
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Physically Motivated Sub-grid and Surrogate Models of Star Formation and Feedback in 
Eulerian Adaptive Mesh Cosmological Simulations

Permalink
https://escholarship.org/uc/item/7gq6x76z

Author
Wells, Azton Ian

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gq6x76z
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Physically Motivated Sub-grid and Surrogate Models of Star Formation and Feedback in Eulerian Adaptive
Mesh Cosmological Simulations

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Physics

by

Azton Ian Wells

Committee in charge:

Professor Michael L. Norman, Chair
Professor Phillip Gill
Professor Michael Holst
Professor Dušan Kereš
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Star formation and feedback in astrophysical simulations remains a longstanding challenge when

attempting to model large regions of the universe. The small scales of star formation limit the computational

volume of self-consistent simulations; however, many recent works have highlighted the importance of

accurate star formation and feedback to match simulations with observations. Unfortunately, the first

generation of stars is often neglected in modern simulations, despite the fact that these stars generate the

first metal-rich regions that fuel all subsequent star formation. This work represents the first effort to

model the effect of these primordial stars without the extreme resolution requirements of prior generation

simulations. We find that specialized deep convolutional neural network architectures are competent at

identifying primordial star formation in under-resolved simulations, predicting star forming regions that

are matched well by resolved simulations. Based on our study of the Phoenix Simulations, we find that

xiv



primordial star forming regions have a large, but limited influence. We generate an interpretable linear

regression model to predict the size of this region based on the number, masses, and ages of stars within the

primordial population.

Finally, we combine the prior works to predict primordial star formation and feedback in cosmological

simulations and compare the new framework to literature-standard simulations that employ a metallicity floor.

We analyze the impact of heterogeneous metal enrichment by studying the protogalaxies (106 . Mv/M� .

108) and their stellar populations. We find that ignoring metallicity requirements for enriched star formation

results in a up to 30% excess in stellar mass created. Further, using a metallicity floor causes an early

underproduction of stars before z = 21 that reverses to overproduction by z = 18, creating ∼ 20% excess

stellar mass and 8.6% excess in protogalaxy number by z = 14.95. Heterogeneous metallicity conditions

greatly increase the range of halo observables, e.g., stellar metallicity, stellar mass, and absolute magnitude.

The increased range leads to better agreement with observations of ultra-faint dwarf galaxies when compared

to metallicity-floor simulations. StarNet generates protogalaxies with M∗ . 103M�, so it may additionally

model low-luminosity protogalaxies more effectively than a metallicity floor criterion.
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Chapter 1

General Introduction

Despite the rise of petascale computing and the recent dawn of exascale computer systems, astrophys-

ical simulations continue to push the limits of the most advanced supercomputers. While dark matter (DM)

or hydrodynamic DM + gas simulations can now simulate massive volumes (e.g., Vogelsberger et al., 2014;

Emberson et al., 2019), the inclusion of more complete physical models, such as resolved star formation

and feedback (SFF) processes, places severe restrictions on the size of simulations (Hopkins et al., 2018;

Smith et al., 2015). This, of course, is detrimental to simulations that would aim to model large swathes

of the observable universe. Further complicating the matter, advances in observational astronomy combine

modern telescopes with data analysis techniques to produce very precise results. The astrophysical and

cosmological simulation communities can no longer rely on DM only simulations to reproduce observables,

as the lower-order effects of baryons and galactic processes are measurable in observations. Further, decent

models of SFF contribute to deducing unobservables, e.g., the primordial stellar initial mass function (IMF)

(Welsh et al., 2019; Cooke et al., 2017; Welsh et al., 2020; Vogelsberger et al., 2020).

Much to the chagrin of every astrophysicist, modelling large, statistically significant and repre-

sentative volumes with accurate models of SFF is currently beyond the computing capabilities of even

next-generation exascale systems. In our collective surrender to technological limitations, many compromises

are made in the name of modelling stellar and galactic systems “well enough.” Some involve using galaxy

particles, where the star formation rate (SFR) is tuned to observable galaxies, e.g., the mass-loading factor of

galactic winds is an user-defined parameter requiring tuning to observations (Oppenheimer & Davé, 2006;

Vogelsberger et al., 2013; Vogelsberger et al., 2014). Although matching observations with simulations is im-

portant, tuning parameters to match observables in the modern universe offers no assurance that the parameter

is correct for earlier times, particularly those times before reionization that severely lack observational data.
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In other cases, star clusters are modelled instead of single stars (Hopkins et al., 2018; Wise et al., 2012; Wise

et al., 2012). In these cases, special care must be paid to how the star cluster interacts with its environment

through, e.g., stellar winds, supernovae, and radiation processes (e.g., Rosdahl et al., 2016).

Largely ignored in most simulations, there is another initial condition besides the DM and baryonic

density perturbations that sets the stage for later star formation and is necessary to begin the formation of

the first galaxies: metals from Population III stars. These first stars form from primordial gas consisting of

only H, He, and H2 (for a review, see Bromm, 2013). They are also thought to be massive, and while their

IMF is not well known, modern evidence (Welsh et al., 2019, 2020; Cooke et al., 2017) indicates that the

IMF almost certainly includes masses that would have led to supernovae of various types (Heger & Woosley,

2002; Nomoto et al., 2006; Woosley & Heger, 2015). These first Population III supernovas (SNe) were the

first source of metals–those elements heavier than helium–which are efficient coolants that enable protostellar

cloud collapse to begin in ways that resemble modern star formation (Larson, 2003).

Modelling these first stars directly and generating the metallicity initial conditions of a simulation

in situ is extremely costly. The molecular H2 clouds that contribute to the formation of Population III stars

measure only tens of parsecs with proto-stellar cores on the scale of astronomical units (Abel et al., 2000;

Bromm et al., 2002), whereas statistically useful regions of the universe, i.e., regions much larger than the

Lagrangian region of the Milky Way, measure volumes by gigaparsecs. Therefore, when attempting precision

modelling of the Population III era with associated SFF, one must choose whether to simulate the Population

III SFF explicitly or to adopt a simplification scheme to compensate for the lack thereof, such as adopting a

metallicity floor that assumes a set metallicity for all points in space. The course of this dissertation began at

recognizing the limitation of current simulation paradigms by studying the first stars in Wise et al. 2012 and

Xu et al. 2016. These works explicitly model the Population III era, but due to high resolution and ray-tracing

radiation algorithms, could only achieve z∼ 7 in relatively small 1−300 Mpc3 volumes. We additionally

examined modern works that ignore the Population III era, and note that some disagreement could be caused

by the metallicity floor simplification (e.g., Regan et al. 2017; Wheeler et al. 2019). What is needed is a

method that can generate a heterogeneous metallicity initial condition that reflects the actual formation and

impact of Population III stars without the severe resolution and timestep requirements of modeling primordial

SFF explicitly.
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Thesis Outline

The remainder of this dissertation will address the core topic of SFF in astrophysical simulations

via the following format. The remainder of the introduction outlines common tools used throughout this

work, including Enzo and a short primer on deep learning methods. The first element of our endeavor to

develop a surrogate model of SFF is presented in Chapter 2. There, we study deep convolutional neural

networks (DCNNs) and their application to predicting localized star formation in simulations, culminating

in a model to identify which grid cells of a simulation are have the requisite conditions to host primordial

star formation. Chapter 3 presents the Phoenix Simulations that were used to develop training data for our

surrogate models. With the Phoenix, we also develop an interpretable linear regression model of the feedback

region from primordial stars and present new findings regarding the formation of Population II.1 star clusters

and subsequent other early enriched star formation (Population II.2) cluster formation. Chapter 4 presents

multiple efforts: first, creating a physically motivated, resolution intelligent, SFF routine, the Scale-intelligent

Terminal-momentum Algorithm for Realistic Stellar Sources (STARSS) to simulate SFF from enriched stars.

Second, using STARSS with the combined models of Chapters 2 and 3 to create a DCNN-based surrogate

model of the effect of Population III stars. The resulting StarNet simulations are used to study the impact

of heterogeneous metallicity initial conditions on protogalaxies and mini-halos beyond their Population III

star-forming phase.

The codebase to develop and use StarFind and the StarNetRuntime developed in Chapters 2 and 4 is

composed of approximately 40,000 lines of Python1. To ease an interested reader into the code, descriptions

of these frameworks along with helpful guides are available in the appendices. There, I also include initial

conditions and parameter files to replicate the simulations in this work.

1StarFind development: https://github.com/azton/StarNet
StarNetRuntime: https://github.com/azton/StarNetRuntime
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1.1 Enzo Simulations

Simulations in this body of work were performed with Enzo (Bryan et al., 2014; Brummel-Smith

et al., 2019a). Enzo is a public, community maintained Eulerian grid-based hydrodynamic simulation code

with adaptive mesh refinement (AMR). It has been used for broad ranging studies including high-resolution,

high-redshift galaxy formation (Wise & Abel, 2011; Wise et al., 2012; Wise et al., 2012), single dwarf

galaxies (Emerick et al., 2019), cosmological re-ionization era zoom-in simulations (Xu et al., 2016), and

solar mass resolution simulations of the first primordial stars (Smith et al., 2015). In this section, we will

outline the functionality and methods that Enzo uses.

Although many hydrodynamic methods have been implemented in Enzo since its inception, this

project exclusively uses the piecewise parabolic method (PPM) (Colella & Woodward, 1984). Each timestep

in Enzo solves the Eulerian equations of ideal hydrodynamics including gravity in a comoving coordinate

system. Enzo solves conservation of mass

∂ρ

∂t
+

1
a

∇ · (ρv) = 0 (1.1)

with scale factor a, density ρ, and velocity vvv; conservation of momentum

∂ρv
∂t

+
1
a

∇ ·
(

ρvv+ Ip∗
)
=− ȧ

a
ρv− 1

a
ρ∇φ (1.2)

with isotropic pressure p∗, identity matrix III, and gravitational potential φ; conservation of total (kinetic +

thermal) energy
∂E
∂t

+
1
a

∇ ·
[
(E + p∗)v

]
=− ȧ

a

(
2E
)
− ρ

a
v ·∇φ−Λ+Γ (1.3)

with energy E, cooling rate Λ, and heating rate Γ; gravitational potential φ as

∇
2
φ =

4πG
a

(∑ρ−〈ρ〉) (1.4)

with total (dark matter + baryonic) density ∑ρ and cosmic mean density 〈ρ〉; metal from stars and supernovae

are evolved according to
∂ρz

∂t
+

1
a

∇ · (ρzv) = ρ̇z,sf (1.5)
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with metals from stellar sources ρz,s f . The final equation to close the set is the equation of state

e =
p

γ−1
(1.6)

with ideal gas energy e, pressure p, and ratio of specific heats γ. Enzo additionally ensures mass conservation

of chemical species and their reactions for species i and comoving density ni by evolving

∂ni

∂t
+

1
a
· (niv) = ∑

j
ki j(T )nin j +∑

j
Γ

ph
j n j (1.7)

where ki j(T ) are temperature dependent two-body rate coefficients, and Γ
ph
j are destruction and creation

coefficients due to photoionization or photodissociation. The simulations in this body of work include both a

redshift dependent uniform Lyman-Werner (LW) H2 dissociating radiation background as well as ionizing

radiation from point stellar sources. The radiative transfer equation to evolve these fields in comoving

coordinates (Gnedin & Ostriker, 1997) is given by

1
c

∂Iν

∂t
+

aem

a
n̂ ·∇Iν−

H
c

(
ν

∂Iν

∂ν
−3Iν

)
=−κνIν + jν. (1.8)

Iν ≡ I(ν,xxx,Ω, t) is the specific intensity of radiation with dimensions of energy per time (t) per solid angle

(Ω) per frequency (ν). The second term, (aem/a) accounts for cosmic expansion since radiation emission, the

third term describes dilution of radiation and cosmic expansion, and the right-hand side describes absorption

(κν) and emission ( jν) from all sources. The photoionization and photoheating coefficients (Wise & Abel,

2011) are given by

kph =
P(1− eτ)

nabsVcelldtP
(1.9)

Γph = κ(Eph−Ei) (1.10)

where in Equation 1.9, P,τ,Vcell,nabs are the photon number, optical depth, cell volume, and number density

of the absorbing medium respectively, and in 1.10, Eph and Ei are the energies of the photon and ionization.

The radiation transport from point sources is handled by the Enzo+Moray ray-tracing method (Wise & Abel,

2011). Chemistry is evolved by Enzo using Cloudy lookup tables (Smith et al., 2008; Ferland et al., 2017)

and can include cooling rates that consider density, electron density, metal density, and temperature. Dark
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matter dynamics in Enzo are calculated using the particle-mesh method (Hockney & Eastwood, 1988; Bryan

et al., 2014). In this method, the gravitational potential, φ, is calculated via fast fourier transforms. The

resulting accelerations from the potential are then interpolated back to the dark matter particles, and used to

determine hydrodynamic states for that time step.

1.2 Star Formation Algorithms

1.2.1 Primordial Stars

Population III stars are the first generation of stars (see Bromm & Larson, 2004, for a review). They

are distinct from early enriched stars (Population II) or modern star formation (Population I) in that they form

from primordial gas that matches the composition of early universe. Because of this, there are no appreciable

quantities of metals2, and the collapsing gas that forms the star is cooled via the rotational, vibrational

and electronic transitions of H2 (Bromm, 2013). Since H2 is a less effective coolant than metals (Draine,

2011), e.g., oxygen or carbon, there is some question how the collapse of a gaseous cloud would proceed.

In particular, how much the cloud fragments will determine the mass of the stars that can form from that

cloud. Although this is still an open area of research, modern work suggests that the Population III IMF is

much more top-heavy than the Population I/II IMF (Stacy et al., 2010, 2016; Ishigaki et al., 2018; Park et al.,

2021; Latif et al., 2022): the average mass of Population III stars is thought to be 10-20 M�. In addition,

Population III stars have a potentially very large upper mass cutoff, with some studies focusing on M∗ . 300

M� (Heger & Woosley, 2002), and others examining the possibility that they are the source of supermassive

black hole (SMBH) seeds having masses M∗ & 105 M� (Schleicher et al., 2013). The less massive, M∗ . 300

M� option is used in Enzo, and leads to multiple endpoints of the stellar lifetime. While lower-mass 10-40

M� Population III stars generate Type II SN or hypernova (HN), massive stars with 140 < M∗/M� < 260

result in pair-instability supernova (PISN) (Heger et al., 2003). Other stellar masses collapse as collisionless

black holes. The primordial SNe serve as the source for metal for the next generation of stars, and determines

the metallicity distribution function (MDF) of those second-generation stars. In Enzo, Population III stars

are modeled as single stars, not clusters: each particle has an assigned mass, luminosity, metal yield, and

explosion energy. The specifics of Population III SFF is detailed in Chapter 3; here, it is simply noted that the

star formation criteria are resolution dependent, predominantly because it requires a specific H2 fraction and

2Elements heavier than He
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baryon number density for star formation to proceed. More importantly, the SN feedback from primordial

stars is strongly resolution dependent. The foundation of the feedback model is to resolve the Sedov-Taylor

(ST) blastwave of the supernova remnant (SNR) (Sedov, 1946; Taylor, 1950) and deposit the energy of the

remnant in thermal form, neglecting all kinetic energy or momenta that may exist in the remnant at that time.

Crucially, deposition of energy in thermal form has strict resolution requirements, as low resolution results in

diffusing hot gas instead of generating the SNR shockwave that is desired (Katz, 1992; Abadi et al., 2003;

Slyz et al., 2005; Kimm & Cen, 2014) (the “overcooling” problem). The strict resolution requirements of

primordial SFF is a primary motivator of the work to develop a surrogate method to generate a heterogeneous

metallicity field from Population III stars.

1.2.2 Enriched Star Clusters

Star formation and feedback of Population II stars is modeled in Enzo by particles that represent a star

cluster. Their formation criteria is similar to Population III stars, except require finite, user-defined metallicity,

and do not require H2. The mass of the cluster is derived from the computational grid as 7% of the gas mass

with number density nb > 1000 cm−3. This is a resolution dependent criterion, as lower resolution meshes

will struggle to have substantial gas mass at that density. Similar to the Population III SN feedback, Population

II SN are modelled by depositing energy in thermal form in a sphere that approximates the ST solution. This,

of course, has the same pitfall as thermal energy deposition in the Population III case; however, the problem

is exacerbated for Population II stars because the energy of deposition is much lower and therefore even

more susceptible to overcooling. The clusters also model their feedback via continuous injection, i.e., the

rate of energy, mass and metals returned to the grid is fixed and does not represent individual SNe events.

This method is known to be problematic at low and middling resolution (e.g., Hopkins et al., 2018). The

shortcomings of the Population II model is the primary motivator for development of the physically motivated

STARSS algorithm, detailed in Chapter 4.
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1.3 Methods: Machine Learning and Deep Learning

Machine learning (ML) and deep learning (DL) form a broad category of statistical models to

represent underlying data distributions. The raison d‘être for these unique forms of statistical model is to

have parameters that are not explicitly chosen, but found by iterative optimization, which is of particular use

when the underlying data distribution is too complex to be represented by only a handful of parameters. This

section will provide a very brief overview of the basics of DL; extremely good and comprehensive sources

are available freely on the web (e.g., http://d2l.ai/). ML and DL are entirely built on the presumption that

predictions can be made by combining input features with a weight-factor; the output of the model, Ŷ , is given

by the multiplication of input values(X) and weights (w): Ŷ = X×w+b with a bias, b. If we consider that X

is not a scalar quantity, but, for example, a data point with multiple features, then the rows of XXX represent

individual datum and each column is an individual feature. We can then recast the equation for ŶYY in vector

form as

ŶYY = XXX ·www+b. (1.11)

Equation 1.11 results in only linear behaviour. To create non-linearity, we include an activation function so

that ŶYY = F(XXX ·www+b). There are numerous activations that one could use, however, in this work we typically

use the sigmoid (σ(x)) and leaky ReLU(x) activation functions defined as

σ(x) =
1

1+ exp(−x)
(1.12)

ReLU(x) =


lx x < 0

x x > 0
(1.13)

with a leaky parameter l, usually having 0.0 < l < 1.0 where l = 0 recovers the standard ReLU(x) activation.

Other common activation functions include standard ReLU, hyperbolic tangent, and softmax. Layers of a

DNN in which each feature of XXX is multiplied by a unique entry of www are referred to as fully connected layers

(FCLs). An example of a simple DNN with FCL is presented in Figure 1.1. This simple model has two

inputs, xi, two hidden layers, a,b, with one output, Y . This small DNN is the foundation of how the other

models in this work function, so we present it as a minimal worked example of making predictions (“forward
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Figure 1.1. A simple DNN

pass”) and adjusting weights to improve future predictions (“backward pass”). The forward pass consists of a

series of matrix multiplications progressing through the model. As a concrete example, consider a forward

pass of the model in Figure 1.1. The inputs, xi are multiplied by the weights, wi,a0, and then activated to give

the value at the node a0
3. At layer a with ReLU activation,

ai = ReLU
(
∑

j
x jw j,ai

)
. (1.14)

There is a similar expression for the values in layer b:

bi = ReLU
(
∑

j
a jw j,bi

)
. (1.15)

And, the final prediction is the output at Y (assuming a σ(x) activation function):

Ŷ = σ(∑
j

b jw j) (1.16)

With a prediction from the model, we now need to judge its quality. This is done in the form of loss functions

or objective functions. For classification problems, a common objective function (and used in this work) is

cross-entropy:

L(ŷ,y,c) =
{

w(c)
[
− ycŷc + log

(
∑

j
exp(ŷ j)

)]}
, (1.17)

L =
∑c L(ŷ,y,c)

∑c w(c)
(1.18)

3Generally, there is a bias term added to the multiplication, which is set to zero in this section for clarity.
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Figure 1.2. Convolutional kernel example.

where w(c) represents weights given to the cth class, the network output (ŷ j) and true label (y j). In regression

problems, distance functions are commonly used, such as Manhattan distance, L1 = |y− ŷ| or L2 distance,

L2 = (y− ŷ)2, where the final value is the mean over all predictions in the sample (e.g., when predicting

multiple voxel values, the mean L for all voxels).

Finally, with the loss L in hand, we perform back propagation to improve the weights of the model.

Ideally, we want to minimize L by solving an equation such as dL/dwww = 0, however with many weight/input

configurations, this is not analytically tractable. Instead, we will adjust the weights of the model as directed

by the gradient of the loss with respect to the weights. Specifically, we would adjust the weights by δw

determined by:

δwi = ε
∂L
∂wi

(1.19)

where i refers to the specific weight we would like to change and ε is the learning rate. To find the weight

update in layer a or other interior layer weights, we would apply the chain rule using the expressions for

outputs in Equations 1.14 and 1.15. In this work, we heavily rely on convolutional filters to process 3D data.

Shown for the 2D case in Figure 1.2, the www are a N3 convolutional kernel, K, with learnable weights. The

kernel is passed over the input data, skipping stride, s, entries between multiplications. As with FCL, the

final output from a convolutional layer is Ŷ = f (K(XXX)+ b), where the bias is optional depending on the

normalization chosen, with activation function f (x).

There are a great number of modifications that can be made to the basic structure outlined in this

section. When used, these more unique architectures will be discussed in their relevant chapters, e.g.,

the Inception and Dense modules of Chapter 2. In addition, there are very complicated designs that are

barely recognizable from this base structure, such as the dueling generators and discriminators of generative

adversarial networks (GANs) (Goodfellow et al., 2014) and time-evolution prediction using long-short term

memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997).
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Chapter 2

Predicting Localized Primordial Star Formation
With Deep Convolutional Neural Networks

2.1 Abstract

We investigate applying 3D deep convolutional neural networks as fast surrogate models of the

formation and feedback effects of primordial stars in hydrodynamic cosmological simulations of the first

galaxies. Here, we present the surrogate model to predict localized primordial star formation; the feedback

model will be presented in a subsequent paper. The star formation prediction model consists of two sub-

models: the first is a 3D volume classifier that predicts which (10 comoving kpc)3 volumes will host star

formation, followed by a 3D Inception-based U-net voxel segmentation model that predicts which voxels

will form primordial stars. We find that the combined model predicts primordial star forming volumes with

high skill, with F1 > 0.995 and true skill score > 0.994. The star formation is localized within the volume to

. 53 voxels (∼ 1.6 comoving kpc3) with F1 > 0.399 and true skill score > 0.857. Applied to simulations

with low spatial resolution, the model predicts star forming regions in the same locations and at similar

redshifts as sites in resolved full-physics simulations that explicitly model primordial star formation and

feedback. When applied to simulations with lower mass resolution, we find that the model predicts star

forming regions at later redshift due to delayed structure formation resulting from lower mass resolution. Our

model predicts primordial star formation without halo finding, so will be useful in spatially under-resolved

simulations that cannot resolve primordial star forming halos. To our knowledge, this is the first model that

can predict primordial star forming regions that match highly-resolved cosmological simulations.
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2.2 Introduction

Despite the rise of petascale computing, astrophysical simulations continue to push the limits of

the most advanced supercomputers. While dark matter (DM) or hydrodynamic gas-only simulations can

now simulate massive volumes (e.g., Vogelsberger et al. 2014), the inclusion of more complete physical

models, such as resolved star formation and feedback (SFF) processes, severely limits the volume of feasible

simulations (Hopkins et al., 2018; Smith et al., 2015). When attempting precision modelling of high redshift

galaxy formation with associated SFF, one must usually choose whether to simulate the primordial star

(Population III) formation era, or to adopt a simplification scheme to compensate for the lack thereof. Here,

we investigate a third option: use deep learning to train a surrogate model with data from simulations which

resolve the primordial star formation and feedback processes directly. Then, use the surrogate model in

inference to predict the coarse-grained effects of primordial stellar feedback in a large volume cosmological

simulation. With SFF modeled rather than simulated, spatial resolution and timestepping requirements are

greatly relaxed, thus accelerating the time to solution without sacrificing essential feedback effects such as

chemical enrichment by primordial supernovae. In the following, we motivate this approach by reviewing

primordial SFF as well as recent applications of deep learning to astrophysical applications.

Starting at z' 30, Population III stars begin to form from pristine (H, He, H2) gas in mini-halos with

virial mass Mvir & 105−6.5M� (Bromm, 2013). After formation, Population III stars may directly collapse to

black holes (BHs), or if formed in the right mass range, live out a main sequence followed by a supernova (SN)

of some type (Woosley & Heger, 2015). The SNe considered in this work fall into three categories determined

by the stellar mass of their progenitor: Type-II supernovae (SNe), hypernovae (HNe), and pair-instability

supernovae (PISNe). Depending on the mass of the star and mass of its host halo, the SN may completely

disrupt the halo, ejecting the majority of gas and metal (Whalen et al., 2008b), effectively preventing any

further star formation until the gas has recycled back into the halo and cooled (Tumlinson et al., 2017).

Even if a Population III star is outside the mass range for SN, it will still emit ionizing radiation

for its main sequence lifetime before collapsing to a BH. Such radiative feedback has been shown to shut

down continuing star formation in its vicinity (Whalen et al., 2008a; Wise et al., 2012; Hopkins et al.,

2019), limiting the conversion of gas to stars in star forming regions. Unfortunately, having the extremely
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high resolution (. 20 pccm1, MDM . 104 M�) required to precisely model Population III SFF means that

simulations of large (i.e., statistically relevant to the observable universe) volumes have not been able to

approach modern redshifts (Wise et al., 2012; Xu et al., 2016; Smith et al., 2015; Hopkins et al., 2019). To

avoid the computational expense of precisely modelling the Population III era, some practitioners adopt a

metallicity floor (Hopkins et al., 2018), while others altogether disregard the effect of Pop III pre-enrichment

on star formation (Vogelsberger et al., 2014). Neither of these simplifications account for the fact that

enrichment by Population III stars is (a) non-uniformly distributed in space, (b) rare, and (c) necessary for

enriched star formation. Multiple recent works have highlighted the need for a more intelligent model for the

Population III era: Jeon et al. 2017 and Hicks et al. 2021 have shown that extremely low metallicity stars

may form in halos that have been enriched by an external Pop III SN event, which represents a sequence of

star formation that is impossible to model using the above simplifications. The lack of precision modelling

of the Population III era is additionally cited as a potential cause for mismatches between simulations and

observations of dwarf galaxies presented in Wheeler et al. 2019. Regan et al. 2017 attempted to determine

how super-massive black holes could form from primordial halos. They determine that the environment

of a protogalaxy must avoid Population III star formation to enable the collapse of the protogalaxy into a

black hole–simplistic models that assume a metallicity floor or ignore the metal contribution to enriched

star formation will never be able to capture such a phenomenon. These prior works and the limitations of

currently used simplifications both highlight the need for a model that can bridge the gap between precision

full-physics simulations and the current methods that ignore the “initial conditions” of metallicity in the

universe.

While artificial neural networks (ANN), and particularly deep convolutional neural networks (DCNN),

have been used for image recognition for nearly a decade since AlexNet (Krizhevsky et al., 2012) was used

to classify images in the ImageNet dataset, they have also begun to foray into varied scientific applications,

e.g., classifying observational images of radio galaxies (Aniyan & Thorat, 2017), predicting hydrodynamics

quantities and modelling turbulence (Jin et al., 2018; Mohan et al., 2019), and determining the halo occupation

distribution of galaxies from a dark matter distribution (Zhang et al., 2019). Another class of emerging

scientific ANN are emulators–models that supplant all or part of the application, of which, one generalized

approach (DENSE) has been shown to accelerate some computations by up to 109× (Kasim et al., 2020).

1Comoving units have -cm appended to the base unit throughout this paper; the base unit is assumed to be proper.
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Table 2.1. Source simulations for train/validation/test data.

Name SFF dxroot[kpccm] dxmin [pccm] Lmax MDM[M� ] z f inal Cosmology
PHX256-1 w2012 10.183 19.89 9 2.384×104 13.57 Ωλ = 0.6889
PHX256-2 w2012 10.183 19.89 9 2.384×104 13.86 Ωm = 0.3111
P3N-128 None 20.366 156.8 7 1.910×105 10.0 σ8 = 0.811

PHX256-HYD None 10.183 156.8 6 2.384×104 18.05 n = 0.968

Note: The width of the root grid cell, dxroot , width of a cell at the most refined level, dxmin, dark matter
particle mass (MDM) and maximum AMR level Lmax are shown for each simulation. All analysis in this work
used data from these simulations up to the final redshift z f inal . SFF denotes whether the simulation includes
star formation (w2012 model from Wise et al. 2012) or not (None). The final column shows the cosmological

parameters common to all simulations (The Planck Collaboration et al., 2014).

The DENSE model shows great promise in scientific application, but is limited to scalar inputs; a model

that evaluates the hydrodynamic state of a running simulation would require a different design paradigm.

Motivated by the monumental advancements in the field, this work presents a novel surrogate model for

pre-enrichment using trained DCNN to identify primoridal star forming regions. This work will be coupled

with a following work to predict Population III stellar feedback influence, where the entire model will function

without resorting to halo finding and relax the severe resolution requirements of modelling the Population III

era, accelerating the precision modelling of cosmological simulations.

Precisely predicting the location of star formation is a two-fold task: a small 3D binary classifier

based on seminal image classification architectures (He et al., 2015; Huang et al., 2016; Szegedy et al., 2014)

will quickly analyze potential 3D regions; if one is classified as star forming, an inception based (Szegedy

et al., 2014) U-Net (Ronneberger et al., 2015; Zhang et al., 2020) adapted to 3D will predict star forming

voxels. The rest of this paper outlines the development of the first phase of this feedback algorithm, to identify

star forming regions, as follows: In Section 2.3 we outline the simulations and methods used to generate

training data; Section 2.4 presents the network architectures used and discusses the parameter exploration

that led to our design; we test the DCNN designs and present the results in Section 2.5, discuss the results in

depth in Section 2.6, and summarize our findings in Section 2.7.

2.3 Simulations and Data

2.3.1 PHX256 Simulations

Training neural networks depends on copious amounts of data. To that end, we used the astrophysical

adaptive mesh refinement (AMR) simulation code Enzo (Bryan et al., 2014; Brummel-Smith et al., 2019b)
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to produce two simulations (PHX256-1 and PHX256-2) from which to draw training, validation, and test

data. Table 2.1 summarizes the simulations used within this work. The PHX256-1,2 simulations are modeled

after the Renaissance Simulations (Xu et al., 2016) in terms of included physics, parameters, and resolution.

Both simulations have identical Planck 2014 cosmological parameters: Ωλ = 0.6889,Ωm = 0.3111,Ωb =

0.04898,σ8 = 0.811,n = 0.965 (The Planck Collaboration et al., 2014), but use different random seeds in

the initial conditions, generated using MUSIC (Hahn & Abel, 2011). While the Renaissance Simulations

used a zoom-in simulation setup with a hierarchy of static nested grids, we simulate a periodic box of size

comparable to the finest nested grid in the former, at identical mass and spatial resolution. The simulation

volume for both PHX256 simulations is 2.613 (Mpc)3 in extent, with 2563 root grid cells and dark matter

(DM) particles and 9 levels AMR; the cell width at the deepest AMR level is 19 pc. With the given cosmology,

the DM particles have mass 2.38×104 M� (Mdm), and the baryon mass (Mb) in a root grid cell of average

density is 1.17×103 M�.

