sharing the same network link in our simulations.

To model the load on each resource, we collected CPU availability and
bandwidth traces using the NWS on March 8th, 2001 from 8:00 A.M. to 4:00 P.M.
PST. This corresponds to a workday during which users at NCMIR would run
on-line parallel tomography. The sample period for both CPU availability and
bandwidth were set to the NWS defaults, 10 and 120 seconds respectively. The

2There are other machines not included in our simulation that are connected to both switches;
two other machines are connected to the Cisco 2916 XL switch and 11 other machines are
connected to the Cisco 6509 switch.

45

b
Cisco ~/| Cisco
2916XL X X 6509
100 0 10 10 100
10 100
1000
I‘||| |\\ I‘||| |\\ L ||| |\\ C o8 o8 o8 o8 | I—wF
camshaft hi ranvier |l1] C || |\ , Il |\ , Il |\ , I \

gappy knack hamming golgi crepitus

Figure IV.1: Network topology of a cluster of machines at NCMIR.

S DT> > > >
CRORORORCIOIO

Figure IV.2: ENV representation of NCMIR topology. The numbers in the dia-
monds are the subnet bandwidths (Kb/s) found by ENV.

46

Name Manufacturer | Model Processor Speed Memory
camshaft Sun Ultra-60 | UltraSPARC-II 295 MHz 384 MB
gappy SGI Indigo2 | MIPS R10000 175 MHz 384 MB
golgi SGI Octane | MIPS R10000 250 MHz 2GB
knack SGI Indigo2 | MIPS R4400 200 MHz 128 MB
crepitus SGI Octane | MIPS R10000 250 MHz 2 GB
ranvier SGI Indigo2 | MIPS R4400 200 MHz 128 MB
hi SGI Indigo2 | MIPS R10000 195 MHz 512 MB
hamming Sun Ultra-80 | UltraSPARC-II | 450 MHz (2) | 4 GB
Table IV.2: NCMIR machine descriptions.
mean std cv min max
camshaft 43.432 3.988 0.092 10.758 51.925
gappy 7.122 2309 0.324 2.764 9.126
knack 7.119 2371 0.333 2.149 9.007
golgi/crepitus | 77.218 8.845 0.115 5.113 80.179
ranvier 6.911 2.220 0.321 2.611 8.899
hi 8.921 0.376 0.042 3.618 9.072
Table IV.3: Summary statistics for the bandwidth traces (Mb/s) displayed in
Figure IV.3.

traces are displayed in Figures IV.3 and IV.4. Summary statistics for the traces

are displayed in Tables IV.3 and 1V.4. For each trace, the table shows the mean

(mean), the standard deviation (std), the coefficient of variance (cv), the minimum

(min), and the maximum (maz) trace values. We conducted two sets of simulations

at 10 minute intervals throughout the simulated 8 hour period. In the first set of

simulations described in Section IV.B.3.1, we simulate runs where the schedulers

have perfect load predictions; this is accomplished by running partially trace-driven

simulations. In the second set of simulations described in Section IV.B.3.2, we allow

the load on resources to vary according to the traces.

100 T T T T T T T

S | gappy

il knack

100 T T T T T T T
501 V_V Ty VWY | golgi

crepitus

bandwidth (Mb/s)
(6)]

5 ranvier
10
5 - V n hi

hours since 03/08/01 — 8:00 PST

Figure IV.3: NWS Bandwidth traces taken from NCMIR machines on March 8th, 2001 from 8:00 A.M. to 4:00 P.M. PST.

Ly

05F 1 camshaft
0 1 1 1 1 1 1 1
1 v vy ey % 7
0.5 1 gappy
0 1 1 1 1 1 1 1
1F — T —— T = Y W
0.5 M W \ -1 golgi
0 1 1 1 1 1 1 1
1 = —
1 knack

CPU availability
o
(6]

0.5 MNWLMM “U M v crepitus

0.5 - ranvier

0.5 L 1 hi

0 1 2 3 4 5 6 7 8
hours since 03/08/01 — 8:00 PST

Figure IV.4: NWS CPU availability traces taken from NCMIR machines on March 8th, 2001 from 8:00 A.M. to 4:00 P.M.

PST.

87

49

mean std cv min max
camshaft | 0.988 0.013 0.013 0.824 0.997
gappy 0.988 0.017 0.017 0.878 0.993
golgi 0.902 0.157 0.174 0.376 0.984
knack 0.944 0.032 0.034 0.622 0.964
crepitus | 0.925 0.136 0.147 0.427 1.000
ranvier 0.958 0.047 0.049 0.582 0.987
hi 0.946 0.059 0.062 0.487 0.972

Table IV.4: Summary statistics for the CPU availability traces displayed in Fig-
ure [V.4.

IV.B.3.1 Partially Trace-driven Simulations

In this set of experiments, we simulated runs where the schedulers had ac-
cess to perfect load predictions. This represents the optimal running environment
for the schedulers since the scheduling decision made at the beginning of execution
was good throughout execution. At the start of each simulation, we used the trace
to determine a constant resource load for the duration of the simulation. There-
fore, we say the simulations are partially trace-driven. In Figure IV.5, we show
the results of the simulations by plotting the mean relative refresh lateness for
each scheduler over the eight hour simulation period. From this figure, it is clear
that the AppLeS scheduler outperforms all the other schedulers. It is followed by
the wwa+bw scheduler which outperforms both the wwa and wwa-+cpu schedulers
indicating that communication is the dominant factor in application performance.
The almost identical performance of the wwa and wwa+cpu schedulers further il-
lustrates this in that the performance degradation due to bandwidth misprediction
experienced by the wwa scheduler dominates the CPU availability misprediction.
Note that for these resources, assuming 100% CPU availability does not result in
significantly high errors due to the high fraction of CPU availability on the NCMIR
machines (see Table IV.4).

In Figure IV.6, we show the distribution of A; for all refreshes. For each

scheduler, we plot the cumulative distribution function of A;. A point (x,y) on the

50

scheduler wwa wwa+cpu wwa+bw AppLeS
count 337 341 1383 1449
% late 0.8220 0.7419 0.2061 0.0524
mean 290.8878 285.4264 3.8361 0.0004
std 739.2997 735.2143 13.9819 0.0121
min 0.0000 0.0000 0.0000 0.0000
max 2610.0000 2610.0000 96.8300 0.4580
median 57.8400 53.7220 0.0000 0.0000

Table IV.5: Summary statistics for NCMIR simulations with perfect load predic-

tions.

graph represents that y percent of the refreshes were less than x seconds late. Here
again we see the almost identical performance of the wwa and wwa+cpu schedulers,
although wwa-+cpu has a higher fraction of small A;. For the wwa+bw scheduler,
we see that most refreshes are under 10 seconds late with the rest under about 100
seconds late. Finally, the AppLeS scheduler shows the best performance with all
A; under one second late.

Summary statistics for each scheduler are displayed in Table IV.5. For
each scheduler, the table shows the number of completed refreshes over all runs
(count), the fraction of refreshes that were late (% late), the mean A; (mean),
the standard deviation of A; (std), the minimum A; (min), the maximum A,
(maz), and the median A; (median). The table shows more precisely that only
5% of the refreshes arrived late for the AppLeS scheduler (in fact, all were under
a half a second late). Therefore, the approximate solution approach described
in the previous chapter only marginally affected performance. So, we conclude
that with perfect load predictions, the AppLeS scheduler had near perfect real-
time performance. We now consider simulations where load predictions may be

imperfect.

51

10)
- wwa
—+— wwa+cpu
wwa+bw
o —A— ApplLeS
10°F -

10°F E

mean relative refresh lateness
N

10'H ‘ 1

100 AAAEAAAAAAAAAAAA_A_AAAAAAAAAAAAAAAAAAAAAAAAAAAyA
0 1 2 3 4 5 6 7 8
hours since 3/8/2001 - 8:00 PST

Figure IV.5: Simulation results with perfect load predictions. The mean relative

refresh lateness for each scheduler is plotted over an 8 hour simulation period.

