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Abstract

Many machine learning techniques are used as drug discovery tools with the intent to 

speed characterization by determining relationships between compound structure and biological 

function. However, particularly in anticancer drug discovery, these models often make only 

binary decisions about the biological activity for a narrow scope of drug targets. We present a 

feed-forward neural network, PECAN (Prediction Engine for the Cytostatic Activity of Natural 

product-like compounds), that simultaneously classifies the potential antiproliferative activity of 

compounds against 59 cancer cell lines. It predicts the activity to be one of six categories, 

indicating not only if activity is present but the degree of activity. Using an independent subset of 

NCI data as a test set, we show that PECAN can reach 60.1% accuracy in a six-way classification 
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and present further evidence that it classifies based on useful structural features of compounds 

using a “within-one” measure that reaches 93.0% accuracy.

Graphical Abstract

Cancer cells vary widely in their sensitivity to different types of chemotherapeutic agents 

as a result of their biochemical defects, cellular origin, and tissue location. This can make 

anticancer drug discovery a time-consuming and challenging process. While studies over 

decades have sought to characterize the biological properties of small molecules, including 

natural products (from bacteria, plants, animals, etc.), their derivatives, and synthetics, there 

are still many known compounds whose biological properties remain unknown, in addition 

to the many new compounds that are continually being discovered and characterized.1 

Performing in vitro assays to evaluate the activity of new compounds to a variety of different 

cancer cell lines can take extensive amounts time and resources with no guarantees of the 

usefulness of the compound to contribute to effective cancer chemotherapy.

In order to speed and assist with antineoplastic drug discovery, we created a deep network, 

PECAN (Prediction Engine for the Cytostatic Activity of Natural product-like compounds), 

trained on the National Cancer Institute’s NCI-60 Human Tumor Cell Lines data set.2,3 The 

NCI-60 data set is an in vitro data set comprising the results from evaluation of thousands 

of compounds and including multiple measurements of biological activity for each cell 

line. PECAN uses the structure of the compound to predict the GI50 concentration (the 

concentration at which cancer cell growth is inhibited by 50%) for each of 59 different 

cancer cell lines. PECAN uses as inputs Morgan fingerprints, 1D vector representations of 

the structural components present in a compound, and performs a multiway classification to 

predict the activity level for each cell line. After training, PECAN can be used on unseen 

compounds whose antiproliferative properties have not yet been characterized to predict 

their activity.

The challenges that accompany traditional drug discovery methods have led many 

researchers to embrace computational methods as a means to speed characterization of 

natural products. Research using computational tools to study natural products extends 

past cancer research into antibiotics, antifungals, and more.4–8 Many of these use machine 
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learning models to learn from existing data sets and generalize to unseen natural products 

and related compounds.4,6–11

In Walker and Clardy, logistic regression, support vector machines, and random forest 

classifiers were used to map biosynthetic gene clusters to several types of bioactivity. 

Multiple classifiers were constructed to make binary (active/inactive) predictions on 

antibacterial, antifungal, antitumor, and cytotoxic activity.7

While Walker and Clardy did not use neural networks, several other approaches to 

drug discovery have incorporated these into their models. Stokes et al. used a graph 

neural network and ensembling to use compounds’ SMILES strings and predict if they 

would inhibit the growth of E. coli.6 Dias et al. used a natural product data set to 

train two different machine learning approaches to predict the inhibitory ability of 

compounds against methicillin-resistant Staphylococcus aureus (MRSA).4 The first used 

molecular descriptors (physicochemical properties of the molecules) for a quantitative 

structure–activity relationship (QSAR) regression model that predicted minimum inhibitory 

concentration. The second used NMR descriptors and averaged the predictions of three 

machine learning models [random forest, support vector machine, and convolutional neural 

network (CNN)] to create a classification model to make binary predictions about their 

compounds’ anti-MRSA activity (i.e., inactive or moderately active to active).4 Fernández-

Llaneza et al. trained a Siamese neural network, with a bidirectional long–short-term 

memory LSTM model, to predict the similarity in activity between two compounds 

using SMILES strings as inputs.5 The network makes binary predictions about activity. 