Refinement of the AMR grid occurs based on Mb and Mdm, the baryonic and dark matter mass of a

cell, respectively, with the minimum mass for refinement being 3 times the initial values above (Mmin). At

each iteration, any grid cell on level l with Mcell ≥Mmin×2−0.4l will be refined to the next level; the grid

refinement is super-lagrangian, so that the AMR levels will have Mcell < Mroot grid . In addition to the mass

criteria, any cells with Population III star particles are refined to the level such that the supernova radius

parameter (10 pc) is resolved by ≥ 4 cell widths. With resolved halos defined as those with ≥ 100 DM

particles, the minimum mass of a resolved halo in the PHX256 simulations is 2.3×106 M�. We include

radiation hydrodynamics using the Moray ray-tracing solver (Wise & Abel, 2011), with Population III and

enriched star clusters as radiating sources. A uniform, z-dependent Lyman-Werner background is included to

account for H2 dissociating radiation sources originating from outside the simulation volume. Nonequilibrium

primordial gas chemistry for the 9 species H, H+, H−, H2, H+
2 , e−, He, He+, He++ is computed, and radiative

heating and cooling of the gas includes both primordial and metal-line cooling contrbutions as in Smith et al.

2008. All simulations in this work were run on the TACC-Frontera supercomputer, with the PHX256-1,2

consuming ∼ 500 k cpu-hours total.

Although the PHX256-1,2 simulations are distinct simulations, PHX256-2 uses identical physical

models and resolution with different initial conditions as compared with PHX256-1. The identical parameters

include the total mass in the box, where the primary difference is in the spatial distribution of density peaks
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and troughs, whose magnitude is determined by the cosmological parameters common to both simulations.

For this reason, we treat the two simulations as part of the same distribution of star formation examples.

2.3.2 Star Formation

Since this work aims to predict star formation, we will briefly review the relevant algorithms here.

For a more detailed review of star formation in Enzo, please refer to the Enzo documentation2.

The PHX256 simulations both include Population III single star and Population II star cluster

formation. At each grid timestep, the finest grid cell at each location is evaluated for star formation. The

Population III formation criteria and their parameter values which are checked are:

• Number density n≥ 100.

• H2 density: ρH2/ρb ≥ 10−3 .

• Metallicity3: Z ≤ Zc with Zc =−5.5 for Population III formation. Population II formation requires

Z ≥ Zc.

• The freefall time should be less than the cooling time: t f f < tcool

• Converging gas flow: ∇ · vvvgas < 0.

If these criteria are met, a Population II (Z > Zc) or Population III (Z < Zc) star particle is formed from a

sphere containing twice the mass of the star centered on the star forming grid cell. In the Population III case,

the particle represents a single star with mass taken from the a modified salpeter IMF of the form

f (logM)dM = M−1.3exp
[
−
(

Mchar

M

)1.6]
dM, (2.1)

with Mchar = 20 M�. Population II particles are formed if Z > Zc (the H2 requirement is ignored). In this

case, a single particle represents a radiating stellar cluster with Mmin = 1000 M�, assuming an unmodified

Salpeter IMF. Although the grid cell that was identified for Population II star creation must have Z > Zcrit ,

the gas surrounding likely has lower or higher metallicity: when mass-averaged into the star particle, the

resulting particle may have Z 6= Zcell .

2https://enzo.readthedocs.io/en/latest
3Z denotes log metallicity relative to solar. With metal mass Mz, Z = log Mz

Mb
− log Mz,�

M�
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2.3.3 Data Reduction and Preparation

Both simulations output the simulation state every 200 kyr, from z = 30 to the final redshift noted in

Table 2.1. Between z = 30 to z = 10, there will be 1806 individual data outputs that are a snapshot of the

entire simulation domain. This project serves as a proof of concept, so uses all simulation outputs up to their

most progressed state (z f inal in Table 2.1). Future work will progress simulations to z≤ 10 to incorporate

lower-z data into the datasets. In this method, we assume that Population III formation is independent of z. In

other words, we train our models on star formation events across a range of redshifts without treating data at

different redshifts as an isolated distribution of star formation. The justification for this is the set of criteria

that must be met to form a Population III star in a fully resolved simulation (bulleted list above) depends only

on local conditions which are decoupled from global conditions. The one exception is the globally evolving

UV Lyman-Werner background, which affects the H2 fraction of the gas, which in turn enables the gas to cool

and condense into stars. However, since our model includes the H2 fraction, this global influence is taken into

account. In support of our assertion that redshift is not an important parameter of the problem is the analysis

of Xu et al. 2016, who showed that the statistical properties of high-z dwarf galaxies in the Renaissance

Simulations were insensitive to redshift, but rather principally dependent on the halo virial mass. There,

galaxies form from gas pre-enriched by Population III stars whose formation process is modeled directly.

The simulation outputs occupy > 75 TB in their unprocessed state at the current redshifts. Although

copious, this raw data is not acceptable for input to a neural network, so the both simulations are post-

processed to generate training, validation, and testing data, as well as to reduce the size of the data to a

more manageable footprint. The final dataset counts, as derived from the following process, are tabulated in

Table 2.2.

To generate model input data, we use pairs of snapshots from a single simulation, {D,D−1}, where

D is the current output and D−1 is the output immediately prior. Each D output is checked for new star

particles since D−1. If found, we generate a uniform grid with volume (9.98 kpccm)3 centered on the new

star particle in D using YT (Turk et al., 2011). Each hydrodynamic and color field in the region in D−1 is

saved to this cube. To label the star location, we flag cells of a 33 cube centered on the star forming grid cell

as star forming voxels. For sample augmentation, we additionally generate nshifted volumes that are centered

randomly, but still contain the target star particle. After all new stars are accounted for, we generate random

samples of regions in D−1 with the restriction that any candidate volume must have a volume average density
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Table 2.2. Summary of final dataset for training, testing, and validation

Partition Nstars NSFR NnSFR Ntotal

Train 1564 9380 72132 81512
Validation 67 412 6027 6439

Test 630 3782 23449 27231
Note: The raw number of stars in each partition is given by Nstars, the number of star forming regions after

data augmentation by NSFR, and the total number of non-star forming regions by NnSFR

(〈ρ〉) greater than the mean(ρ̄): 〈ρ〉/ρ̄≥ 1.0. There are nstar(1+nshifted)+nstar×50 samples generated for

each snapshot of the simulation, where we set nshifted = 5.

For PHX256-1, samples are separated into training and validation, which is randomly determined for

each volume during initial data reduction while ensuring that volumes with the same star particle belong to

the same split. This proof of concept uses 81,512 (9380 with stars) training samples with 6,439 (412 with

stars) validation samples. There is a lower ratio of star containing volumes in validation because we take

care to remove volumes that also contain a star in the training dataset. To ensure a pristine test dataset, we

perform data reduction as above on PHX256-2, generating 27,231 (3,782 with stars) samples exclusively for

the testing dataset.

In the final step of preparation, each sample is scaled by the standard deviation and mean of all

training data, i.e., for density, ρscaled = (ρ−〈ρ〉)/〈σ(ρ)〉 for 〈ρ〉, the average voxel density in training and

〈σ(ρ)〉, the averaged standard deviation of voxel density in training data.

We choose which hydrodynamic fields to train on based on our knowledge of star formation criteria

in Enzo. Each volume has 5 channels as input: baryon density (ρb), H2 density (ρH2), gas velocity divergence

(∇ ·ν), total metallicity (Zsum), and total (kinetic + thermal) energy (ET ). Our selection of fields can also be

based on physical intuition: Population III star formation occurs only in regions with high ρB, ρH2, and very

low Zsum. ET serves as a dual probe: strong radiation fields will increase temperature, thereby increasing

thermal energy, while fast-moving gas would increase the kinetic energy. Star formation is not expected in

either fast moving or hot gas, so having a high value of ET should disqualify the region for Population III star

formation. The effect of Zsum is essentially binary: Zsum ≤ Zcrit should enable Population III star formation,

but any other case should immediately disqualify the region. The ∇ ·ν field should immediately disqualify

star formation if the gas is not converging.

Although a model with fewer fields may appear effective, losing any of these probes into the
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Figure 2.1. The basic convolution block and inception block used in this work. (a): 3D convolution with
K3 filter (K-Conv) used throughout this work. By default, every convolution is followed by dropout, batch
normalization, and ReLU activation. The output dimension is unchanged, with Nout channels. (b): An
example Inception block (IB) used throughout this work. A copy of the input is processed in four branches
with the outputs from each branch concatenated (⊕) together to form the final output. The convolutions
follow the convention of K-Conv in (a), except that the 1-Conv blocks in the middle two branches have no
activation function and dropout is applied only after the last convolution in each branch. Network width can
be tuned by the parameter N0. The channel numbers in the IB are used in SINet (section 2.4.1), IBs in IUNet
(section 2.4.2) use simplified values with each branch outputting N0/4 channels.

hydrodynamical state would be expected to not be as robust across all redshifts. For example, if ρH2 is

ignored, the model may start to fail after the LW background becomes strong enough to dissociate H2 in

relatively dense gas. If ET were removed, the model would have to learn to infer the energy of the gas from

∇ ·ν, while losing all probes into the temperature, except that ρH2 and ρ would likely be lower at higher

temperature.
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2.4 Network Design

FCL 1: Nfc = 8 x Nout

FCL 2: N=256

FCL 2: N=64

7-Conv: Ncin,N0
Stride 2, 643→ 323

3-Conv: N0-3N0
Stride 2, 323→ 163

KB1:  3N0,Nmid

AveragePool: D3
in →23

SFRnSFR

Input: 643 , Ncin

KB2: Nmid,Nout

MaxPool: 163→83

Figure 2.2. Small classifier design used in this work. Blocks indicate a layer of processing, with input
and output channels notated. Data is initially processed in two standard convolutions with filter 73 and 33,
with stride 2 to reduce dimension by half. These are followed by two key blocks(KB1, 2), with another
max-pooling after KB1. Before the fully connected layers (FCL), the output of KB2 is average pooled to
{Nbatch,Nout ,2,2,2}. All layers use ReLU activation. The final output is two classes, {nSFR, SFR}. The
parameter N0 can be used to tune the width of the network while maintaining the same architecture. In
principle, the KB can any specialized processing block, e.g., an inception, densely connected, or residual
block, as seen in Figures 2.1 and 2.3.

In a grid-based simulation code like Enzo, the state of the simulation is stored on a fixed grid, where

quantities like baryon density are stored as cell-centered quantities. Every quantity that is advanced by

the simulation is tracked on the grid, or derived from quantities that are tracked there. Therefore, when
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inspecting a hydrodynamical simulation, it can be viewed as a 3-dimensional volumetric image, where each

hydrodynamic quantity is analogous to the RGB color channels of a typical image. Of course, different

hydrodynamic fields may carry nearly independent information, so the analogy to color channels is only

surface deep; nonetheless, this logic leads us to classify volumes of a simulation as if they were volumetric

images with hydrodynamic information as channels. Such an approach lets us take advantage of the numerous

developments in the field of computer vision for this problem.

We use a two-stage approach to predict localized Population III star formation. The first stage (S1) is

a classifier used to quickly decide if a potential region is capable of forming stars in any of its volume. If the

classifier identifies a star forming region, it is followed by a more complicated voxel segmentation network

(S2), used to identify which voxels within the volume are forming stars. The module composed of S1 and S2

(StarFind) must agree on the star forming state of the volume in order to classify the volume as star forming.

All of the architectures presented here are implemented in Pytorch (Paszke et al., 2019) and were trained

using 4 K80 GPUs on the SDSC-Comet supercomputer.

3-Conv:
N0, 2N0

3-Conv: 
2N0 ,2N0

Input: D3,N0

Copy: N0

Out: 2N0

3-Conv:
N0, 2N0

3-Conv: 
2N0 ,2N0

Input: D3,N0

out + copy: 
2N0

(a) (b)
Output: 
D3, 2N0

Output: 
D3, 3N0

Figure 2.3. Key blocks for small classifier. Both versions accept a D3 dimensional input with N0 channels.
(a): The DenseNet block that replaces KBs in SDNet. The input is copied, and concatenated (⊕) to the output
after the convolutions. (b): The ResNet block that replaces KBs in SRNet. The input is copied and added to
the output after the convolutions.
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2.4.1 Stage 1: Classification Network

We tested various network architectures to be used for classifying regions as star forming (SFR)

or not star forming (nSFR). Initial tests included 3D adapted versions of 16-layer ResNet (He et al., 2015),

16-layer DenseNet (Huang et al., 2016), and GoogLeNet as described in Szegedy et al. 2014, however it

quickly became apparent that these models were too complex for the task at hand. To reduce the model

complexity, this work uses small classifiers based on ideas from those seminal papers, with vastly reduced

network depth. In addition to changing the depth of the network, this work also implements several changes

to the above architecture designs:

• Number of input channels represents input hydrodynamic fields and is a hyperparameter.

• The network width is another hyperparameter, tunable using the number of channels at the first layer,

N0.

• Each convolution, regardless of base architecture, is followed by dropout, batch normalization, and

ReLU activation, with exceptions in Inception blocks (IBs) (Figure 2.1).

Figure 2.1 describes the basic convolution and IBs used throughout this work. By default, the

convolution block has a 3D K3 convolutional filter, dropout with probability 0.2, batch normalization (Ioffe &

Szegedy, 2015), and ReLU activation. The default stride and padding are set such that the input dimension is

unchanged. In the interest of preserving spatial relationships while reducing over-fitting, dropout zeros the

output of an entire channel in the output of the layer (Tompson et al., 2014). The IBs presented in Figure 2.1

are used in the classifier architecture. In principle, all channel numbers in the IB are tunable hyperparameters,

however this parameter space was not explored in this work.

To create a modular and minimal effective classifier architecture, we designed the small classifier

networks as shown in Figure 2.2. These architectures are inspired by GoogLeNet, DenseNet, and ResNet,

but are significantly shallower. After initial convolutions common to each architecture, each small classifier

network is composed of only two key blocks, as seen in Figure 2.2. The key blocks may be inception modules

(SINet), standard convolutions with residual skips (SRNet), or densely connected convolutions(SDNet)(see

Figure 2.3). The rest of this work will focus exclusively on the use of small SINet, SDNet, and SRNet,

as there was no appreciable gain in accuracy to using the full architectures from ResNet, DenseNet, or

GoogLeNet, while inference and training were much slower with significantly higher memory consumption.
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Before final classification, we remove dependence on input dimension by reducing to a {Nchannel,2,2,2}

volume via average pooling before the fully-connected layers. All network variations use Adam optimiza-

tion (Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.999. Although this is a physics oriented problem, the

prediction is a simple binary classification. With this in mind, we minimize the cross entropy loss given by

L(ŷ,y,c) =
{

w(c)
[
− ycŷc + log

(
∑

j
exp(ŷ j)

)]}
, (2.2)

L =
∑c L(ŷ,y,c)

∑c w(c)
(2.3)

where w(c) represents weights given to the cth class (here, classes = {0,1}= {nSFR, SFR}), the network

output (ŷ j) and true label (y j).

A uniformly sampled dataset of the simulations would have ≪ 0.001% of the volume classified as

SFR. We deal with this extreme bias via multiple methods: a) sampling is selective, as described in Section

2.3.3, and b) we use weights in the loss function with w = [1,4] for {nSFR, SFR}. Several combinations

of weights were explored via random search in hyperparameter tuning, where we chose the weight value to

minimize false positive results while maximizing accuracy (i.e., we prefer false negative predictions over

false positive predictions). We additionally employ L2 regularization to guard against overfitting with L2

parameter λ = 10−4. We use a plateau method to reduce the learning rate: the rate is reduced by half if the

loss on the validation dataset has not reduced for 10 epochs until a minimum learning rate of 10−8. We also

employ a checkpointing method, saving model weights and parameters each time a new record low loss is

achieved on validation data. The final model used in the following sections is the checkpoint using these

best-loss weights.

Table 2.3. Tested classifier architectures for S1.

Model Key Block N0 Nt p[M] Nb EBL

SINet IB 16 0.41 480 160
SDNet Dense 32 14.67 460 156
SRNet Residual 32 21.29 460 193

Note: All models were trained on input data with dimension dim3=643. Nt p is the number of trainable
parameters in the model, and Nb is the batch size. The Key Block describes the architecture used in place of

KB1 and KB2 in Figure 2.2. The epoch of the checkpoint with the best validation loss, which is used for
evaluation in this work, is recorded in EBL.
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Figure 2.4. Customized Inception U-net used throughout this work. The top concatenation arrow (grey)
is not used in this work to force processing at deeper layers of the network. The parameter N0 is used to
determine the width of the network as a whole, where we use N0 = 4. The final convolution takes the network
output of N0 channels to 2 classes, {nSFV, SFV}. Each orange block is an IB (Figure 2.1) annotated with
data dimension, input channel number and output channel number. The output of the encoder branch IBs
is copied and concatenated to the appropriate level of the decoder branch before the IB is processed. The
MaxPool3D operations use filter 3, stride 2, padding 1, so that the output has dimension reduced by half. The
Transpose3D blocks on the right side have kernel size 2, stride 2, and padding 0 to mirror the reduction of the
max pooling in the encoder branch. Each IB here follows the construction presented in Figure 2.1.

2.4.2 Stage 2: Segmentation Network

After classification, we use deep neural network architectures designed for pixel segmentation, which

we have adapted to 3D voxel segmentation, to identify star forming voxels (SFVs) in stage 2 (S2). Two

architechtures were tested here: U-Net (Ronneberger et al., 2015), and a variation of U-Net motivated by

Zhang et al. 2020 that uses IBs instead of standard convolutions (IUNet). In early testing, U-net was plagued

by false positives, and was abandoned in favor of the IUNet architecture presented in Figure 2.4. As outlined

in section 2.3.3, each star in a SFR is labelled by 27 cells in a 643 box, so the data is extremely biased. To

deal with this bias, we use class weights in the cross entropy loss function, with w = [1,9] for classes {SFV,

non-SFV(nSFV)}. As with S1, this value is the result of minimizing false positive results, while maximizing

volumetric accuracy during a random search centered at w = [1,8] as used in Zhang et al. (2019). As with

the classifier networks, we use the Adam optimizer with L2 regularization using λ = 10−5. We use an initial

learning rate of 5×10−3 with the same learning rate plateau adaptation method as S1.

IUNet functions similarly to an autoencoder, replacing fully connected layers with convolutional IB.
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The encoding branch reduces dimensionality via max pooling while increasing the number of channels via

concatenation and convolution operations until the lower bottleneck, where the process is reversed in the

decoding branch. The encode and decode layers are connected by concatenating the encode output to the

decode input at a given layer. Finally, the output is reduced to two channels, representing nSFV and SFV, for

each voxel in the region.

The skips in IUNet allow more efficient back-propagation and allow information to flow directly

from encoding branch to decoding branch, potentially reducing the size of the training set required to attain a

robust and generalizable model (Ronneberger et al., 2015). The skip connections may also have a detrimental

effect here though, as star formation is highly correlated to peaks in the density field, so the entire network

may be skipped with predictions being made directly from the input fields. As seen in Zhang et al. 2019, to

reduce the direct communication from the input fields to the final prediction, we removed the top most skip

connection to force processing at deeper layers of the network. The IB architecture has several different sizes

of convolutional filters (K = 13,33,53), which can give sensitivity to different scales of features in the data,

e.g., 100 pc scale infalling gas toward a density peak 1-10 pc in radius. We hypothesize that this multi-scale

sensitivity from IBs is likely why IUNet outperformed our standard U-net architechture early on.

Although S2 minimizes cross-entropy loss for training, we also calculate the intersection over union

(IoU) metric to judge the quality of the S2 voxel-wise predictions. If Pt is the set of positive predicted voxels,

and PT is the set of ground truth (GT) positive voxels, the IoU is given by

IoU = 1− Pt ∩PT

Pt ∪PT
. (2.4)

With this representation, IoU = 0 is a pefect prediction with no false negatives or false positives.

2.5 Results

2.5.1 S1 Volume Classifier

We use several primary metrics to quantify the success of an S1 model: (a) Raw accuracy as simply

A = Ncorrect/Ntotal , (b) precision, P = PT/(PT +Pf ), with true positives PT and false positives Pf , and (c)

recall, R = PT/(PT +N f ) with false negatives N f . We will also extend the P and R metrics with the F1 score,

given by F1 = PT/(PT + 0.5(Pf +N f ) = 2×P×R/(P+R) to provide another measure of classification
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Table 2.4. Results of S1 on testing data from PHX256-2.

Model Accuracy P R F1

SINet 27201/27231 (0.9989) 0.9952 0.9947 0.9950
SDNet 27201/27231 (0.9989) 0.9927 0.9976 0.9951
SRNet 27198/27231 (0.9988) 0.9924 0.9968 0.9946
IUNet 27112/27231 (0.9956) 0.9932 0.9960 0.9946

Note: We also present S2 using IUNet as if it were used to classify SFR. Every classifier tested is able to
achieve high accuracy & 99.8%, reinforced by very high precision P, recall R, and F1 score (as defined in

Section 2.5.1).

ability. With these definitions, perfect result would have P = R = F1 = A = 1. We finally present the

completeness (Rosenberg & Hirschberg, 2007) considering SFR and nSFR as two clusters that must be

separated by the S1 classifier. Although A is of limited use in these biased datasets, we present it as evidence

that the models far outperform blanket SFR or nSFR predictions. Figure 2.5 presents the P and R measures

along with the loss for training and validation of all tested S1 architectures. SDNet and SRNet, despite

having similar memory requirements as SINet in training, have significantly more trainable parameters. Their

increased complexity appears to affect how quickly they converge to a trained state, as they seem to have

similar accuracy to SINet at much earlier epochs. This effect is particularly noticeable in the recall. On

testing data results presented in Table 2.4, we find that all three S1 models perform extremely well, with

all three having A≥ 0.9988. All three additionally have very similar precision and recall, as measured on

their volume-wise classification. In F1 score, SDNet performs best (F1 = 0.9951), followed closely by SINet

(F1 = 0.9950) and SRNet (F1 = 0.9946). We do not measure the inference rate of S1 as it does not produce a

desirable prediction in this work; it needs to be coupled with S2 to localize star formation to a precise region.

2.5.2 S2 Voxel Segmentation

Loss, 〈IoU〉, and volumetric accuracy (Acc) for training and validation for S2 are presented in

Figure 2.6. S2 is a capable volume classification model, with A > 0.994 in both training and validation. After

training, S2 was also applied independently to the test dataset (Table 2.4), where S2 classified regions with

A = 0.9956 with P = 0.9932, R = 0.9960, and F1 = 0.9946, indicating that S2 is as capable as the S1 models

at volumetric classification for SFRs. Despite this high accuracy in classifying regions, S2 struggles to match

individual star forming voxels, with 〈IoU〉 > 0.819. Indeed, if the voxel-wise accuracy is quantified by

averaged precision and recall, we find 〈P〉 ≥ 0.258 and 〈R〉 ≥ 0.875 yeilding 〈F1〉 ≥ 0.399. These combined
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Figure 2.5. Training (a) and validation (b) results for the training of small classifier architectures. We further
quantify the accuracy with the precision (P) and recall (R) measures, as defined in section 2.5.1. Despite
the bias in our samples, the errors in S1 are dominated by false positives indicated by the relatively lower P
across all architectures. N/1000 represents one output every 10 iterations within each epoch–validation has
fewer data points because there are fewer validation iterations in each epoch.

Table 2.5. Results of different configurations of StarFind modules on testing data from PHX256-2.

S1 〈IoU〉 P R F1 Completeness TSS HSS
SINet 0.8191 0.2590 0.8750 0.9950(0.3997) 0.9752 (0.2354) 0.9940 (0.8571) 0.9942(0.3626)
SDNet 0.8196 0.2584 0.8759 0.9954(0.3991) 0.9746 (0.2349) 0.9964(0.8571) 0.9943(0.3626)
SRNet 0.8195 0.2592 0.8754 0.9950(0.3999) 0.9724 (0.2356) 0.9956(0.8571) 0.9937(0.3626)

Note: Each row represents the StarFind module using a different architecture for S1. The averaged IoU
(〈IoU〉), P, and R pertain to voxel-wise predictions within the regions. F1, Completeness, true skill score

(TSS), and Heidke skill scores (HSS) are reported in volumetric classification and voxel-wise classification in
parenthesis.

measures show a significant propensity to false positive SFV. This is reinforced by simple statistics; there are

an average of 36.34 (∼ 3.33 voxels) true SFV in each SFR, with σ = 14.78[4] while S2 predictions average

89.86 (∼ 4.43) SFV per SFR with σ = 45.9.

The predicted region still covers the GT voxels, as indicated by the high value of the voxel-wise

recall. Aside from recall, this behaviour can be quantified in a spatial sense: if we define a star forming center

as the average location of SFV, the euclidean distance from the prediction center to GT center is another

measure of prediction quality. Here, we measure the euclidean distance in voxel widths, and find that the

average distance between SFV center and GT center is 1.90 voxel-widths. Further, the standard deviation of

the distribution of distances is 2.368 voxel-widths, while the largest observed distance is 23.72 voxel-widths.

4σ here represents the standard deviation of the distribution
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Figure 2.6. Accuracy (top, Acc), averaged IoU (middle, 〈IoU〉), and cross entropy loss (lower, L) from
training and validation of IUNet. N represents intra-epoch recordings, not end of epoch data, and validation
data has been expanded to align with training. These data reflect epochs of training up to the best recorded
validation loss.

In examining the distribution of distances, we find that 98.1% of SFV centers are identified within 10 voxels

of the GT central point, and that 0.796% of centers are more than 15 voxel-widths from the ground-truth

center. This metric will likely be improved with further training and inclusion of more data.

The single largest shortcoming of using S2 for all processing is in its inherently slower computation

time. Processing every volume through S2 can only be done at a rate Rproc of 54.67 volumes/second, when

only timing the inference of the model. Given that > 90% of volumes contain no stars, a quick, simple model

that can discard obvious nSFR would greatly expedite the inference of the final model. For this reason, we

chain together S1 and S2 to form the StarFind module.
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2.5.3 StarFind Module
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Figure 2.7. Receiver operator characteristic plots for volumetric (SINet) and voxel-wise (IUNet) classification.
The decision boundary represented by various points is given by the color scale. Both models far exceed
the performance of a random classifier, given by the hashed line. The AUC is 0.9977, 0.9961 in training for
SINet and IUNet respectively, and 0.9996, 0.9544 in testing.

To process a sample through the StarFind module, we filter the sample volumes using S1, only

passing those where S1 predicts SFR on to S2. The two models are designed to be independent to test the

efficacy of different combinations of architectures. The results of this test are tabulated in Table 2.5. The

completeness of volumetric classification is 0.9724, while voxel-wise completeness is lower, at 0.2349. This

lower classification skill in voxel segmentation is obvious in all presented metrics including true skill score

(TSS) and Heidke skill score (HSS). The low voxel-wise P and high R imply that all StarFind variations

suffer from false positive voxel predictions, reinforced by relatively lower F1 and voxel-wise skill metrics.

S2 has high volumetric classification skill overshadowed by slow processing; implementing an S1 model to

filter regions increases the rate of processing samples (Rproc), by up to 8×, and may increase some or all

of the F1, P, and R scores for IUNet seen in Table 2.4. Also of note is that the actual architecture of S1 is

largely irrelevant given the models developed here; SINet, SDNet, and SRNet all perform very similarly in

all evaluated metrics. Unfortunately, the inclusion of S1 was unable to significantly improve the voxel-wise

predictions (e.g., 〈IoU〉 or completeness) of S2 by prefiltering nSFR–this implies that there are very few false

positive regions being identified by S2 that are not also classified as SFR by the various S1 models.
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Figure 2.8. Comparing the density field of simulations with the same ICs. 2.8a shows the PHX256-2
simulation at z = 21.19 with Population III star forming regions annotated. P3N-128 is shown at a similar
redshift in 2.8b–the density peaks in P3N-128 are both less extreme and more diffuse due to lower mass and
force resolution and StarFind predicts no star forming regions.

The quality of the StarFind module is further quantified in receiver operator characteristic (ROC)

curves in Figure 2.7. Given the similar behavior for S1 models, we only present these results using SINet as

S1. The ROC curve plots the true positive rate (TPR, Sensitivity, R) and false positive rate (FPR, 1-Specificity,

FPR = Pf /(Pf +Nt for true negatives Nt) while varying the classification decision boundary, given by the

color scale. A completely random classifier would follow the hashed line, where SINet and IUNet drastically

outperform that behaviour. These plots reinforce that SINet and IUNet are capable and accurate classifiers

on both training and testing data, which is further reinforced by the area under the curve (AUC, AUROC)

AUC = 0.9977,0.9961 on the training dataset for S1 and S2 respectively. The AUC is similarly high on the

test dataset with AUC = 0.9996,0.9544 respectively.
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Figure 2.9. SFRs identified in PHX256-HYD at progressing redshifts. The middle panel is at the same
redshift as PHX256-2 presented in Figure 2.8a. There are more SFR predicted, e.g., at z = 21.18, than in
PHX256-2, however we have verified that the missing SFRs are present in PHX256-2 by z = 20.86.

2.5.4 Generalizability

In all training, testing and validation data, the data was prepared identically, from simulations that

have the required resolution and physical models for Population III star formation. As a generalization test,
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Table 2.6. Found volumes using the StarFind module as designed for simulations.

Module Dataset z N f

SINet+S2 PHX256-2 21.18 17
SINet+S2 PHX-HYD 21.18 21
SINet+S2 P3N-128 19.0 1

Note: We annotate the redshift (z) of the output, as well as the number of volumes (N f ) found at that redshift.
Note that P3N-128 only has SFV found at a later z: this is due to resolution effects of the actual simulation,

highlighting a limitation of applying StarFind to low-resolution data.

StarFind was applied to simulations that a) do not have the same physics models, and b) do not have the

same resolution. PHX256-HYD has the same cosmological parameters as the numbered PHX256 series,

however features fewer AMR refinement levels (see Table 2.1) without Population III star formation enabled.

This simulation will test the models dependence on finest-grid resolution, and since it shares ICs with

PHX256-2, we would expect StarFind to identify SFR in the same areas at early times, before Population

III feedback has a chance to pollute the environment. P3N-128 has half the root-grid resolution of the PHX-

series simulations (203 kpccm3/root-grid cell), and fewer AMR refinement levels so that dxmin = 156 pccm.

P3N-128 has no Population III star formation, and has mass resolution ∼ 1/8 that of the PHX series. Ten

DM particles in P3N-128 have more mass than a halo expected to form Population III stars: this simulation

will test how StarFind performs in simulations that cannot resolve these first star forming halos.

For this test, we select a data output, and iterate through all AMR grids in the simulation hierarchy.

Any grids less than level 3 are automatically skipped, as they cannot qualify for star formation. Grids at a

deep enough AMR level are tiled in 103 kpccm3 volumes and each volume with 〈ρB〉/ρ̄ > 2 is passed through

the StarFind module. If S1 returns nSFR, the rest of the computation is skipped. If S1 returns SFR, then the

volume is passed to S2, which will return a SFV classification for each of the 643 voxels in the volume.

In the simulations without SFF, those regions that do collapse to be identified as SFR will continue to

collapse: there is no star formation to provide a sink for the gas, nor feedback to disperse or photoionize the it.

If we identify all star forming regions at, e.g., z = 21.18, then this will represent all the star forming regions

that have formed since the simulation start. Since the actual star formation rate (SF rate) will depend heavily

on the stellar initial mass function (IMF), here we aim to match the number of star forming regions, with the

assumption that a stellar IMF can then be applied to match the SF rate of higher-resolution simulations (i.e.,

PHX256).
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Figure 2.10. Test result examples from generalizability test. Fields presented are the projection of log10 of
baryon number density (nb), temperature (T ), and H2 neutral fraction (ρH2/ρ); the “Predicted” panel shows
voxels identified as SFV by S2 with the number of positive voxels annotated. (a) shows a nearly ideal result
with tightly clustered cells predicting a star forming region at a peak of density and H2 fraction. (b) shows
the interesting possiblity of finding more than one star forming region per volume. (c) shows identification of
the first identified star forming volume (8 kpccm from that in 2.10a) in an under-resolved simulation. Since
the dynamics of structure formation are less resolved, the star forming region is not found until a much later
redshift.