52

s

o
©

o
©

e
~

o
o

©
~

o
w

cumulative fraction of refreshes
o
(6]

o
N

o
[N
T
1

10° 10" 107 10

relative refresh lateness (seconds)

Figure 1V.6: Simulation results with perfect load predictions. The cumulative

distribution functions of A; for each scheduler.

23

scheduler wwa wwa+cpu wwa+bw AppLeS
count 331 338 1160 1156
% late 0.87 0.88 0.58 0.58
mean 287.47 277.91 27.16 27.67
std 694.87 683.39 48.19 48.89
min 0.00 0.00 0.00 0.00
max 2610.00 2610.00 466.93 466.93
median 78.36 74.33 2.94 2.95

Table IV.6: Summary statistics for NCMIR simulations with imperfect load pre-

dictions.

IV.B.3.2 Completely Trace-driven Simulations

In this set of experiments, we used traces to determine resource load
variation throughout simulation. Therefore, these simulations are completely trace-
driven. Consequently, the initial load predictions may be imperfect throughout the
simulated period. The results of the simulations are displayed in a mean relative
refresh lateness plot shown in Figure IV.7 and a cumulative distribution function
plot shown in Figure IV.8. Here again, we see that the wwa and wwa-+cpu sched-
ulers have nearly identical performance. Furthermore, the wwa+bw and ApplLeS
scheduler also have nearly identical performance. Comparing this to the previous
set of simulations, we see how imperfect predictions impact the performance of the
AppLeS scheduler.

Summary statistics for the simulations are shown in Table IV.6. From
these numbers, we see that the wwa+cpu scheduler outperforms the wwa scheduler
indicating no and/or negligible CPU availability mispredictions. However, using
CPU availability predictions does not seem to benefit the AppLeS scheduler in the
same way.

In Figure IV.7, the mean relative refresh lateness is lowest for the wwa+bw
scheduler five times (at .167, .333, .833, 2.833, and 3.333 hours). Upon further in-
vestigation, we found that the AppLeS’ performance drop was not a result of CPU

availability mispredictions (the wwa+cpu scheduler outperforms the wwa sched-

54

10 3
—a— wwa
—— wwa+cpu
wwa+bw
—A— AppLeS
10°F <

mean relative refresh lateness
=
o
LN
1

=
o
N
T
I

0 I I I I I I I

10
0 1 2 3 4 5 6 7 8
hours since 3/8/2001 - 8:00 PST

Figure IV.7: Simulation results with imperfect load predictions. The mean relative

refresh lateness for each scheduler is plotted over an 8 hour simulation period.

%)

cumulative fraction of refreshes

il s MR | s MR | s MR |

10° 10" 107 10

relative refresh lateness (seconds)

Figure IV.8: Simulation results with imperfect load predictions. The cumulative

distribution functions of A; for each scheduler.

o6

uler). Rather the performance drop was a result of bandwidth mispredictions. In
all simulations, the wwa+bw and AppLeS schedulers allocated work to machines
camshaft, gappy, and golgi. In the cases where the AppLeS scheduler detected a
drop in CPU availability on the machine golgi, work was also allocated to knack
and sometimes crepitus. From Figure IV.3, we can see that network bandwidth
to knack is much more variable than to golgi; as a result the AppLeS scheduler
mispredicted the bandwidth availability resulting in a worse work allocation than
the wwa+bw’s work allocation.

However, we note that the mispredictions made by the AppLeS sched-
uler resulted in marginal degradation for the most part compared to the wwa+bw
scheduler; in the five cases listed above, the difference in the average mean relative
refresh lateness was 26.7, 4.4, 1.4, 8.5, and 4.0 seconds. However, we also note
that the the mean relative refresh lateness for the AppLeS scheduler is 27.6710
seconds higher than in the perfectly predicted simulations. This is most likely the
result of mispredicting bandwidth availability to gappy (one of the more variable
traces). Chapter VI discusses a couple of approaches to address this problem. In
the next section, we further investigate the impact of bandwidth mispredictions

on scheduler performance.

IV.B.4 Synthesized Grid Experiments

In the previous section, we found that bandwidth predictions had a higher
impact on scheduler performance than CPU availability predictions. Therefore, in
this section, we provide a more general discussion of the impact of bandwidth pre-
dictability on scheduler performance. Rather than studying additional snapshots
of real Grids as done in the previous section, we synthesize Grids using real CPU
availability and bandwidth traces. This allows us to study a wider range of net-
work behaviors. In Section IV.B.4.1, we discuss how we categorize and construct a
Grid using a bandwidth predictability metric. Section IV.B.4.2 discusses relative
scheduler performance and Sections IV.B.4.3 and IV.B.4.4 discuss the results of

o7

the simulations in terms of bandwidth predictability.

IV.B.4.1 Grid Construction

In order to study the impact of bandwidth predictability on scheduler
performance, we fixed the topology of the Grids in order to have comparable results.
The topology we used is illustrated in Figure [V.9; it contains three clusters of
workstations composed of 8, 8, and 16 hosts respectively. All hosts in the cluster
shared one network link to the writer machine. We then varied the traces used
for each Grid in order to exhibit different network behaviors. For all simulations,
the CPU availability of each host and the bandwidth of each network link were

completely trace-based.

writer

cluster3 Il

I
ME

g | = o8
E TN &=t]
= 111\ == 5]
==l= =) =
= = =l
[l (2 cluster2 || [E==] Y\
= =R
a1

=]
11111

£/

Figure IV.9: Grid topology for work allocation simulations.

The traces we used were collected from various research sites across the
United States and Europe using the NWS. For bandwidth, we collected 429 traces

from 66 machines spread across 12 sites using the NWS default sample period of

28

2 minutes. These traces were collected during the period February 10 - 27, 2001.
We then processed these traces for gaps (i.e., missed measurements) and divided
them into 546 continuous trace segments such that the elapsed time between two
successive measurements was no more than 6 minutes. CPU availability traces
were taken from 100 machines spread over 17 sites using the NWS default sample
period of 10 seconds. These traces were collected during the period August 31
to October 25, 1999 and were processed into 1021 trace segments such that the
elapsed time between successive measurements was no more than 5 minutes.

In order to classify the traces we collected, we needed a method to char-
acterize the predictability of a trace. Determining the predictability of a trace for
on-line parallel tomography is difficult due to its long makespan and the lack of
long-range forecasters. Given that our scheduler uses short-term forecasts provided
by the NWS, we estimated that the predictability of a trace would be correlated
to the variability of a trace for applications with long makespans. Therefore, we
approximate predictability using the coefficient of variance.

For bandwidth, we plotted the histogram shown in Figure IV.10. The
histogram shows three clusters which we used to divide the traces into three cat-
egories: [0, 0.20), [0.20, 0.45), and [0.45, 0.70). We labeled the categories high,
medium, and low predictability respectively. We then picked ten trace segments
from each category where each trace ranged from two to eight days in length. To
substantiate the use of the coefficient of variance, we calculated the average pre-
diction error for each of the ten traces. To determine the average prediction error,
we used the NWS forecaster library to calculate the predicted value, v, for each
actual trace value, v,. The average prediction error, €, is then calculated for n

measurements using

> _lup(i) = va(0)
e, == : (IV.7)

n

In Figure IV.11, we plot the average prediction error versus the coefficient

29

160

140

120

=
o
o

80

60

number of trace segments

40

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
coefficient of variance

Figure [V.10: Coefficient of variance histogram for bandwidth traces.

of variance for each trace. The highest cluster of green triangle points correspond
to the traces categorized as low predictability, the middle cluster of red diamond
points correspond to the traces of medium predictability, and the lowest cluster of
blue square points correspond to the traces of high predictability. From this graph,
we see that there is a high correlation between the coefficient of variance and the
average prediction error. However, we emphasize that this technique is a coarse
measurement of predictability; we will discuss cases where this technique did not
sufficiently capture the predictability of a trace in Section 1V.B.4.3.