Unlike other studies, Fernández-Llaneza et al. focused on the architecture more than a 

particular drug target, training and testing the same architecture on five different data sets. 

These data sets targeted specific molecular targets involved in Alzheimer’s disease (β-site 

amyloid precursor protein (AAP) cleaving enzyme 1, BACE1), inflammatory diseases (CC 

chemokine receptor 5, CCR5), neurological diseases (dopamine D2 receptor, DRD2), cancer 

(epidermal growth factor receptors, EGFR), and liver disease (nuclear receptor subfamily 1 

group H member 2, NR1H2).5

Within cancer research, machine learning models can be used to narrow down the potential 

pool of active compounds or to focus a search on specific cell lines. They can also be 

used for feature selection. Many computationally aided anticancer drug discovery studies 

have used machine learning techniques, although few make use of the pattern recognition 

capabilities provided by neural networks.

Yue et al. used 2D chemical features of compounds as input to multiple machine learning 

models: decision trees, support vector machines, random forests, and rotation forests. These 

were used to make binary determinations about the resistivity of hundreds of cell lines to 

different natural products.11

Davis et al. used a multiple linear regression analysis model to determine the optimal 

molecular descriptors for QSAR models. After determining optimal descriptors, they were 

used with a QSAR model to predict the IC50 of natural products against six different cell 

lines. Here, each cell line was predicted using separately trained models.10
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Similarly to Dias et al., Cruz et al. trained two QSAR models, the first using molecular 

descriptors and the second using NMR descriptors. Cruz et al., however, focused on 

predicting cytotoxic activity, IC50, against the HCT116 human colon carcinoma cell line. 

Machine learning algorithms, including k-nearest neighbors, random forests, and support 

vector machines, were only used in the model trained with molecular descriptors.12

Other approaches to anticancer drug discovery have used earlier versions of the NCI-60 

data set that we use in this current study.3,13 Li and Huang describe CDRUG, an online 

tool for predicting anticancer activity of compounds, which uses the NCI-60 data set as a 

reference for making similarity judgements between compounds in the data set and unseen 

compounds. The activity of unseen compounds is predicted using the activities of the most 

similar compounds in the data set.13

Our work makes three improvements on previous approaches. First, we use a multilayer 

perceptron, a feedforward neural network. This allows us to take advantage of the ability 

of deep networks to learn structural patterns in compounds in order to predict activity 

and generalize to unseen compounds. Second, we categorize cytostatic activity into six 

levels instead of making binary predictions. This gives more information about a compound 

while also allowing for greater specificity about the differences in activity between different 

cell lines. Finally, PECAN predicts the antiproliferative activity levels for 59 cell lines 

simultaneously, which requires the network to learn generalizable features that are useful in 

making predictions for all 59 cell lines.

RESULTS AND DISCUSSION

Results on Validation Data.

For every compound, PECAN simultaneously makes 59 cell line predictions. We compare 

PECAN’s predictions to experimental data, or the true activity level determined in a 

laboratory setting. All performance metrics compare PECAN predictions to experimentally 

obtained results. We report three measures of performance for PECAN. The first is the 

overall accuracy, the percentage of correct predictions. These results are shown in Table 1.

For the next two measures of performance, we specifically looked at activity level specific 

(e.g., “super potent”) labels and predictions. First, we looked at how often a prediction 

of “super potent” was correct. This is the precision of PECAN for this label. We also 

evaluated the recall of PECAN. This is the number of “super potent” true labels that exist 

in the data set that are correctly identified. We report these values and their corresponding 

“within one” values. For precision, “within one” indicates, out of all predictions that are 

“super potent”, the number with a true label of “super potent” or a true label of “potent”. 

For recall this indicates, out of all truly “super potent” examples, the number that were 

predicted to be either “super potent” or “potent”. The “within one” values are important in 

evaluating performance because if PECAN makes a mistake, a small mistake is preferred to 

a large one. For example, if an example is “super potent”, we would prefer the prediction 

for the compound–cell line pair to be “potent” instead of “inactive”. Both are incorrect, 

but if PECAN generally makes smaller mistakes, we can be more confident that it is 

using the structure of the compound to make the predictions as opposed to having utilized 
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insignificant details from the training data set that allowed it to perform well but in a very 

narrow context. The precision and recall data for all activity levels are shown in Table 2.