By z = 21.18, PHX256-2 has formed 17 clusters5 of Population III stars, with 226 individual star

particles (see Figure 2.8a): this early star formation is strongly clustered, averaging > 10 star particles per 10

kpccm cluster. With a baseline for the number of star forming regions in hand from PHX256-2, we apply

the module to PHX256-HYD. The results of applying StarFind are presented in Figure 2.9. At z = 21.18,

StarFind identified 21 regions. If compared to Figure 2.8a, we immediately identify star regions in PHX256-

HYD that are not yet present in PHX256-2. These regions however, have been verified to begin forming

stars in PHX256-2 by z = 20.86. StarFind is identifying SFR in PHX256-HYD at locations reflected

in PHX256-2, and all of the regions identified by StarFind are mirrored by or precede star formation in

PHX256-2.

Since there is no feedback implemented, a full analysis of errors incurred by using StarFind and its

feedback method is deferred to future work. Of primary interest will be the errors in star forming locations

and the metal distribution resulting from Population III stars, however we will also investigate, e.g., the

impact of early or late star formation predictions such as those seen in the PHX256-HYD.

Example projections of the predictions from our generalization tests are shown in Figure 2.10. Shown

are fields that correspond more easily to physical intuition than the fields which generated the predictions;

5Here, a cluster is defined as any group of stars all within 10 kpccm of the first identified star.
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Figure 2.11. Redshift evolution of identified SFR in P3N-128. Halos found by the HOP algorithm are
identified by light circles (scaled by virial radius). Most SFR are identified before their host halo is identified–
by up to ∼37 Myr for the first SFR predicted at z = 19.0 whose host halo is identified at z = 16.77.

we show number density nb in place of baryon density, temperature, T , in place of energy, and H2 neutral

fraction (ρH2/ρb) in place of neutral H2 density. Figure 2.10a shows an ideal prediction; the predicted

region is compact and well defined, and appears to agree with peaks in both nb and ρH2/ρb, which are

both to be expected from the star formation algorithms in Enzo. Figure 2.10b shows the prediction of two

star forming regions in one volume. While examples like this are possible, they become more common as

the collapse dynamics proceed without stellar feedback and enriched star formation to begin disqualifying

regions for Population III star formation. The dual predictions still coincide with sensible locations in the

projected fields. Figure 2.10c shows the first prediction of SFR in P3N-128, in a neighboring region near
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2.10a at z = 19.0. The relative lateness of this prediction is an artifact of structure formation dynamics in

under-resolved simulations; as seen in Figure 2.8b, at z ' 21, the density field in P3N-128 is amorphous,

showing no sharp, distinct features as seen in the higher resolution simulations.

In applying the StarFind module to P3N-128, the module identifies no star forming regions at

z = 21.38. To analyze how star formation as identified by StarFind may proceed, we iterate through all

available outputs of P3N-128 to find both the first SFR, and subsequent SFR. The results of this test are

presented in Figure 2.11. The first SFR is identified at z = 19, with more found at each subsequent output.

Figure 2.11 does not include every SFR–those that are very close together are only plotted once to aid

readability: at z = 16.77, there are 17 distinct SFR identified in P3N-128. This raw number of SFR and their

locations in the projection agrees well with those in PHX256-2 at z = 21.19, as seen in Figure 2.8a.

2.6 Discussion

2.6.1 Further Discussions of Generalizability

The StarFind module has one major goal: to identify Population III star forming regions in

simulations without the necessary resolution for star formation. The lack of resolution could present itself

in a spatial sense, as in PHX256-HYD, or in a mass sense, as in P3N-128. We find that the module cannot

completely compensate for the lack of mass resolution in P3N-128–the density peaks that would lead to

star formation are evolving at a different rate and in a different manner, with peaks being more broad and

potential star forming regions being less well-defined than a similar redshift in PHX256-2. Figure 2.8 shows

a comparison between PHX256-2 and P3N-128. Even by eye, the dynamics of collapse in 2.8b are very

different than 2.8a, with density peaks being both less extreme and more diffuse.

We can further illustrate the effect of structure formation from a halo mass function (HMF) per-

spective. Given that PHX256-2 and P3N-128 share identical initial conditions and box size, then without

resolution effects, we should expect that they have the same HMF at a given redshift. To get the HMF

(represented here by halo count as a function of halo mass), we use the HOP algorithm (Eisenstein & Hu,

1998) with overdensity threshold 100 to identify DM halos within both simulations. Comparisons of halo

number are shown in Figure 2.12. At z' 21, P3N-128 has no identifiable halos; the first ones start to appear

with virial mass Mvir ∼ 107.2−7.6 M� at z = 17.17. P3N-128 never creates low mass halos with Mvir ∼ 105−6.5

that would be expected to form Population III stars, as the particle mass is simply too high and those halos
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Figure 2.12. Halo number (N) as a function of log halo virial mass comparison between PHX256-2 and
P3N-128 at redshift annotated in the legend. Note that halo formation in P3N-128 begins at z . 17.17, and
low-mass, Population III forming halos (Mvir . 106.5 M�) are never formed in P3N-128 due to its low mass
resolution.
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are unresolved. Despite this lack of resolution, as presented in Figure 2.11, StarFind predicts stars that will

be in halos that form 10-30 Myr after the SFR identification.

The mass (particle mass or gas mass in a grid cell) is a determining factor in the effectiveness of

stellar feedback (Hopkins et al., 2019). To determine the potential difference of feedback applied at z = 19

or z = 16.77, we analyzed the mass distribution of the SFR (MSFR) as compared to the later halo (Mhalo). We

found that MSFR < 0.5Mhalo, when using the virial radius (Rvir) of the halo at z = 16.77 to define a volume at

both redshifts. Importantly, the gas is less compact in the central regions e.g., at R = Rvir/7, MSFR < 0.2Mhalo.

When we extend this analysis to all SFR identified by z = 17.59, comparing each SFR to the later halo it

is nearest to, we find that the SFR has overdensity [〈ρ〉/ρ̄]SFR . 0.5[〈ρ〉/ρ̄]halo. If halos are too massive

when they start forming Population III stars, the feedback will be confined and unable to pollute the local

environment (Whalen et al., 2008b), so applying feedback at the less dense states identified by StarFind

may reduce the effect of the massive halos found in P3N-128.

2.6.2 Error Analysis

One of the primary concerns when applying a deep learning model to a production application is

to understand how the model fails. If the failure modes are predictable, then they can be accounted for in

the deployment of the model, but if they are seemingly random, the model may not even be usable. First,

we are concerned with failures to classify in a volumetric sense, i.e., identifying “nearby” star formation is

acceptable, but misclassifying an entire region is a much more egregious failure. To analyse these critical

failures of the StarFind module, we passed every training/test/validation sample through the model, and

plotted a) the SFV labels if S1 was incorrect, or b) the SFV predictions and labels if S2 incorrectly classified

the volume. 65% of the false positives in S1 were cases where the star voxels were within 3 voxel-widths

of the border of the volume. All false positive cases of S2 were on the edge of the volume, and 75% of the

false negatives had star forming labels on the border. The star forming border is a major avenue of failure

for the module, but also an easy one to remedy. In a production pipeline, two obvious possibilities could

alleviate these failures: a) ignore the SFR if the flagged voxels are on the edge, as the routine will be called

again in < 1 Myr, at which point the SFV will have likely moved to a more central location, or b) recenter the

volume on the suspicious SFV and re-run the module to receive a more reliable result. The results in this

work used the second option to reduce false positives and negatives in analysis of the PHX256-HYD and
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P3N-128 simulations.

We can additionally examine the predictions of StarFind by comparing voxel-based quantities for

ground truth and false positive voxels. We collected the voxel field quantities for positive predictions within

the testing data, to generate Figure 2.13, which shows 2-D histograms of ρ−H2 fraction (top), ρ−Zsum

(middle), and ρ−Etot (bottom), where the total energy given is quoted in code units and metallicity is given

in Z�. Qualitatively, the distributions look similar, however there are visible artifacts in the false positive

(right) panels. Also visible in the ρH2 plot is a bimodal distribution, which is an artifact of labelling a 33

cloud as star forming, as opposed to including only the single voxel that hosts the star particle. Distributions

such as those in Figure 2.13 can be used in the future to check that the predictions from StarFind are

reasonable, or to reduce false positives simply by screening out voxels that fall far outside the distribution

from training data. We can additionally use the diffuse points in the ground truth distribution to identify

where the prototype training/test dataset is insufficient. For example, examination of the ρ−Zsum ground

truth histogram (middle-left) shows very few voxels with finite but low metallicity (Z > 10−10), where

the false positive panel shows a significant number (& 103) with 10−10 < Zsum < Zcrit . Focusing future

dataset generation on these poorly sampled spaces will increase the robustness of the final model. Guided

by Figure 2.13, we tested a simple screen that requires any SFV to have nb > 1.0. Such a simple filter, on

average, reduced false positive voxels by 11 and decreased the 〈IoU〉 by 0.02, while having no effect on false

negative or true positive predictions. Future work will increase the robustness of StarFind by increasing

training samples from poorly-sampled regions and quantifying the failures so that they can be compensated

for in a real-time simulation.

2.7 Conclusions

We have designed a classification-segmentation model using deep ANN that is capable of predicting

Population III star formation sites in cosmological simulations. This is the only method known to the authors

that can accomplish such a feat. Our findings can be summarized as follows:

1. We have found that well-known image recognition architectures (adapted to 3D) are effective at this

task, as are common pixel segmentation architectures. The choice of architecture had little impact on

classification capability given the small classifiers developed here.
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Figure 2.13. Voxel properties of ground truth voxels and false positive predictions. We present 2D histograms
of log10 density (ρ) with other hydrodynamic quantities: log10H2 fraction, log10 total metallicity (Zsum), and
log10 total energy (Etot) from top to bottom. While false positives qualitatively fall into a similar distribution
as the ground truth, there are obvious outliers.

2. The StarFind module predicts 9.983 kpccm3 star forming volumes with > 99.8% accuracy, reinforced

by volumetric classification completeness, TSS, HSS, precision, and recall.

3. The module has been applied to hydrodynamic simulations that have no star formation routines enabled

and predicted star formation in the same regions at similar redshift as high resolution full-physics

simulations.

4. In many cases, StarFind predicts star formation regions well before the formation of the host halo,

particularly in under-resolved simulations such as P3N-128. More testing will be needed to quantify

the success of StarFind in those cases.

5. By many classical measures of classification algorithms, i.e., ROC, AUC, precision, recall, F1, and

completeness, StarFind is a capable classifier in a volumetric sense. Correctly classifying volumes is

much more important (in our application) than predicting the exact location of star formation.

6. Voxel-wise predictions IUNet suffers from a high number of false positive voxel predictions, as
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indicated by low precision. It over predicts the size of localized regions in SFR, which is reinforced

by the high 〈IoU〉 and simple statistical counting of SFV. Predicted star forming regions appear well

defined (e.g., Figure 2.10), but cover a larger region than exists in the ground truth. The predicted

region still generally covers the ground truth SFV, as indicated by the high value of the voxel-wise

recall in Table 2.5.

7. Cosmology and star formation simulations are inherently multi-scale problems, and we hypothesize

that the multi-scale sensitivity of IBs is contributing to the strong performance of IUNet, as well as

SINet being quantitatively as capable as SDNet and SRNet, despite having ∼ 20× fewer trainable

parameters.

8. Utilizing voxel statistics from our early datasets is one way to increase the quality of the S2 classification

without further training or expensive calculation, or to guide further dataset generation as the PHX-

series simulations progress to lower redshift.

9. Despite these successes, fully quantifying the success of the model by comparing model-assisted

simulations with ground-truth conventional sub-grid simulations will require an active stellar feed-

back method so that regions can move beyond primordial stars and into enriched stellar population

production.

StarFind as a whole may be improved most by increasing the reliability and robustness of S2. This

is the primary goal of on-going development; it may be improved through testing different loss functions,

a combination of loss functions (Asgari Taghanaki et al., 2018; Hajiabadi et al., 2020), or improving the

representation of poorly sampled cases, as seen in Figure 2.13. Future work will also focus on analyzing the

failures of StarFind so that they can be more accurately estimated and guarded against.

This method will ultimately be used in a novel sub-grid feedback method, where SFR identified using

this algorithm will then be evolved to a post-star state using another series of deep neural networks. The goal

throughout this work was to design the proof of concept model that could be used in a production capacity

(further training and development not withstanding): to that end, here we estimate the run-time implications

of using this module to perform Population III SFF. Evolving PHX256-2 from z=21.19 to z=17.53 consumed

7K cpu-hours. Most of this time is spent evolving the hydrodynamic and radiation fields from hot supernova

remnants or Population III main sequence stars in the deep AMR levels of the volume. PHX256-HYD evolves
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the same region in 14 cpu-hours by excluding Population III star formation and restricting the maximum

AMR level. Applying the StarFind module to locate star forming regions once (i.e., one panel in Figure 2.9)

consumes ∼4 CPU-hours, processing 5.2 volumes/sec on average. To localize Population III star forming

regions every Myr would require performing this evaluation ∼ 30 times, consuming a total of 120 CPU-hours.

Most of the StarFind processing time is spent iterating through grids and disqualifying regions before they

even enter S1: only . 5% of potential regions are classified by S1, with 3% continuing to S2, where only 2%

finally qualify as SFR (0.003% of potential volumes), so we estimate that adding a feedback routine after S2

would not significantly increase the processing time of the algorithm as a whole. This method, when finalized

with a feedback algorithm, may produce & 50× speedup as compared to explicitly star forming simulations,

with more speedup likely from optimizing the final method.

This rate makes this method feasible to use inline with an Enzo simulation using inline python with

YT, particularly since the tests run here do not include optimization of any kind. We could expect further

speedup by incorporating the method into Enzo’s source C/C++ code and/or optimizing StarFind using

MPI-parallelism on CPU architecture (e.g., Mathuriya et al. 2018). Future work will focus on evolving

Population III stellar remnants in regions identified using this method, and incorporating the framework into

an Enzo simulation, along with further development and training of the StarFind module.
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Chapter 3

Connecting Primordial Star Forming Regions and
Second Generation Star Formation in the Phoenix
Simulations

3.1 Abstract

We introduce the Phoenix Simulations, a suite of highly resolved cosmological simulations featuring

hydrodynamics, primordial gas chemistry, primordial and enriched star formation and feedback, UV radiative

transfer, and saved outputs with ∆t=200 kyr. We observe 73,523 individual primordial stars within 3,313

distinct regions, forming 2,110 second-generation enriched star clusters by z≥ 12 within a combined 177.25

Mpc3 volume across three simulations. The regions that lead to enriched star formation can contain & 150

primordial stars, with 80% of regions having experienced combinations of primordial Type-II, hypernovae,

and/or pair-instability supernovae. 0.8% of the volume was enriched by primordial supernovae, with 2% of

enriched gas enriched by later generation stars. We determine the extent of a primordial stellar region by its

metal-rich or ionized hydrogen surrounding cloud; the metal-rich and ionized regions have time-dependent

average radii r . 3 kpc, with 7, 17% of regions having r > 7 kpc for metal-rich and ionized radii respectively.

We find that the metallicity distribution function of second-generation stars overlaps that of subsequent

Population II star formation, spanning metal-deficient (∼ 7.94×10−8 Z�) to super-solar (∼ 3.71 Z�) and that

30.5% of second-generation stars have Z > 10−2 Z�. We find that the metallicity of second-generation stars

depends on progenitor configuration, with metals from pair-instability supernovae contributing to the most

metal-rich clusters; these clusters form promptly after the supernova event. Finally, we create an interpretable

regression model to predict the radius of metal-rich influence of Population III star systems within the first

7-18 Myr after the first Population III star to form in the region.
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3.2 Introduction

The first galaxies form from gas that has been enriched by an earlier generation of Population III

supernovae. The initial conditions of metallicity in the universe after these first supernova events remains a

difficult problem to model in astrophysical simulations. Researchers conducting astrophysical simulations

have three practical options to determine the initial metallicity field prior to enriched (Population II) star

formation: assume a metallicity floor (e.g., Hopkins et al., 2018); assume initial star formation rates that are

independent of metallicity (e.g., Vogelsberger et al., 2013; Vogelsberger et al., 2014); or explicitly simulate

the primordial (Population III) star formation and feedback (Smith et al., 2015; Xu et al., 2016; Wise et al.,

2012; Wise et al., 2012). Ideally, all researchers would choose the last option, however the extreme small

scale (∼ pc3) of primordial molecular cloud formation (Abel et al., 2000; Bromm et al., 2002) is at odds with

the ∼ Gpc3 scale necessary to gain useful statistics of the observable universe; any simulation using current

computing facilities that can fully resolve Population III star formation is severely limited in volume, with

the largest being only ∼ 300 Mpc3 (Xu et al., 2016).

The Phoenix (PHX) suite of simulations is designed to facilitate the exploration of a fourth option

to model Population III star formation and feedback: to develop surrogate models based on deep neural

networks (DNN) as a new sub-grid method to create an heterogeneous metallicity initial condition that reflects

the spatially irregular formation of Population III star formation and feedback. Data from the PHX suite

have already been used to train StarFind, a predictive DNN based surrogate model that identifies Population

III star formation sites without resorting to halo-finding or pc-scale resolution (Wells & Norman, 2021).

Training is enabled by the PHX unique time between outputs, such that any star formation or feedback event

is recorded to disk with 200 kyr time resolution.

Although their extreme time resolution was intended to provide high resolution of star formation and

feedback events for training DNNs, the PHX suite also provides a unique opportunity to study the transition

between Population III and second generation (Population II.1)1 star formation. Studying low metallicity

stars or damped Lyman-alpha systems in observations is currently our only window into the Population III

initial mass function (IMF) (Cooke et al., 2017; Welsh et al., 2019, 2020), but the uncertainty in the IMF

(Nakamura & Umemura, 2002; Ishigaki et al., 2018) and metallicity of Population II.1 stars that could form

1Population II.1 is our designation for the first generation of metal-enriched star formation that occurs in gas enriched exclusively
by Population III supernovae. Population II stars formed from gas also enriched by earlier Population II stars is referred to as
Population II.2.
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Table 3.1. The Phoenix Simulations

Designation D V (Mpc3) zfinal

PHX512 512 141.8 14.04
PHX256-1 256 17.7 12.45
PHX256-2 256 17.7 13.27

Note: Each simulation includes the root-grid dimension (D), volume (V ), and final redshift (zfinal), which is
completely determined by run time. All parameters aside from D and V between the three simulations are

identical, see Section 3.3 for detail.

from enriching events make inferences about the Population III era difficult. Due to the fine time resolution

in the PHX suite outputs, we use them to study the formation state of small Population II star clusters, as well

as the evolution of Population III star forming regions. This will guide future studies that connect Population

III and Population II stars by providing a reference of how many Population III stars can be related to a

Population II cluster, as well as the range of metallicities that may be observable in a second generation star

cluster.

The remainder of this paper is organized as follows: Section 3.3 presents a summary of the simulations

and included physical models; Section 3.4 showcases summary statistics such as star formation rates and

halo mass functions of the final simulation states; Section 3.5 presents a time-resolved study to determine the

origins of the first generation of enriched star formation as well as quantification of primordial stellar systems;

Section 3.6 presents an interpretable regression model that predicts the region of influence for a Population

III system, given the stellar masses and birth times within that system; Finally, Section 3.7 consolidates our

results and presents final notes on both this study and future directions.

3.3 The Phoenix Simulations

The PHX suite consists of three simulations performed with the ENZO (Bryan et al., 2014; Brummel-

Smith et al., 2019a) adaptive mesh refinement hydrodynamic cosmology code designed to study the time

and spatial evolution of early structure formation and galaxy assembly. Projections of the largest (5123

root-grid) simulation are shown in Figure 3.1. In addition to the simulation shown in Figure 3.1, two other

smaller simulations were also performed, as noted in Table 3.1. The 5123 simulation (PHX512) has volume

(5.21 Mpc)3, the PHX suite includes two smaller 2563 root-grid simulations with volume (2.61 Mpc)3 each

(PHX256-1,2). Prior efforts have produced simulations with similar redshifts as the target range of the PHX

suite (Wise et al., 2012; Wise et al., 2012; Xu et al., 2016), however the saved outputs of these earlier works
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Figure 3.1. Projections of PHX512 simulation at z = 14.04. Top row: Projections through a 15 comoving
kpc volume surrounding a complex of star forming halos. Bottom row: 1 Mpc thick slab projection of the
entire simulation domain (Lbox = 5.21 Mpc) at the same redshift centered on the star forming halo in the top
row.
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have time resolution ∆t & 1− 5 Myr, whereas the PHX suite has 200 kyr between all saved outputs for

redshifts 30 < z < zfinal.

All simulations share identical cosmological parameters with {Ωm = 0.3111,Ωb = 0.048975,Ωk =

0,Ωλ = 0.6889,H0 = 0.6766,σ8 = 0.811,n = 0.965} (The Planck Collaboration et al., 2014). The cosmolog-

ical initial conditions are generated at z = 99 using MUSIC (Hahn & Abel, 2011), where each simulation uses

a unique random seed to generate an initial state that is consistent with the given cosmological parameters.

All simulations have identical mass and spatial resolution and the same refinement criteria as the Renaissance

Simulations (Xu et al., 2013), with dark matter particle mass MDM = 2.34×104 M�, initial average baryon

mass per cell Mb,i = 1.17×103 M�. The root grid can be refined up to 9 levels of adaptive mesh refinement

(AMR), where refinement occurs on dark matter density, baryon density, and regions surrounding Population

III star particles such that the supernova radius (10 pc) is resolved by at least 4 cells, or is at the maximum

AMR level. Refinement on densities is super-Lagrangian; cells are flagged for refinement at level l where the

cell mass Mc ≥Mi×2−0.4l , where Mi refers to MDM or Mb,i for refinement on dark matter or baryon density

respectively. With these resolution parameters, and assuming ∼ 100 dark matter particles for a resolved dark

matter halo, the least massive resolved halos have virial masses 2.34×106 M�, while the most massive halos

(≈ 109M�) is limited by the total mass within the volume: 3.93×1011 M� and 3.14×1012 M� for 2563 and

5122 root grids respectively. The finest spatial resolution achieved on level 9 subgrids is 19.53 comoving pc,

providing < 2 proper pc resolution for z & 9.

For hydrodynamic and chemical evolution, each simulation includes 9 species non-equilibrium

chemistry for primordial gas species H, H+, H−, H2, H+
2 , H++

2 , He, He+, He++, and e−, radiative heating,

cooling, and metal-line cooling as in Smith et al. 2008, and hydrodynamics evolved using the piecewise

parabolic method (Colella & Woodward, 1984). Radiation interactions are included via a uniform, redshift-

dependent Lyman-Werner H2 dissociating radiation background as documented in Xu et al. 2016 as well as

photo-dissociating and ionizing radiation from point-sources using the rates and MORAY ray-tracing solver

method in Wise & Abel 2011. The radiation is coupled to chemistry through heating and ionization rates, and

to hydrodynamic evolution via momentum coupling from photons to the gas.

Each simulation includes two types of star formation events: individual Population III stars and

Population II star clusters, each tracked with a star particle. Feedback (SNe, stellar winds) from each type

of star particle contributes to a unique metal density field so that the contributions from Population III and
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Population II stars can be tracked independently. The star formation and feedback algorithms used in the

Phoenix suite are well documented2 and described in several prior works (Wise & Cen, 2009; Wise et al.,

2012; Wise et al., 2012; Xu et al., 2013; Hicks et al., 2021), so the following is restricted to a high-level

overview that includes the specific parameters used in the PHX suite. At each time step, every grid cell is

evaluated for Population III star formation according to the following criteria: 1) baryon number density:

nb > 100 cm−3, 2) H2 fraction: nH2/nH > 10−4, 3) metallicity3: Z < Zc for Zc =−5.5, 4) AMR grid level is

most refined for that point in space, 5) the cooling time should be less than the freefall time, and 6) converging

gas flow (∇ ·~ν < 0). If a cell qualifies for Population III star formation, a particle representing a single star is

formed centered on the host cell with mass taken from a modified Salpeter initial mass function (IMF),

f (logM)dM = M−1.3exp
[
−
(

Mchar

M

)1.6]
dM, (3.1)

with characteristic mass Mchar = 20 M� with masses in the range 1 ≤ M∗/M� ≤ 300. The final mass

contributing to the star formation is taken from the grid in a sphere containing twice the mass of the star.

Population II star cluster formation involves similar criteria: 1) baryon overdensity, relative to the

simulation volume, ρ/ρ̄ > 100, 2) Z ≥ Zc, 3) AMR grid level is most refined for that point in space, 4) the

cooling time should be less than the freefall time, and 5) converging gas flow (∇ ·~ν < 0). At each timestep

after the initial particle formation, the mass of the cluster is accreted from the surrounding cold gas mass,

Mcold, estimated as 7% of the gas mass in a sphere with mean gas number density nb > 103 cm−3 until

M∗ ≥ 1000 M� as described in Wise & Cen 2009. If after one dynamical time, the particle has not accreted

1000 M�, a low-mass particle is formed with the current mass to prevent loss of the ionizing radiation due to

lower-mass star clusters. The metallicity of the formed star is taken as the mass-averaged metallicity of the

cells that contributed to its formation, therefore the final metallicity may be lower or higher than the cell that

initially qualified for cluster formation.

Stellar feedback for Population III stars is included in two forms: supernovae of varying mass, and

point-source radiative feedback. The supernova channel includes Type-II supernovae (SNe, 11 < M∗/M� <

20), hypernovae (HNe, 20≤M∗/M� < 40), and pair-instability supernovae (PISNe, 140 < M∗/M� < 260).

For SNe, the ejecta mass, energy, and metal yields are taken from Nomoto et al. 2006; HNe event energy and

2https://enzo.readthedocs.io/en/latest/
3with metal mass Mz and cell baryon mass Mc, metallicity is given by Z = log(Mz/Mc)− log(Mz,�/M�).
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metal yields are linearly interpolated from these values. PISNe have ejecta mass, metal yield, and energy

taken from Heger & Woosley 2002. For each type of supernova, the resulting mass, metal yield, and energy

are deposited to the grid in a sphere of 10 pc, or a cube of 33 cell-widths if 10 pc is unresolved.

Population II stars, modeled as coeval clusters of stars, use a continuous injection model of energy,

mass, and metal deposition that represents both supernova and stellar winds. At each time step during the 20

Myr lifetime of the cluster, mass is returned to the computational grid as

mej =
0.25∆t×M∗/M�

16 Myr
, (3.2)

where ∆t is the grid timestep. The ejecta has a metallicity fraction matching solar metallicity (Z� = 0.01295).

The ejecta has energy 1.12×1049 erg/M�, which is coupled to the grid as thermal energy along with mass

and metal ejecta in a 10 pc sphere surrounding the source particle, again depositing to a 33 cube if if 10 pc is

unresolved.

3.4 General Observations from the Phoenix Suite

Halo finding was performed using ROCKSTAR (Behroozi et al., 2013), requiring 50 DM particles per

identified halo, however halo-based analyses are restricted to those halos with ≥ 100 particles. Figure 3.2

shows the total halo mass count (HMC), the HMC of halos with non-zero stellar mass (M∗ > 0), the HMC of

halos with active Population III stars (NPIII > 0), and the HMF of halos with Population III supernova remnants

(Nrem > 0). All simulations show that halos having Mvir > 2×107 M� are universally forming Population

II stars at their final redshifts. While some halos with Mvir > 2×107 M� are also forming Population III

stars, the number is quickly diminishing beyond. Since we qualify a halo with Mvir > 2.34× 106 M� as

well-resolved, Figure 3.2 also shows that Population III star formation is occurring in under-resolved halos.

The fact that Population III stars still exist in halos forming Population II stars begs the question: is

there a redshift dependence on the mass of halo that will contain Population III stars? Figure 3.3 displays the

fraction of halos hosting active Population III stars at various redshifts including data from all simulations.

The fraction of halos with mass ∼ 106−7 M� hosting Population III stars is notably higher at higher redshift.

Higher fractions of halos hosting Population III stars with Mvir > 5×107 M� are visible at lower redshift,

e.g., z . 17. However, this observation is also likely due to the fact that higher mass halos occur with
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Figure 3.2. Halo counts at the final redshift of each simulation, with simulation and redshift annotated within
each panel. M∗ > 0 counts halos that have Population II stellar mass, NPIII > 0 counts halos that contain
active Population III stars, and Nrem > 0 counts those halos with Population III supernova remnants of any
type. At the final redshift, halos with mass Mvir & 3×107 M� all contain remnants, while some halos above
Mvir = 2×107 still host active Population III stars. Population III stars found in halos with Mvir < 2×106

indicate that Population III formation does occur in under-resolved halos.
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Figure 3.3. Fraction of halos occupied by active Population III stars for various redshifts, including all
simulations. Halos with Mvir ∼ 5×106M� are the primary hosts of Population III stars, and the highest mass
halo with Population III stars is Mvir = 3×108M�.

more frequency at lower redshift. The fraction of halos hosting Population III stars is highest for halos

with 3×106 . Mvir . 2×107 M�: it is likely that halos with higher mass have generally been enriched by

Population III stars earlier in their assembly history and no longer host high-density reservoirs of pristine

gas to fuel primordial star formation. The visible outlier case is that of high-mass, high-redshift halos with

Mvir ' 2×108 M� at z = 18 with active Population III stars. These result from a lower (Mvir = 7.8×107 M�)

mass halo with a low-mass Population III star merging into a larger halo–the Population III star did not form

in the larger, Mvir > 108 M� halo. There are only two halos in this mass bracket at z = 18, and the above

scenario happened in one of them to result in the high fraction observed in the plot.

Figure 3.4 shows the fraction of volume with gas enriched above varying cut-off Z as a function of z

for 14.04 < z < 24 in PHX512. The IGM is largely unenriched at the lowest redshift, as indicated by the low

fraction enriched to Z &−5.5. This suggests that early Population III stellar feedback is not responsible for

large-scale enrichment of the IGM, having affected only ∼ 0.08% of the simulation volume. We additionally

analyzed the fraction of volume enriched by Population III versus Population II sources: if the Population

III enriched fraction is f3, and the fraction from all stars is fZ , the quantity δ f = ( fZ − f3)/ fZ shows the
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Figure 3.4. Fraction of volume enriched above varying Z values in PHX512 according to redshift. Less than
0.1% of the volume has been enriched to Zc required for Population II star formation.

fraction of gas enriched by Population II sources. Enrichment from Population II stars has pervaded even less

of the volume: we find that . 2% of enriched gas is enriched by Population II sources at the final redshift,

emphasizing the importance of Population III chemical enrichment at high redshifts.

The fraction of volume that is ionized to varying degrees in PHX512 is shown in Figure 3.5. The

ionized fraction is presented as fion = nH+/(nH+nH+); less than 0.5% of the volume is ionized to fion > 0.5 at

the final redshift, indicating that the point-source radiation feedback from ionizing sources has not yet escaped

the dense clumps of halo or galactic gas. The highest levels of ionized gas, fion & 0.9, likely result from

ionizing radiation from Population III stars at these redshifts, with subsequent drops in fion resulting from

recombination after the Population III main-sequence phase. Lower to middling values, fion ≤ 0.5, reflect the

increasing volume affected by hydrodynamic shock-heating from infalling gas and evolved Population III

supernova remnant gas, as seen in the halo zoom-in temperature panel of Figure 3.1.

