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Substantial differences in soil viral community composition
within and among four Northern California habitats
Devyn M. Durham1,2, Ella T. Sieradzki 1,2, Anneliek M. ter Horst1, Christian Santos-Medellín1, C. Winston A. Bess1, Sara E. Geonczy1 and
Joanne B. Emerson 1✉

© The Author(s) 2022

Viruses contribute to food web dynamics and nutrient cycles in diverse ecosystems, yet the biogeographical patterns that underlie
these viral dynamics are poorly understood, particularly in soil. Here, we identified trends in soil viral community composition in
relation to habitat, moisture content, and physical distance. We generated 30 soil viromes from four distinct habitats (wetlands,
grasslands, woodlands, and chaparral) by selectively capturing virus-sized particles prior to DNA extraction, and we recovered 3432
unique viral ‘species’ (dsDNA vOTUs). Viral communities differed significantly by soil moisture content, with viral richness generally
higher in wet compared to dry soil habitats. However, vOTUs were rarely shared between viromes, including replicates <10m apart,
suggesting that soil viruses may not disperse well and that future soil viral community sampling strategies may need to account for
extreme community differences over small spatial scales. Of the 19% of vOTUs detected in more than one virome, 93% were from
the same habitat and site, suggesting greater viral community similarity in closer proximity and under similar environmental
conditions. Within-habitat differences indicate that extensive sampling would be required for rigorous cross-habitat comparisons,
and results highlight emerging paradigms of high viral activity in wet soils and soil viral community spatial heterogeneity.

ISME Communications; https://doi.org/10.1038/s43705-022-00171-y

INTRODUCTION
Viruses are abundant across Earth’s ecosystems, contributing to
microbial dynamics and biogeochemical cycles, yet they remain
understudied, particularly in terrestrial habitats [1, 2]. Soil viral
abundance measurements vary substantially, ranging from
nearly zero in dry deserts to over 109 virus-like particles per
gram in wetlands [3]. In the better studied surface oceans,
viruses lyse approximately 20% of microbial biomass daily,
impacting nutrient and energy cycles [4], and recent work
suggests that viruses may be similarly important in terrestrial
ecosystems [3, 5–12]. For example, viruses have been suggested
to affect carbon cycling in thawing permafrost peatlands by
preying on methanogens and methanotrophs and by encoding
glycoside hydrolases to break down complex carbon into simple
sugars [2]. Soil viruses have been demonstrated to actively infect
their hosts in a variety of soil environments, even in extreme
environments such as arid deserts [5, 13], and soil viral
communities can be spatially structured [14–16]. Despite these
emerging ecological patterns, comparisons of soil viral diversity
within and across habitats are limited.
Here, we compared dsDNA viromes (<0.2 µm viral size-fraction

metagenomes representing the dsDNA viral community, presum-
ably dominated by viruses of bacteria and archaea) [14] from four
distinct habitats (wetlands, grasslands, chaparral shrublands,
and oak woodlands) across five UC Davis Natural Reserves field
sites within Northern California. We compared viral species
(vOTU) richness, vOTU detection patterns, and viral community

beta-diversity, according to habitat type, soil properties, and
spatial distribution to better understand the fundamental relation-
ships between soil viruses and the ecosystems that they inhabit.

RESULTS AND DISCUSSION
To compare soil viral community composition within and across
terrestrial habitats on a regional scale, viromes were generated
from 34 near-surface (top 15 cm) soil samples, with a total of 30
viromes included in downstream ecological analyses (see Supple-
mentary Methods). The analyzed viromes were collected from four
distinct habitats (wetlands, grasslands, chaparral shrublands, and
woodlands, each with 7, 14, 4, and 5 viromes, respectively) across
five field sites (Fig. S1 for sampling scheme, Table S1 for soil
properties). Following quality filtering, the 30 viromes generated
an average of 72,950,833 reads and 416 contigs ≥10 Kbp per
virome (Table S2). Wetland viromes yielded more contigs ≥10 Kbp
than viromes from other habitats, both in total and on average per
virome (Table S2). We used VIBRANT to identify 3490 viral contigs
in our assemblies, which were clustered into 3,432 viral opera-
tional taxonomic units (vOTUs), defined as ≥10 Kbp viral contigs
sharing ≥ 95% average nucleotide identity over 85% contig length
[17]. Constrained analysis of principal coordinates (CAP analysis)
revealed strong clustering by habitat rather than by site, implying
that, where environmental parameters are substantially different,
environmental conditions are stronger drivers of viral community
composition than geographic distance (Fig. S2).
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Multiple lines of evidence suggest that wetter soils harbored
greater viral diversity than drier soils. We recovered the most vOTUs
from wetlands, both in total (56% of all vOTUs were from wetlands)
and per virome (on average, 307 vOTUs were recovered per wetland
virome, compared to 116 from all habitats) (Fig. 1A). Unsurprisingly,
wetlands had significantly greater moisture content than other
habitats (Fig. 1B; ANOVA followed by Tukey multiple comparisons of
means, p < 0.001), especially considering that soil samples were
collected towards the end of the Mediterranean climate dry season,
meaning that most habitats had not received precipitation for the
preceding ~6 months. Although viral richness was highest in
wetlands, this was not statistically significant (ANOVA model
richness ~ habitat, p= 0.095). Still, nonparametric tests, which
account for nonlinear correlations, revealed a significantly positive
correlation between viral richness and soil moisture content
(Spearman rho= 0.33, p= 0.036; Kendall tau= 0.22, p= 0.045).
Viral community beta-diversity was also related to soil chemical
properties overall (Mantel test, R2= 0.43, p= 0.009; Table S1), while
distance between sites only accounted for 5% of the variation
(Partial Mantel test, R2= 0.38, p= 0.009). Taken together, viral
diversity was generally highest in wet soils.