It can be argued that recall is the most important measure of performance when choosing a 

model for drug discovery. This is because it provides better assurance that the most potent 

and super potent compounds will be identified. We reasoned that obtaining a few false 

positives was better than missing potentially significant compounds. We used the model with 

the best recall for activity levels of “active” through “super potent”, which was the model 

trained with resampling, to test further. We tested this model on two data sets, one with a 

set of unseen examples from the National Cancer Institute’s NCI-60 data set (the “test set”) 

and the other taken from the TimTec Library, Natural Product Library-720 (NPL-720). Only 

the results from the NCI-60 test set are discussed in the main body of the paper, whereas 

all results from the NPL-720 test set can be found in the Supporting Information. The 

code for PECAN trained with resampled data and a checkpoint for testing uncharacterized 

compounds are available at https://github.com/marthagahl/PECAN.

Results on NCI-60 Test Data.

In reporting the accuracy comparison with experimental results, we again used an exact 

measure and a measure that accounts for small errors. Here we report the accuracy of 

PECAN in predicting the activity level and the within-one accuracy of PECAN. The within-

one accuracy includes any examples in which the activity levels of the experimental results 

and the predicted results are offset by one activity level. The accuracy of PECAN on the test 

data is 59.9%, and the within-one accuracy is 92.9%.

Figure 1 shows the number of compounds classified into each antiproliferative activity level 

from PECAN predictions on the NCI-60 test set and experimental results. For PECAN 

predictions, in addition to recording correct predictions, we also noted the distance between 

incorrect predictions and their true labels. We created confusion matrices to analyze the 

distribution of incorrect predictions (Figure 2). In Figure 2, the columns are the predicted 

activity levels. These values sum to the counts shown in Figure 1. The columns indicate 

how many times PECAN predicted each activity level. The rows are the true labels. These 

values sum to the counts in the data set. For any given compound, the column indicates 

what its activity level was predicted to be, and the row indicates what the true activity 

level is. Therefore, correctly predicted compounds lie on the diagonal. Compounds that are 

incorrectly predicted are off-diagonal. However, the closer the incorrect predictions are to 

the diagonal, the closer those predictions were to the true labels.

We can more clearly analyze how well PECAN performs with precision and recall, which 

are plotted in Figure 3. For the test data, we report precision and recall for all activity levels.

Finally, we calculate the selectivity of the compounds in the NCI-60 test set and the 

selectivity of PECAN’s predictions. We use the selectivity definition of having at least one 

cell line GI50 value be lower than the average GI50 for the compound by two log orders. 

The NCI-60 test set includes 346 selective compounds by this definition out of 4913 total 

compounds in the test set. PECAN predicted only 5 of the 4913 compounds to be selective. 

We believe the lack of accuracy in PECAN’s selectivity predictions results from holes in 
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the data and the scarcity of data for particular cell lines. More training data are needed to 

improve PECAN’s predictions of selective compounds.

Discussion.

We further analyzed our predictions of extreme values, inactive or super potent, and the 

compounds that contributed to those predictions. Each number on the confusion matrix in 

Figure 2 indicates an example, or a compound and cell line activity pair. While we only have 

fewer than 50,000 compounds total for the training, validation, and test sets, we have almost 

3 million examples of compound and cell line activity pairs because each compound has 

59 associated activity levels: one for each cell line. However, we can look at our confusion 

matrix results in terms of the compounds that make up each square. There are 164 examples 

that were predicted to be inactive and were truly super potent. All 164 examples come from 

just 52 compounds. There are 997 examples that were correctly predicted to be super potent, 

and all 997 of these examples came from 55 compounds. Therefore, on average each of 

those 55 compounds correctly predicted just over 18 super potent examples out of 59 cell 

lines. There are 11 examples that were predicted to be super potent and were truly inactive. 

These come from 6 different compounds.

Of those compounds predicted to be inactive but had true labels as super potent, there 

were a diversity of small heterocyclic alkaloids that appear mostly to be synthetic in origin. 