Star formation statistics are presented in Figure 3.6. The star formation rate densities (SFRDs) before

z' 22 are similar for Population II and Population III, however the SFRD of Population II eclipses that of

Population III stars by z= 22. This is also the point at which the total mass in Population II stars surpasses that

of the cumulative formed Population III mass. The Population II SFRD is fit by SFRest = 0.65exp(−z/2.45)

M� yr−1 Mpc−3, shown on the figure. The z . 18 Population III SFRD approaches a relatively constant

10−4 M� yr−1 Mpc−3, representing the contribution from both newly collapsing halos in pristine gas or

pristine regions of partially-enriched halos; since so little of the volume has been enriched, this will continue
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Figure 3.5. Fraction of volume that is ionized to varying degrees for PHX512, as measured by fion =
nH+/(nH + nH+). At the final redshift, a negligible fraction of the volume is fully ionized ( fion > 0.9),
indicating that IGM reionization has not begun to any substantial degree.

until more IGM gas has been enriched and the newly collapsed halos are enriched prior to their formation

(Hicks et al., 2021).

The stellar mass weighted metallicity distribution function (MDF) for Population II stars across all

PHX simulations is presented in Figure 3.7. The MDF of all Population II stars shows a large range of possible

metallicities, with the most metal deficient cluster having Z =−7.1. Although the simulation parameter for

Population II cluster creation requires Z > −5.5 at the cell hosting cluster formation, the mass-averaged

metallicity of the gas that contributed to star formation allows these low-Z clusters to exist. The highest

Z cluster has Z = 0.57; the mean metallicity of all Population II stars is 〈Z〉 = −1.89. The unfilled blue

curve shows only Population II.1 stars, with mean 〈Z〉=−2.46. For an observational reference point, we

include the distribution retrieved from the JINA database (Abohalima & Frebel, 2018), shown in orange4. The

overlap between the JINA observations and Population II stars is reassuring, however we also note that our

Population II.1 stars can in general have metallicities above the JINA observations. This comparison implies

that a great many Population II.1 stars may go unrecognized due to the a priori assumption that Population

II.1 stars necessarily have low metallicity. Indeed, the MDF of Population II.1 stars and Population II.2 stars

4The JINA database does not quote mass-abundance metallicity, as it is tracked in Enzo. Assuming a solar metal abundance mass
ratios with fixed H abundances, [Fe/H] = log(MZ /MH )∗ - log(MZ /MH )� = log(Z∗/Z�). Despite that this approximation will not
always be true, e.g., carbon-enhanced metal-poor stars common at low metallicity (Frebel & Norris, 2015), we quote the values as
presented in the database to provide a point of comparison against the simulated metallicities.
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Figure 3.6. Star formation rate densities (top) and cumulative mass formed (bottom), volume normalized
across all PHX simulations. Population II SFRD and total mass surpass that of Population III stars by
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Figure 3.7. Population II metallicity distribution including all PHX simulations. Solid: The MDF of all
Population II stars at the final redshift across all simulations. Blue, unfilled: The MDF of all Population II.1
stars from all simulations. The vertical line denotes the simulation Zc = −5.5. Orange, unfilled: Sample
MDF of observed low-metallicity stars from the JINA database (Abohalima & Frebel, 2018), including
all stars from the Milky Way halo or dwarfs; the upper end (Z > −2.5) of this MDF is suppressed due to
selection effects, and is not expected to resemble the simulation data. Notably, there is no obvious metallicity
distinction between Population II.1 and Population II.2 clusters.
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is completely overlapping, suggesting that while cases of stars with low metallicity may indicate very old

Population II.1 stars, many more may have high, even super-solar, metallicity. Having these high-metallicity

cases excluded from studies that attempt to reconstruct the Population III IMF will make it much more

difficult to decipher the full range of Population III masses and their relative frequency.

3.5 Analysis: The First Stars and the Second Generation

To study the origin of Population II.1 star formation, we take two primary frames of reference: A)

we analyze Population III star forming regions, studying the evolution of the region as it leads to Population

II star formation, and B) we examine the region about the Population II.1 cluster immediately after formation,

to study the events that immediately contributed to its formation. Each frame of reference uses separate

analyses of the simulations.

3.5.1 Method: Population III Frame

Population III star formation within the PHX suite is clustered, which is not unexpected (e.g., Stacy

et al., 2010). If we follow a single Population III star forming region as defined in this section, we find that

there can be . 200 individual Population III stars per region. Although clustered, there are not generally

enough individual stars to qualify as a star cluster in the canonical sense: we will therefore refer to them as

PIII associations to avoid ambiguity with modern or Population II star clusters, but in analogy to modern O-B

associations.

To examine the simulations from the perspective of Population III stars and define the extent of

a group of coeval primordial stars (PIII assocation), we iterate each output of the simulation to find new

Population III star particles that formed within 200 kyr by iterating dark matter halos, searching for new

particles within 3Rvir of the center of the halo. When found, and if that star is only accompanied by coeval

Population III star formation (i.e., other new Population III stars only formed within 200 kyr, no supernova

remnants, black holes, or Population II stars within the radius), we form a sphere to measure mean metallicity

from new Population III stars (Z̄III) and H+ fraction( f̄H+), using the analysis software yt (Turk et al., 2011).

Starting from a smaller radius than expected for either metal-rich bubbles or ionized regions, R = 250 pc,

the average value for a field, X̄ , is measured. If X̄ is not less than some critical value, R is increased to

Ri+1 = 1.1Ri, and a new average is taken. This procedure is repeated until the value of X̄ is below our chosen
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critical values: Z̄III <−5.5 and f̄H+ < 0.05. The “edge” of the region is then defined by this final radius. The

final product of this analysis is an effective radius as function of time for the ZIII and fH+ variables.

3.5.2 Method: Population II.1 Frame

From the perspective of Population II clusters, we again iterate through simulation outputs to identify

Population II star formation events. When a new Population II star particle is formed, and it occurs in gas

enriched by only Population III stars, i.e., the metallicity from Population II stars, Z2, meets the criteria

Z̄2 <−6 in the cell hosting star cluster formation, we evaluate a sphere centered on that star with r = 200

comoving kpc. This initial radius assumption stems from the analysis of Section 3.5.1: greater than 95% of

Population III star forming regions are contained within 8 proper kpc, corresponding to < 200 comoving kpc

at z = 20. Within this sphere, we connect any Population III supernova remnant to the Population II cluster

via a ray. We then verify that the ray has Z > Zc for all cells it intersects and require that distance between

particles, d, satisfies d ≤ vt for v = 100 km/s SN remnant expansion speed, and t, the time between SN and

Population II formation; d ≤ vt implies that metals from the Population III star could feasibly have reached

the forming star cluster and acts as a filter for overlapping metal clouds from separate PIII associations. If

these criteria are satisfied, then that Population III event is “connected” to the Population II formation and

is considered to be part of the same “metal system”. The extremely fine time resolution between outputs

ensures that Population III events connected to the formed Population II cluster were connected at the time of

formation (≤ 200 kyr prior).

3.5.3 The Population III Frame

The time evolution of metal and ionized radii of PIII associations including all PHX simulations is

presented in Figure 3.8 using B-spline quantile regression fits5 to the q = {0.2,0.5,0.95} quantiles. After

the initial formation, both radii take on small starting values, reflecting that ZIII is sourced from supernovae

that have not occurred yet, and that H ionization requires time to first ionize the dense cloud that the particle

formed within. The average radius for ZIII (RIII) is maximum at 9-12 Myr after the first formation: This is

the time-frame expected for most Population III stars to have reached their main sequence endpoint if we

are considering a coeval system of stars formed at t = 0. The reduction in RIII likely reflects gravitational

collapse, with the radius supported at later times by increased temperatures and the feedback from Population

5Using the python patsy package, https://patsy.readthedocs.io
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Figure 3.8. Population III star forming region characteristics spanning the first 50 Myr past the first particles’
formation including data from all PHX simulations. Top: radius of the metal-rich bubble (top) Bottom: H+

ionized region radius. B-spline quantile regression fits are shown, with q = {0.2,0.50,0.95}. We present
q = 0.2 instead of the symmetric value of q = 0.05 because the q = 0.05 quantile fit is nearly zero for all
times. Considering the entire dataset for all times, 7% of points fall above the 0.95 quantile fit for the radius
of metals, while ionization radius shows more scatter, with 17% of points above the 0.95 quantile fit.

57



0 20 40
                                                     t [Myr]

10 6

10 5

10 4

10 3

10 2

SF
R 

[M
 y

r
1 ]

q = 0.05
q = 0.5
q = 0.95

0 20 40
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

f(
SF

R
>

0)

R = RIII

(a) Population III SFR

0 20 40
                                                     t [Myr]

10 5

10 4

10 3

10 2

SF
R 

[M
 y

r
1 ]

q = 0.05
q = 0.5
q = 0.95

0 20 40
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

f(
SF

R
>

0)

R = RIII

(b) Population II SFR

Figure 3.9. Star formation rates from all PHX simulations as quantile fits to regions with non-zero SFRs.
Most regions have zero SFR at a given time; we show the fraction with non-zero SFR in the right panel of
each plot ( f (SFR > 0).

II stars. The radius of H ionization, RH+, increases quickly to a maximum average within 10 Myr. The

reduction beyond this point reflects recombination after the most massive and ionizing Population III sources

of radiation have extinguished. Since the quantiles represent fits, they do not exactly bound the, e.g., 0.95

quantile of observed data: 7% of RIII fall above the 0.95 quantile fit, while 17% of RH+ fall above.

In Figure 3.9 (left panel), we present quantile fits to the SFR of 3,313 distinct primordial star forming

regions considering regions from all PHX simulations. The SFR at these early times is roughly constant for

Population III stars, i.e., regions that are creating stars are doing so at similar rates, regardless of time. In

contrast, the Population II SFR is increasing in time, with q = 0.5 approaching 10−3 M� yr−1 by 50 Myr. In

the q = 0.95 fit, 5.05% and 5.07% of regions fall above the 0.95 quantile fit for Population III, Population
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Table 3.2. Progenitors of Population II.1 cluster formation

Configuration NII fII 〈Z〉 〈R f 〉 [pc] NIII MIII[M�]
SN 17 0.011 −3.27±1.15 95.38±101.56 2.3±1.1 35.0±16.0
HN 188 0.045 −2.79±0.64 67.19±102.57 2.3±1.9 73.6±54.4

PISN 618 0.144 −1.54±0.57 27.55±17.88 1.1±0.3 201.3±71.6
SN-HN 356 0.266 −2.77±0.85 225.51±404.98 12.0±8.1 286.4±204.4

SN-PISN 11 0.008 −2.75±1.71 162.64±146.85 3.2±1.5 223.8±54.8
HN-PISN 133 0.032 −2.06±0.83 92.92±153.19 5.1±3.7 352.6±171.9

SN-HN-PISN 787 0.494 −2.27±0.94 558.50±815.70 21.9±15.6 829.8±504.8

Note: Characteristics of 2,110 Population II.1 star clusters from all PHX simulations given the connected
Population III events within the region. We categorize each region containing a new Population II star by the

type of Population III supernovae it contained: SN, HN, PISN, or combinations thereof. For each
configuration, we present the number of Population II.1 stars formed (NII, the fraction of Population II.1

stellar mass generated ( fII), the mean metallicity (〈Z〉), the mean radius from progenitor to forming cluster
(R f ), the mean number of progenitors in the region (NIII), and the mean total progenitor mass (MIII). Note

that 61.0% (by mass) of Population II.1 stars have progenitors of multiple types.

II SFRs respectively. In the right panel, we show the fraction of regions that are forming stars at each time.

Within the first 50 Myr, the Population II SFR is sporadic, with > 87.5% of regions having zero SFR at any

time, including several intervals where no region is forming Population II stars. The Population III SFR is

simiarly sporadic, with < 85% of regions forming stars at any given time. The Population III star formation

rate is surprisingly constant throughout the 50 Myr period for regions that are forming Population III stars,

however, we do observe that the average Population II SFR (q = 0.5) increases with the region age. The

early non-zero Population II SFR results from prompt star formation around the earliest and most massive

Population III stars.

3.5.4 The Population II.1 Frame

Generated using Section 3.5.2, we present the statistics of Population II.1 star clusters including

all PHX simulations immediately after the cluster’s formation in Table 3.2. The region surrounding the

Population II.1 star particle is categorized based on the type of Population III progenitors it contains: SNe,

HNe, PISNe, or any combination of the three. There are several immediate observations worth noting: for

single progenitor-type regions, there is an inverse correlation between the distance between progenitor and

Population II.1 star, R f , and the SN energy of the progenitor, while the metallicity of the resulting Population

II.1 cluster is correlated to the energy. The mass of the Population III stars that contributed to formation is

highly variable; and finally, 14.4% of Population II.1 stars were enriched by an average of NIII = 1.1 PISN,
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while other Population II.1 stars are enriched by NIII > 2 Population III progenitors. The average distance

from progenitor to Population II.1 cluster is maximized if all types of Population III progenitors are present

and connected to the Population II.1 star, in fact, we find generally higher R f for the more complicated

regions with high NIII and many progenitor types. Outside the single-type of progenitor cases of the SNe and

HNe, the average Population II.1 star is connected to MIII > 200 M� of Population III progenitors, with some

Population II.1 stars connecting to MIII > 1000 M� of Population III supernova generating stars. Interestingly,

the mean metallicity of Population II.1 clusters enriched by PISNe is above the observed metallicity in,

e.g., the JINA database samples presented in Figure 3.7, suggesting that observational campaigns seeking

Population II.1 stars by their low metallicity will miss a very large fraction of these Population II.1 stars. In

fact, the metallicity of regions with PISNe, HN-PISN, and SN-HN-PISN progenitors all have mean metallicity

falling above the selection effect cutoff of the JINA database (Z &−2.5).

We do note that MIII and NIII are both highly dependent on the chosen IMF, and this influence will

definitely have an impact on R f . We also note that the lack of correlation between cluster metallicity and

progenitor configuration may be an artifact of the star formation algorithm: since the Population II clusters

take on the mass-averaged metallicity of the cold gas that formed them, we lose the ability to track extreme

cases that may occur with higher resolution and modelling Population II stars as single stars. That said, within

the framework of the PHX simulations, the highest metallicity star clusters (Z =−1.57) result from regions

with only PISNe, while the lowest metallicity (Z =−3.27) have SNe progenitors. 80% of Population II.1

stars have multiple types of Population III supernovae as progenitors, suggesting that theoretical constraints

on the Population III IMF, as measured by metal spectra of Population II.1 stars, will require determining the

metallicity contributions from each progenitor type.

The combination of high metallicity and small radii from PISNe is interesting. In particular, there

are two feasible avenues that could result in Population II.1 stars forming in such close proximity to a PISN

remnant: the Population II.1 stars could be the result of triggered star formation, where the expanding SNR

causes nearby regions to qualify for star formation. Alternatively, the Population II.1 stars could be forming

long after the SNR, after the gas has re-collapsed into the original region that hosted the PISN. We find that

the average time between a PISN and the Population II.1 cluster formation is ∆t = 1.26 Myr, with a significant

number of Population II.1 formation events having ∆t ≤ 0.25 Myr, suggesting that these Population II.1 stars

can result from prompt star formation very close to the SNR. Our measured ∆t is similar to high-resolution
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simulations of prompt star formation (Chiaki et al., 2013), however, we observe scatter in ∆t due to the

varying density and halo masses that occur organically in the PHX. This phenomena is not observed in the

SNe case, and is less prevalent for HNe, which implies that the extreme energy of the PISN is instrumental in

early prompt Population II.1 formation at the resolution of the PHX simulations.

3.6 An Interpretable Regression Model of Primordial Stars’ Influence

In this section, we develop and describe an interpretable model designed to predict the range of

influence of PIII associations. Using data generated via the method of Section 3.5.1, we create a model to

learn the extent of primordial metals from a PIII assocation based on the composition of SN events and the

duration we wish to model, tfinal. To translate the continuum of available Population III masses and creation

times, we transform the stellar information into a simple series of features as binned mass and creation

times. The mass features (XXXM) are defined by edges {1,11,20,40,100,140,200,260,300}M�, and creation

time bins (XXXC) have edges {0, δt, 2δt, ...,nδt}Myr, with the time between bin edges (δt) and the final edge

defined by nδt = floor(tfinal/δt)δt. As a concrete example of mass and creation time features, consider a

region with five stars. They have masses {14,12,86,94,210}M� with creation times {4,4,3,0,7}Myr, as

measured from the first star created. With this hypothetical sample, XXXM = {0,2,0,2,0,0,1,0}. If we take

δt = 6 Myr with tfinal = 16 Myr, the time features bins are {0, 6, 12}Myr, so that XXX t = {4,1,0}Myr. This

idea is motivated by a method commonly known as tokenization; we use it here to create an input that can

accommodate regions with any number of stars without altering the model. We split samples in a spatial

sense to prevent information leaking between training and testing splits: if the center of the region (rrr) at

the first star’s formation is rrr > {0.4,0.4,0.5}×Lbox relative to the simulation volume, then the sample is

assigned to the test split, rrr < {0.6,0.6,0.5}×Lbox is assigned to validation, while all others are assigned to

training. This splitting of data yields 2,273 training, 722 validation, and 318 testing samples.

3.6.1 Data

Figure 3.10 shows log(RIII) (with RIII measured in kpc ) according to the number of Population III

stars (N∗) within the region for the training examples at tfinal = 16 Myr. The side histogram shows a PDF of

log(RIII) as measured in kpc; the distribution of log(RIII) is distinctly more evenly distributed about the peak

(log(RIII)' 0.3) than without the logarithm: we therefore make our predictions on log(RIII), as regression
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Figure 3.10. Training data for tfinal = 16 Myr after first Population III formation. Histograms show PDFs of
the number of Population III stars, N∗ (top), and radius of metal influence in kpc, log(RIII) (side). Counts
of regions with N∗, log(RIII) shown in center plot are given by the color bar. The gaps in the histogram of
log(RIII) are an artifact of the sampling method described in Section 3.5.1.
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is more successful at modelling scatter from a mean than long tails of asymmetric distributions. We also

observe significant variation in the number of Population III stars contained within RIII; regions contain

1 < N∗ . 155 within that radii. For each tfinal, we define N̄∗ = µ(logN∗), and σN = σ(logN∗)6, then for 16

Myr, N̄∗ = 1.337 and σN = 0.374. In addition, while we observe a general trend that increasing N∗ increases

RIII, however this relationship is by no means linear in N∗, and is not single-valued, i.e., N∗ = 10 could lead

to many values in the range −0.5 < log(RIII)< 0.8. N̄∗ and σN have a very small dependence on tfinal: when

fit with a simple polynomial, we find that they are fit with . 1% error by

N̄∗(tfinal)' 1.197+0.0195tfinal−6.57×10−4t2
final (3.3)

σN(tfinal)' 0.314+7.25×10−3tfinal−2.87×10−4t2
final. (3.4)

3.6.2 Model and hyperparameters

To generate an interpretable model, we use a simple linear regression model, where we wish to

minimize the error

L =
1
2
(YYY − ŶYY )2, (3.5)

with ground-truth radii YYY and predicted radii ŶYY represented as vectors. The prediction is simply solved by

ŶYY = XXX ·www. The learnable weights are denoted by www, and XXX is composed of mass and creation time features

with a bias feature: XXX ≡ {1,X1
M,X2

M, ...,X8
M,X1

C,X
2
C, ..X

final
C }, with, e.g., Xn

M referring to the nth feature in the

XXXM vector. Since equation 3.5 is convex, the solution we seek is dL/dwww = 0, which is solved by

www = (XXXXXXT )−1XXXTYYY . (3.6)

This regression only admits linear behavior, which as outlined in Section 3.6.1, is not a reasonable expectation

in this case. The non-linearity is not only influenced by N∗, but also their varying lifetimes, explosion

energies, metal yields, birth times, and supernovae times. Instead of abandoning the linear model for a less

interpretable deep learning architecture, we split the training samples into subsets based on N∗ and apply the

6µ and σ represent the mean and standard deviation of the distribution, respectively
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linear model to each subset: we use the samples Xn to train only the model Mn according to

Mn =



M0, X| logN∗ < N̄∗−σN

M1, X|N̄∗−σN < logN∗ < N̄∗

M2, X|N̄∗ < logN∗ < N̄∗+σN

M3, X| logN∗ > N̄∗+σN .

(3.7)

In this way, we have piece-wise defined models specifically for small systems with few stars, average systems,

and highly populated systems.

What follows is a concrete example of using this model for observed data, as used in the rest of

this paper, or for predictions. For this example, we choose δt = 6 Myr and tfinal = 16 Myr. To generate a

sample, we statistically estimate the number of stars by sampling a random number described by a log-normal

distribution with N̄∗(16 Myr) and σN(16 Myr). Given the number of stars in this sample, we then determine

the mass of each star by sampling the IMF described in Section 3.3 and determine the creation time of each

star by sampling the SFR of Figure 3.9a. Using this information, we can build XXX as described above and

determine which Mn to use. Using the weights of the Mn model, wwwn, we can finally predict the radius of the

enriched region as logRIII = XXX ·wwwn.

Finally, we can use the weights to gain insight into the relative importance of different features of

XXX . For example, in Table 3.4, we present the final trained weights of the Mn models for tfinal = 16 Myr: by

examining the relative values of w1 (which multiplies the 1-11M� feature) with w6 and w7 (which multiply

the 140-200 and 200-260 M� features respectively), we observe that w6 � w1 and w7 � w1, implying

that the 140-260 M� stars have a much stronger effect on the final radius of the metal cloud. This is, of

course, intuitively true as well: 140-260 M� stars generate PISNe, which distribute more metals with more

supernovae energy than any other mechanism in these simulations.

To evaluate the model predicted radii, we employ two metrics: we use the R2 score for N samples,

given by

R2(YYY ,ŶYY ) = 1− 1
N

∑
N
i=1 yi− ŷi

∑
N
i=1 yi− ȳ

, (3.8)

for ȳ = 1/N ∑
N
i=1 yi and yi are the individual components of YYY . The R2 score is informative in comparing the
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Table 3.3. Testing dataset performance varying modelled time.

Time R2 J R2/(1+ J) L̄1

7 Myr 0.493 0.205 0.409 0.192
8 Myr 0.600 0.150 0.521 0.147
9 Myr 0.503 0.187 0.424 0.158
10 Myr 0.438 0.133 0.386 0.161
11 Myr 0.448 0.196 0.374 0.152
12 Myr 0.331 0.189 0.278 0.158
13 Myr 0.362 0.216 0.298 0.159
14 Myr 0.408 0.202 0.339 0.167
15 Myr 0.356 0.230 0.290 0.174
16 Myr 0.499 0.190 0.419 0.153
17 Myr 0.383 0.212 0.316 0.162
18 Myr 0.393 0.167 0.337 0.162
19 Myr 0.385 0.213 0.317 0.161

Note: These models use δt = 6 Myr. The optimal model will maximize R2, while simultaneously minimizing
J: the shown quantity R2/(1+ J) will be maximized for the best performing models.

quality of the model as compared to simply predicting the mean value for of YYY ; 1 is a perfect R2 score, R2 = 0

indicates predicting ŷ = ȳ for all inputs, and R2 < 0 indicates arbitrarily worse performance. In addition to

the individual predictions, we would also like the PDF of predicted radii to match that of the ground truth

radii. We define the PDF of YYY as Py, ŶYY as Pŷ, and the Kullback-Leibler divergence D(P|Q) = P log(P|Q) for

probability distributions P and Q, to compare the PDFs using the Jensen-Shannon distance given by

J(Py,Pŷ) =

√
D(Py|P̄y)+D(Pŷ|P̄y)

2
, (3.9)

where P̄x represents the average of the distribution Px. J = 0 represents two identical distributions, with higher

values indicating mismatches in the PDFs. Although not used in the initial evaluation of models, we include

reports on the average L1 distance as L̄1 = 1/N ∑
N
i=0 |yi− ŷi|.

3.6.3 Model results

The only true hyperparameter of this model is δt, the time width of the XXXC bins. We tested several

widths, and found no significant improvement beyond the inclusion of two time features: early coeval

formation, and all other formation, so all results here use δt = 6 Myr. J and R2 as functions of predicted time

in the all datasets are shown in Figure 3.11, while tabulated quantification of errors are presented in Table 3.3.

All times have 0.12 < J < 0.23, while R2 has more variation with 0.33 < R2 < 0.60. The overall performance
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Table 3.4. Final parameters for linear regression models with 6 Myr time bin width and tfinal = 8,16 Myr.
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Note: These exemplary weights are only for 8 Myr and 16 Myr, however the data table with full machine
precision for all models presented in Table 3.3 will be available at www.rensimlab.github.io.
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Figure 3.11. Error (E) as measured by J (dash-dot lines) and R2 (dashed lines) on the training (grey),
validation (blue) and testing (green) data splits. This method is generally capable if the modelled time is ≥ 7
Myr, but struggles by these metrics if t < 5 Myr, as the early dynamic evolution and dependence on specific
hydrodynamic state of the system is making the modelling task more difficult at those early times.
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Figure 3.12. For predicting the metal radii at two timeframes, 8 and 16 Myr, we present the training (top),
validation (middle), and testing (bottom) performance as plots of true radii (grey) with the predictions for
each model (M0,M1,M2,M3 in orange, green, purple and cyan, respectively) according to the number of
stars in the system (N∗). The Left histograms compare the PDF of true radii (grey) with model predictions
(orange).

is quantified by combining R2 and J as R2/(1+ J), which will be maximized if R2 is maximized and J is

minimized. These results show that while the model may struggle, e.g., with the lowest R2 score at T = 18

Myr, to reproduce exact predictions, it does well at reproducing the distribution of possible radii reflected in

the relatively low value of J = 0.167. Based on Table 3.3, if we take the “best” performing model as the one

that maximizes R2/(1+ J), we find that models with tfinal = {7,8,9,16}Myr are the best performing, while

tfinal = {12,13,15} have the worst performance. The remainder of discussion in this section considers the 8

Myr and 16 Myr models; while 8 Myr is the most performant model, the 16 Myr model is a desirable time

frame to evaluate: given the stellar lifetimes and IMF used in the PHX, we expect any coeval stars formed

near t = 0 to have reached their respective endpoints by t ∼ 16 Myr. We can also observe that the metal

radius is maximized around 16 Myr as seen in Figure 3.8.

The final weights of the exemplary tfinal = {8,16} Myr models are presented in Table 3.4. These

weights represent the entirety of the trained model. Due to their simplicity, erroneous predictions could be

traced through the model to find the offending weight and determine why the model made such an error very

easily.

Exemplary results from the 8 Myr and 16 Myr model are shown in Figure 3.12. On the left side
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we plot the model predictions, color coded by which model made the prediction. While these models score

well with J = 0.189,0.162 for 8 and 16 Myr respectively, we can still observe mismatches on the tails of the

PDFs for low and high logRIII . However, it is reassuring that there are no erroneous massive predictions

given by the validation or testing dataset, e.g., predicting RIII > 50 kpc. This is largely due to our splitting of

the dataset among different models–using a single model for all N∗ leads to linear fits that had erroneously

high estimates of RIII at high N∗, however the M3 sub-model, which models high N∗, has a nearly flat slope,

reducing the errors from very high N∗ systems. As well, a single model struggled to reproduce the low-end of

radii from very low N∗ systems, making no predictions of RIII < 1 kpc. Restricting M0 to predict low-N∗

systems allows the fit to have a high slope that can predict both RIII < 1 kpc and RIII & 10 kpc, while still

avoiding falsely large regions that may happen if the same model was responsible for predictions in the higher

N∗ regime.

In the scatter plots, we can identify that the high predictions stem from the M1 and M2 models,

however even these results are plausible for the radius of the metal bubble. As a final stress-test of the model,

we generated 3000 samples that match the N∗ and mass distribution of the training dataset at 16 Myr, using

creation times derived from the SFRs presented in Figure 3.9a. We compare the PDF of the synthetic sample

and full dataset in Figure 3.13, where the full dataset is in grey and synthetic dataset in orange. There is

no ground truth for the synthetic dataset (so there are no R2,L1,L2 scores), but it produced a PDF that is in

agreement with the ground truth dataset, with J = 0.150.

3.7 Conclusions

All halos in the Phoenix suite with Mvir ≥ 2×107 M� have Population III star remnants within their

radii and have some finite mass of stars (either Population III or Population II). However, all three simulations

also contain several halos without stellar mass above Mvir ≥ 107 M�; these may be candidates for further

study to analyze whether they may be super-massive black hole candidates as in the analysis of Regan et al.

2017. At z∼ 12−14, all simulations are dominated by Population II star formation, however there continue

to be pockets of pristine gas that can form more Population III stars. As well, we do not observe large-scale

enrichment or ionization of the IGM at these redshifts, with only ∼ 0.8% of the gas being enriched to Zc,

and only 2% of that volume being primarily enriched by Population II sources. Both of these findings are in

agreement with prior works (Wise et al., 2012; Xu et al., 2016)
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dataset (grey) at tfinal = 16 Myr. The two PDFs agree well, with J = 0.150.
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Population III stars in the Phoenix suite form in PIII associations. These are very diverse, with up to

∼ 155 individual stars and system Population III stellar masses up to M∗ & 103 M�; 49.4% of Population II.1

stars are connected to at least one progenitor of each supernovae type (SN-HN-PISN in Table 3.2). A PIII

association’s influence is large, but limited, with 5%, 17% of PIII associations radii having R > 8 kpc for ZIII

and H+ respectively.

Several important observations have been noted regarding Population II.1 stars within the PHX

suite: their MDF is not distinguishable from Population II.2 cluster formation, i.e., we cannot state with any

certainty that a star with metallicity Z is of the Population II.1 or Population II.2 group; 80% of Population

II.1 clusters were created from gas that had been enriched by combinations of Population III supernova

endpoints, 14.4% were enriched by only PISNe, and, despite being the endpoint for the IMF peak, only 4.5%

were enriched by only HNe; the highest Z clusters were created from gas enriched by PISNe, while the lowest

Z gained metals from only SNe; the number of progenitors is highly variable, averaging only 1 progenitor

in PISN case, up to > 20 progenitors if all endpoints were found connected to the forming star cluster. We

also find that the average radius and time between SN event and Population II.1 star formation is smaller and

shorter for PISNe, suggesting that prompt star formation due to the expanding remnant is a vector of early

Population II.1 star formation, consistent with earlier simulation works (Machida et al., 2005; Ritter et al.,

2012) of smaller systems at high resolution.

Both Population II.1 and Population II.2 stars exhibit low metallicity that includes the ranges of

observations of stars found in the JINA database (Abohalima & Frebel, 2018), where most stars have [Fe/H]

&−5. Although the JINA database MDF peaks at [Fe/H]∼−2.5, the high-metallicity distribution is inhibited

by selection effects, so is not comparable to the PHX Population II distribution at any metallicity above this

level. The MDF of Population II.1 stars has significant representation above the selection effect cutoff of

the JINA MDF. The range of observed metallicity for Population II.1 stars here suggests that observational

campaigns seeking to determine the Population III IMF via stellar archaeology (Frebel & Norris, 2015) will

have incomplete data due to missing high-metallicity stars e.g., 30.5% of Population II.1 star clusters in the

PHX simulations have Z &−2. The peak of the MDF in the PHX also is similar to the observed metallicity

of, e.g., Ursa Minor, with 〈[Fe/H]〉 = −2.13± 0.01 (Kirby et al., 2013). Keller et al. 2014 studies the

carbon-enhanced metal-poor star SMSS J0313-6708, with [Fe/H] <−7.1; while uncommon, this metallicity

represents the extreme low metallicity end of the MDF in Figure 3.7. Interestingly, there are no Population II.1
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stars with this low metallicity, where the minimum is Z =−5.92, however, several Population II.2 clusters

are observed with comparable metallicity.