For CPU availability, we applied the same technique as done for the band-
width traces. The coefficient of variance histogram is plotted in Figure IV.12 which
we used to divide the traces into three categories: [0, 0.2), [.2 .4), and [.4, .5]. We
then picked fifteen traces from each category. However, the CPU availability traces
did not exhibit the same correlation to average prediction error as the bandwidth

traces (see Figure IV.13). As a result of this and because we are mostly inter-

60

1.8

16 b

141 b
s1.2f i
o low predictability
5 . |
k3]
°
o
008f i
[o))
o
g
© 0.6 medium predictability 1

0.4 ”0" i

»
0.2 high predictability b
|]
0 ntl - | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

coefficient of variance

Figure IV.11: Correlation between coefficient of variance and average prediction

error for bandwidth traces.

61

ested in bandwidth predictability (see Section IV.B.3.2), we therefore characterize
a Grid by the types of traces used for bandwidth. In other words, a Grid can be
described using a triple, (p1,p2, p3), where py, po, p3s € {low, medium, high}; p; is
the type of bandwidth trace used for the network link between cluster 1 and the
writer, ps is the type of trace used for cluster 2, and ps is the type of trace used
for cluster 3. For convenience, we abbreviate low, medium, and high as L, M, and
H respectively and write a tuple as p;pops (e.g. LHM).

Given the triple p;paps, there are 27 different types of Grids. We randomly
generated a total of 2510 different Grids (Table IV.7 shows the number of Grids
that were generated for each Grid type). Since there are four schedulers, this
resulted in a total of 10,040 simulations. The results of these simulations follow in

the next three subsections.

300

250 1

N

o

o
1

150 1

number of trace segments

[y

o

o
1

0 Aol -l | | | | |

|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
coefficient of variance

Figure IV.12: Coefficient of variance histogram for CPU availability traces.

Grid type | # of Grids
LLL 100
LLM 130
LLH 140
LML 70
LMM 100
LMH 120
LHL 90
LHM 80
LHH 110
MLL 70
MLM 120
MLH 90
MML 70
MMM 100
MMH 90
MHL 50
MHM 100
MHH 100
HLL 60
HLM 120
HLH 80
HML 120
HMM 70
HMH 40
HHL 130
HHM 90
HHH 70

Table IV.7: Number of Grids generated for each Grid type pipaops.

63

x 107

1.8f b

=
N
T
L

=
N
T
1

o
[ee]
T
1

average prediction error
[
T
|

o
[e)]
T
1

o
N
T
|

0l n—n g 0300 00 —a ss * TR *
0 01 02 03 04 05 06 07 08 09 1

coefficient of variance

Figure IV.13: No correlation between coefficient of variance and average prediction

error for CPU availability traces.

64

1st 2nd 3rd 4th
wwa 182 97 1770 461
wwa+cpu | 452 139 1164 755
wwa-+bw | 1105 900 412 93
AppLeS 2077 376 50 7
total 3816 1512 3396 1316

Table IV.8: Scheduler ranking based on cumulative A; for synthetic Grid simu-
lations. The table displays the number of times a scheduler ranked first, second,

third, and fourth place.

IV.B.4.2 Scheduler Comparisons

To compare the simulation results for the schedulers on a run-to-run
basis, we plotted the number of times each scheduler ranked first, second, third,
and fourth place in a stacked bar graph in Figure IV.14; the ranking is based on
cumulative relative refresh lateness (> 4A;) for each run. Values for the graph are

displayed in Table IV.8. Ranking for this graph was performed as follows:

1. For a single run, scheduler i received a rank k if £k — 1 schedulers beat it.

2. For a single run, if more than one scheduler had the the same cumulative

relative refresh lateness, they received the same rank.

Here it is clear that the AppLeS scheduler performed better than all other sched-
ulers. The wwa+bw scheduler followed as second. However, the relative perfor-
mance between the wwa and wwa-+cpu scheduler is unclear; wwa+cpu is first more
frequently than wwa but is also last more frequently than wwa. Therefore, for each
scheduler, we calculated the average deviation from best scheduler in Table IV.9.
Here, we see that wwa+cpu beat wwa by 46.98 seconds; therefore, when wwa+cpu
is in last place (from mispredictions), it is not far from third place. Furthermore,
we see that the AppLeS scheduler beat wwa+bw by 126.03 seconds.

Figure IV.15 shows the cumulative distribution functions of A; over all

10,040 simulations; the results are grouped by scheduler. This shows that the Ap-

65

1st
[13rd
Hl 4th
2500 | 1
2000 B
(2]
c
2
S
5 1500 B
Q
S
]
c
1000 B
500 B
0
wwa wwa+cpu wwa+bw AppLeS

scheduler

Figure IV.14: Scheduler ranking based on cumulative A;.

wwa | wwa+cpu | wwa+bw | AppLeS
705.89 | 658.91 127.10 1.07

Table 1V.9: Average deviation from best scheduler based on cumulative A; for

synthetic Grid simulations.

66

scheduler wwa wwa+cpu wwa+bw AppLeS
count 29721 35024 64621 81583
% late 0.80 0.68 0.71 0.59
mean 145.11 116.93 36.76 18.54
std 400.00 348.38 106.55 50.75
min 0.00 0.00 0.00 0.00
max 2745.00 2745.00 2655.00 2655.00
median 16.27 1.075 7.88 0.37

Table IV.10: Summary statistics for synthetic Grid simulations.

pLeS scheduler has the highest fraction of small A; and the lowest fraction of large
Ay; conversely the wwa scheduler has the smallest fraction of small A; and the high-
est fraction of large A;. We also see that the wwa+cpu and wwa+bw’s cumulative
distribution functions cross over each other; this shows that the wwa+cpu sched-
uler has a higher fraction of low A; compared to wwa+bw, but also has a higher
fraction of high A,;. In Table IV.10, we display summary statistics for the simula-
tions. These statistics also show that the AppLeS scheduler outperforms all other
schedulers. Furthermore, they show that the wwa+cpu scheduler outperforms wwa.
However, the relative performance between the wwa+cpu and wwa+bw schedulers
is not as clear. The wwa+cpu scheduler has a smaller fraction of late refreshes and
a smaller median than wwa-+bw; however, the wwa-+bw scheduler has completed
significantly more refreshes and exhibits a lower mean and standard deviation.
Therefore, we say that both CPU availability and bandwidth predictions can im-
prove scheduler performance. However, we conclude that bandwidth predictions
are more important because when refreshes are late for wwa+bw, they are late by a
smaller amount than wwa+cpu’s. This is further supported in Figure IV.14, where
the AppLeS and wwa+bw schedulers dominate first and second place.

Note that the benefit of CPU availability predictions is more apparent in
these simulations because of a more diverse set of CPU availability traces (recall
that for the NCMIR simulations described in Section IV.B.3 the mean CPU avail-
ability for each machine was at least .90). See Figure IV.16 for a histogram of the

67

cumulative fraction of refreshes

10° 10" 10° 10

relative refresh lateness (seconds)

Figure IV.15: Synthetic Grid simulation results: the cumulative distribution func-

tions of A\, for each scheduler.

68

mean CPU availability of the traces.

14 T T T T T T T T T

number of traces

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
mean CPU availability

Figure IV.16: Mean of CPU availability for traces used in synthetic runs.

Given the importance of bandwidth predictions identified above, we now

study how the quality of bandwidth predictions affect scheduler performance.

IV.B.4.3 Partial Orders

To study how quality of bandwidth predictions effect scheduler perfor-
mance, we look at how scheduler performance degrades as the quality of band-
width predictions degrades. Since there is no clear way to summarize bandwidth
predictability for a Grid, we characterize a Grid’s bandwidth predictability using
the triple p1pap3. Then we compare simulation results that form a partial order.