The compounds predicted to be super potent with true labels as super potent included 

such well-known cytostatic natural products as alkaloidal steroid dimers, digitoxin analogs, 

mithramycin-type compounds, camptothecin analogs, didemnin B analogs, cryptophycin A, 

colchicine analogs, epothilone analogs, taxanes, anthramycin analogs, steroidal glycosides, 

and actinomycin D analogs. Finally, the few compounds that were predicted to be 

super potent but had true labels as inactive included a tetrahydrofolate derivative, taxane 

derivatives, and colchicinoid-like compounds. The compound NSC IDs and structures can be 

found in Supporting Information Tables S1, S2, and S3.

These results are promising in their ability to narrow down the scope of compounds to test 

experimentally for potential evaluation as cancer therapeutics. They are also encouraging 

more broadly for the use of machine learning to aid in drug discovery efforts. PECAN is 

able to predict antiproliferative activity in multiple cancer cell lines with high recall. While 

there will certainly be false positives, this tool can be used to determine which compounds 

should be explored further and reduce the incidence of potent compounds being incorrectly 

excluded. The ability to screen compounds and remove those with low cytostatic activities 

will speed the drug discovery process by focusing time and resources on those compounds 

with a greater likelihood of being effective as cancer therapeutics. In addition, PECAN can 

be used to screen for cell line specificity. By predicting activity levels for all cell lines, 

PECAN gives a more comprehensive view of likely interactions with various tissues in the 

body. These results could allow identification of compounds with high specific activity in 

one or a few cell lines versus those compounds that are broadly potent and might be too 

toxic for use as unmodified agents. However, as noted above, the current version of PECAN 

does not perform well in detecting selective compounds, presumably due to incomplete and 
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insufficient data sets. On the other hand, broadly potent compounds could be evaluated for 

their utility as “warheads” in antibody–drug conjugates (ADCs).

CONCLUSION

By harnessing PECAN’s ability for pattern recognition, we have developed a method by 

which to map the structure of a compound to its potential utility to inhibit the growth 

of cancer cells. The same principle of mapping structure to function can be applied to 

other active areas of drug discovery, if sufficient training data are available. By building 

a model that predicts activity to multiple cell types simultaneously, we have shown that 

deep networks have the ability to provide a broad picture about drug interactions in 

different systems. This has been achieved by designing PECAN with an output that allows 

researchers to screen for particular activity levels as well as for activity to particular cell 

lines. Interesting insights are gained into potential correlations between agents and their 

predicted activities to specific cell lines. PECAN provides further insight into how machine 

learning can be widely useful to scientific questions of varying foci and goals.

EXPERIMENTAL SECTION

PECAN Model.

PECAN uses Morgan fingerprints, 1D bit vector representations of molecules, as input. 

Each Morgan fingerprint is 6144 bits long. PECAN outputs predictions of activity level 

for 59 cell lines for each Morgan fingerprint. The predicted activity levels are vectors of 

length 354 because there are 59 cell lines and 6 outputs for each (i.e., 6 different levels 

of antiproliferative activity), which are arranged in a softmax between the six categories. 

This allowed a simultaneous six-way classification for the 59 different cell lines and enabled 

PECAN to use feedback from all 59 cell lines to learn an internal representation of the 

structure function relationship of each compound.

In order to determine the optimal architecture for predicting cytostatic activity, we 

searched over model types, architectures, and hyperparameters. We tried three types of 

models: regression models, multilayer perceptrons, and 1D convolutional models. We 

also tested having separate prediction heads with unique weights for each of the cell 

lines. Multiplayer perceptrons with a single output had the most robust performance and 

minimized computation time. We searched over architectures by considering the type of 

layers, the number of hidden layers, and the number of hidden units in each layer. For 

hyperparameters, we searched over different values of input layer dropout, hidden layer 

dropout, and L2 weight decay. We used the validation data to determine the optimal 

architecture for PECAN: a multilayer perceptron with five layers, each with 256 hidden 

units, using ReLU nonlinearity. It also used an input dropout of 30%, a hidden layer dropout 

of 60% in each layer, and a weight decay of 0.0001. This is the final architecture of PECAN.

Data.