To evaluate the reasonableness of our Population III SFR and examine the Population III star

formation efficiency (SFE), neither of which are constrained observationally, we examine high density cells

in comparison to earlier Population III star formation work. Bromm et al. 2002 presented that the formation

of molecular gas clouds proceed at a rate of Ṁg = 3.70× 10−7 M� yr−1 pc−3. Ṁg is the upper limit on

the star formation rate, since a Population III star cannot form without a molecular cloud source. If we

estimate the volume which could form unresolved molecular clouds in PHX256-1 as that which meets the

star formation density criteria (nb ≥ 100 cm−3), then we find that the PHX256-1 simulation has Population

III SFRD = 7.43×10−9 M� yr−1 pc−3 within those regions, implying a Population III SFE of ∼ 2%.

Data in Table 3.2 can be compared to prior works and observational campaigns. Welsh et al. 2020

estimates 5+13
−3 progenitor stars per metal-poor enriched star formation. Our presentation of NIII is largely

consistent with their estimate, and highlights the dependence on the IMF to generate reasonable estimates of

the number of enriching events. Average star forming halos in Hicks et al. 2021 contained . 20 enriching

events, with the most massive halo having > 100. Table 3.2 would indicate that the average halo contained a

few discrete PIII associations that led to the final state of the halo, while the most massive may have had

several. Welsh et al. 2019 places an upper limit of 70 Population III enriching events in a metal-poor DLA

system; our results would indicate that that system would likely have several PIII associations contained

within, but is also small enough to be a single system.

Progenitor configurations that lead to Population II.1 star cluster formation are diverse so it would be

difficult to analytically build an accurate metal abundance model for a Population II.1 star. Future work may

be able to track separate metallicity fields from each progenitor type, allowing an estimation of the Population

II.1 metal abundances given the composition of progenitors and mixing of the ISM that has occurred.Within

the PHX, we find that while PIII associations have an average radius RIII ∼ 3 kpc, the low-mass, high-redshift

halos we observe have Rvir ∼ 0.4 kpc–because the PIII associations tend to be much larger than their host

halos, and that halos tend to be clustered together, we find that only 17.5% of PIII associations in the PHX512

simulation encompass a single halo, 64.1% contain > 5 halos, and 81.2% contain ≤ 10 halos; the remaining

PIII associations cover up to 58 halos. Hence, these PIII associations can serve as an metal enriching source

for many potential proto-galaxies, including those hosted by neighboring halos.
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PIII assocation influence can be modelled reasonably well by piecewise linear regression fits, with

our best-performing models having R2 & 0.5, and reproducing the PDF of observed radii with J . 0.2. We

also find that these models are dependent on the time since the first stars’ formation. This model has been

used to generate a distribution of enrichment radii that agrees well with our observations in the PHX suite,

while affording both simplicity and interpretability. Given a halo distribution, or sites of Population III

star formation, this model can be used to estimate the extent of enriched regions from primordial stars,

providing a new alternative to generating the metallicity initial conditions of cosmological simulations. A

more complicated model with parameters for inferring hidden variables or learning from hydrodynamic inputs

may be more successful in the short evolution time frame, or be able to generate non-spherical metallicity

fields that reflect the complexity of the density distribution of a star forming region.
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Chapter 4

The First Galaxies and the Effect of Heterogeneous
Enrichment from Primordial Stars

4.1 Abstract

We introduce the Scale-intelligent Terminal-momentum Algorithm for Realistic Stellar Sources

(STARSS) in the Eulerian adaptive mesh astrophysical simulation code, Enzo. STARSS emphasizes the use of

prior simulation and analytic inputs to model star formation and feedback in astrophysical simulations. After

validation, STARSS is employed in simulations that use deep-learning and regression-based surrogate models

(StarNet) to produce the heterogeneous metal enrichment that would result from primordial star formation.

We analyze the impact of heterogeneous metal enrichment by studying the earliest generations of stars, and

the protogalaxies (106 . Mv/M� . 108) containing them. We find that ignoring metallicity requirements

for enriched star formation results in a up to 30% excess in stellar mass created. Alternatively, employing a

metallicity floor causes an early underproduction of stars before z = 21 that reverses to overproduction by z =

18, creating ∼ 20% excess stellar mass and 8.5% exess in protogalaxy number by z = 14.95. Heterogeneous

metallicity conditions greatly increase the range of halo observables, e.g., stellar metallicity, stellar mass, and

absolute magnitude. The increased range leads to better agreement with observations of ultra-faint dwarf

galaxies when compared to metallicity-floor simulations. StarNet generates protogalaxies with low stellar

mass, M∗ . 103M�, so also models low-luminosity protogalaxies more effectively than a metallicity floor

criterion at similar mass and spatial resolution.
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4.2 Introduction

Historically, astrophysical simulations have been restricted to single, purpose-motivated scales, e.g,

using gravity only or gravity+hydrodynamics simulations to study cosmology (Vogelsberger et al., 2013;

Vogelsberger et al., 2014; Emberson et al., 2019), increasing resolution and adding sub-grid star formation

and feedback recipes to study single galaxies (Hopkins et al., 2018; Wheeler et al., 2019; Emerick et al.,

2020), or monumentally increasing the resolution and including recipes for the formation and feedback of the

first stars and star forming regions (Wise & Abel, 2011; Wise et al., 2012; Smith et al., 2015).

Because of the extreme difference in scale between star formation and large-scale structure formation,

even next generation simulation codes running on exascale systems will struggle to comprehensively model

single-star formation and feedback in a large-scale cosmological volume. For example, in the Phoenix

simulations (Wells & Norman, 2022)(W22), > 50% of simulation time is spent evolving high-resolution

regions required for Population III star formation and feedback. This problem is further exacerbated by

evolving supernova remnants (SNR) at an early and hot stage at high resolution. In addition, both the

Population III and Population II stellar feedback routines used in the PHX are not scale insensitive–they

deposit supernova (SN) energy in thermal form, which places severe limits on resolution (Martizzi et al.,

2015; Rosdahl et al., 2016). Taking full advantage of the next generation of high-performance computing

at exascale will require not only new paradigms in parallel code development, but also novel accelerations

within those new codes to address these difficulties.

The problems outlined above suggest two major avenues of progress for next-generation simulations

in Enzo1 and its massively parallel, CHARM++-based successor, Enzo-E2(Bordner & Norman, 2018). First,

a scale-intelligent star formation and feedback algorithm. Currently, star formation is bound by hydrodynamic

evolution and force resolution, so we first devote our focus to the future of stellar feedback in Enzo. Motivated

by other recent work using algorithms that adapt to resolution in some sense (Kimm & Cen, 2014; Rosdahl

et al., 2017; Hopkins et al., 2018) , we have developed the Scale-intelligent Terminal-momentum Algorithm

for Realistic Stellar Sources (STARSS). Using physically motivated parameterizations and prior simulation

results, STARSS uses a minimum of user-defined parameters to implement star formation and feedback that

does not require tuning by the user prior to thier next simulation. Section 4.3, 4.3.2, and 4.3.2 describe the

1https://enzo.readthedocs.io
2https://enzo-e.readthedocs.io/en/main/
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STARSS algorithm, while Section 4.4 describes how the model performs in testing at various resolutions.

Second,we address the issue of Population III star formation and feedback. Despite the fact that

Population III star formation is not uniform or isotropic, many current works assume a uniform prior

distribution of metals (e.g., Hopkins et al., 2018), thereby negating the need for the Population III era. Other

works simply ignore the first generation completely, allowing enriched star formation to occur in pristine gas

(e.g., Vogelsberger et al., 2014). Both methods would negate the effect of Population III stars, e.g., prompt star

formation from powerful SN (Machida et al., 2005; Ritter et al., 2012; Chiaki et al., 2013; Wells & Norman,

2022), destruction of early halos from Population III SN events (Whalen et al., 2008a), and the possibility of

halos that go unenriched by Population III star formation (Regan et al., 2017). This work combines prior

efforts in Wells & Norman (2021)(W21) and W22 to create a deep learning accelerated surrogate model

that will address the non-uniformity of halo enrichment from Population III SNe. The framework developed

for this purpose is referred to as the StarNetRuntime or simply StarNet. Although we developed it for

the purpose of modelling PIII associations3, StarNet is a framework that would be readily adaptable to

modelling single stars, enriched star clusters, or even galaxy level star formation and feedback. StarNet

is described in Section 4.6, while Section 4.6.2 describes the results of StarNet simulations and compares

them to simulations with a metallicity floor using STARSS in order to quantify the impact of intelligently

heterogeneous enrichment on the first protogalaxies and their minihalos.

4.3 Star particle creation and feedback

4.3.1 Star Particle Formation

Star particle formation follows a very similar prescription as described in Hopkins et al. (2018)(FIRE-

2), and can optionally follow the updated methods of Hopkins et al. (2022)(FIRE-3). Those criteria that can

be ignored or modified to follow FIRE-3 are denoted with a “*” below. Several criteria are checked at each

grid cell to see if that cell qualifies for star formation:

1. *ρ/ρ̄ > ρc, where ρc is the minimum overdensity relative to the simulation volume that is allowed star

formation and ρ̄ is the simulation volume average density. Alternatively, the density parameter can

consider number density: nb > nb,c.

3As noted in W22, this term refers to a group of coeval Population III stars, too small to form a canonical cluster, but too large to
be a simple binary/trinary system.
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2. Converging gas flow: ∇ ·νννcell < 0 for ννν, the cell-centered velocity.

3. The virial parameter (α), or ratio of kinetic + internal energy to gravitational potential energy is checked

using Enzo’s total energy field (available since Enzo uses a dual-energy formalism to track the energy

of the gas). We require α < 1 with

α =
Etotal

Egravity
,

where all quantities refer to the cell-centered value. Canonically, α = 2Ek/Eg for the kinetic energy,

Ek (Bertoldi & McKee, 1992). Here, we use Etotal to explicitly include contributions from all energy

sources.

4. The cooling time must be less than the freefall time: tc < tff with tff =
√
(3π)/(32Gρ), or temperature

T < 104 K.

5. The gas mass in the cell must be greater than the critical Jeans mass: mb > max(m j,103M�).

6. * The gas must have self shielded hydrogen fraction, fs > 0. This is checked via analytic approximation

(Krumholz & Gnedin, 2011). If using 9-species chemistry, this requirement can also be explicitly

checked by comparing neutral to ionized molecular hydrogen as evolved in the Enzo chemistry routines.

7. The metallicity must be above some user-defined critical value, Zc
4. Alternatively, the metallicity can

be ignored, although it is still included in the analytic approximation of fs.

If the above relevant criteria are satisfied, the creation routine assigns a integrated star formation rate

Ṁ∗ =
fsηsfMb

tff
, (4.1)

and maximum allowed star formation efficiency5 ηsf. The probability of star formation is then given for the

grid timestep δt as

psf = 1− exp
[
− Ṁ∗δt

ηsfMb

]
. (4.2)

4Z is defined as the log of metal abundance relative to solar metallicity; for metal mass Mz and baryon mass Mb, Z = log(Mz/Mb)−
log(Mz,�/M�)

5This efficiency is simply the maximum fraction of gas within a cell that would be allowed to convert to stars within a timestep;
this avoids converting all gas to stars and generating simulation failures from the resulting discontinuity in the density field. It does
not imply a global efficiency, e.g., of gas to star conversion within a galaxy.
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A star particle is formed only if sampling a binomial distribution with psf yields success. With probability

satisfied, a new star is formed with M∗ = min( fsηsfMb,M∗,max), where M∗,max is an optional user-defined

maximum star mass. The user may specify no maximum mass, in which case M∗ = fsηsfMb. However, if M∗

is large, there may be times where one would expect > 1 SN per particle in a timestep–such a situation is

undesirable, since STARSS feedback is designed to couple single-events to the grid and its analytic models do

not in general hold true for combined events that would result in a “super-bubble” remnant (SBR). To avoid

many SNe per timestep, we split large particles into several smaller sub-cluster particles. Each sub-cluster

maintains the metallicity, position and velocity of the parent, however we offset the creation time (tc) by

factors of the dynamical time: for the ith of n sub-clusters flagged for creation at time tc,0, the modified

creation time is set as tc,i = tc,0 +3i× tff/n Myr so that the creation of all sub-clusters is distributed across

three tff (Murray, 2011).

4.3.2 Star Particle Feedback

Determination of Feedback Quantities

This section details the feedback of STARSS particles. For each formed particle, at each timestep, we

calculate the age-based rates for supernovae (type II (Rii and type Ia (Ria)) and winds. The probability (Px)

of a SN of type x is then Px = M∗Rxdt, for dt being the timestep measured in Myr. If sampling a binomial

distribution with Px returns success, then a SN event will be modeled for this timestep. The rates used in

this implementation are taken from FIRE-2, which were generated using Starburst 99 (Leitherer et al., 1999)

simulations.

There are three modes of feedback coupled from star particles to the computational grid: Supernovae,

winds, and radiation. Supernovae rates are approximated by piecewise functions that depends on the age of

the particle measured in Myr (aMyr):

Rii =



0 aMyr < 3.401

5.408×10−4 3.401≤ aMyr < 10.37

2.516×10−4 10.37≤ aMyr < 37.53

0 aMyr ≥ 37.53

(4.3)
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Ria =



0 aMyr < 37.53

5.2×10−8 +1.6×10−5

×exp
{
−
(

[(aMyr−50)/10]2

2

)2}
aMyr ≥ 37.53

(4.4)

If either Pii or Pia result in a SNe event, we assign an ejecta mass of 10.5 or 1.5 M� to Type-II and

Type-Ia SN respectively. The metal ejecta for Type-II is Mz,ej = 1.91+0.0479×max(Z∗,1.65) or 1.4 M�

for Type-Ia.

At each timestep for the particle we additionally derive mass, energy and metal from stellar winds

that must be coupled to the grid. The wind mass is given by Mw = M∗ fwdt Gyr−1, with the wind loading

factor

fw =



4.763×min(0.01+Z,1) aMyr < 1

4.763aκ
Myr×min(0.01+Z,1.0) 1≤ aMyr < 3.5

29.4
(

aMyr
3.5

)−13/4

+0.0042 3.5≤ aMyr < 100

0.43
(

(aMyr/100)−1.1

19.81/ log(aMyr)

)
100≤ aMyr

(4.5)

κ = 1.45+0.08×min(Z,1). (4.6)

The mass of metals in the wind, Mz,w is then given by

Mz,w = max(0.02,0.016+ fz)×Mw, (4.7)

with

fz = 0.0041× (max(Z,1.65)+0.0118). (4.8)

Finally, the energy is determined as Ew = 1012Mwε, with ε is defined as:

ε = 4.83+
5.94×104

1+(aMyr/2.5)1.4 +

(
aMyr

10

)5

for aMyr < 100, or ε = 4.83 for all other times.

The last form of feedback associated with these star particles is via radiation. Each particle produces
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ionizing radiation according to

Ψion =


500 aMyr < 3.5

60
(aMyr

3.5

)−3.6
+460

(aMyr
3.5

)γ
) 3.5≤ aMyr < 25

γ = 0.045−1.82log(aMyr)

with Ψ in units L�/M�. With this parameterization, each particle will emit∼ 8.94×1060 ionizing photons/M�

throughout its 25 Myr radiative lifetime. While SN and winds are coupled to the grid as prescribed in as

follows in Section 4.3.2, radiation is coupled directly to the Moray ray-tracing radiation solver (Wise & Abel,

2011) in Enzo.

Coupling Feedback

Given an event from supernovae or stellar winds with ejecta energy Eej, mass Mej and metal mass

Mz,ej, we couple the feedback to the computational domain as described in this section. We wish to separate

Eej into thermal and kinetic components based on physically motivated analytic expressions: further, we wish

to distribute the kinetic energy via explicitly coupling momentum to the gas neighboring the star particle in

an isotropic manner. Coupling the momenta in physically meaningful ways implies altering the amount of

momenta coupled given the stage of the SNR, which is determined by the grid resolution. To determine the

phase of the SNR, we compare the grid resolution, dx, to various quantities: the free expansion radius (Rfree),

the cooling radius (Rc), and the fading radius, (Rfade). Rfree is determined as in Kim & Ostriker (2015) as

Rfree = 2.75
(

Mej

3M�

)1/3

n−1/3
b pc. (4.9)

Rc is given in FIRE-2,

Rc = 28.4n−3/7
b E2/7

51 f (Z) pc (4.10)

with E51 =Eej/(1051 erg) and f (Z) = Z−0.14 if Z≥ 0.01; else f (Z) = 2, because there is little to no metallicity

dependence below Z ∼ 0.01 (Thornton et al., 1998). Finally, Rfade represents the radius at which we would

expect the SNR to have merged with the ISM, i.e., the expected velocity of the shell is comparable to the
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local speed of sound. The expression is taken from Draine (2011) as

Rfade = 66.0 E0.32
51 n−0.37

b

(
cs

10 km s−1

)−0.4

pc. (4.11)

Since this simplified expression has no consideration for local metallicity, we finally take Rfade =min(Rfade,1.5×

Rc). In all the prior expressions, for SNRs, the energy is taken as 1051 erg, the mass is 10.5 and 1.5 M� for

Type-II and Type-Ia SNe respectively.

After determining the phase of SNR, we calculate the expected momentum to couple (pcpl) using the

following expressions:

pcpl =



√
2Me jEe j× (dx/Rfree)

3 dx < Rfree

min(pST , pT ×dx/Rc) Rfree < dx < Rc

pT ×η Rc < dx

(4.12)

where η =
(
1.0− tanh [(1.25×dx/Rfade)

2]
)

to smoothly connect the terminal phase to the fading phase

where coupled momentum is zero. The expected momentum of the Sedov-Taylor(ST) phase (pST) at the

radius given by dx is

pST = 2.21×104 E0.8
51 n0.2

b t0.6
3 M� km s−1 (4.13)

where we solve for t3 taking the radius as dx:

t3 =
(

dx
5 pc(E51/nb)1/5

)5/2

(4.14)

as derived from Kim & Ostriker (2015). The momentum in the momentum-driven snowplough phase

(terminal phase, pT ) is taken from Thornton et al. (1998) as

pT =


1.67×105E13/14

51 n−1/4
b Z−0.36 Z > 0.01

8.36×105E13/14
51 n−1/4

b else
(4.15)

Finally, Cioffi et al. (1988) notes that there is a low-density regime where there is no expected shell formation

and the remnant merges with the ISM before the shell mass approaches the ejecta mass. This case is extremely
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important in our model, as the SNe originate from a single point in space; after the first few events, the

interior region is very hot (T ≥ 107 K) and low-density (nb . 10−2 cm−3). To smoothly connect the phase of

the SNR to this regime where we expect no momentum coupling, in cases where nb < 10nC we modify the

coupled momentum as

pcpl = pcpl×
(

1− tanh
[(

1.45
nC

nb

)6.5
])

(4.16)

with critical density

nC = 0.0038
(P4)

7/9(vs/cs)
14/9

E1/9
51

Z1/3 (4.17)

for P4 = nbT/104 K and the expected shell velocity vs. In order to calculate vs, we utilize the following

expressions for the mass of the SNR shell (Ms):

Ms

M�
=



Mej dx < Rfree

Mej +
4
3 πdx3ρ̄ Rfree < dx < Rc

Mej +1.41×104 E6/7
51 Z0.27

n0.24
b

Rc < dx,Z > 0.01

Mej +4.89×104 E6/7
51

n0.24
b

Rc < dx,Z < 0.01

(4.18)

he first case assumes no shell mass in the free expansion stage. The only mass coupled in this stage is the

ejecta mass. The second assumes that the shell mass behaves as if sweeping up mass in a sphere with averaged

density ρ̄. The final two expressions describe the shell mass in the terminal phase, at different metallicity

regimes (Thornton et al., 1998). Of course, these analytic expressions have to consider the mass that exists on

the grid; we determine the mass that exists within the central cells (Mcentral) where the shell mass would be

removed and the final shell mass is limited to Ms = min(0.75Mcentral,Ms). With Ms in hand, the velocity of

the shell is given by vs = pcpl/Ms and the metal contribution from the shell is given as the mass averaged

metallicity of the central cells from which the shell is being evacuated.

In principle the analytic forms of this section are also applied to stellar winds. In practice however,

the wind energy is so low that the momentum is negligible. Despite the lack of momenta coupling at lower

resolutions, the mass, gas energy and metal from winds are still deposited.

We present the metal contribution across the lifetime of a STARSS particle in Figure 4.1. In the right,

we show the short-time evolution that includes O-B SNe and their associated winds, with SN events annotated
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Figure 4.1. Metal contribution from the evolution of a 1000 M� starss particle. The left plot shows the 40
Myr evolution of early Type-II SNe era with SN events annotated (cyan stars) and the metal contributions
from winds, SNe, and total contributions (∑Z). Right: the contribution from stellar winds across 5 Byr, with
Type-II and Type-Ia events annotated in cyan and magenta, respectively.

for the first 40 Myr. The left plot shows the long-time evolution up to 5 Gyr. It includes late winds from

AGB branch stars starting at 100 Myr, and finite possibility for Type-Ia SNe, with occurrences annotated in

magenta stars. At late times, the metal contribution from winds becomes comparable to that from Type-II

SNe.

4.3.3 Coupling Method

Given Mej, Mz,ej, Eej, and pcpl from a source particle, Sa, we now describe coupling those quantities

to the grid in an isotropic and conservative method that maintains very small linear error. Shown in the 2D

example in Figure 4.2, we create a virtual cloud of 33−1 coupling target particles (Sb, purple circles) spaced

at dx from the feedback source (Sa, red star). This method generates a fixed geometry, and maintains the

unique position of Sa within its host cell. Each Sb receives an equal fraction of energy, mass, metal, and

momenta to couple to the grid, so the final quantity coupled at each Sb is

Mb =
Mej +Ms

26
(4.19)

Mz,b =
Mz,ej +Mz,s

26
(4.20)

pppb =
pcpl

26
r̂rrb→a (4.21)

where r̂rrb→a is the unit vector from Sa to the Sb particle and the factor of 26 represents the 26 particles in

the 3-dimensional virtual coupling cloud. The above expressions do not include energy: we couple kinetic
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Figure 4.2. 2D example of deposition method. The feedback source (star) is coupled to neighboring cloud
particles (circles) at spacing dx from the source; all feedback quantities are calculated at this radius, with
momentum having a vector quantity indicated by blue arrows. The cloud particles are then cloud-in-cell
deposited to the computational grid (hashed black grid). There is no quantity coupled at the source particle,
however, the calculated shell mass is removed via CIC from the central cells centered on the source particle.

energy determined by the momenta coupled to the cell as Ek,b = |pppb|2/2Mb. The thermal energy (Et) coupled

is the remainder of the energy budget, i.e., Et = Eej−∑b Ek,b. If dx > Rc, then the thermal energy is reduced

to account for unresolved PdV work using Et = Et(dx/Rc)
−6.5 (Thornton et al., 1998; Hopkins et al., 2018).

Finally, the thermal energy is coupled in the same manner as kinetic with Et,b = Et/26. With known quantities

for deposition, each Sb virtual particle is coupled to the computational domain via cloud-in-cell deposition.

4.4 Idealized Tests

To test STARSS supernova feedback algorithm, we used the TestStarParticle problem in Enzo.

This problem sets the star particle at the center of the box (plus 1/2 cell width) with uniform density. To test

resolution dependence, we used ρ = 9.79×10−23 ' 45 cm−3 in baryon density while varying the cell width,

dx between 0.5 pc ≤ dx≤ 50 pc. The simulation domain was initialized with temperature T = 1000 K and

Z =−1 (absolute metallicity 0.001295). The test utilizes all the standard Enzo physics capabilities: 6 species

chemical evolution (H I, H II, e−, He I, He II, He III), radiative cooling, and metal-line cooling using Cloudy

lookup tables (Smith et al., 2009; Ferland et al., 2017).

At time t = 0.00025 Myr, a single SN as modeled by STARSS is coupled to the grid. The simulation
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Figure 4.3. Terminal momentum of ideal tests while varying cell width with fixed nb. Cell width (dx)
annotated on lower axes, corresponding cell gas mass on upper. Linear momentum error is shown in orange
corresponding to the right vertical axis. Since the density is fixed, we expect the same momentum across all
samples, which is the behavior shown in blue. Expected momentum from the fully-resolved (0.5 pc) test is
shown in grey. It is well matched by STARSS across all spatial resolutions tested.

continues for 1 Myr, and we record the terminal momentum as the maximum measured during that time.

Taking the maximum observation is motivated by the behaviour in momentum while varying resolution:

in resolved cases where the deposition represents the free-expansion or ST phases (e.g., dx < 3 pc) the

momentum increases until the terminal value, and decreases afterward, however, in unresolved cases, pppt is

directly coupled to the grid. The initial value of ppp represents the terminal solution exactly, which decreases

after coupling to the mesh due to cooling.

Results from resolution tests are shown in Figure 4.3. The true solution (grey), obtained by a fully

resolved simulation with dx = 0.5 pc, is closely matched by STARSS (blue) in all test cases. In addition, the

linear momentum error (∑ ppp) is ≤ 10−9 for all test cases. This test does not use the reduction in coupling

beyond Rfade, which results in a sharp drop in coupled momenta for dx > 30, finally coupling negligible

momenta by dx = 50.
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Figure 4.4. Ideal halo test comparing two spatial resolutions. Given identical initial density perturbations, we
expect very similar results regardless of spatial resolution. Top shows a single particle 20 Myr after creation
in a 107 M� halo with a NFW profile (Navarro et al., 1997) with 163 root-grid and 3 levels of AMR yielding
a maximum resolution of 16.38 pc. Bottom shows the identical initial conditions using a 643 root grid and 3
levels AMR to achieve 4.1 pc maximum resolution. The final state across these tests is very consistent. The
slight anisotropy is due to the particle being offset from the halo center in the initial conditions.

To test the full feedback framework of STARSS within a controlled environment, we use an ideal

spherical halo. Specifically, the success of STARSS hinges on generating similar results irrespective of spatial

resolution, so we performed several tests varying the spatial resolution of a test halo, but holding the baryon

and dark matter density constant. This test uses identical cooling physics as the ideal single supernova

test, but now includes radiation from the star particle in the form of ionizing radiation, heating, and photon

momentum coupling to the gas. The star particle of 1000 M� is positioned at the center of the halo, slightly

offset from the center of the box with width 800 pc. In the first test (LR), the domain has 163 root-grid cells

and 3 levels of AMR on dark matter density so that the center of the halo has dx = 16.38 pc. The second test

(HR) allows for 6 levels AMR, so that the maximum resolution is 4.1 pc. The refinement criteria of each

simulation are tuned such that the center of the halo is at the maximum AMR level. The background density

of the box is set to 7.0×10−26 g cm−3 giving the center of the halo number density nb = 2.2 cm−3 at t = 0 in

both cases. The simulation allows for the full probabilistic feedback of STARSS, and proceeds for the duration

where Type-II SNe have finite probability, 37.53 Myr. Although the initial central number density of the

86



halo has nb = 2.2 cm−3, early radiation pressure reduces the density surrounding the star particle to nb ∼ 0.8

cm−3 in both LR and HR. Since the number of SN events is not deterministic, the simulations were repeated

until we observed a similar number of events during the lifetime of the particle. Figure 4.4 shows slices

through the simulation domain at the final output, 37.50 Myr. We observed 16 events in the LR (top) and 15

in the HR. Both show qualitatively similar behavior, including in the magnitude of density, temperature, and

metal density within the SBR. At the final output, we measure the momentum in the “shell” of the SBR and

find that |ppp|= 7.12×106 and 7.42×106 M� km s−1 for the HR and LR respectively, representing a ∼ 4.2%

difference. The magnitude of difference in momenta, ∼ 3×105 M� km s−1, is very similar to the expected

momenta from a single terminal-phase SNR.

4.5 Cosmological Simulation Tests

We choose to explore the performance of STARSS within the framework of cosmological simulations.

We prefer the multiple galaxy-halos of cosmological simulations so that we can compare STARSS across

multiple star forming halos and multiple halo mass ranges within a single simulation. Each simulation

uses identical cosmological parameters with with Ωm = 0.3111, Ωb = 0.048975, Ωk = 0, Ωλ = 0.6889,

H0 = 0.6766, σ8 = 0.811, n = 0.965 (The Planck Collaboration et al., 2014). For easy comparison, each uses

identical initial conditions generated using MUSIC (Hahn & Abel, 2011) on a 2563 root-grid with (2.61 Mpc)3

volume. With these parameters defined, the dark matter particle mass is 2.34× 104 M� and the average

initial baryon mass per cell is 1.17×103 M�. For refinement criteria, we consider baryon and dark matter

overdensity, where the cell is refined if ρx/ρ̄x > 3, for the baryon or dark matter density ρx, and ρ̄x refers

to the simulation averaged quantity. In addition, we use an exponential factor to enforce super-lagrangian

refinement: the the mass within a cell to cause refinement is given by Mx ≥ 3Mi×2−0.6l for level l and Mi as

the initial average baryon or DM mass per cell in the simulation.

We use identical physical and chemical models across all STARSS simulations: 9-species chemistry

including H, H+, He, He+, He++, e−, H2, H+
2 , H−2 ; 4-dimensional cooling considering density, metallicity,

electron fraction, and temperature as determined by Cloudy lookup tables (Smith et al., 2009); radiative

feedback including photon momentum coupling to the gas using the Moray ray tracing solver (Wise &

Abel, 2011) with STARSS particles as sources; finally, we include a redshift dependent Lyman-Werner H2

dissociating radiation field to model sources from outside the simulation region.
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Figure 4.5. Comparing simulations with identical mass resolution varying maximum spatial resolutions at
z = 13.91. The top, middle, and bottom show the 4L, 5L and 6L simulations respectively. Note that since
there is a probabilistic element in both the star formation and supernova routines, we do not expect perfect
agreement among the rows.
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Table 4.1. Summary of STARSS simulations.

ID LMax Zf dx0 dx15

4L 4 -5.5 624 pc 39 pc
5L 5 -5.5 312 pc 19.5 pc
6L 6 -5.5 156 pc 9.75 pc
4LZ 4 -3 624 pc 39 pc
5LZ 5 -3 312 pc 19.5 pc
6LZ 6 -3 156 pc 9.75 pc

Note: The differences between simulations is shown here; the metallicity floor (Zf) and maximum AMR level
varies, while all other parameters are identical throughout. The finest cell-width is shown for z = 0 (dx0) and

z = 15 (dx15).

The cosmological simulations used to validate STARSS are shown as projections in Figure 4.5, and

with parameters summarized in Table 4.1. Qualitatively, the simulations produce very similar results, however

minor differences, e.g., in the size of bubbles in metallicity, are noticeable. We can see that the volume is

largely unenriched by z = 13.91, and by using temperature as a proxy for ionization state, most of the volume

remains neutral (in reference to H, assuming ionized H gas would have T & 104 K). While the simulations

are comparable in the metallicity field, signifying consistent SN feedback across resolutions, the temperature

field shows systematic differences, particularly between 4L and 5L simulations, where 4L has noticeably

smaller high-temperature regions that are fewer in number. These systemic differences are less pronounced

when comparing the 5L and 6L simulations, indicating that the star formation algorithm is more consistent at

those resolutions. The remainder of this section is dedicated to quantitative comparisons across these three

resolutions.