For example, we say that

(HHL,HML,HLL, LLL)

69

forms a decreasing partial order because for each successive triple, there is at
least one trace with lower predictability than its predecessor and no traces with
a higher predictability (note that H > M > L). Therefore, we say all triples in
the partial order are comparable and compare the simulation results only between
comparable triples. We make no assumptions about triples containing lower and
higher predictability traces than the other. For example, we say the triples H LM
and HM L are not comparable because H LM has a trace with a lower predictability
than HML's (L < M), and a trace with a higher predictability than HML’s
(M > L). We define the partial order more formally below.

As described in Section IV.B.4.1, we denote the predictability of a trace
to be p, where p € P = {L,M,H}. A total ordering on the set P is

(L, M, H). (IV.8)

For triples a,b € P, x Py x Py where a = (ay, as,a3) and b = (by, b, b3), we define

a relation R, a is more predictable than b, as

a Z b, if a; Z bl,l = 1, 2,3 (IV9)

The relation R is reflexive, symmetric, and transitive, and therefore is a partial
order [11]. For example, HHM > HHL. However, HLM % LHM and LHM %
HLM. We say HLM and LHM are not comparable.

We now look at the simulation results using decreasing partial orders.

Figure [V.17 shows the results for 7 partially ordered triples:

P, = (HHH, HHM, HMM, HLM, MLM, LLM, LLL). (IV.10)

Each triple in the partial order, Py, is represented by a group of 4 boxplots. The

boxplots are ordered from left to right and represent the wwa, wwa+cpu, wwa+bw,

70

and AppLeS schedulers respectively. Each boxplot is computed from 70 simulations.
The square on the boxplot represents the mean A;, the lower bar represents the
minimum A;, and the upper bar represents the maximum A;. From this graph,
we see that the mean A; for the AppLeS scheduler is quite good at 3 seconds
for the HHH Grids. Then the A; increases by 14 seconds for the HHM Grids
and continues to increase until it levels off at about 35 seconds. This shows that

performance of the AppLeS and other schedulers degrades as Grid predictability

degrades.
1
10 .
— wwa
—— wwa+cpu
:)) : . wwa-+bw

— AppLeS

Z10°F I

0 1

=]

o

>

&9, o my i oo I

0 m

8 1]

T . 2

& 10°F 1

G i

<]]

© L L% 5

Py e |

=

L /B/

10t / 1

100 | | | | | | |
HHH HHM HMM HLM MLM LLM LLL

Figure IV.17: Simulation results grouped by partial order P;,. Each boxplot sum-

marizes 70 simulations.

However, not all decreasing partial orders experience an increase in the

mean 4;. Figure IV.18 shows a partial order, Ps:

Py=(HMH, MMH, LMH, LLH). (IV.11)

71

Each boxplot in Figure IV.18 is computed from 40 simulations. Here the mean A,
of MML is 7 seconds lower than LML and 4 seconds lower than HM L. In this
case, the performance of the AppLeS scheduler was not monotonically decreasing.
We attribute this is to our coarse predictability classification technique as noted
in Section IV.B.4.1. For example, a low predictable trace (using the classification
scheme in Section IV.B.4.1) does not always imply bad predictions. To illustrate,
consider the trace segment characterized as having low predictability displayed in
Figure IV.19. The upper plot shows a bandwidth trace taken from torc8.cs.utk.edu
to torcd.cs.utk.edu during the morning of February 12, 2001. The lower plot is a
prediction of the upper trace that was generated using the NWS forecaster library.
Now consider the average bandwidth over a period of 45 minutes (the minimum
time it would take to acquire a data set from NCMIR’s electron microscope).
Depending on when the scheduler queries for a bandwidth forecast, the scheduler
might get point O, an overestimate of the average bandwidth; U, an underestimate
of the average bandwidth; or GG, a good estimate of the average bandwidth.

In summary, we demonstrated that under the predictability classification
outlined in Section IV.B.4.1, the performance of the AppLeS scheduler degrades
as the quality of bandwidth predictions degrades. We also noted a case where
the performance of the AppLeS scheduler did not monotonically degrade thereby
illustrating the coarseness of our predictability measurement. However, as we
discuss in the next section, if we consider the results of all simulations, we see
that our predictability measurement does demonstrate that the performance of the

AppLeS scheduler does degrade as the quality of bandwidth predictions degrades.

IV.B.4.4 Scoring

In this section, we consider the performance of the AppLeS scheduler and
quality of bandwidth predictions over all simulations. We use an arbitrary scoring
technique to coarsely summarize the predictability of a Grid. Then, we assign a

predictability score to each type of Grid and group results with the same score.

72

10 T
— wwa
—— wwa+cpu
wwa-+bw
TT TT TT — AppLeS
#>10°F -
e}
c
o
[5]
()
& -
P _ _ -
[%]
(0]
c
L 420 |
510 i H B
3 m m
) m
®
()
=
8 i o
©10't o 1
m
100 | | | |
LML MML HML HHL

Figure [V.18: Simulation results grouped by partial order P. Each boxplot sum-

marizes 40 simulations.

73

bandwidth
100 T

B)] (o]
o o o

bandwidth (Mb/s)

N
o

o

1 1 1 1 1 1
1000 2000 3000 4000 5000 6000

o

predicted bandwidth
100 ‘

[e)
o
T
I

(o2}
o
T

i
o
T
I

bandwidth (Mb/s)
®

N
o
T
I

u

o

| | | | | |
1000 2000 3000 4000 5000 6000
elapsed seconds

o

Figure IV.19: Bandwidth trace taken from torc8.cs.utk.edu to torc4.cs.utk.edu

during the morning of February 12, 2001.

74

We emphasize that this is not a precise method for measuring Grid predictability
but is one way to represent the results of all simulations. We describe our scoring
technique below.

For a trace with predictability p, we arbitrarily assign it the weight v

using the following:

1 ifp=1L
v=12 ifp=M (1V.12)
3 ifp=H

\
For each simulation with Grid type pip.ps, we assign it the score, I', using the

following:

3

' = ny(pi) (IV13)

1=1

Note that the weighting scheme in Equation IV.12 results in the bound

3<I <09, (IV.14)

where '3’ indicates a Grid with low predictability and "9’ indicates a Grid with high
predictability. Next the simulation results are categorized into seven groups based
on their score. The cumulative distribution functions of A; for the simulations
in each group are plotted in Figure [V.20. This figure clearly shows that the
performance of the AppLeS scheduler increases as predictability increases. Here,
we see that for Grids where I' = 9, the AppLeS scheduler performs really well
with over 90% of its refreshes having a A; under 10 seconds. Similarly the AppLeS
scheduler performs well when I' = 8 and I' = 7. Conversely, in Grids where I' = 3,

only about 40% of refreshes have a A; under 10 seconds.

I6)

11

—~— =7
| v =8
—+— =9

o
©

°
[oe]
T

cumulative fraction of refreshes
o =}
()] ~
T T

o
-y
<
"
1

o
~
T
*
°
°
°
»o
<
°
1

[,
|

|

|

03 | | |
10 10" 10
relative refresh lateness (secs)

Figure IV.20: AppLeS cumulative distribution functions for A; grouped by I'.

IV.B.5 Summary

In this section, we studied the impact of dynamic load predictions on
scheduler performance. We compared the AppLeS to three other schedulers which
used no or partial dynamic information. We found that dynamic load predic-
tions significantly improved real-time execution of on-line parallel tomography.
In particular, we found that the performance gain was largely due to bandwidth
predictions. We then examined the impact of bandwidth predictions on the perfor-
mance of the AppLeS. Our experiments show that the performance of the AppLeS
is largely dependent on the quality of bandwidth predictions.