The data used in our experiments came from the National Cancer Institute’s NCI-60 data 

set.3 This data set included the NSC IDs for different small molecules, including natural 

products (from bacteria, plants, animals, etc.), their derivatives, and synthetics as well as the 
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antiproliferative data for each compound for each of the cell lines in the data set. In our 

experiments, we used only 59 cell lines as we omitted any cell lines with fewer than 30,000 

data points. The cell lines used can be found in the Supporting Information in Tables S2 

and S3. We preprocessed compound IDs to remove stereoisomers as well as any compounds 

that were also in the TimTec Natural Product Library-720 (NPL-720).14 The preprocessed 

NCI-60 data set was randomly split into a training set, a validation set, and a test set. 

NPL-720 was used as an additional test set for several reasons. First, these compounds are 

commercially available, and second, not all of the compounds included in NPL-720 have 

had their antiproliferative activity to cancer cells evaluated. Because the compounds are all 

purchasable, but not all have their cancer cell cytostatic activity characterized, they could 

subsequently be evaluated in the NCI-60 cancer cell line assay. This procedure enabled 

potential laboratory validation for PECAN’s performance on unseen compounds. Finally, the 

NPL-720 is an external data set. The test set of NCI-60 will have a similar distribution to the 

training set, while the NPL-720 is a separate data set and should have more variation in its 

data. However, the NPL-720 is a small data set with very few examples of certain activity 

categories. The test set of NCI-60 is much larger and provides prediction results across many 

more compounds, leading to a more realistic demonstration of PECAN’s performance. The 

data preprocessing and experimental pipeline are detailed in Figure 4, and the NPL-720 

results are included in the Supporting Information.

We used the SMILES strings for each of the 49,126 remaining NSC IDs in order to 

obtain chemical structures for all compounds. The SMILES strings were then converted 

to a version of Morgan fingerprints, using RDKit,15 which were then used as the input 

to PECAN. Morgan fingerprints are bit vectors created using a hashing algorithm that 

maps substructures in the compound to locations in the vector. A ‘0’ indicates absence of 

the substructure, and a ‘1’ indicates its presence. In a minor modification of the standard 

Morgan fingerprint, we separated out the bits for different radii (0, 1, and 2), with 2048 bits 

for each to try to avoid collisions.

For training PECAN, we needed a representation of the negative log GI50 concentrations for 

each compound in each of the 59 cell lines. We chose to represent these as six categories 

of activity: inactive, weakly active, mildly active, active, potent, and super potent. The 

thresholds for these categories were obtained by examining the distribution of all activity 

levels in the data set and setting boundaries at apparent inflection points. This distribution 

and the selected thresholds are shown in Figure 5.

The numeric thresholds for the negative log GI50 concentrations are given in Table 3. These 

categories were then assigned to each compound based on where their activity levels fell. 

Hence, each compound has 59 different targets, one for each cell line. As a result, PECAN 

learned to predict an activity level for all 59 cell lines from one input Morgan fingerprint, as 

shown in Figure 6. We chose to design PECAN to predict one of six activity levels instead of 

making a binary determination (active or inactive) in order to provide the greatest specificity 

possible about the compounds’ activity levels. Training data sets with a broader range of 

biological values have also been shown to create better models.16
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Each of the 49,126 Morgan fingerprints had 59 activity levels, one for each cell line. Where 

data were missing for a particular cell line, we did not provide a target for that output 

segment (i.e., no error was propagated back for that cell line).

The data set was extremely unbalanced, a feature that could lead to biased results in neural 

networks. For example, if we used the entire training set, a neural network could achieve 

a fairly low error by learning to categorize everything as inactive or weakly active. We 

used one of two methods to compensate for this bias in the data set. In the first method 

we resampled the minority categories (active, potent, and super potent) with replacement to 

provide 200,000 examples each, and we subsampled the other three categories to 200,000 

examples each. As a result, the categories were perfectly balanced. We did the resampling 

only once and used that resampled data set for all resampling experiments. The second 

method used a weighting of the loss of the categories according to their frequency in the data 

set during training.

First, we shuffled all examples and randomly selected 80% to be in the training set, 10% to 

be in the validation set, and 10% to be in the test set. In instances where data were missing, 

or a fingerprint had not been tested with a certain cell line, we excluded this example from 

the loss calculation. For trials using resampling, we resampled only the training data and left 

the validation data and test data unbalanced.