We can quantify the convergence of the STARSS algorithm by examining SFR density (SFRD) and

stellar mass formed from a global perspective that includes both initial conditions for a given resolution. In

Figure 4.6, we present the SFRD and stellar mass density for all STARSS simulations. Figure 4.6a uses the

same metallicity floor (Zf) as the critical metallicity of the Phoenix Simulations with Zf =−5.5. While 5L and

6L have very similar cumulative stellar mass, 4L lags by ∼−0.3 dex. However, 4L maintains similar slope in

cumulative mass, suggesting that the effect of resolution is to delay star formation, but not to change the rate

of star formation after it has begun. Figure 4.6b shows the same set of simulations, but using a metallicity

floor more common in modern work of Zf =−3. The higher metallicity floor enables more efficient collapse

of star forming regions due to enhanced cooling, which has acted to negate most resolution effects seen in

Figure 4.6a, but has limited effect on the resolved 6L case. With Zf =−3, 5LZ and 6LZ have converged to
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Figure 4.6. SFR density and formed stellar mass density for varying resolution using STARSS. All resolutions
use the same star formation and feedback parameters. Panel 4.6a uses a metallicity floor of Zf =−5.5, while
4.6b uses Zf =−3. 5LZ and 6LZ simulations converge to nearly identical behavior with the higher metallicity
floor, but have slight differences in stellar mass with the low metallicity floor. The black dotted line is an
approximate fit to the SFRDs with SFRD = 3.65exp(−z/2.45).

nearly identical behavior, and the stellar mass deficit in 4LZ is reduced to only ∼ 0.2 dex below 5LZ and 6LZ.

This behavior in Figure 4.6b is our primary motivation for using 5LZ in our comparisons of Section 4.6.2.

To describe how star forming regions interact with the environment from a global perspective, we

show the volume fractions ionized and enriched to varying levels in Figure 4.7. There is much better

agreement in the enriched volume fraction than ionized volume fractions. Lower resolution (4L, 5L) tend to

enrich more of the volume at early times, but the difference between resolutions is largely negligible by z∼ 14.

The ionized volume fraction still shows deviations at the lowest redshift, and shows large steps corresponding

to star formation beginning in new regions. Exploration to lower redshift would be beneficial to determine

whether the differences in ionized volume fraction are reduced or exacerbated by further evolution.

In Figure 4.8, we show a histogram of feedback region radius by redshift for all STARSS simulations.

We additionally show the mean radius plotted over the histogram. To obtain this data, we iterate each data

output and search for halos with finite stellar mass. If found, we center a 0.1 kpc sphere on the center of

stellar mass and record the volume-weighted mean metallicity and HII fraction. If 〈Z〉>−5 or fHII > 0.05,

the sphere is expanded by 0.1 kpc and the averaging is repeated until 〈Z〉 < −5 and fHII < 0.05. Figure

4.8 clearly shows that there are fewer and fewer small feedback regions as resolution decreases, implying
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Figure 4.7. Volume fraction ionized to various levels (Left column), or enriched to varying levels (Right
column) by redshift using the second initial conditions set for all resolutions.
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spline fit to the 50th quantile of remnants in each redshift bin.
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Figure 4.9. Comparing redshift bins of metallicity radius in Figure 4.8 by examining Jensen-Shannon
distance. Lower distance implies more closely related PDFs of radii.

that lower-resolution runs struggle to model low stellar mass or young systems. The ionization fraction

is consistent across the presented resolutions, however we note larger metal-rich remnants as resolution

decreases. While noticable between 5L and 6L, the effect is much more pronounced in comparing 4L and 6L.

This is likely due to 4L creating fewer but more clustered stellar particles instead of many small, scattered

particles. Those few clustered particles deposit more SNe into the same region. In a positive feedback loop,

the higher number of SNe are then deposited into less dense and hotter gas, resulting in higher-velocity

expansion and larger super-bubble remnants. Despite this complication, the quantile fit to the size of remnants

in 4L is still . 2× that of 6L, despite having 4× worse spatial resolution. Examining the background

histogram suggests that all resolutions have similar distributions at high radii, and the significant change is in

the modeling of younger or less massive stellar systems with smaller radii.

The distribution of remnant regions in Figure 4.8 can be quantitatively compared by considering

each redshift bin as an independent distribution of remnant sizes. We can then compare each bin using

the Jensen-Shannon distance as a metric to compare two probability distributions. With the probability
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Figure 4.10. Star forming halo counts including all IC variations. Top: Number of star forming halos by
redshift. Bottom: Number of star forming halos with Mh > 4.5×107 M� by redshift. Note that the plots do
not share range in redshift. 4.10a shows the low Zf simulations, while 4.10b shows Zf =−3. Using Zf =−3
has negated much of the discrepancy noted in the Zf =−5.5 case. Factor of ∼ 2 drops in counts at z∼ 14
(4LZ) and z∼ 15.5 (6LZ) are due to different end redshifts of simulations within that resolution suite.

distribution of radii from simulation A as Pa, and from simulation B as Pb, we can define the Kullback-Leibler

divergence D(Pa|Pb) = Pa log(Pa/Pb) to compare the PDFs using the Jensen-Shannon distance given by

J(Pa,Pb) =

√
D(Pa|P̄ab)+D(Pb|P̄ab)

2
, (4.22)

where Pab is the pointwise mean of Pa and Pb. For this description of J, J = 0 implies identical PDFs, while

J = 1 would indicate completely unrelated PDFs. We compare the 4L and 5L simulations to the 6L simulation

using this method in Figure 4.9. In general, J is lower when comparing 5L and 6L, and the agreement

between the three resolution increases as redshift decreases. Although 5L appears to be a qualitatively better

match in Figure 4.8, this metric solidifies that observation.

The figures presented thus far indicate that while the feedback from STARSS is largely consistent

across resolution scale, the star formation algorithm is not. This is obvious in Figure 4.10, where we present
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the number of star-forming halos (top) and number of massive Mh > 4.5× 107 M� star-forming halos

(bottom) in each tested resolution for both Zf =−5.5 and Zf =−3. The effect of resolution is to host star

formation in fewer halos, particularly for low Zf (Panel 4.10a). The effect is reduced as the halo mass of

interest is increased, however, even at Mh ∼ 4.5×107, 6L shows enhanced star forming halo counts. The

effect is also greatly reduced when using Zf = −3 (Panel 4.10b). While the difference between 5LZ and

6LZ is still ∼ 0.1 dex for all halos, their behavior is converged for larger halos with Mvir ≥ 4.5×107 M�. In

STARSS current paradigm of predicting star formation, this relationship between resolution and star-forming

halo counts is likely unavoidable. Since force resolution in Enzo decreases with spatial resolution, the

simulation cannot resolve peaks and troughs of the hydrodynamic fields as accurately. This leads to lower

magnitudes of density peaks reducing the ability of the gas to self-shield, as well as reduced accuracy in

modeling gas flows, limiting star formation by our ∇ ·ννν < 0 star formation criterion.

Finally, we present density-temperature phase diagrams in Figure 4.11. Again, 5L and 6L have

converged to very similar behaviour, even in the high-temperature, low-density region that represents stellar

feedback. All three simulations have similar high-density behaviour, suggesting that star formation and

feedback is having a similar effect once gas reaches those high densities (ρ & 10−21 g cm−3) and that the

primary difference between the simulations is the gas dynamics due to resolution effects outside of stellar

feedback.

4.6 StarNet: Surrogate Models of Primordial Star Formation and Feed-
back

In the following sections we present a new method of generating metallicity initial conditions

in cosmological simulations. Where prior methods would set a “metallicity floor,” where the metallicity

everywhere in the volume takes on a set value, or ignore metallicity effects on the first and second generations

of stars, here we aim to generate an heterogeneous metallicity field by considering where primordial stars

would form and modelling their subsequent feedback. Using the inline Python analysis capability in Enzo,

we incorporate deep learning models to predict star formation (StarFind (W21)) and regression models of

primordial stellar region effects (W22) into a single framework (StarNet) that can evaluate simulations in

situ for primordial star formation sites and deposit a rudimentary approximation of their effects. Although

every effort was made to streamline and optimize the inline Python for StarNet, the data structure of Enzo
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(a) 4L (b) 5L

(c) 6L

Figure 4.11. Density-temperature phase profiles for the entire simulation volume in 4L, 5L and 6L STARSS
simulations at z=13.71. The primary difference between resolutions is in the low-density high-temperature
regime.
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Figure 4.12. Simplified work-flow diagram of StarNet.

combined with implementation limitations on the inline Python means that these runs were limited in the

following ways: each deposition of a Population III remnant region requires access to all levels of the

computational grid, therefore we cannot utilize load balancing algorithms that would separate child grids

from their parents. Since there is no communication across tasks, we must reduce the possibility of remnant

regions that cross root-grid boundaries (each root-grid is a work-unit managed by one task in Enzo). We

accomplish this by using the minimum number of tasks that can support a 2563 root-grid simulation. Because

of these limitations, this work only explores the very high-redshift regime of z & 15. Future work to integrate

the StarNetRuntime into Enzo-E will be able to fully explore lower-redshift simulations. This limitation also

means that this work is a “proof-of-concept” and first attempt at exploring the application of DL methods to

active simulations, and as such, will form the basis of, and inform the direction of, future similar simulations

and surrogate modelling efforts.

4.6.1 StarNet

StarNet predicts the sites of PIII association formation, estimates the primordial stellar population

from statistical models, and applies simplified spherical feedback expected to the region. A simplified

work-flow of StarNet is presented in Figure 4.12. Every n megayears, the simulation is paused and the

active computational domain is sent to StarNet for evaluation. First, each grid with AMR level l = 2 is tiled

into (10 comoving kpc)3 volumes. Each volume needs to to represent AMR level 6, despite that each volume

may include data from various levels and is assuredly not uniformly the same resolution. To bring data from
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l = 2 to l = 6, we copy simulation data at l = 2 to an inference grid, G, use trilinear interpolation to achieve

l = 3, and then copy the simulation data at level 3 to G. This process is repeated at increasing level until

the desired resolution, where G has 643 dimension. G is then passed into trained models for StarFind to

perform inference.

If StarFind predicts a PIII association, we begin calculating a simplified feedback solution that

represents the final state of the PIII association (from a metallicity perspective). StarFind predicts a group

of voxels in G that are participating in star formation, where we assume that the center of the region is at

the center-of-mass of those positive prediction voxels. We use the statistical relations described in W22 to

determine the number and masses of Population III stars within the association and use the mass-SN yield

parameterization of Enzo to derive the metal mass originating from the PIII association, MIII. We then use

the linear regression models of W22 to predict the radius of the feedback region, RP3. From the center of the

predicted PIII association, the computational grid within RP3 is modified using the following:

• Primordial metal density, ρZIII = MIII/(4πR3
P3/3)6.

• Temperature, T = 104 K.

• All chemical species retain the same fraction of density that existed before to maintain mass conserva-

tion.

While these modifications are very crude, they satisfy several requirements: the metallicity field is not

homogeneous on large scales (outside the feedback region) and the high temperature ionizes H gas and will

reduce the H2 fraction within the region. In addition, since RP3 and ρZIII are calculated from prior simulations

statistics, each “bubble” has a broad range of possible metallicities, which prevents each star forming region

from attaining the exact same metallicity floor before Population II star formation takes hold.

StarNet is composed of the results of previous projects which have never been combined into a

single module until this work. A visual projection of the primordial metallicity field is shown in Figure 4.13

comparing the metallicity field in the Phoenix Simulations PHX256-1 and PHX256-2 simulations (top) to

the predicted regions found by using StarNet in a simulation matching the initial conditions of the PHX,

but with no Population II star formation enabled. There is obvious agreement between many regions in the

projections, however there are some notable differences. Some regions have been predicted early by StarNet,

6All spherical-volume based calculations are corrected at deposition to account for depositing into cubical grid cells
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Figure 4.13. Top: Metallicity field sourced from Population III stars within the PHX256-1 and PHX256-2
simulations (W22). Bottom: Metallicity field as predicted by StarNet. Both rows show the state at z = 14.95.
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Figure 4.14. Volume of simulation enriched above the given metallicity, as generated by StarNet without
including STARSS star formation and feedback. The hashed lines show the corresponding fraction as measured
in the Phoenix Simulations’ PHX512 (W22). Since there is no on-going star formation in the StarNet
simulation, comparisons between ionized volume fractions are uninformative.

within the lower plot. As well, it appears that the regions are, generally, larger in StarNet. This is an artifact

of StarNet’s design: it predicts a “final state” for the feedback region, estimating the impact of primordial

stars 16 Myr after the first star forms. Since the regions in the PHX suite are at varying stages of evolution,

there are many regions that have just formed in PHX, but have the final state predicted by StarNet. It is

notable however, that the magnitude of metallicity seems to agree well between the two methods as well.

In order to quantify the effect of pre-enrichment by Population III stars, we perform five simulations:

1. sn5L-1: StarNet simulation that requires Z ≥−5.5 prior to STARSS particle formation.

2. sn5L-2: same as sn5L with different initial conditions.

3. sn5l-noZ: StarNet simulation with no metallicity prerequisite–STARSS particles can form regardless

of gas metallicity in the host cell, however StarNet still generates a metallicity field due to Population

III star formation.

4. sts5l-1: STARSS simulation from Section 4.5; this has no Population III treatment, instead initializing

the metallicity field at Z = −3 and requiring Z ≥ −3 for STARSS particles to form. This modified

metallicity floor is the 5LZ simlulation set noted in Section 4.5, and is more representative of typical

metallicity floors used in, i.e., FIRE-2.
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5. sts5l-2: same as sts5l with changed initial conditions matching that of sn5l-2.

Broadly, these simulations fit two categories: dependent on or independent from initial enrichment.

Below, the terms SNET or STS shall refer to the combined statistics of sn5l-1,2 or sts5l-1,2 respectively. Our

primary comparison is between the SNET and STS suites to identify the difference between simulations

using metallicity floors and those requiring pre-enrichment from Population III SFF. SNET uses a very low

critical metallicity compared to the metallicity floor of STS. Our motivation for doing so is because the

training data to create StarFind and StarNet were generated from the Phoenix Simulations suite where

Population II star formation can only proceed in gas enriched to Zc ≥−5.5. Modifying the critical metallicity

floor of SNET would require further testing to ensure that StarNet can enrich gas appropriately to higher

levels without further training. Hence, in this work, we compare the two as methodological approaches, but

not as an attempt to compare similar critical metallicities or floors. The sn5L-noZ simulation provides a

very unique dataset. Since each STARSS particle inherits its metallicity from the host cell where it formed,

this simulation will identify stars that formed in metal-free or low-Z gas by their metallicity fraction, while

still allowing for star formation to proceed in the pre-enriched regions created by StarNet. This simulation

will, in particular, provide the fraction of stars in a final galaxy that would not have formed if we enforced a

metallicity requirement for star formation.

To further validate that StarNet is producing expected size of feedback region and in a reasonable

number of events, we compare the fraction of volume enriched to varying degrees in Figure 4.14. The

volume fraction enriched to low levels, i.e., Z = −4.3,−5.5 is matched by StarNet to 0.1 dex. Notably,

StarNet does a fair job, with more deviation, of modeling the higher-Z remnants, i.e., with Z &−2.6. The

existence of these relatively high-Z regions will enable a broad range of metallicity for second-generation star

formation, further increasing the diversity of protogalaxies enabled by StarNet. There are many times where

the discrepancy between StarNet and the PHX solution is larger. Many of these can be attributed to StarNet

depositing the “final state”: there is no point where StarNet models the early phases of expansion–the SBRs

existence is binary–so the early phase of SBR is “fast-forwarded” to the final state that would exist 16 Myr

later. This effect causes the enriched volume to be incremented in steps instead of a smooth transition between

times, which leads to temporary larger errors.

To further discuss the distribution of enrichment by StarNet, we compare the two-point correlation

functions (ξ(r)) for halos enriched by primordial gas both in PHX256-1 and cosmological simulations using
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Figure 4.15. Two point correlations of protogalaxies enriched with primordial gas in the SNET and PHX256-1
simulations. With minor deviation at low-r, ξ(r) is consistent across simulations.

StarNet for primordial enrichment, where both versions share identical initial conditions. We calculate ξ(r)

as

ξ(r) = DD(r)/RR(r)−1 (4.23)

where DD(r) is the number of halo pairs with separation equal to r, RR(r) is the number of randomly

distributed pairs that would have separation r, with radii are split into bins of width δr7. Ideally, StarNet

would duplicate ξ(r) from PHX256-1, indicating that StarNet had enriched a very similar distribution of

halos predicted by StarNet. Indeed, Figure 4.15 shows that sn5l-1 and PHX256-1 have nearly identical ξ(r),

with only minor deviation at high and low r.

4.6.2 Measuring the Impact of Heterogeneous Metallicity Initial Conditions from Popula-
tion III Stars

In this section, we make comparisons between SNET and STS suites to quantify the impact of the

heterogeneous metallicity field predicted by StarNet on the first generations of enriched star formation. We

elected to use the 5LZ simulations from Section 4.5 because of their converged behavior when compared to

6LZ, despite requiring less than half the runtime. As well, despite the fact that there is no metallicity floor

7halotools: https://halotools.readthedocs.io
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Figure 4.16. Comparing SFRD of SNET and STS. The lower panel shows the error in stellar mass obtained
by using a uniform metal density IC as in the STS.

in SNET, the pre-enriched bubbles deposited by StarNet tend to enrich higher than Z ∼−5.5–the cooling

imparted to the collapsing halos from the new metallicity field resembles the 5LZ simulations much more

closely than the 5L simulations with Zf =−5.5.

Global Simulation Statistics

In Figure 4.16, we show both SFRD and stellar mass difference across SNET and STS with stellar

mass diference given by M∗,STS/M∗,SN. SNET and STS have comparable SFRD at all times (top), however

the small differences in SFRD accumulate to rather large errors in cumulative stellar mass formed (bottom).

At very early times (z > 21), STS drastically under-produces stars, having as much as 50% less stellar mass.

This early trend is reversed at later times, where STS overproduces stars and eventually has ∼ 20% excess

stellar mass compared to SNET.

To further describe the volume SFRD, we present the counts of star-forming halos in SNET compared

to STS in Figure 4.17. There are slightly fewer star forming halos in SNET suite at any given redshift. This,

combined with the SFRD that matches STS, suggests that the individual halos in SNET undergo similar

star formation at similar times, on average. However, since there are fewer halos in SNET, there exist some
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Figure 4.17. Counts of star-forming halos comparing SNET and STS suites. SNET halo counts are . 0.1
dex below STS for many redshifts, indicating a systemic but minor reduction in star-forming halo counts due
to using StarNet. The lower panel only counts more massive protogalaxies with Mh > 4.5×107 M�. The
difference between SNET and STS is absent.
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Figure 4.18. Cumulative MDF of STARSS particles formed in sn5l-noZ. A long tail of low-metallicity clusters
have formed with Z ≤−5.5, accounting for ∼ 4% of stars within the simulation. We also show the mass of
these low-metallicity clusters: they are not low-mass errors, but full ∼ 103 M� clusters that have formed in
primordial gas.

pristine halos in SNET that are enriched star-forming protogalaxies in STS. In total, STS contains 8.6% more

star forming halos than SNET. However, we can see by the lower panel that any difference between SNET

and STS is absent when only considering more massive protogalaxies with Mh > 4.5×107 M�.

In Figure 4.18, we show the cumulative MDF of the sn5l-noz simulation. Of note is the fact that

∼ 4% of stars in sn5L-noZ formed in gas below Zc =−5.5. This bulk of stars represents the error that would

result from ignoring the requirement of metallicity prior to enriched star formation. However, there is nothing

stopping StarNet from enriching gas well above Zc =−5.5. We can therefore ask what the effect is when

we vary Zc and ask which stars have formed in error as a function of changing Zc.

Figure 4.19 shows the fraction of stars that formed with Z < Zc while varying Zc, at various redshifts.

As redshift increases, the central values of Zc have increasing error, i.e., stars forming with Z < Zc. In

particular, at z > 18.1, more than 15% of stars were formed with Z < −6, well below the threshold of

Z =−5.5 used in the simulation. This is a compounding error upon further reflection: since some fraction

of stars form with Z < Zc, they also contribute to the enrichment of the surrounding gas, leading to further

star formation within the region. However, we are not able to differentiate these second-generation errors in

this analysis because the star particles do not retain the source of their metallicity (whether from Population

II or Population III sources). The logical conclusion is that some fraction of stars with Z > Zc are second

generation errors that also should not have formed.
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varying Zc are shown at various redshifts.

Halo and Galaxy Statistics

Thus far, the presented statistics focus on a global perspective, disregarding individual halo or

star forming regions statistics. In this final section, we will zoom in and discuss single halos and their

proto-galaxies. To generate our galaxy catalog, we use Rockstar (Behroozi et al., 2013), requiring at least

100 DM particles within the halo. Each halo is then iterated, and we log various quantities beyond virial

radius and mass: stellar mass, averaged historical star formation rate, bolometric luminosity, ionized and

neutral hydrogen gas masses, and the mean metallicity of the gas within R1000
8. The bolometric luminosity

and optical luminosity is as inherited to the STARSS algorithm from FIRE-2. Figure 4.20 shows plots of

all quantities discussed above. At the final redshift, SNET and STS contain > 103 halos each. So many

individual points would not be legible on any plot, so we represent the full distribution of halos by gaussian

kernel density estimation. To aid in identifying trends in the plotted halos, we also include a bicubic spline fit

to the 50th quantile of halos. We can measure the error in the spline fit by comparing the spline prediction Ŷ
8Defined as the radius, R, at which the mean density of the within R, ρ̄h(R) satisfies ρ̄h(R)≤ 1000ρ̄b(z), for the mean baryon

density (ρb) in the universe at redshift z.
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Figure 4.20. Summary statistics for single halos comparing STS (orange) and SNET (blue) as functions
of halo mass. The full catalog of halos is represented by gaussian kernel density estimation, shown on the
background of each plot. Lines represent a bicubic fit to the 50th quantile of halos, using the degree of fit that
minimizes R2 score.
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to the known value Y by R2 score given by:

R2(YYY ,ŶYY ) = 1− 1
N

∑
N
i=1 yi− ŷi

∑
N
i=1 yi− ȳ

. (4.24)

We then choose the degree of spline fit that maximizes the R2 score; this prevents overfitting (by simply using

high-degree fits) while preserving non-linear behavior that can be achieved with higher-degree fitting.

In general Figure 4.20 shows that SNET and STS converge to similar behavior for high-mass halos

with Mh & 5× 107 M�. SNET displays different behavior at lower mass halos, however, showing more

low-mass halos with, e.g., low SFR, M∗/Mgas, and optical luminosity (Lv). Also notable is the extremely

lower metallicity gas, ZR1000 , found in the SNET suite. The ability of SNET to model low-mass halos is

particularly apparent in M∗ (Subplot a), where there are several halos with M∗ . 3× 103 M�, below the

minimum stellar mass observed in STS. This suggests that a future application for SNET may be to assist in

filling in the faint-end of mass-luminosity relationships in simulations. Similar behavior is seen in f∗ (Subplot

c); the low-mass halos with Mh < 6.8×106 M� have significantly reduced star formation efficiency (given

as M∗/Mg). SNET also increases the diversity in metallicity of dense regions in star forming halos as shown

in Subplot d: while most halos in SNET have similar 〈R1000〉 as STS, SNET allows for low-metallicity cores

to exist, providing an avenue for metal-poor star formation even in previously enriched star forming halos.

One motivating factor to develop SNET was to model pristine halos that could collapse to supermas-

sive black holes, as seen in Regan et al. (2017), without the high resolution requirements of the Renaissance

Simulations (Xu et al., 2013) where such halos were found. To determine if SNET can in fact model these

regions, we search STS for star forming halos and determine whether the corresponding halo in SNET is

forming stars. These “error halos” in STS represent sites where the pristine gas could have ideally formed

supermassive black holes, but also could identify large reserves of pristine gas that can fuel star formation in

neighboring protogalaxies at later times.

As shown in Figure 4.21, the number of error halos, i.e., those that are forming stars in STS but not

in SNET, is increasing with decreasing redshift. While interesting, the StarNet is known to have a “phase”

error, predicting some star forming regions . 35 Myr early, or others . 10 Myr late (W21). Identifying halos

that are truly erroneous would require identifying those halos that are non-star forming in SNET over periods

of time > 30 Myr, in order to reduce the possibility that the error halo is simply due to phase error. To that
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mass as a function of redshift.

end, we analyzed which error halos have existed for the longest times in SN; there are three halos at the final

data output, z = 14.95, that have been forming stars in STS for & 30 Myr and are not enriched by metals

from either Population III or Population II sources. A prototypical example is presented in Figure 4.22. In

this example, the halo of focus is centered in the frame with Mh = 3.9×106 M�. Notably, this halo is in a

busy region with many star forming halos nearby (as indicated by the metallicity field sourced from stellar

feedback). If a halo such as this one continues without forming stars, it could be a candidate for supermassive

black hole collapse or a substantial reservoir of pristine gas for star formation at at later times. Disregarding

the phase error, there are 19 pristine halos in SNET corresponding to error halos at the final output, or 26

halos if we include those that have been enriched by StarNet but have not begun star formation. These 26

halos represent 8.6% of star-forming halos in STS that have not begun forming stars in SNET. Only one has

Mh > 107 M�, suggesting that the error halos are less common at higher mass.

Observational quantities within StarNet

The following discusses the effect of including Population III via StarNet from the perspective of

observational quantities. Although the simulations we present are far outside the observational range of even

the James-Webb Space Telescope, these samples may be relatable to ancient protogalactic remnants known

as ultra-faint dwarf (UFD) galaxies (Simon, 2019). In particular, we will examine the velocity dispersion

(σ(ν)), stellar metallicity (Z∗), absolute magnitude (Mv) and neutral and ionized hydrogen masses (MHI
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Figure 4.22. An exemplary halo that is forming stars in STS (top), but has no stellar mass in SNET (bottom).
The halo of interest is centered in all plots. Metallicity includes metals from all STARSS particles and
StarNetRuntime depositions.
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Figure 4.23. Metallicity of stars as function of halo stellar mass.

and MHII). Each quantity is shown as a function of stellar mass, another easily studied quantity from an

observational perspective. We study these quantities to determine whether the inclusion of StarNet can

generate protogalaxies that may evolve into UFDs.

Figure 4.23 shows average stellar metallicity as a function of halo stellar mass. This dataset continues

the trend that SNET generates more diverse behavior than STS, allowing for exceptionally low-metallicity

systems to form at lower stellar mass than is observed in STS. The 50th quantile fit shows an increasing trend

correlated to stellar mass, however, there is significant scatter allowing for both high and low metallicity

examples. Particularly in SNET, there are middling mass protogalaxies with exceptionally low metallicity.

There is also a much more exaggerated low-metallicity, low-stellar-mass tail present in the SNET suite that is

not present in STS.

Early results from James Webb Space Telescope (JWST) have found several galaxies at z∼ 8 with

low metallicity, albeit at higher stellar mass than the protogalaxies observed in this work. (Curti et al.,

2022). Figure 4.24 shows the metallicity quoted in O/H, as in Curti et al. (2022), with the approximation

that oxygen comprises 35% of the mass-weighted metallicity within R1000 of the halo (Torrey et al., 2019).

Since our protogalaxies are of much lower stellar mass, we show the level of the observed metallicity by
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Figure 4.24. O/H as function of stellar mass. Green stars represent the level of metallicity observed in Curti
et al. (2022), although their observed galaxies had much higher stellar mass (107.5 < M∗/M� < 108). We
also annotate a low-stellar mass subset of samples obtained from the CLASSY database in purple (Berg et al.,
2022)

green stars, however, the stellar mass of their observations are > 107.5 M�. Nonetheless, the inclusion of

SNET again allows more diverse behaviour in our simulated protogalaxies, so that their low metallicity

regime overlaps with that of the observations from JWST. The inclusion of StarNet also enables the range

of metallicity seen in the CLASSY database (Berg et al., 2022), however, most samples there are also much

higher in stellar mass than the protogalaxies observed in StarNet’s small volumes. In order to expand on

this relationship, StarNet will need a more efficient implementation that can explore larger volumes and

higher-mass protogalaxies.

Figure 4.25 shows the radial velocity dispersion as a function of stellar mass. All samples above

the 50th quantile have σ(ν) > 2, where most UFDs are found (Simon, 2019). This sample does have a

significant population with lower dispersion, typically at low stellar mass (M∗ < 105 M�). Figure 4.26 builds

on the study of σ(ν) by showing σ(ν) as a function of absolute magnitude (Mv). UFDs typically occupy the

region with Mv >−8: this regime is probed by both SNET and STS, however there is a higher magnitude

(−2 < Mv <−5) sample of halos with low velocity dispersion that is only present in SNET.

It may be possible that the inclusion of StarNet allows the simulation to capture the observed

behavior of low-mass dwarf galaxies more effectively than simulations employing metallicity floors. To

112



102 103 104 105 106

M * M 1

10 1

100

101

102

(
)[k

m
 s

1 ]

SNET
STS

Figure 4.25. Velocity dispersion as function of stellar mass.
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Figure 4.26. Velocity dispersion as function of absolute magnitude. Also shown are observational data of
ultra-faint dwarf galaxies (see text for references).
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Figure 4.27. Mean stellar metallicity as function of luminosity. Panel 4.27a shows the total halo luminosity
for the stellar ages and masses present within the virial radius. Panel 4.27b shows the same quantity, if we
suppose the stellar population has aged by 4 Gyr. The expected luminosity-metallicity relationship (Equation
4.25) is also shown (gray hashed line). Local group dwarfs (black points) are also shown (Willman & Strader,
2012) with their corresponding error estimates.

explore SNET and STS compared to observations, we include observational data along with our simulated

data. The observations were compiled by Simon (2019), and include the works of many authors (Simon

& Geha, 2007; Walker et al., 2009b,a; Bechtol et al., 2015; Koposov et al., 2011, 2015; Crnojević et al.,

2016; Simon et al., 2015; Li et al., 2017, 2018; Simon et al., 2011; Torrealba et al., 2018; Mateo et al.,

2008; Willman et al., 2011; Spencer et al., 2017; Collins et al., 2017; Torrealba et al., 2016a; Caldwell et al.,

2017; Kirby et al., 2015; Koch et al., 2009; Majewski et al., 2003; Bellazzini et al., 2008; Kim & Jerjen,

2015; Kim et al., 2015; Torrealba et al., 2016b; Walker et al., 2016; Muñoz et al., 2018). SNET extends the

high-magnitude tail past Mv >−6, allowing the potential coverage of many observations with σ(v)< 10 and

Mv >−6, where the bulk of UFDs reside. Further evolution of the SNET suite will be interesting to see if

the high-magnitude, low σ(ν) region becomes more well-represented. We finish our study of observational

quantities with Figure 4.27a, showing stellar metallicity as a function of luminosity. Also shown is the

metallicity-luminosity relation given by

[Fe/H] =−1.68+0.29log
(

Lv

106L�

)
, (4.25)
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although we use total mass-weighted metallicity Z as a proxy for [Fe/H]9 (Simon, 2019). Both SNET and

STS have a broad, 3-5 dex spread of metallicity that is not represented by Equation 4.25, however, both suites

have samples that overlap the analytic model. As has been the trend, the inclusion of SNET permits a much

broader range of halo observables, increasing the metallicity range from ∼ 3 dex to ∼ 5.5 dex.

To compare SNET to observations, we include dwarf and ultra-faint dwarf (UFD) observations of the

Local Group (Willman & Strader, 2012) (W2012). The dwarf galaxies are well represented by both SNET and

STS, however, both simulation suites tend toward lower metallicity and do not duplicate the low-luminosity

end of observational data. However, SNET does have a low-luminosity tail that extends almost as low as

observations, albeit with much lower mean metallicity. The time evolution of this low-luminosity tail will be

of great interest in studies where simulations approach reionization, z . 6−7.