IV.C Tunability Experiments

In Section [.C, we motivated the design of on-line parallel tomography

as a tunable application for dynamic Grid environments. In this section, we as-

76

sess the usefulness of tunability; we say that tunability is useful if changing the
configuration at run-time (from the previous configuration) results in a better con-
figuration for the user and/or better real-time execution than not changing the
configuration. We conduct a case study of tunability in Grids composed of two
clusters of workstations and a supercomputer. These Grids are characterized by
the variability of their traces as described further in Section IV.C.1. For each Grid,
we study how the configuration of on-line parallel tomography would change for
a user running back-to-back experiments during a two-day period. Section IV.C.2
describes the experiments and Section IV.C.3 describes the user model used for
these experiments. The results described in Sections IV.C.4 and IV.C.5 show that
application tunability was exploited frequently and therefore provide a case for

tunability in dynamic Grid environments.

IV.C.1 Grid Construction

In order to have comparable results, we study a fixed Grid topology com-
posed of a cluster of 8 workstations, a cluster of 16 workstations, and a super-
computer. Figure [V.21 illustrates the Grid topology. We then study tunability
under different variability conditions. In these experiments, we look at the vari-
ability of both bandwidth and CPU availability traces. To collect traces for these
experiments, we use a similar method as that described in Section IV.B.4.1. The
difference is that we label our trace categories in terms of variability, i.e., the
coefficient of variance is used as a coarse measurement of trace variability rather
than predictability. A Grid can be described using a tuple, (vy, vy, v3, v4, v5), where
V1, U2, V3, U, 05 € {L, M, H}; vy is the type of bandwidth trace used for the net-
work link between supercomputer and the writer, vs is the type of CPU availability
traces used for the cluster of 8 workstations, vz is the type of bandwidth trace used
for the network link between the cluster of 8 workstations and the writer, v, is is
the type of CPU availability traces used for the cluster of 16 workstations, and

vs is the type of bandwidth trace used for the network link between the cluster

77

of 16 workstations and the writer. For convenience, we abbreviate low, medium,
and high as L, M, and H respectively and write a tuple as vjvsv3v4v5. There are

a total of 243 different types of Grids.

writer

supercomputer

=i

m—Tc
£/

o8
— il =
L) —
||||| clusterl =T
p Ss—

—
T ==
[} [=

=

Figure IV.21: Grid topology for tunability experiments.

Note that to model the load on the supercomputer, we collected immedi-
ately available information from SDSC’s Blue Horizon [3]| using the Maui Sched-
uler’s command showbf [33]; the trace was collected from February 9 to April 23,

2001 using a sample period of 5 minutes.

IV.C.2 Experiments

We consider two different on-line parallel tomography experiments:

E, = (45,61,1024,1024,300) and E, = (45, 61,2048, 2048, 600) (IV.15)

78

As described in Sections [.A and I.B, these two experiments are representative of
the size of experiments run by NCMIR users and correspond to datasets collected

from 1k x 1k CCD camera and 2k x 2k CCD camera respectively.

IV.C.3 User Model

In order to study the usefulness of tunability, we model how a user would
choose a triple and then watch how it changes over time. For these experiments,
we chose a simple user model. We assumed that the user would always choose
triples that have the lowest f, followed by the lowest . We also used the following

charging model for service units:

SU =Ny X P X a (IV.16)

Since p = 61 and a = 45, su will always be a multiple of 61 x 45 = 2745.
The parameter bounds for the (45, 61, 1024, 1024, 300) experiment, are

as follows:

1<r<13

0 < su < 137250 (IV.17)

Similarly, for the (61,2048, 2048,600), the bounds are:

1<r<13

0 < su < 137250 (IV.18)

In both cases, the upper bound on su corresponds to 50 processors.

79

IV.C.4 Tunability Results

For each experiment, F, and Ey, we ran 243 simulations, one simulation
for each of the 243 types of Grids. To simulate a user running back-to-back on-
line parallel tomography experiments, we executed the scheduler every 45 minutes
throughout the two-day period. For each two-day period, there were a total of 61
on-line parallel tomography experiments. Each time, we chose one triple accord-
ing to the user model. There were a total of 14,823 on-line parallel tomography
experiments for all 243 simulations.

In Figure IV.22, we display the range of triples found by the AppLeS
scheduler for the F; experiments in a 3D graph. Each quadrant of Figure IV.22
displays a different view of the 3D graph. Here we see that most of the refresh
factors fall within 1 and 3. Furthermore, no more than 3 processors are ever picked
on the supercomputer. Similarly, we display the range of triples found for the Ey
experiments in Figure IV.23. Note, that since the projections are larger in this
experiment, we can use a higher reduction factor. Here we can see that up to 25
processors are used on the supercomputer. Note on these types of Grids, it is not
possible to get triples (1,1,x) or (1,2,x).

Now, we look at how the triples change within a single simulation. Sup-
pose T'= {1, ...,61} is a set of triples picked by the user during a 2-day simulation.
For any t;,t;41 € T, if t; # t; 11, then we say that the user’s triple changed. We use
the number of changes within a specified time period to measure the usefulness
of tunability. For example, when the triple change frequency is low, we say that
tunability is not useful. That is, it is likely that a user could use the same configu-
ration from run to run and not experience a significant drop in performance. This
was the case with the M LLLL Grid and Ej; the user’s triple remained constant
at (1,1,0) throughout the simulated 2-day period. Conversely, when the triple
change frequency is high, we say that tunability is useful. We predict that a user
running with the same configuration from run to run would experience significant

performance drops and/or would under-utilize the resources. With Es the Grid,

8000

6000 x
su

4000 Xx

2000 x

(a)
8000| x
6000f
x
Su
4000F
X x
2000}
% 1 2

80

101

8000

6000

su

4000

2000

ProX X XX X XX XX XX XX

N XX XX

Wr XXX XX

DX X

urx

Figure IV.22: Triples found for (61,1024, 1024, 300) experiment

81

X X X X

X

101

x 10

x 10

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XX KX KKK KKK KKK XXX XX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XX XXX XXX XXXXXXXXXX

XXX XXX X RKKXKK KX XX

XX XX XXXXX XX

X X X

X XX

X X X

XX

X ¥

X X X X

XXXXXXXXXXXXXXXXX XX

Te}

N

Figure IV.23: Triples found for (61,2048, 2048, 600) experiment.

82

MLMM H , exhibits this type of performance; the user’s triple changed 44 times
during the 2-day period. We show the user’s triples for the MLMMH Grid in
Table A.1; it also shows the other triples the AppLeS scheduler found to be feasible.

Consider now the results of all simulations for both the £, and Es exper-
iments. Using the user model outlined in Section [V.C.3, the triple changed 1910
out of 14823 times for the F; experiments and 3813 out of 14823 times for the F,
experiments. Therefore, overall there was a 12.9% chance the triple changed from
run to run for the F; experiments and 25.7% chance for the E experiments. For
each simulation, we also calculated how many times the parameters, f,r, and su
changed over the 2-day period. The results for the E; experiments are displayed in
Figure IV.24 and the results for the E5 experiments are displayed in Figure IV.25.

1
0 f
B r
0-9r I su ||
0.8 b
0.71

©
D
T

o
o
T

fraction of changes
o
6]
T

o
w
T

o
N
T

0.1

parameters

Figure IV.24: Frequency of parameter changes for E; experiments.

In both cases, r was the parameter that changed the most frequently, followed by
su. Furthermore, we see that the frequency of change in reduction factor more

than doubled from the F; to Es experiments.

83

1
0 f
B r
0-9r I su ||
0.8 b

e
~

o
)

o
~

fraction of changes
o
6]

0.2

0.1

parameters

Figure IV.25: Frequency of parameter changes for E, experiments.

IV.C.5 Partial Order Results

In this section, we study the relationship between frequency of triple
changes and Grid variability. We picked 7 partially ordered Grids which increase

in variability:

84

LLLLL
LLLLM
LLLLH
LLLMH
LLLHH
LLMHH
LLHHH
LMHHH
LHHHH
MHHHH
HHHHH

We then generated 20 different instantiations of each Grid type and simulated both
E, and E5 over a 2-day period. The results are displayed in Figures IV.26 and
IV.26 respectively. These figures show that the frequency of triple changes does
increases as Grid variability increases. However, we note that the increase in not

monotonic.