To provide insight into the composition of the NCI-60 data set, we aggregate compound 

properties LogP and molecular weight into histograms in Figure 7. Figure 7A and C 

provide the distribution of LogP and molecular weight values respectively in the data set (all 

compounds in training, validation, and test sets). Figure 7B and D demonstrate the diversity 

of values represented in the data set by magnifying the extremes of the distributions. LogP 

and molecular weight values for the NPL-720 external test set are provided in Table S1 

in the Supporting Information. We also compare the chemical diversity and distributions 

of the training and the test sets used in Figure 8. Here, UMAP1 and UMAP2 represent 

dimensions with large amounts of variation in the data set. The chemical diversity of the 

Dictionary of Natural Products (DNP) is also shown in gray in Figure 8. The DNP contains 

the majority of reported natural products, giving a broad estimation of the distribution of 

chemical diversity at large. Both the training and test sets show similar clustering to DNP 

and include examples across the entirety of the DNP distribution, suggesting the training and 

test sets are representative samples of reported natural products.

Training.

We performed two experiments with PECAN: one training on the original data with 

weighted loss and one training on resampled training data with no weighted loss. Both 

experiments used the same architecture and data thresholds. We used early stopping to 

determine the number of epochs to train and chose the Adam optimizer with an initial 

learning rate of 1e-5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Counts of PECAN activity level predictions (averaged over cell line activities) and 

experimental activity levels.
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Figure 2. 
Confusion matrix for PECAN predictions using the NCI-60 test set. Columns indicate total 

predictions for each activity level, and rows indicate the true label for each prediction. 

Values on the upper left to lower right diagonal indicate correct predictions of cell line 

activity for a particular compound. Darkened boxes represent higher numbers of correct 

predictions.
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Figure 3. 
Recall and precision of PECAN predictions when compared with experimental results for 

the NCI-60 test set based on data shown in Figure 2.
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Figure 4. 
Pipeline used to preprocess data and perform experiments.
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Figure 5. 
Distribution of activity levels of all compounds in the data set (blue) and the negative log 

GI50 value thresholds we used to categorize the compounds (red). Activity level annotations 

are given for each portion of the distribution: “Inactive”, “Weakly active”, “Mildly active”, 

“Active”, “Potent”, “Super potent”.
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Figure 6. 
PECAN architecture for predicting the activity level for 59 cell lines. Each box labeled “Cell 

Line” consists of a 6-way softmax vector.
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Figure 7. 
Distributions of LogP and molecular weight values in the NCI-60 data set. (A) All values 

of LogP. (B) Magnified view of LogP values greater than 10. (C) All values of molecular 

weight. (D) Magnified view of molecular weight values greater than 1000.
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Figure 8. 
Chemical diversity for the training and test sets taken from the NCI-60 data set. Dictionary 

of Natural Products shown in gray, training set shown in red, and test set shown in blue. All 

UMAP values calculated using normal Morgan fingerprints.
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Table 1.

Accuracy Values, by Activity Level and Overall, for Both Experiments, Using Either Weighted Loss or 

Resampled Data, for 59 Cell Lines on Validation Dataa

Activity level

Accuracy

Weightedb Resampledc

Super Potent 45.0%/64.7% 50.6%/79.9%

Potent 20.25%/62.51% 35.1%/80.3%

Active 28.1%/69.9% 41.1%/75.8%

Mildly Active 46.6%/85.8% 43.6%/86.6%

Weakly Active 57.6%/98.8% 54.7%/95.9%

Inactive 73.4%/96.3% 69.7%/94.0%

Overall 60.1%/93.0% 58.0%/92.0%

a
Results are presented as accuracy/within-one accuracy. Bolded numbers represent best results for a given activity level.

b
Loss is weighted to inversely correspond to the representation of an activity level in the data set. Underrepresented activity levels (e.g., super 

potent and potent) are overweighted to ensure they are not ignored.

c
Instead of weighting the loss, underrepresented activity levels are resampled multiple times in order to construct a data set where all activity levels 

are equally represented.
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