Since our sample of halos is taken from z = 14.95, one may ask what the relationship would look

like for a halo that stopped forming stars at that point and aged to more modern times. Since UFDs are

thought to have ceased star formation very long ago, z∼ 6−7, then this may serve as a rough approximation

of how some halos could age within the STS and SNET framework. In Figure 4.27b, we have plotted the

luminosity-metallicity relationship, however, the luminosity of the stellar population has been aged by 4 Gyr.

The distribution of luminosity has much more overlap with the UFD observational points, although a lack of

metallicity evolution means that neither STS or SNET match the expected slope of Equation 4.25.

4.7 Discussion

In this work we have developed both a resolution-intelligent, physically-motivated feedback method

for stellar sources in enzo (STARSS), and a new method to initialize the metallicity field of astrophysical

simulations (StarNet). STARSS has shown success as a resolution-intelligent feedback algorithm, but

still struggles with resolution effects regarding star formation. If cooling dynamics are substituted for

force resolution, i.e., using Zf =−3 or using StarNet to seed the metallicity field, much of the resolution

dependence is resolved. That said, creating a truely resolution-intelligent star formation algorithm will require

a new paradigm of star formation recipes; the current criteria are always resolution sensitive to some degree,

because the force resolution of the simulation is intrinsically related to the spatial resolution. One possibility

is to use super-resolution techniques (e.g., Kappeler et al., 2016) as a surrogate model of high-resolution

9This assumption holds true for solar metallicity stars, but will break down for, e.g., carbon-enhanced metal poor stars whose
abundances do not resemble solar.
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gas dynamics in low-resolution regions, but this is left to future work. With STARSS current implementation,

lowered resolution acts to delay star formation to later times, but maintains a similar SFR once star formation

begins. This suggests that at lower redshift, the effect may be disregarded, depending on the focus of the

simulation.

StarNet in its current state is a proof-of-concept work. It uses the inline Python capability of Enzo,

which severely limits its scalability. Despite this restriction, we have simulated a significant portion of the

canonical Population III era (10 < z < 30) in two 17.56 Mpc3 simulation volumes. Using StarNet as a

surrogate for Population III star formation and feedback enables substantial speedup, even in this unoptimized

state. Using the Phoenix Simulations as a reference, PHX256-2 required ∼ 5600 node-hours on the TACC-

Frontera supercomputer using 6 nodes. There is significant acceleration using StarNet: sn5l-2-v3 required

only 1025 node-hours running on 2 nodes, for a total speedup of 5.46×. It is useful to note that this speedup

is the minimum to expect from future implementations of StarNet: incorporating StarNet into Enzo-E will

enable load balancing and will benefit from the framework being translated to C++.

The inclusion of StarNet significantly modifies simulation behavior, not from a global perspective,

but from the perspective of outliers and rare events. SNET and STS show similar SFRD within their

respective volumes, but the slight differences in SFRD generate large differences in cumulative stellar mass;

STS overproduces stars by ∼ 20% by z = 15, despite under-producing stars at early times (z & 21). The

global similarity between SNET and STS is reinforced by examining star-forming halo counts, where we

observe very similar numbers of star-forming halos in both SNET and STS. Any difference in regards to halo

counts is largely resolved if we only consider higher-mass halos (Mh & 4.5×107 M�). The difference in

halo counts, resulting in those forming stars in STS but not in SNET, is increasing with decreasing redshift,

suggesting that this is an error that would become more significant at lower redshifts.

One simulation in this work was designed solely to identify which stars would form in error if we

removed the Zc criterion for star formation. We find that this simulation overproduces stars by∼ 4% at z∼ 16.

Although the difference is minor, this effect is more pronounced at higher redshift, with errors as high as 30%

at z∼ 23. The error also increases if we increase Zc, with as much as 15% of stars having Z <−3 at z∼ 16.

The errors we note here are likely compounding: a single cluster formed in error can enrich neighboring gas,

leading to more star formation that is also in error.

The net effect of including StarNet to model the initial metallicity field is the increased range
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of behaviors that can be observed in Figures 4.20-4.27. Particularly when we include observational data

of dwarf galaxies in Figures 4.26 and 4.27, the inclusion of StarNet leads to halos whose characteristics

overlap more substantially with observational data. While the shown observations are near to z = 0, there is

suspicion that the UFDs have been essentially static since high-redshift (Simon, 2019) from a star formation

and baryonic gas perspective, suggesting that they may be relics of a high-redshift universe. If so, then

there should be a redshift at which our halo distributions begin to overlap with the observational data. This

may not happen until reionization, z∼ 7, since many of these halos do not have enough gas to self-shield

from external ionizing radiation. Such a simulation will be attainable once StarNet has been incorporated

into Enzo-E. For now, if we synthetically age the population of dwarf galaxies in STS, the resulting Lv-Z∗

relationship overlaps much more with observations of UFDs. This quick and dirty comparison suggests

that the age and star formation cutoff will have a significant impact on modeling UFDs, and modeling them

with StarNet enables a much lower Lv cutoff at Lv ∼ 102 L�. Further reinforcing the importance of the

dynamic range in metallicity achieved by incorporating StarNet, protogalaxies in SNET show the full range

of stellar metallicity as observed in early results from the JWST, where z∼ 8 galaxies have been identified

with −5 < Z <−3.75 (Curti et al., 2022). Although the observed galaxies have higher stellar mass than our

simulated protogalaxies, a larger simulation domain and incorporation of StarNet into Enzo-E will enable

us to explore galaxies in the stellar mass range of the JWST observations.

StarNet has also shown the ability to model rare events, such as a halo that, while forming stars

in STS, has not been pre-enriched by a PIII association and so remains pristine in SNET. These halos

are uncommon, with only nine examples at the final redshift of SNET and only three examples that have

existed for > 35Myr. Protogalaxies in STS that have yet to begin star formation in SNET are more common,

with 8.6% (26 examples) of protogalaxies in STS having no twin in SNET. However, these samples may

be extremely important to later evolution, serving as pristine reservoirs of gas to fuel star formation or as

potential sites of supermassive black hole formation. Optimizing and integrating StarNet in future SNET

simulations with larger volume to lower redshift will better elucidate the evolution, lifetime, and impact of

these pristine halos.

This research was supported by National Science Foundation grant CDS&E grant AST-1615848 to M.L.N.

The simulations were performed using ENZO on the Blue Waters supercomputer operated by the National
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this paper.
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Chapter 5

Future work

StarFind and StarNet have been resoundingly successful in their original intent: to model the

heterogeneous metallicity field that would result from PIII associations. That said, this work has identified

several avenues for improving upon the proof-of-concept methods.

5.1 Improving StarFind

The most improvement in StarFind can be achieved by further advancement of the PHX suite

simulations, providing more training data in more varied environments. Further studies into interpretability

may also be beneficial, such as measuring uncertainty with dropout (Lakshminarayanan et al., 2017), may

also be useful in ensuring StarFind predictions are robust. Currently, StarFind operates on a fixed spatial

resolution, with 156 comoving parsecs per grid cell. An extraordinary improvement would be to generalize

the method so that it can operate on a range of resolutions, or irrespective of resolution. This would likely

involve more manipulation of simulation data, e.g., using super-resolution methods (Kappeler et al., 2016) to

increase resolution to the currently trained value.

5.2 Improving STARSS

STARSS has been very successful at resolution-intelligent stellar feedback. Star cluster formation,

on the other hand, still poses a challenge. This is not a problem that can be solved easily, as the star

formation depends on hydrodynamic field variables that are strongly affected by force resolution. Since

the hydrodynamics of low-resolution simulations behave quantitatively differently than high-resolution,

solutions to the star cluster formation problem will require either new criteria that are resolution insensitive,

or new methods to super-resolve grid quantities, similarly to super-resolution methods discussed above.
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Although problematic, we have also noted that the star formation problem is less pronounced if using either a

higher-metallicity floor or the heterogeneous enrichment of StarNet.

A major shortcoming of STARSS also exists in the feedback algorithm. Since SNe are stochastic, and

winds/radiation are determined by particle age for a stellar cluster, small clusters in highly resolved (dx . 1

pc) do not make sense. It is also a gross approximation that all stellar mass forms at the same instant in

time. While very hard to address in Enzo, these problems are quite tractable in Enzo-E by assigning cluster

population information–stellar masses, creation times, lifetimes, luminosities, and metal yields–as particle

attributes. In this way, the composition of the particle can be stochastic, but the evolution will not be, and can

be scaled to even model single stars without algorithmic modification.

5.3 Improving StarNet

StarNet has coalesced as a very good first step in surrogate modeling of the effects of the first stars.

The current version of StarNet does have significant shortcomings that will need to be addressed to create a

more robust and realistic model. There are two groups of major issues with the current paradigm StarNet

uses (namely modeling PIII association regions as simple spheres of metallicity and warm-hot gas):

1. StarNet only models a simple sphere of metallicity, where we also apply a heightened gas temperature.

While this captures the heterogeneity of the metallicity field on large scales, we lose small-scale

heterogeneity within a single feedback region. High-resolution works have shown that the mixing of

SN-sourced metals is inhomogeneous, and even within neighboring halos, will have a wide range of

metallicity within the gas (Smith et al., 2015). Further, the PIII association will also ionize the gas

to varying degrees–combined with SNe feedback, there will be significant disruption to the host halo

(Whalen et al., 2008a). This is also behavior that the current StarNet cannot model.

2. One consequence of modeling single primordial stars is prompt second-generation star formation (Wells

& Norman, 2022). StarNet currently loses all information pertaining to whether a second-generation

star can form within the remnant region.

Discussed briefly in Appendix C, many of these issues could be overcome by implementing a deep-learning

based model of feedback instead of the simple regression models of Chapter 3 and 4. In particular, there are

two beneficial perspecives to view our problem from: one, of a translation, changing a pristine halo into a
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Figure 5.1. Multi-scale adversarial discriminator network. Sensitivity to varying length scales is achieved by
using Inception architecture in addition to having paths to output at varying levels of processing.

PIII association remnant. Two, as a time series of individual steps that can slowly transform the region into a

PIII association remnant. The first perspective lends itself to the ideas of image-to-image translation with

generative adversarial networks (GANs) as used in other areas of deep learning (Goodfellow et al., 2014;

Isola et al., 2016; Zhu et al., 2017), while the second perspective is adaptable to time-series modelling with

long-short term memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997; Mohan et al., 2019).

A GAN is composed of a pair of deep learning networks; a generator, tasked with generating realistic

samples, and a discriminator, tasked with distinguishing real and generated data. One newer application of

GANs is to translate images from one domain to another, e.g., a photo at noon to the same photo at midnight,

or similarly, summer to winter. It is not hard to imagine a region before/after PIII association fitting into this

conceptual framework. Several important pieces of this idea have already been developed: The generator can

use a modified version of pix2pix (Isola et al., 2016) that can operate on 3D data, and is further modified to

predict additional quantities, e.g., Population II stellar mass. Such a network has been implemented in the

development of StarNet and is exactly the U-net and its variations from Chapter 2. The generator acts as an

encoder-decoder but has additional connections between encoding and decoding levels to help background

information flow from input to output, which assists with identity transformations (i.e., the part of the image

that does not change). The discriminator developed for this purpose is unique to this work. Intuitively,

PIII association feedback regions should have multiple scales of importance: large scale temperature and

metallicity, but also small scale perturbations, such as extremely hot outflow channels and regions of varying

metallicity within the remnant. The Multi-Scale Adversarial Discriminator (MSAD) network in Figure 5.1
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achieves this fairly well in testing. MSAD has several paths to the output prediction that have sensitivity to

varying length scales, while inception blocks (Chapter 2) give additional multi-scale sensitivity.

An example output from early development of GAN methods is shown in Figure 5.2. A great

advantage of this method over the linear regression models of Chapter 4 is its ability to model several fields.

Although, of course, the model must be trained on which fields to predict, it could predict any field of interest

carried on the computational grid (or derived from it). This example goes several steps beyond the linear

regression models to predict the final baryon density field and velocity fields, resulting in a momentum

solution for the remnant.

Using GANs or LSTMs for this purpose is immature, lacking in both development and validation for

future use, but the development thus far serves as a solid launching pad from which to vastly improve the

StarNet method.
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Figure 5.2. Example using GANs to model PIII association regions. The input hydrodynamic fields are
shown in the Input column, the actual state of the region after 16 Myr in the Truth column, and the output
from the generator is shown in the Prediction column. The predicted fields include baryon density (top),
metal density from Population III sources (row 2), and velocity (rows 3-5). This particular example was
achieved with 35 epochs of training.
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Appendix A

Initial Conditions and Parameters

A.1 MUSIC Initial Conditions

The initial conditions files to run simulations in this work were generated with MUSIC1 (Hahn & Abel,

2011). After compiling MUSIC, the initial conditions for the PHX256-1,2, and PHX256-HYD simulations can

be remade with the following configuration file:

[setup]
boxlength = 1.765
zstart = 99
levelmin = 8
levelmin_TF = 8
levelmax = 8
padding = 16
overlap = 4
align_top = yes
baryons = yes
use_2LPT = yes
use_LLA = yes
periodic_TF = yes
avg_fine = yes

[cosmology]
Omega_m = 0.3111
Omega_L = 0.6889
Omega_b = 0.048975
H0 = 67.66
sigma_8 = 0.811
nspec = 0.965
transfer = eisenstein

[random]

1https://www-n.oca.eu/ohahn/MUSIC/
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# add
# seed[8] = 86753009
# to seed PHX256-2 initial conditions
seed[9] = 201104190
seed[10] = 301104190
seed[11] = 401104190
seed[12] = 501104190

[output]
# ENZO - also outputs the settings for the parameter file
format = enzo
filename = ic.phoenix256

[poisson]
fft_fine = yes
accuracy = 1e-5
pre_smooth = 3
post_smooth = 3
smoother = gs
laplace_order = 6
grad_order = 6
kspace = no

or for the PHX512 simulation:

[setup]
boxlength = 3.53
zstart = 99
levelmin = 9
levelmin_TF = 9
levelmax = 9
padding = 16
overlap = 4
align_top = yes
baryons = yes
use_2LPT = yes
use_LLA = yes
periodic_TF = yes
avg_fine = yes

[cosmology]
Omega_m = 0.3111
Omega_L = 0.6889
Omega_b = 0.048975
H0 = 67.66
sigma_8 = 0.811
nspec = 0.965
transfer = eisenstein
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[random]
seed[9] = 201104190
seed[10] = 301104190
seed[11] = 401104190
seed[12] = 501104190

[output]

##ENZO - also outputs the settings for the parameter file
format = enzo
filename = ic.phoenixL0

[poisson]
fft_fine = yes
accuracy = 1e-5
pre_smooth = 3
post_smooth = 3
smoother = gs
laplace_order = 6
grad_order = 6
kspace = no

The final required files will be generated and deposited into the ic.phoenix* directory specified in the

configuration file.
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Appendix B

Parameter Files

B.1 Enzo Parameter Files

Enzo simulations start with a set parameter file. It contains, e.g., radiation and chemistry parameters,

grid information, and refinement criteria to be followed in the simulation. Aside from the simulation box size

and resolution, the PHX256-1,2 and PHX512 all share identical parameters:

#
StopCycle = 100000
StopCPUTime = 420000

ParallelRootGridIO = 1
ParallelParticleIO = 1

UnigridTranspose = 2
HierarchyFileOutputFormat = 1
CorrectParentBoundaryFlux = 1

# AMR PROBLEM DEFINITION FILE: Cosmology Simulation (amr version)

#
# define problem
#

ProblemType = 30
TopGridRank = 3
// change to match grid dimension in initial conditions:

// 512 512 512 for PHX512 simulation
TopGridDimensions = 256 256 256
PotentialIterations = 10
SelfGravity = 1
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TopGridGravityBoundary = 0
LeftFaceBoundaryCondition = 3 3 3
RightFaceBoundaryCondition = 3 3 3

#
# problem parameters
#

CosmologySimulationOmegaBaryonNow = 0.048975
CosmologySimulationOmegaCDMNow = 0.262125
CosmologySimulationNumberOfInitialGrids = 1
CosmologySimulationDensityName = GridDensity
CosmologySimulationVelocity1Name = GridVelocities_x
CosmologySimulationVelocity2Name = GridVelocities_y
CosmologySimulationVelocity3Name = GridVelocities_z
CosmologySimulationCalculatePositions = 1
CosmologySimulationParticleVelocity1Name = ParticleVelocities_x
CosmologySimulationParticleVelocity2Name = ParticleVelocities_y
CosmologySimulationParticleVelocity3Name = ParticleVelocities_z
CosmologySimulationParticleDisplacement1Name = ParticleDisplacements_x
CosmologySimulationParticleDisplacement2Name = ParticleDisplacements_y
CosmologySimulationParticleDisplacement3Name = ParticleDisplacements_z

#
# define cosmology parameters
#

ComovingCoordinates = 1
CosmologyOmegaMatterNow = 0.3111
CosmologyOmegaDarkMatterNow = 0.262125
CosmologyOmegaLambdaNow = 0.6889
CosmologyHubbleConstantNow = 0.6766
// change this to match the box size in initial conditions:
// 3.53 for PHX512
CosmologyComovingBoxSize = 1.765
CosmologyMaxExpansionRate = 0.015
CosmologyInitialRedshift = 99.000
# alter here for desired final redshift
CosmologyFinalRedshift = 25.000
GravitationalConstant = 1
#
# set I/O and stop/start parameters
#

DataDumpName = SO
RedshiftDumpName = RD

#
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# set hydro parameters
#
Gamma = 1.6667
PPMDiffusionParameter = 0
DualEnergyFormalism = 1
InterpolationMethod = 1
FluxCorrection = 2
ConservativeInterpolation = 0
CourantSafetyNumber = 0.3
ParticleCourantSafetyNumber = 0.8
RadiativeCooling = 1
MultiSpecies = 2
MetalCooling = 3
CloudyCoolingGridFile = solar_2009_4D_metals.h5
UseMinimumPressureSupport = 0
RefineByJeansLengthSafetyFactor = 4.0

#
# set grid refinement parameters
#

StaticHierarchy = 0
MaximumRefinementLevel = 9
MaximumGravityRefinementLevel = 9
MaximumParticleRefinementLevel = 9
RefineBy = 2
CellFlaggingMethod = 2 4 20
PopIIIMustRefineResolution = 4
PopIIIMustRefineRegionLifetime = 3
MinimumEfficiency = 0.3
MinimumOverDensityForRefinement = 3.0 3.0

MinimumMassForRefinementLevelExponent = -0.2 -0.2
MinimumEnergyRatioForRefinement = 0.4

#
# set some global parameters
#

GreensFunctionMaxNumber = 30

#
# Star formation and feedback
#

StarParticleCreation = 40
StarParticleFeedback = 40

129



RadiativeTransfer = 1
RadiativeTransferRaysPerCell = 3.1
RadiativeTransferInitialHEALPixLevel = 1
RadiativeTransferHydrogenOnly = 1
RadiativeTransferOpticallyThinH2 = 1
RadiativeTransferPeriodicBoundary = 1
RadiativeTransferAdaptiveTimestep = 1
RadiativeTransferRadiationPressure = 1
RadiativeTransferHubbleTimeFraction = 0.01
RadiativeTransferPhotonMergeRadius = 3.0
RadiativeTransferSourceClustering = 1

RadiationFieldType = 14 // z-dependent LW background
RadiationShield = 2 // H2 self-shielding approximation

#
# PopIII/II star parameters
#

PopIIIOverDensityThreshold = -100
PopIIIMetalCriticalFraction = 4.1e-8
PopIIIH2CriticalFraction = 1e-3
PopIIISupernovaRadius = 10
PopIIISupernovaUseColour = 1
PopIIIHeliumIonization = 1
PopIIIOutputOnFeedback = 1

PopIIIStarMass = 20
PopIIIInitialMassFunction = 1
PopIIIInitialMassFunctionSeed = 1823
PopIIIMassRange = 1.00 300.00

StarClusterUseMetalField = 1
StarClusterMinDynamicalTime = 3e+06
StarClusterIonizingLuminosity = 1.12e+46
StarClusterSNEnergy = 1e49
StarClusterSNRadius = 10
StarClusterFormEfficiency = 0.07
StarClusterMinimumMass = 1000

CosmologyOutputRedshift[0] = 30.00
# ... other outputs requested go here ...
CosmologyOutputRedshift[1866] = 10.000874

The interested reader is referred to https://enzo.readthedocs.io/en/latest/ for helpful descriptions of
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all involved parameters listed above.

B.2 STARSS Parameters and Descriptions

STARSS introduces a number of parameters for the user to set at runtime. The following includes all

parameters and a short description of their purpose.

1. StarMakerOverDensityThreshold: If greater than zero, sets the criteria that the overdensity ρ/ρ̄≥StarMakerOverDensityThreshold

is needed to qualify for star formation. If less than zero, sets the critira that the baryon number density,

nb ≥ |StarMakerOverDensityThreshold|. Finally, if set to zero, this parameter is ignored.

2. StarMakerMassEfficiency: The absolute upper limit on how much gas can convert to stars within

one cell within one formation event. The probability of star formation,

psf = 1− exp
[
− ṀSFRδt

(ηsfMcell)

]
,

where ηsf =StarMakerMassEfficiency and δt is the grid time step. The bulk integrated SFR is

ṀSFR = fsηsfMcell/tff, with the shielded fraction, fs, and freefall time, tff.

3. StarMakerMinimumMass: The lower limit of stellar cluster mass. If

min( fsMcell,ηsfMcell)< StarMakerMinimumMass,

then the star formation will not be allowed to proceed. Since STARSS star particles represent star

clusters, having “clusters” with very low mass makes little sense.

4. StellarWinds: Turns on stellar winds using the parameterized equations of Chapter 4. Mostly used

for testing, there is not a good reason to turn this off in general.

5. SingleSN: Turns on probablistic supernova rates described in Chapter 4. Mostly used for testing, there

is not a good reason to turn this off in general.

6. StarMakerMaximumFormationMass: Sets the maximum limit on a STARSS particle. This limit can be

used to prevent very massive stars from forming (e.g., if the user prefers to form several lower-mass
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clusters instead of a single massive cluster), which can in turn limit the number of SN per timestep.

Set to -1 to allow unlimited stellar mass, with forming M∗ set by fsηsfMcell. If the predicted star mass

has M∗ > 5×103 M�, it is split into N-103 M� particles which have creation time evenly distributed

across 3tff.

7. NEvents: For testing, with NEvents = N, one event per STARSS particle will be set off every timestep

until N = 0. To enable full probabilistic SN rates, set NEvents = -1. Testing and debugging parameter.

8. UnrestrictedSN: Used to enable multiple SN per timestep per particle, but beware that the momen-

tum formulations of Chapter 4 are only considering single events and do not properly model, e.g.,

superbubbles with multiple merged remnants. Combine with StarMakerMaximumFormationMass to

ensure that the mass of clusters only leads to < 1 SN per timestep per particle. 1) Allow multiple SNe.

0) Fail if rates predict more than one SNe, i.e., if P(SN)> 1 at a timestep.

9. AnalyticSNRShellMass: Determines SNR shell mass analytically depending on phase of SNR. 1)

Shell mass analytically determined. 0) The shell mass will only be that of the ejecta. It doesnt make

sense to turn this off unless the simulation does not resolve any phase where shell mass & ejecta mass,

e.g., all SNR will be coupled in free expansion or early ST phases.

10. MechStarsRadiationSpectrum: Whether to couple stars as point sources of ionizing radiation

according to luminosity in Chapter 4. This minimally requires

RadiativeTransfer = 1

and StarParticleRadiativeFeedback = 1.

1) STARSS particles as radiative sources. 0) Do not couple.

11. MechStarsCriticalMetallicity: If positive, will not form stars if the gas has absolute metal

fraction Zabs = Mmetal/Mgas below this value. If zero or negative, this criterion is ignored.

12. MechStarsMetallicityFloor: If using

MechStarsCriticalMetallicity

and MechStarsRadiationSpectrum
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to set a metallicity floor with radiative feedback, this must be set to ensure that the floor is enforced

when adding radiation fields. The normal metallicity floor parameter,

CosmologySimulationInitialFractionMetal

is overwritten by the routine that initializes radiation fields. This parameter should be set in units of

absolute metal fraction, i.e., Zabs = Mmetal/Mgas.

13. MechStarsUseAnalyticFS: Analytically checking fs is resolution sensitive; lower-resolution (dx &

320 comoving pc) runs will have significantly delayed or suppressed star formation if using this check.

0) Off, 1) On.

14. MechStarsUseMeasuredFS: Check fs by explicitly calculating H2 shielded fraction as nH2/(nH2 +

nH+
2
).

15. MechStarsFadeSNR: If the expected merging radius, Rmerge, is unresolved, i.e., Rmerge < dx, then this

parameter will reduce the coupled momenta of the SNR. At the extreme case, Rmerge ≪ dx, the coupled

momenta goes to zero. 0) Always couple full momenta. 1) Reduce momenta in unresolved case.
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Appendix C

A Graduate Student’s Guide to StarNet

In this appendix, I will describe the components, operation, and training using the framework I have

built in Python. The goal, of course, is that a graduate student or other novice deep learning practitioner

could use this resource to get up and running with reproducing the work of Chapters 2 and 4. There are

three major components to the deep learning task of generating the feedback influence of Population III stars.

First, we must identify regions that host star formation. This is accomplished via region-wide classification

using the small classifier architecture of Chapter 2. Given that a region is predicted to host star formation,

we aim to predict a precise location that can participate in the star formation, i.e., using the segmentation

model, IUNet, of Chapter 2. With a positive region and star forming locus identified, we need only to

generate a reasonable approximation of the feedback influence. This can be accomplished in two ways: the

first-generation spherical remnant approximation presented in Chapter 4, or the deep learning using GANs

(the feedback approximation framework is referred to as FBNet below) methods discussed in this appendix,

Section C.4. The remainder of this appendix will offer a bit of technical instruction for all aspects of training

the models in this thesis. Section C.1 details setting up the software environment that was used in this work;

Section C.2.1 details the procedure for training the StarFind module, including generating training data;

Section C.3 details the StarNetRuntime, where we interface with a running simulation using Enzo’s inline

Python analysis capability; Finally, Section C.4 details generating training data and training procedures for

FBNet.

C.1 Software Environment

Training and model development was performed on the SDSC-Comet and SDSC-Expanse super-

computers using NVIDIA K80 (Comet) and Nvidia V100 (Expanse) GPUs. A consistent development
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environment was obtained using conda1. It is a well-known issue that changes in deep-learning framework

can cause inconsistent results in the final trained models, so below is the conda environment definition. This

can be put into a file, environment.yml, and the desired environment can be built using conda create

--file environment.yml (be sure to change the final line to point to your conda installation). The envi-

ronment can then be activated by entering conda activate DeepAI, and all pytorch, yt, etc., libraries

should be available.

environment.yml:
name: DeepAI
channels:
- pytorch
- conda-forge
- defaults

dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=1_llvm
- backcall=0.2.0=pyhd3eb1b0_0
- backports=1.0=pyhd3eb1b0_2
- backports.functools_lru_cache=1.6.4=pyhd8ed1ab_0
- blas=1.0=mkl
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2021.10.26=h06a4308_2
- certifi=2021.10.8=py38h06a4308_0
- cudatoolkit=10.2.89=hfd86e86_1
- cycler=0.11.0=pyhd3eb1b0_0
- dbus=1.13.18=hb2f20db_0
- decorator=5.1.0=pyhd3eb1b0_0
- expat=2.4.1=h2531618_2
- ffmpeg=4.3=hf484d3e_0
- fontconfig=2.13.1=hba837de_1005
- freetype=2.11.0=h70c0345_0
- giflib=5.2.1=h7b6447c_0
- glib=2.69.1=h5202010_0
- gmp=6.2.1=h2531618_2
- gmpy2=2.1.0b5=py38h8384b0a_0
- gnutls=3.6.15=he1e5248_0
- gst-plugins-base=1.14.0=h8213a91_2
- gstreamer=1.14.0=h28cd5cc_2
- icu=58.2=hf484d3e_1000
- intel-openmp=2021.4.0=h06a4308_3561
- ipython=7.29.0=py38hb070fc8_0
- jedi=0.18.0=py38h578d9bd_2
- jpeg=9d=h7f8727e_0

1https://docs.anaconda.com/anaconda/install/linux/
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- kiwisolver=1.3.1=py38h1fd1430_1
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.35.1=h7274673_9
- libffi=3.3=he6710b0_2
- libgcc-ng=11.1.0=hc902ee8_8
- libiconv=1.16=h516909a_0
- libidn2=2.3.2=h7f8727e_0
- libpng=1.6.37=hbc83047_0
- libstdcxx-ng=11.1.0=h56837e0_8
- libtasn1=4.16.0=h27cfd23_0
- libtiff=4.2.0=h85742a9_0
- libunistring=0.9.10=h27cfd23_0
- libuuid=2.32.1=h7f98852_1000
- libuv=1.40.0=h7b6447c_0
- libwebp=1.2.0=h89dd481_0
- libwebp-base=1.2.0=h27cfd23_0
- libxcb=1.14=h7b6447c_0
- libxml2=2.9.12=h03d6c58_0
- llvm-openmp=12.0.1=h4bd325d_1
- lz4-c=1.9.3=h295c915_1
- matplotlib=3.4.3=py38h578d9bd_0
- matplotlib-base=3.4.3=py38hf4fb855_0
- matplotlib-inline=0.1.2=pyhd3eb1b0_2
- mkl=2021.4.0=h06a4308_640
- mkl-service=2.4.0=py38h7f8727e_0
- mkl_fft=1.3.1=py38hd3c417c_0
- mkl_random=1.2.2=py38h51133e4_0
- more-itertools=8.12.0=pyhd3eb1b0_0
- mpc=1.1.0=h04dde30_1009
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.2.1=py38h06a4308_0
- ncurses=6.3=h7f8727e_2
- nettle=3.7.3=hbbd107a_1
- numpy=1.21.2=py38h20f2e39_0
- numpy-base=1.21.2=py38h79a1101_0
- olefile=0.46=pyhd3eb1b0_0
- openh264=2.1.1=h4ff587b_0
- openssl=1.1.1l=h7f8727e_0
- packaging=21.3=pyhd3eb1b0_0
- parso=0.8.2=pyhd3eb1b0_0
- pcre=8.45=h295c915_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.4.0=py38h5aabda8_0
- pip=21.2.4=py38h06a4308_0
- prompt-toolkit=3.0.20=pyhd3eb1b0_0
- ptyprocess=0.7.0=pyhd3eb1b0_2

136



- pygments=2.10.0=pyhd3eb1b0_0
- pyparsing=3.0.4=pyhd3eb1b0_0
- pyqt=5.9.2=py38h05f1152_4
- python=3.8.8=hdb3f193_4
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python_abi=3.8=2_cp38
- pytorch=1.10.1=py3.8_cuda10.2_cudnn7.6.5_0
- pytorch-mutex=1.0=cuda
- qt=5.9.7=h5867ecd_1
- readline=8.1=h27cfd23_0
- setuptools=58.0.4=py38h06a4308_0
- sip=4.19.13=py38he6710b0_0
- six=1.16.0=pyhd3eb1b0_0
- sqlite=3.37.0=hc218d9a_0
- sympy=1.9=py38h06a4308_0
- tk=8.6.11=h1ccaba5_0
- toml=0.10.2=pyhd3eb1b0_0
- torchaudio=0.10.1=py38_cu102
- torchvision=0.11.2=py38_cu102
- tornado=6.1=py38h497a2fe_1
- traitlets=5.1.1=pyhd3eb1b0_0
- typing_extensions=3.10.0.2=pyh06a4308_0
- unyt=2.8.0=py_0
- wcwidth=0.2.5=pyh9f0ad1d_2
- wheel=0.37.0=pyhd3eb1b0_1
- xz=5.2.5=h7b6447c_0
- yaml=0.2.5=h7b6447c_0
- yt=4.0.1=py38h1abd341_0
- zlib=1.2.11=h7f8727e_4
- zstd=1.4.9=haebb681_0
- pip:
- absl-py==0.10.0
- aiohttp==3.7.4.post0
- argparse==1.4.0
- astroid==2.5
- astropy==4.2.1
- async-timeout==3.0.1
- attrs==20.3.0
- cachetools==4.1.1
- chardet==3.0.4
- cython==0.29.24
- fsspec==0.8.4
- future==0.18.2
- google-auth==1.22.1
- google-auth-oauthlib==0.4.1
- grpcio==1.32.0
- h5py==3.3.0
- idna==2.10
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- imageio==2.9.0
- isort==5.7.0
- lazy-object-proxy==1.5.2
- markdown==3.3.1
- mccabe==0.6.1
- mpi4py==3.0.3
- multidict==5.1.0
- oauthlib==3.1.0
- pandas==1.1.3
- progressbar2==3.53.1
- protobuf==3.13.0
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pyerfa==2.0.0
- pylint==2.7.1
- python-utils==2.4.0
- pytorch-lightning==1.2.6
- pytorch-msssim==0.2.1
- pytz==2020.1
- pyyaml==5.3.1
- requests==2.24.0
- requests-oauthlib==1.3.0
- rsa==4.6
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.7.0
- test-tube==0.7.5
- torchmetrics==0.2.0
- tqdm==4.50.2
- trident==1.2.1
- urllib3==1.25.10
- werkzeug==1.0.1
- wrapt==1.12.1
- yarl==1.6.3
- yt-astro-analysis==1.0.0

prefix: path/to/conda/envs/DeepAI

All files that were developed with the aim of creating Population III feedback using DNN are

available on my github; https://github.com/azton/StarNet. The file structure within the repository

is divided as follows: data generation contains scripts to generate training data and scaling information

(discussed below); network definitions are found in network modules including all small classifier, In-

ception U-net, and GAN architectures; many helper functions, including custom data loaders, are defined

in network utilities; training and validation scripts can be found in their respective sub-directories of

run networks: stage1 and stage2 for StarFind and stage3 for FBNet.
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C.2 StarFind

C.2.1 Data Generation and Scaling

The first step in training a deep learning model is to generate training data, and, if necessary, take

steps to understand the training data fully. Here, I will discuss the first. StarFind dataset generator.py,

was run on the TACC-Frontera supercomputer and can accept a variety of parameters to control the resolution

and size of resulting samples. There should be no additional requirements beyond those listed in Section C.1.