IV.C.6 Summary

In this section, we did a case study on the usefulness of tunability in a
fixed Grid topology composed of two workstation clusters and a supercomputer.
We looked at tunability for two types of experiments representative of NCMIR
users. We then ran simulations to study how the configuration of on-line parallel
tomography would change for a user running back-to-back experiments during a
two-day period. The goal was to measure the usefulness of tunability in Grids
that differ in resource variability. We found that on average, there was a 12.9%
likelihood that user’s triple would change from one run to another for the 1k x
1k experiments and 25.7% chance for the 2k x 2k experiments. We also found

that the usefulness of tunability increased as the variability of the Grid increased.

350

300

250

S
o
o

150

number of changes

100

50

500

450

400

350

w
o
o

number of changes
N N
o a
o o

[any
g
o

100

50

e fMim Mih limh lllhh limhh llhhh Imhhh Thhhh mhhhh hhhhh
Grid type

(a)

e fMim Mih limh lllhh limhh llhhh Imhhh Thhhh mhhhh hhhhh
Grid type

(b)

85

Figure IV.26: Partial order results: frequency of triple changes by (a) 1k x 1k and

(b) 2k x 2k

86

We conclude that tunability was useful in this fixed Grid topology and therefore

provided a case for tunable on-line parallel tomography.

IV.D Scheduling Latency

In this section, we assess the AppLeS’ scheduling latency. We define the
scheduling latency to be the time it takes for the AppLeS scheduler to discover a
set of feasible triples for an on-line parallel tomography experiment E and set of
resources M. The scheduling latency is dependent on the size of the parameter
space (see search algorithm in Figure II1.2) and the execution time for the linear
program solver.

We timed all experiments outlined in Section IV.C and grouped results by
the type of experiment, £; and E5. A histogram for the F; experiment search times
is displayed in Figure IV.27 and a histogram for the E5 experiment search times is
displayed in Figure IV.28. From these results we see that for most experiments, the
scheduling latency is nominal (88% of F; experiments and 63% of E, experiments
had a second or less scheduling latency). Table IV.11 displays summary statistics
for both E; and E; experiments. Here we see that the mean scheduling overhead
is .35 seconds for the E) experiments and .99 seconds for the F, experiments.
Therefore, the scheduler overhead more than doubled in time. This is warranted
given that the parameter space for E, is larger than E;’s. (Recall that for F; the
bound on f is between and 1 and 8 while the bound on f for E; is between 1 and
4).

Finally, there were a handful of outliers in both the £, and Es experiments
that are too small to see on Figures IV.27 and IV.28. For the E; experiments,
.09% of the experiments had search times between 3 and 8 seconds; for the F,
experiments, .5% of the experiments had search times between 3 and 9 seconds.
Due to time constraints, we were unable to determine the cause. However, we note

that the percentage of these higher search times is nominal.

x 10

1.8 1

1.6 1

=
IN
T
|

=
N
T
|

number of experiments
o
(o] =
T T
| |

o
2
T
|

o
~
T
|

O - 1 1 1 1
0 2 4 6 8 10

seconds

Figure IV.27: AppLeS scheduling latency for F; experiments.

7000 T T T T T T

6000

5000

5

o

o

o
T

3000

number of experiments

2000

1000

0 2 4 6 8 10
seconds

Figure IV.28: AppLeS scheduling latency for E, experiments.

87

88

mean std min max median
E,| 035 045 0.04 7.85 0.13
Ey, | 099 0.68 0.11 8.68 0.92

Table IV.11: Summary statistics for AppLeS search times.

IV.D.1 Summary

To assess the impact of the AppLeS scheduler on application execution
time, we studied the scheduling latency introduced by the AppLeS scheduler. We
found that for the majority of executions, the AppLeS scheduler introduced a nom-

inal scheduling latency of less than two seconds.

Chapter V

Related Work

On-line parallel tomography has also been addressed as part of the Com-
puted Microtomography (CMT) project [52, 53]. Projections are collected from
the Advanced Photon Source (APS) at Argonne National Laboratory, processed
by an SGI Origin 2000, and visualized on an ImmersaDesk [15] or in a CAVE [12].
The CMT on-line parallel tomography code specifically targets high-speed net-
works and supercomputers and is a slightly extended version of the GTOMO code
described in Section I.A.1!. The CMT extension enables data to be taken directly
from APS and introduces processing stages. Each processing stage refills the work
queue and results in a refresh to the tomogram. This is the same technique that
was described in Section II.A where work is repeated in each stage. Thus, the
on-line parallel tomography implementation presented in this thesis differs from
CMT’s in that it enables the R-weighted backprojection method to execute as an
augmentable technique. Note that it would be straightforward to add the same ex-
tension to the CMT code in order to improve real-time execution. Second, our im-
plementation enables on-line parallel tomography to execute across a more diverse
set of resources (e.g. workstations, space-shared supercomputers, lower-capacity

networks) through the use of application tunability.

!The base code for the CMT implementation of on-line parallel tomography and the base
code for the implementation described in this thesis are the same. We refer to the base code as
GTOMO in this thesis.

89

90

Application tunability is a concept that has been applied in the MILAN
project [9] and in [17]. In MILAN, tunability is used by the system scheduler to
improve throughput. The system scheduler is referred to as the QoS arbitrator and
is responsible for allocating processors to application tasks. Each application has
a QoS agent which interacts with the QoS arbitrator to ensure that its execution
requirements are being satisfied. The QoS agent is automatically generated from
annotated code. Our work differs from MILAN’s in that our objective is to use tun-
ability to improve application performance rather than system performance. We
provide a single AppLeS process which functions as both the application’s QoS
agent and QoS arbitrator. While MILAN provides a simpler API, it is currently
unable to sufficiently capture the requirements of on-line parallel tomography be-
cause the QoS arbitrator does not schedule bandwidth on network links. Given the
large amount of data transfer required for on-line parallel tomography, the abil-
ity to express bandwidth requirements is critical to achieving real-time execution
performance.

The work presented in [17] also uses tunability to improve application
performance. Two applications are presented and classified as prediction-based,
best effort, real-time applications. Using predictions of application performance
based on dynamic load predictions, the application is mapped to a set of resources.
Our work differs from theirs in that predictions of application performance are
model-based rather than history-based.

Finally, the AppLeS described in this thesis builds upon other previous
AppLeS work [49, 48, 16, 46] in its strategies for resource selection and work allo-
cation. These AppLeS have focused on improving the performance of applications
with fized configurations. The AppLeS described herein distinguishes itself from
these schedulers in its ability to improve the performance of an application (with

multiple configurations) by exploiting its tunability.

Chapter VI

Conclusion

In this thesis, we implemented a Grid-enabled version of on-line parallel
tomography which provides soft real-time feedback to users collecting data from a
powerful electron microscope located at NCMIR. Acquiring data from NCMIR’s
microscope is a lengthy process and is susceptible to configuration errors. Soft
real-time tomography feedback, which has been previously unavailable to NCMIR
users, is important because it will allow users to quickly identify configuration
problems and interact with the microscope in order to more efficiently acquire
data from it. In this section, we summarize the contributions of the work for each
chapter and conclude with future work.

In Chapter II, we motivated an extension to GTOMO to allow for on-line
parallel tomography. This extension significantly reduced the amount of computa-
tion required for real-time execution of on-line parallel tomography by enabling the
R-~weighted backprojection method to execute as an augmentable technique. This
required a change from a work queue scheduling strategy to static work allocation.
This extension is more computationally efficient than adapting the off-line par-
allel tomography algorithm to on-line execution, but does not have the run-time
adaptive scheduling advantage of work queue. We then defined a configuration
of on-line parallel tomography as a triple, (f,r, su). These parameters represent

resolution of the tomogram, frequency of refinements to the tomogram, and cost

91

92

of execution. These tunable parameters allow the application to be adapted to
different resource availabilities.

In Chapter III, we defined a user-directed AppLeS. The AppLeS exploits
the tunability of on-line parallel tomography to determine a schedule for soft real-
time execution of the application over a set of resources at run-time. The scheduler
utilizes user constraints, an application model based on soft deadlines, and dynamic
resource load predictions to formulate multiple constrained optimization problems
which are solved to determine feasible run-time configurations. We showed that
each optimization problem could be efficiently and effectively solved using mixed-
integer programming. The configurations are displayed as choices to the user
where each configuration involves trade-offs between resolution of the tomogram,
frequency of refreshes, and cost of execution. Once an appropriate configuration
is chosen by the user, the scheduler selects resources, allocates work, and executes
the application.

Finally in Chapter IV, we evaluated the impact of dynamic information
on scheduler performance. We first ran experiments that simulated on-line parallel
tomography at NCMIR. We found that the AppLeS achieved near perfect real-time
execution when it used perfect load predictions. These results also showed that
bandwidth predictions were the most significant factor to improving scheduler per-
formance. We then ran experiments that simulated on-line parallel tomography at
NCMIR with imperfect load predictions. These results indicated that the sched-
uler’s performance was susceptible to the quality of the bandwidth predictions.
Further experiments showed that scheduler performance degraded as the quality
of bandwidth predictions degraded. Second, we ran a set of experiments where we
examined the usefulness of tunability on Computational Grids. Our results showed
that the usefulness of tunability increased as Grid variability increased. Finally,
we showed that the scheduling latency introduced by the AppLeS was nominal.

Future work on this research would be to reduce the impact of bad pre-

dictions on real-time execution performance. One approach would be to extend

93

the AppLeS to reschedule the application during run-time (since our current static
work allocation strategy does not perform run-time adaptive scheduling). This
strategy would allow the application to better tolerate bad predictions by chang-
ing the work allocation during run-time. The first step would be to detect a need
for rescheduling by weighing the potential benefit of rescheduling with the overhead
of rescheduling such as in [45]. The AppLeS would then find a new work allocation
using current dynamic resource load information. The new work allocation would
be compared to the old work allocation to find an efficient way to shuffle the slices
among ptomos.

A second way to reduce the impact of bad predictions would be to use
a stochastic approach as outlined in [42]. In this work, NWS prediction error
information was used to represent the load on a resource using a range of values.
For on-line parallel tomography, the value we choose to represent the load on a
resource could be based on how conservative the user wanted to be with their
scheduling strategy. That is, a user could choose a more conservative, but possibly
less efficient scheduling strategy or a less conservative, but possibly more efficient
scheduling strategy. The user’s conservativeness could be represented as a fourth
parameter of the on-line parallel tomography configuration.

Finally, we would like to deploy the implementation of on-line parallel
tomography described in this thesis into production at NCMIR. We expect that
real-time feedback will allow NCMIR users to interact with the microscope to more
effectively acquire data from the it. Overall, this will allow for more efficient usage

of this powerful, scarce resource.

Appendix A

Tables

Table A.1: Feasible triples for highly variable Grid,

MLMMH.
Time (s) | Triple chosen Other feasible triples
0 (1, 11, 13725) | (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745 (1, 12, 10980) | (1, 13, 8235), (2 2,0),(2,3,0), (3,1,0)
5490 (1, 12, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235 (1, 12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
10980 (1, 12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
13725 (1, 12, 16470) | (1, 13, 13725), (2 2, 2745), (2, 3, 0), (3, 1, 0)
16470 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)
19215 (1, 12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
21960 (1, 12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
24705 (1, 12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
27450 (1, 12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
30195 (2, 2, 2745) (2,3,0),(3,1,0)
32940 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)
35685 (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Continued on next page

94

Table A.1 — continued from previous page

95

Time (s) | Triple chosen Other feasible triples

38430 (1, 13, 10980) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

41175 (1, 12, 13725) | (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
43920 (1, 13, 10980) (2 2, 2745), (2, 3, 0), (3, 1, 0)

46665 (2, 2, 2745) (2, 3,0), (3,1, 0)

49410 (2, 2, 2745) (2, 3,0), (3, 1, 0)

52155 (1, 12, 16470) (1,13 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
54900 (1,13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

57645 (1,13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

60390 (1,12, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

63135 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

65880 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

68625 (2, 2, 2745) (2,3,0), (3,1, 0)

71370 (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

74115 (1,12, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

76860 (1,13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

79605 (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

82350 (1,12, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

85095 (1,12, 13725) | (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
87840 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

90585 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

93330 (1,13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

96075 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

98820 (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

101565 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

104310 | (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

107055 | (1,13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Continued on next page

Table A.1 — continued from previous page

96

Time (s) | Triple chosen Other feasible triples

109800 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

112545 | (1,12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
115290 | (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

118035 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

120780 | (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

123525 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, L, 0)

126270 | (1, 12, 16470) | (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
129015 | (2, 2, 2745) (2,3,0), (3,1, 0)

131760 | (2, 2, 2745) (2,3,0), (3,1, 0)

134505 | (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

137250 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

139995 | (2, 2, 2745) (2,3,0), (3,1, 0)

142740 | (2, 2, 2745) (2, 3,0), (3, 1, 0)

145485 | (1, 12, 16470) (1,13 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
148230 | (2, 2, 2745) (2, 3,0), (3, 1, 0)

150075 | (1,13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

153720 | (1,12, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

156465 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

159210 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, L, 0)

161955 | (1, 13, 16470) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

164700 | (1, 13, 13725) | (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Bibliography

1]

2]

9]

[10]
[11]

Francine Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, and Gary
Shao. Application Level Scheduling on Distributed Heterogeneous Networks.
In Proceedings of Supercomputing 1996 , 1996.

Dimitri P. Bertsekas. Nonlinear Programming, chapter 1, page 2. Athena
Scientific, 1999.

Blue Horizon User Guide at http://www.npaci.edu/Horizon.

Stefan D. Bruda and Selim G. Akl. Real-Time Computation: A Formal Defi-
nition and its Applications. Technical Report 435, Queen’s University, 2000.

Henri Casanova. Simgrid: A Toolkit for the Simulation of Application
Scheduling. In Proceedings of the IEEE/ACM International Symposium on
Cluster Computing and the Grid , May 2001.

Henri Casanova and Jack Dongarra. NetSolve: A Network Server for Solving
Computational Science Problems. The International Journal of Supercomput-
ing Applications and High Performance Computing, 1996.

Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov, and Francine Berman.
Heuristics for Scheduling Parameter Sweep applications in Grid environments
. In Proceedings of the 9th Heterogenous Computing Workshop, May 2000.

Henri Casanova, Graziano Obertelli, Francine Berman, and Rich Wolski. The
AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. In
Proceedings of the Supercomputing 2000, 2000.

Fangzhe Chang, Vijay Karamcheti, and Zvi Kedem. Exploiting Application
Tunability for Efficient, Predictable Resource Management in Parallel and
Distributed Systems. Journal of Parallel and Distributed Computing, 60:1420—
1445, 2000.

CHPC webpage at http://www.chpc.utah.edu.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms, chapter 5, page 83. M.L.T. Press, Third edition, 1990.

97

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

98

C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-Screen Projection-
Based Virtual Reality: The Design and Implementation of the CAVE. ACM
Computer Graphics, 27(2):135-142, July 1993.

CTC webpage at http://www.tc.cornell.edu.

David E. Culler and Jaswinder Pal Singh. Parallel Computer Architecture,
chapter 1, pages 60—61. Morgan Kaufmann Publishers, Inc., 1999.

Marek Czernuszenko, Dave Pape, Daniel Sandin, Tom DeFanti, Gregory L.
Dawe, and Maxine D. Brown. The ImmersaDesk and Infinity Wall Projection-
Based Virtual Reality Displays. Computer Graphics, 31(2):46-49, 1997.