An example submission script that lists relevant command line arguments and submission procedure is as

follows:

#!/bin/bash
#SBATCH --job-name="Form256-1"
#SBATCH --partition=normal
#SBATCH --nodes=5
#SBATCH --ntasks-per-node=28
#SBATCH -t 2:00:00
#SBATCH --export=ALL
#SBATCH -A <account_number>

module load hdf5 intel/18.0.5 python3/3.7.0
# dataset output to begin generation at
d0=200
# final output to consider
d1=1269
# simulation name
sim=phoenix_256_IC1
# path to simulation directory
stg="/path/to/phoenix simulation outputs/phoenix_256_IC1"
# dimension of output data, eg, the volume dimensions
# that will be input to starfind module
dim=128
# desired resolution per grid cell, in comoving pc
res=160

ibrun python3 -u StarFind_dataset_generator.py \
$d0 $d1 $sim $stg $dim $res stars \
> ${sim}--${d0}-${d1}-${dim}_formationset.out 2>&1

The script can also be run to generate training data for other simulations with appropriate modifi-

cation to the simulation path and name. The training, validation, and test files will be saved at <scratch

directory>/network data inputs/<split name>/<simulation name>/ with each particle identifier

having its own directory and set of input and final states.
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After generating training data, it must be scaled accordingly (the final step in Chapter 2). The script

gen scaling.py performs this task, and saves the relevant file to StarNetworks/<output name> as a

.torch file that can be loaded using the torch.load() method, where <output name> is a command-line

argument.

C.2.2 Training Stage 1

With training data and scaling file in hand, training can take place on the GPU acclerated system of

your choice. StarFind was originally trained on the SDSC-Comet supercomputer, however later training and

refinement were performed on SDSC-Expanse. The training logic is performed using pytorch-lightning2

to abstract the minutia of parallelization and boilerplate code logic. The training takes both command line

arguments and a configuration file–while command line parameters are more fluid and will be iterated upon

in a hyperparameter exploration, the configuration file contains set or finalized parameters. A sample batch

file to run a small hyperparameter exploration is given here:

#!/bin/bash
#SBATCH --job-name="S1Htune"
#SBATCH --output=lightning_4GPU.out
#SBATCH --partition=gpu
#SBATCH --nodes=1
## one task per gpu, with threads working for dataloading
#SBATCH --ntasks-per-node=40
#SBATCH --gpus=4
#SBATCH -A <account>
#SBATCH -t 48:00:00
#SBATCH --export=ALL

gpus=4
module load gpu

config=Lightning.conf
# learning rate is divided by 1e6 in run_lightning_model.py
LR=1
# modified weight given to positive samples in loss
w=2
# number of channels at first layer of input
n0=2
# which sub-model to use in S1
model=smalldense

2https://pytorch-lightning.readthedocs.io/en/latest/
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# where to write checkpoints
writer_out=${model}_hypertune
# there are other ways, but heres a simple way to
# iterate a small set of hyperparameters.
for lr in {0..4}; do

for w in {2..5}; do
for N0 in {1..6..2}; do

LR=$((1*10**lr))
n0=$((2*2**N0))
python3 -u run_lightning_model.py

--conf $config
--model $model
--gpus $gpus
--nnodes $SLURM_JOB_NUM_NODES
--nprocs $gpus
-fl $n0
-lr $LR
-w $w > lightning_classifier.out 2>&1

done
done

done

Within the stage1 directory, a new directory will be created which hosts checkpoints. Check-

points are the individual files containing network definitions and weights that can be reloaded to either

continue training or to perform inference later. More efficiency can be attained by exporting models to,

e.g., ONNX3 or torchscript4, however such optimization is beyond the scope of this guide. After the

training job starts execution, the progress of training can be observed using either tail -f <log file>

or the tensorboard5 command. A further list of the parameters used at runtime can be found within

StarNetworks/run networks/stage1/Lightning.conf; note that the command line arguments take

precedence over the configuration file parameters.

C.2.3 Training Stage 2

Training stage 2 is very similar to stage 1. This module was originally written without the

pytorch-lightning layer, so run segmentation.py is the version used in Chapter 2. The lightning

version, run seg lightning.py has been written, but not fully tested. Since run segmentation.py runs

without using command-line arguments, the batch file is simpler:

3https://onnx.ai/
4https://pytorch.org/docs/stable/jit.html
5https://pytorch.org/docs/stable/tensorboard.html
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#!/bin/bash
#SBATCH --job-name="S1Htune"
#SBATCH --output=lightning_4GPU.out
#SBATCH --partition=gpu
#SBATCH --nodes=1
## one task per gpu, with threads working for dataloading
#SBATCH --ntasks-per-node=40
#SBATCH --gpus=4
#SBATCH -A <account>
#SBATCH -t 48:00:00
#SBATCH --export=ALL

srun python run_segmentation.py configuration_file.conf > outputlog.out

The limitation of this lightning-free approach is that it uses a less efficient parallelization method

(data distributed parallel). If aiming to improve on the training of stage 2, I recommend using the lightning

implementation, whose command-line parameters are available in run seg lightning.py; it is readily

adaptable to any number of GPUs using the fully data parallel training approach6.

C.3 StarNet

StarNet is the framework created for the work in Chapter 4. It combines StarFind with the linear

regression models of Chapter 3 to predict both the location and effect of Population III star formation. It

operates on a running simulation to generate the metallicity initial conditions in situ. The framework can be

found at https://github.com/azton/StarNetRuntime, however the required model checkpoints exceed the file

size limitation on github. The checkpoints will be available on the Renaissance Simulations Laboratory7

or via direct contact8, and should be placed in StarNetRuntime/model checkpoints. In order to use

StarNet, Enzo must be compiled with a special make-flag, enabled by make python-yes, which also

currently requires Python 2.xx (as of Enzo v2.6, 6/2/2022). An example make file for Enzo that will build

correctly on SDSC-Expanse is given here:

#=======================================================================
#
# FILE: Make.mach.expanse
#

6https://pytorch.org/tutorials/beginner/blitz/data parallel tutorial.html
7https://rensimlab.github.io/
8aiwells@ucsd.edu or mlnorman@ucsd.edu
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# DESCRIPTION: Makefile settings for the Expanse Resource at SDSC/UCSD with Python2
#
# AUTHOR: Azton Wells
#
# DATE: 2021
#
#
#
#=======================================================================

MACH_TEXT = Expanse
MACH_VALID = 1
MACH_FILE = Make.mach.sdsc-expanse

MACHINE_NOTES = "MACHINE_NOTES for Expanse at SDSC/UCSD: \
Load these modules, \
’module load cpu intel intel-mpi hdf5’\
"

#-----------------------------------------------------------------------
# Compiler settings
#-----------------------------------------------------------------------

LOCAL_PYTHON_INSTALL = /path/to/anaconda3/envs/python2/bin
LOCAL_COMPILER = ${INTELHOME}/compilers_and_libraries/linux
LOCAL_MPI_INSTALL = ${MPIHOME}
LOCAL_HDF5_INSTALL = ${HDF5HOME}
LOCAL_HYPRE_INSTALL =

# With MPI

MACH_CPP = cpp
MACH_CC_MPI = mpicc # C compiler when using MPI
MACH_CXX_MPI = mpicxx # C++ compiler when using MPI
MACH_FC_MPI = ifort # Fortran 77 compiler when using MPI
MACH_F90_MPI = ifort # Fortran 90 compiler when using MPI
MACH_LD_MPI = mpicxx # Linker when using MPI

# Without MPI

MACH_CC_NOMPI = icc # C compiler when not using MPI
MACH_CXX_NOMPI = icpc # C++ compiler when not using MPI
MACH_FC_NOMPI = ifort # Fortran 77 compiler when not using MPI
MACH_F90_NOMPI = ifort # Fortran 90 compiler when not using MPI
MACH_LD_NOMPI = icpc # Linker when not using MPI

#-----------------------------------------------------------------------
# Machine-dependent defines
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#-----------------------------------------------------------------------
# Defines for the architecture; e.g. -DSUN, -DLINUX, etc.
MACH_DEFINES = -DLINUX -DH5_USE_16_API

#-----------------------------------------------------------------------
# Compiler flag settings
#-----------------------------------------------------------------------

MACH_CPPFLAGS = -P -traditional
MACH_CFLAGS =
MACH_CXXFLAGS = -DMPICH_SKIP_MPICXX
MACH_FFLAGS = -132
MACH_F90FLAGS =
MACH_LDFLAGS =
#MACH_OPENMP = -mp
#MACH_OPENMP = -openmp

#-----------------------------------------------------------------------
# Precision-related flags
#-----------------------------------------------------------------------

MACH_FFLAGS_INTEGER_32 = -i4
MACH_FFLAGS_INTEGER_64 = -i8
MACH_FFLAGS_REAL_32 = -r4
MACH_FFLAGS_REAL_64 = -r8

#-----------------------------------------------------------------------
# Optimization flags
#-----------------------------------------------------------------------

MACH_OPT_WARN = -Wall -g # Flags for verbose compiler warnings
MACH_OPT_DEBUG = -O0 -g # Flags for debugging
# Flags for high conservative optimization
MACH_OPT_HIGH = -O2
# Note that this breaks determinism, which is why it’s commented out!
#
MACH_OPT_AGGRESSIVE = -O3 -march=native # Flags for aggressive optimization

#-----------------------------------------------------------------------
# Includes
#-----------------------------------------------------------------------

LOCAL_INCLUDES_MPI = -I$(LOCAL_MPI_INSTALL)/include
LOCAL_INCLUDES_HDF5 = -I$(LOCAL_HDF5_INSTALL)/include # HDF5 includes
LOCAL_INCLUDES_HYPRE =
LOCAL_INCLUDES_PAPI = # PAPI includes
LOCAL_INCLUDES_PYTHON = -I/path/to/include/python2.7 \
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-I/path/to/.local/lib/python2.7/site-packages/numpy/core/include/

MACH_INCLUDES = $(LOCAL_INCLUDES_HDF5)
MACH_INCLUDES_PYTHON = $(LOCAL_INCLUDES_PYTHON)
MACH_INCLUDES_MPI = $(LOCAL_INCLUDES_MPI)
MACH_INCLUDES_HYPRE = $(LOCAL_INCLUDES_HYPRE)

#-----------------------------------------------------------------------
# Libraries
#-----------------------------------------------------------------------

LOCAL_LIBS_MPI =
LOCAL_LIBS_HDF5 = -L$(LOCAL_HDF5_INSTALL)/lib -lhdf5 -lz # HDF5 libraries
LOCAL_LIBS_HYPRE =
LOCAL_LIBS_PYTHON = /path/to/libpython2.7.so
LOCAL_LIBS_MACH = -L$(LOCAL_COMPILER)/lib/intel64 -lcilkrts -lifcore -lifport -limf -lsvml -lintlc

MACH_LIBS = $(LOCAL_LIBS_HDF5) $(LOCAL_LIBS_MACH)
MACH_LIBS_MPI = $(LOCAL_LIBS_MPI)
MACH_LIBS_HYPRE = $(LOCAL_LIBS_HYPRE)
MACH_LIBS_PYTHON = $(LOCAL_LIBS_PYTHON)

However, since Enzo will require Python 2.xx, so establish a new conda environment using Python

2.7 and use the following environment.yaml to get the dependencies in order:

name: python2
channels:
- pytorch
- conda-forge
- defaults

dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=4.5=1_gnu
- backports=1.1=pyhd3eb1b0_0
- backports.functools_lru_cache=1.6.4=pyhd3eb1b0_0
- backports.shutil_get_terminal_size=1.0.0=pyhd3eb1b0_3
- backports_abc=0.5=py_1
- basemap=1.2.1=py27hd1be537_2
- blas=1.0=mkl
- ca-certificates=2021.10.8=ha878542_0
- certifi=2019.11.28=py27h8c360ce_1
- cffi=1.13.2=py27h2e261b9_0
- configparser=4.0.2=py27_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py27_0
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- dbus=1.13.18=hb2f20db_0
- decorator=5.1.0=pyhd3eb1b0_0
- enum34=1.1.6=py27_1
- expat=2.4.1=h2531618_2
- fastcache=1.1.0=py27h7b6447c_0
- fontconfig=2.13.1=h6c09931_0
- freetype=2.11.0=h70c0345_0
- functools32=3.2.3.2=py27_1
- future=0.18.2=py27_0
- futures=3.3.0=py27_0
- geos=3.8.0=he1b5a44_1
- glib=2.63.1=h5a9c865_0
- gmp=6.2.1=h2531618_2
- gmpy2=2.0.8=py27h10f8cd9_2
- gst-plugins-base=1.14.0=hbbd80ab_1
- gstreamer=1.14.0=hb453b48_1
- h5py=2.9.0=py27h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- intel-openmp=2022.0.1=h06a4308_3633
- ipython=5.8.0=py27_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- jpeg=9d=h7f8727e_0
- kiwisolver=1.1.0=py27he6710b0_0
- libedit=3.1.20210910=h7f8727e_0
- libffi=3.2.1=hf484d3e_1007
- libgcc-ng=9.3.0=h5101ec6_17
- libgfortran-ng=7.5.0=ha8ba4b0_17
- libgfortran4=7.5.0=ha8ba4b0_17
- libgomp=9.3.0=h5101ec6_17
- libpng=1.6.37=hbc83047_0
- libstdcxx-ng=9.3.0=hd4cf53a_17
- libtiff=4.2.0=h85742a9_0
- libuuid=1.0.3=h7f8727e_2
- libwebp-base=1.2.0=h27cfd23_0
- libxcb=1.14=h7b6447c_0
- libxml2=2.9.12=h03d6c58_0
- linecache2=1.0.0=py_1
- lz4-c=1.9.3=h295c915_1
- matplotlib=2.2.3=py27hb69df0a_0
- matplotlib-base=2.2.4=py27hfd891ef_0
- mkl=2020.2=256
- mkl-service=2.3.0=py27he904b0f_0
- mkl_fft=1.0.15=py27ha843d7b_0
- mkl_random=1.1.0=py27hd6b4f25_0
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpi=1.0=mpich
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- mpi4py=3.0.3=py27h028fd6f_0
- mpich=3.3.2=hc856adb_0
- mpmath=1.1.0=py27_0
- ncurses=6.3=h7f8727e_2
- ninja=1.10.2=h5e70eb0_2
- numpy=1.16.6=py27hbc911f0_0
- numpy-base=1.16.6=py27hde5b4d6_0
- olefile=0.46=py27_0
- openssl=1.1.1k=h7f98852_0
- pathlib2=2.3.5=py27_0
- pcre=8.45=h295c915_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=py27_0
- pillow=6.2.1=py27h34e0f95_0
- pip=19.3.1=py27_0
- proj4=5.2.0=he1b5a44_1006
- prompt_toolkit=1.0.15=py27_0
- ptyprocess=0.7.0=pyhd3eb1b0_2
- pycparser=2.20=py_2
- pygments=2.5.2=py_0
- pyparsing=2.4.7=pyhd3eb1b0_0
- pyproj=1.9.6=py27h516909a_1002
- pyqt=5.9.2=py27h05f1152_2
- pyshp=2.1.3=pyh44b312d_0
- python=2.7.15=h9bab390_6
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python_abi=2.7=1_cp27mu
- pytorch=1.4.0=py2.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2021.3=pyhd3eb1b0_0
- qt=5.9.7=h5867ecd_1
- readline=7.0=h7b6447c_5
- scandir=1.10.0=pyh5d7bf9c_3
- setuptools=44.0.0=py27_0
- simplegeneric=0.8.1=py27_2
- singledispatch=3.7.0=pyhd3eb1b0_1001
- sip=4.19.8=py27hf484d3e_0
- six=1.16.0=pyhd3eb1b0_0
- sqlite=3.33.0=h62c20be_0
- subprocess32=3.5.4=py27h7b6447c_0
- sympy=1.5.1=py27_0
- tk=8.6.11=h1ccaba5_0
- torchvision=0.5.0=py27_cu101
- tornado=5.1.1=py27h7b6447c_0
- traceback2=1.4.0=py27_0
- traitlets=4.3.3=py27_0
- typing=3.7.4.1=py27_0
- unittest2=1.1.0=py27_0
- wcwidth=0.2.5=pyhd3eb1b0_0
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- wheel=0.37.1=pyhd3eb1b0_0
- xz=5.2.5=h7b6447c_0
- yt=3.4.1=py27h14c3975_1
- zlib=1.2.11=h7f8727e_4
- zstd=1.4.9=haebb681_0

prefix: /path/to/anaconda3/envs/python2

With the correct environment, running a simulation requires a user script.py to be present in the

simulation directory. All of the StarNetRuntime logic is contained in StarNetRuntime/ex user script.py,

so the only portion required in the simulation directory is:

user_script.py:
import sys
sys.path.append(’./’)
from StarNetRuntime.ex_user_script import run_main

def main():
run_main()

As well, an example configuration file is available in StarNetRuntime/ex Pop3Net.conf. This

should be copied directly to the simulation directory, and modified to contain the correct file paths for the

current file structure. The simulation such as those presented in Chapter 4 can be run via batch file:

#!/bin/bash
#SBATCH -N 1
#SBATCH --ntasks-per-node=64
#SBATCH -p compute
#SBATCH --mem=249320M
#SBATCH -t 48:00:00
#SBATCH --job-name="5L-inline"
#SBATCH --export=ALL
#SBATCH --mail-type=ALL
#SBATCH -A <account>
#SBATCH --mail-user=user@email.com

module load cpu intel intel-mpi hdf5

conda activate python2
export PYTHONPATH=${HOME}anaconda3/envs/python2/lib/python2.7
export ENZO=${HOME}/enzo-python/src/enzo/enzo.exe
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# uncomment this to allow core files
# ulimit -c unlimited

ibrun $ENZO -d run.enzo > estd.out 2>&1

While running the simulation, we need several parameters to ensure that the inline python routine is

called and used. A sample parameter file to run Enzo using inline Python with StarNetRuntime is:

StopCycle = 100000
StopCPUTime = 420000
PythonTopGridSkip = 15 // run user script every Nth top-grid timestep

// regardless, StarNetRuntime will only execute
// if there has been enough time since the last run
// given by minimum_time_python_skip in Pop3Net.conf

PythonSubcycleSkip = 0 // dont run on lower levels at all
ParallelRootGridIO = 1
ParallelParticleIO = 1
UnigridTranspose = 2
HierarchyFileOutputFormat = 1
CorrectParentBoundaryFlux = 1

ProblemType = 30
TopGridRank = 3
TopGridDimensions = 256 256 256
PotentialIterations = 10
SelfGravity = 1
TopGridGravityBoundary = 0
LeftFaceBoundaryCondition = 3 3 3
RightFaceBoundaryCondition = 3 3 3

CosmologySimulationOmegaBaryonNow = 0.048975
CosmologySimulationOmegaCDMNow = 0.262125
CosmologySimulationNumberOfInitialGrids = 1
CosmologySimulationDensityName = GridDensity
CosmologySimulationVelocity1Name = GridVelocities_x
CosmologySimulationVelocity2Name = GridVelocities_y
CosmologySimulationVelocity3Name = GridVelocities_z
CosmologySimulationCalculatePositions = 1
CosmologySimulationParticleVelocity1Name = ParticleVelocities_x
CosmologySimulationParticleVelocity2Name = ParticleVelocities_y
CosmologySimulationParticleVelocity3Name = ParticleVelocities_z
CosmologySimulationParticleDisplacement1Name = ParticleDisplacements_x
CosmologySimulationParticleDisplacement2Name = ParticleDisplacements_y
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CosmologySimulationParticleDisplacement3Name = ParticleDisplacements_z

#
# define cosmology parameters
#

ComovingCoordinates = 1
CosmologyOmegaMatterNow = 0.3111
CosmologyOmegaDarkMatterNow = 0.262125
CosmologyOmegaLambdaNow = 0.6889
CosmologyHubbleConstantNow = 0.6766
CosmologyComovingBoxSize = 1.765
CosmologyMaxExpansionRate = 0.015
CosmologyInitialRedshift = 99.000000
CosmologyFinalRedshift = 13.000000
GravitationalConstant = 1

#
# set I/O and stop/start parameters
#

DataDumpName = RD
dtDataDump = 0.15
RedshiftDumpName = RD

#
# set hydro parameters
#

Gamma = 1.6667
PPMDiffusionParameter = 0
DualEnergyFormalism = 1
InterpolationMethod = 1
FluxCorrection = 2
ConservativeInterpolation = 0
CourantSafetyNumber = 0.3
ParticleCourantSafetyNumber = 0.8
RadiativeCooling = 1
MultiSpecies = 2
MetalCooling = 3
CloudyCoolingGridFile = solar_2009_4D_metals.h5
UseMinimumPressureSupport = 0
RefineByJeansLengthSafetyFactor = 4.0

#
# set grid refinement parameters
#
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StaticHierarchy = 0 \\ Use AMR
MaximumRefinementLevel = 5
MaximumGravityRefinementLevel = 5
MaximumParticleRefinementLevel = 5
RefineBy = 2
CellFlaggingMethod = 2 4 \\ DM and baryon mass
MinimumEfficiency = 0.3
MinimumOverDensityForRefinement = 3.0 3.0
MinimumMassForRefinementLevelExponent = -0.3 -0.3
MinimumEnergyRatioForRefinement = 0.4

GreensFunctionMaxNumber = 30

#
# Stars and radiation parameters
#

StarParticleCreation = 32768
StarParticleFeedback = 32768

RadiativeTransfer = 1
RadiativeTransferRaysPerCell = 3.1
RadiativeTransferInitialHEALPixLevel = 1
RadiativeTransferHydrogenOnly = 1
RadiativeTransferOpticallyThinH2 = 1
RadiativeTransferPeriodicBoundary = 1
RadiativeTransferAdaptiveTimestep = 1
RadiativeTransferRadiationPressure = 1
RadiativeTransferHubbleTimeFraction = 0.01
RadiativeTransferPhotonMergeRadius = 3.0
RadiativeTransferSourceClustering = 1
StarParticleRadiativeFeedback = 1

RadiationFieldType = 14
RadiationShield = 2

StarMakerOverDensityThreshold = 75 // n/cc if using 32768
StarMakerMassEfficiency = 0.25
StarMakerMinimumMass = 150
StellarWinds = 1
SingleSN = 1
StarMakerMaximumFormationMass = 1000
NEvents = -1
UnrestrictedSN = 1
AnalyticSNRShellMass = 1
MechStarsRadiationSpectrum = 1
MechStarsCriticalMetallicity = 4.1e-8
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MechStarsUseAnalyticFS = 0
MechStarsFadeSNR = 1
MechStarsMetallicityFloor = 1e-20

C.4 FBNet

FBNet is the least developed module, as it has not been used in any publication as of yet. It is a

prospective method to improve upon the linear regression method of Chapter 4, however requires more work

to produce usable models; hence, we will only briefly cover it here. Since the data for feedback is unique from

star formation, we have a new script to generate training data, ClusterSimulator dataset generator.py.

Each feedback region (i.e., region that has a unique initial star formation event) will have two files: the input

state (<particle id> 00.h5 files), and final state (<particle id> 01.h5 files). Each state has the full set

of Enzo fields computed in the Phoenix Simulations including ionized species, so that FBNet can be trained to

predict any combination of fields. Scaling information is still required, so there is a similar script to generate

standard scaling information, gen clusternet scaling.py. Data generation can be run on Frontera using

the batch submission file:

#!/bin/bash
#SBATCH --job-name="CDS_512"
#SBATCH --partition=small
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=50
#SBATCH -t 48:00:00
#SBATCH --export=ALL

module load hdf5 intel/18.0.5 python3/3.7.0

sim=phoenix_512
# grid dimension of training input
dim=96
# width in kpc of model samples
width=30.72
# level of grid(ish) at that resolution
level=5
outdir=/path/to/phoenix/simulation/directory
finaldir=/path/to/training/data/storage/network_data_inputs
# duration between input and output states
modeltime=16.60
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# 3 dimension or 2 dimensional volumes
final_dim=3d
# list of first and last outputs to evaluate
outbounds="200 920"

ibrun python3 -u ClusterSimulator_dataset_generator.py \
--output_dir $outdir \
--final_dir $finaldir \
--level $level \
--width $width \
-dim $dim \
--output_bounds $outbounds \
--sim_name $sim \
--model_time $modeltime > ClusterDS_${sim}_${dim}x${width}.out 2>&1

Very similarly to StarFind, training can be performed on SDSC-Expanse using the following batch

submission file:

#!/bin/bash
#SBATCH --job-name="cGAN-DSNC"
#SBATCH --partition=gpu-shared
#SBATCH --nodes=1
#SBATCH --ntasks=10
#SBATCH --gpus=1
#SBATCH --mem=89G
#SBATCH -A <account>
#SBATCH --mail-type=BEGIN,END
#SBATCH --mail-user=user@email.com
#SBATCH -t 48:00:00

module load gpu slurm

gpus=1
nnodes=1
nprocs=1

reload=/path/to/checkpoint/if/needed
conf=run_gan.conf
data_dim=96
match_weight=100

discriminator=pix2pix_ada
disc_out=4
disc_first_layer=16
disc_learn_rate=1e-4
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ada_pfloor=0.1

generator=pix2pix_unet
batch_size=8
gen_first_layer=128
gen_learn_rate=1e-3
unique_name=buffered_30kpc_96cube
transforms=translate
field_list="Density SN_Colour x-velocity y-velocity z-velocity"

srun -n $nprocs --gpus-per-task=1 \
python run_lightning_gan.py \
--unique_name $unique_name \
--conf $conf \
--gpus $gpus \
--nnodes $nnodes \
--nprocs $nprocs \
--data_dimension $data_dim \
--gen_first_layer $gen_first_layer \
--disc_first_layer $disc_first_layer \
--disc_learn_rate $disc_learn_rate \
--gen_learn_rate $gen_learn_rate \
--match_weight $match_weight \
--discriminator $discriminator \
--disc_out $disc_out \
--generator $generator \
--batch_size $batch_size \
--ada_pfloor $ada_pfloor \
--field_list $field_list > GANTraining.out 2>&1

However, there are many more options, given the under-developed state, variety of defined architec-

tures, and plethora of hyperparameters (intrinsic to GANs designs).
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Walker MG, M Mateo, EW Olszewski, J Peñarrubia, NW Evans, & G Gilmore 2009a ‘A Universal Mass
Profile for Dwarf Spheroidal Galaxies?’ The Astrophysical Journal 704(2):1274–1287 doi: 10.1088/
0004-637X/704/2/1274.

Walker MG, M Mateo, EW Olszewski, B Sen, & M Woodroofe 2009b ‘Clean Kinematic Samples in Dwarf
Spheroidals: An Algorithm for Evaluating Membership and Estimating Distribution Parameters When
Contamination is Present’ The Astronomical Journal 137(2):3109–3138 doi: 10.1088/0004-6256/137/2/
3109.

Walker MG, M Mateo, EW Olszewski, S Koposov, V Belokurov, P Jethwa, DL Nidever, V Bonnivard,
I Bailey John I, EF Bell, & SR Loebman 2016 ‘Magellan/M2FS Spectroscopy of Tucana 2 and Grus 1’
The Astrophysical Journal 819(1):53 doi: 10.3847/0004-637X/819/1/53.

Wells AI & ML Norman 2021 ‘Predicting Localized Primordial Star Formation with Deep Convolutional
Neural Networks’ The Astrophysical Journal Supplement Series 254(2):41 doi: 10.3847/1538-4365/abfa17.

165

https://doi.org/10.1093/mnras/stz243
https://doi.org/10.1146/annurev-astro-091916-055240
https://doi.org/10.1146/annurev-astro-091916-055240
https://doi.org/10.1038/nature13316


Wells AI & ML Norman 2022 ‘Connecting Primordial Star-forming Regions and Second-generation Star
Formation in the Phoenix Simulations’ The Astrophysical Journal 932(1):71 doi: 10.3847/1538-4357/
ac6c87.

Welsh L, R Cooke, & M Fumagalli 2019 ‘Modelling the chemical enrichment of Population III supernovae:
the origin of the metals in near-pristine gas clouds’ Monthly Notices of the Royal Astronomical Society
487(3):3363–3376 doi: 10.1093/mnras/stz1526 URL https://doi.org/10.1093/mnras/stz1526.

Welsh L, R Cooke, & M Fumagalli 2020 ‘The stochastic enrichment of Population II stars’ Monthly
Notices of the Royal Astronomical Society 500(4):5214–5228 doi: 10.1093/mnras/staa3342 URL https:
//doi.org/10.1093/mnras/staa3342.

Whalen D, BW O’Shea, J Smidt, & ML Norman 2008a ‘How the first stars regulated local star formation. i.
radiative feedback’ The Astrophysical Journal 679(2):925–941 doi: 10.1086/587731 URL https://doi.org/
10.1086%2F587731.

Whalen D, B van Veelen, BW O’Shea, & ML Norman 2008b ‘The destruction of cosmological minihalos
by primordial supernovae’ The Astrophysical Journal 682(1):49–67 doi: 10.1086/589643 URL https:
//doi.org/10.1086%2F589643.

Wheeler C, PF Hopkins, AB Pace, S Garrison-Kimmel, M Boylan-Kolchin, A Wetzel, JS Bullock, D Kereš,
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