Holly Dail, Graziano Obertelli, Francine Berman, Rich Wolski, and Andrew
Grimshaw. Application-Aware Scheduling of a Magnetohydrodynamics Ap-
plication in the Legion Metasystem. In Proceedings of the 9th Heterogenous
Computing Workshop, May 2000.

Peter A. Dinda, Bruce Lowekamp, Loukas Kallivokas, and David R.
O’Hallaron. The Case for Prediction-based Best-effort Real-time Systems
. Technical Report CMU-CS-98-174, Carnegie Mellon University, 1999.

L. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. To be published in Intl. J. Supercomputer
Applications, 2001.

lan Foster and Carl Kesselman. The Globus Project: A Status Report. In
Proc. IPPS/SPDP 98 Heterogeneous Computing Workshop, 1998.

lan Foster and Carl Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure, chapter 12. Morgan Kaufmann Publishers, Inc.,
1999.

J. Frank and M. Radermacher. Three-Dimensional Reconstruction of Non-
periodic Macromolecular Assemblies from Electron Micrographs . In J. K.
Koehler, editor, Advanced Techniques in Biological Electon Microscopy II1.
Springer-Verlag, 1986.

P. Gilbert. Iterative Methods for the Three-dimensional Reconstruction of
an Object from Projections . J. Theoret. Biol., 36:105-117, 1972.

R. Gordon, R. Bender, and G.T. Herman. Algebraic Reconstruction Tech-
niques (ART) for Three-dimensional Electron Microscopy and X-ray Photog-
raphy . J. Theoret. Biol., 29:471-481, 1970.

A. Grimshaw, A. Ferrari, F.C. Knabe, and M. Humphrey. Wide-Area Com-
puting: Resource Sharing on a Large Scale. IEEE Computer, 32(5), May
1999.

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]
33]
[34]
[35]
[36]

[37]
[38]

[39]

[40]

99

M. Hadida-Hassan, S.J. Young, S.T. Peltier, M. Wong, S. Lamont, and M.H.
Ellisman. Web-based Telemicroscopy. J. Struc. Biology, 125:235-245, 1999.

T. Hagerup. Allocating Independent Tasks to Parallel Processors: An Exper-
imental Study. Journal of Parallel and Distributed Computing, 47:185-197,
1997.

A. C. Kak and M. Slaney. Principles of Computerized Tomography Imaging.
IEEE Press, 1998.

Reinhard Klette and Piero Zamperoni. Handbook of Image Processing Oper-
ators, chapter 4, pages 120-125. John Wiley and Sons, Ltd., 1996.

Linear Programming FA(Q) webpage at http://www-unix.mcs.anl.gov/otc/
Guide/fag/linear-programming-faq.html.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—A Hunter of Idle Work-
stations. In Proc. of the 8th Int’l Conf. on Distributed Computing Systems,
pages 104-111, 1988.

Jane W.S. Liu. Real-Time Systems, chapter 2, pages 26-33. Prentice-Hall,
Inc., 2000.

Ip_solve F'TP site at ftp://ftp.es.ele.tue.nl/pub/lp_solve.
Maui Scheduler webpage at http://www.mhpcc.edu/ maui.
Robert Dant - MHPCC (personal communication, Jan 02, 2001).
NCSA webpage at http://www.ncsa.uiuc.edu.

Nonlinear Programming FA(Q) webpage at http://www-unix.mcs.anl.gov/
otc/Guide/fag/nonlinear-programming-faq.html.

NPACI webpage at http://www.npaci.edu.

G.A. Perkins, C.W. Renken, J.Y. Song, T.G. Frey, S.J. Young, S. Lamont,
M.E. Martone, S. Lindsey, and M.H. Ellisman. Electron Tomography of
Large, Multicomponent Biological Structures. Journal of Structural Biology,
120:219-227, 1997.

G.A. Perkins, C.W. Renken, S.J. Young, S.P. Lamont, M.E. Martone, S. Lind-
sey, T.G Frey, and M.H. Ellisman. Electron tomography of large multicom-
ponent biological structures. J. Struct.Biol., 120:219-227, 1997.

Radia Perlman. Interconnections, chapter 2, page 19. Addison Wesley Long-
man, Inc., second edition, 2000.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

100

M. Radermacher. Three-dimensional reconstruction of single particles from
random and nonrandom tilt series. J. Electron Microsc. Tech., 9:359-394,
1988.

J. Schopf. Performance Prediction and Scheduling for Parallel Applications
on Multi-User Clusters. PhD thesis, University of California, San Diego, 1998.

S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf :
Network based Information Library for Globally High Performance Comput-
ing. In Proc. of Parallel Object-Oriented Methods and Applications (POOMA),
pages 39-48, February 1996.

Gary Shao, Fran Berman, and Rich Wolski. Using Effective Network Views
to Promote Distributed Application Performance. In Proceedings of the 1999
International Conference on Parallel and Distributed Processing Techniques
and Applications , 1999.

Gary Shao, Rich Wolski, and Fran Berman. Predicting the Cost of Redistri-
bution in Scheduling. In Proceedings of the 8th SIAM Conference on Parallel
Processing for Scientific Computing , 1997.

Shava Smallen, Walfredo Cirne, Jaime Frey, Francine Berman, Rich Wolski,
Mei-Hui Su, Carl Kesselman, Steve Young, and Mark Ellisman. Combining
Workstations and Supercomputers to Support Grid Applications: The Parallel
Tomography Experience. In Proceedings of the 9th Heterogenous Computing
Workshop, May 2000.

Gabriel E. Soto, Stephen J. Young, Maryann E. Martone, Thomas J. Deer-
inck, Stephan Lamont, Bridget O. Carragher, Kiyoshi Hamma, and Mark H.
Ellisman. Serial section electron tomography: A method for three-dimensional
reconstruction of large structures. Neuroimage, 1:230-243, 1994.

Neil Spring and Rich Wolski. Application Level Scheduling of Gene Sequence
Comparison on Metacomputers. 12th ACM International Conference on Su-
percomputing , July 1998.

Alan Su, Francine Berman, Richard Wolski, and Michelle Mills Strout. Using
AppLeS to Schedule Simple SARA on the Computational Grid. International
Journal of High Performance Computing Applications , 13(3):253-262, 1999.

A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima. Overview
of a performance evaluation system for global computing scheduling algo-
rithms. In Proceedings of 8th IEEE International Symposium on High Per-
formance Distributed Computing, 1999.

Andrew S. Tanenbaum. Computer Networks, chapter 1, page 8. Prentice Hall,
Inc., Third edition, 1996.

[52]

[53]

[54]

[55]

[56]

101

Gregor von Laszewski, Mei-Hui Su, Joseph Insley, Ian Foster, John Bresna-
han, Carl Kesselman, Marcus Thiebaux, Mark Rivers, Steve Wang, Brian
Tieman, and Tan McNulty. Real-time analysis, visualization, and steering of
tomography experiments at photon sources. In Ninth SIAM Conference on
Parallel Processing for Scientific Computing, Apr 1999.

Yuxin Wang, Francesco De Carlo, [an Foster, Joseph Insley, Carl Kesselman,
Peter Lane, Gregor von Laszewski, Derrick Mancini, Tan McNulty, Mei-Hui
Su, and Brian Tieman. A quasi-realtime xray microtomography system at the
Advanced Photon Source. In Proceedings of SPIE, volume 3772, 1999.

Rich Wolski. Dynamically Forecasting Network Performance to Support Dy-
namic Scheduling Using the Network Weather Service. In Proc. 6th IEEE
Symp. on High Performance Distributed Computing, August 1997.

Rich Wolski, Neil Spring, and Chris Peterson. Implementing a Performance
Forecasting System for Metacomputing: The Network Weather Service. In
Proceedings of Supercomputing 1997 , 1997.

Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Service:
A Distributed Resource Performance Forecasting Service for Metacomputing.
The Journal of Future Generation Computing Systems , 1999.