We next wondered whether differences in sampling effort or
bacterial content in the viromes could have produced the
observed diversity patterns. For example, viral diversity could
have appeared artificially higher in wetland habitats if wetland
viral diversity was lower but well-sampled, compared to other
habitats with higher diversity but poorer sampling. In a
comparison of accumulation curves, such a pattern would include
a more horizontal slope in the wetlands and a more steeply
increasing vertical slope over sampling effort in the other habitats.
We tested this by comparing accumulation curves across habitats,
which revealed the opposite trend: wetlands exhibited the most
steeply increasing slope and were thus likely to be the most
under-sampled, in terms of true viral diversity (Fig. 1C). Given that
relic DNA and small bacteria can pass through 0.22 µm filters,
bacterial sequences are known to be present in viromes [18].
Although we had no specific reason to expect differences in the
ratio of bacterial to viral DNA content among habitats, we wanted
to exclude the possibility that viral diversity appeared artificially
higher in wetlands due to a lower proportion of bacterial content
in wetland viromes compared to other habitats. To compare
bacterial content in viromes across habitats, 16S rRNA gene
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Fig. 1 Evidence for higher viral richness in wetter soils. Comparisons between habitats of (A) viral richness (number of identified vOTUs with
coverage along at least 75% of the contig in a given virome), dots represent richness in individual viromes, (B) accumulation curves of
cumulative vOTU richness as sampling effort increased, dots represent cumulative richness at each sampling effort across 100 permutations of
virome order; the overlaid lines display the mean cumulative richness per habitat, (C) water content, calculated as (wet weight—dry weight)
divided by dry weight, and (D) bacterial 16S rRNA gene content in the viromes, based on percent of viromic reads mapping to 16S rRNA
reference genes. VIBRANT [21] was used to identify 3,490 viral contigs in our assemblies, and these viral contigs were clustered at 95% average
nucleotide identity (ANI) into 3432 viral operational taxonomic units (vOTUs). For (A), (B), (D), raw data are plotted on top of the box plots, with
white lines showing the median, boxes indicating 75% of the data, whiskers extending to 90%, and points beyond the whiskers indicating
outliers.

D.M. Durham et al.

2

ISME Communications



fragments were recovered from raw reads (Fig. 1D). The
percentage of 16S rRNA gene sequences in each virome ranged
from 0.01 to 0.044% (consistent with prior reports of 0.028%
bacterial 16S rRNA gene content in similarly prepared viromes
from agricultural soils [18]) and did not differ significantly by
habitat (ANOVA, P= 0.595). Thus, viral diversity estimates did not
seem to be disproportionately skewed by sampling effort or the
presence of non-viral sequences in viromes. The higher diversity
of viruses in wetlands compared to the other, drier habitats could
be due to higher bacterial activity and therefore more susceptible
hosts, leading to higher viral activity and diversity. Additionally,
better soil connectivity in wet soil, leading to higher dispersion of
free viruses and hosts, could increase the chances of virus-host
encounters.
Perhaps the most striking result from this study was the

uniqueness of each soil viral community. This feature has been
previously highlighted in viruses identified in other environments,
such as highly oligotrophic water [19] and hydraulic fracturing
wells [8]. The majority of vOTUs (81%) in this regional study were
only detected in a single virome (Fig. 2A, Fig. S3A). Of the 666
vOTUs detected in at least two viromes, 93% were detected in
viromes from the same habitat and site (Fig. 2B, Fig. S3B). The

most similar viral communities were from the same habitat and
site (i.e., biological replicates) less than 1 Km apart (Fig. 2C). Within
the same site, viral communities were less similar between
habitats than within the same habitat. Additionally, viromes from
the same habitat at different, nearby sites (within 6 Km) did not
share any vOTUs, suggesting substantial differences in viral
communities over local distances both within and between
habitats. At greater distances, community similarity generally
decreased, even between viromes from the same habitat (Fig. 2C).
Still, 21 vOTUs were detected in multiple habitats across multiple
sites (Fig. 2B), and some vOTUs were shared between the two
farthest sites (109 Km apart, Fig. 2C), suggesting some degree of
regional conservation of viral populations. Overall, results suggest
substantial differences in soil viral community composition in the
same habitat on the scale of meters, greater similarity of viral
communities in close proximity and under similar environmental
conditions, and a small number of vOTUs shared over regional
distances.
Although soil viral communities are woefully under-sampled,

making sweeping generalizations premature, results from this
study and others converge on a picture of high local viral diversity,
with communities differing substantially over space and by
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habitat, with little regional co-occurence of viral ‘species’ (vOTUs).
Viral community distance-decay relationships have been observed
across an 18-m long agricultural field [14] and in a 200 m2

grassland [20], consistent with the meters-scale differences in viral
community composition between replicates from the same
habitat observed in this study. However, the proportion of vOTUs
shared over meters varied across these studies, with many vOTUs
shared across the agricultural field but most vOTUs not shared
between samples ~10 m apart in this study and in the grassland
field, suggesting the potential for different spatial patterns in
natural and managed soils, perhaps due to different amounts of
soil mixing by management practices, such as tilling. Similarly
substantial differences among viral communities on a regional
scale were also identified in a study of grassland and peatland
RNA viromes, which shared few viruses between samples [16].
However, ter Horst et al. showed that 4% of the vOTUs from a
Minnesota, USA peatland were shared in other peatlands, often on
different continents [15], consistent with the recovery of a small
number of vOTUs shared over >100 Km distances here. Taken
together, we propose that soil viral communities often display
high heterogeneity within and among habitats, presumably due
to a combination of host adaptations and microdiversity, dispersal
limitation, and fluctuating environmental conditions over space
and time.

DATA AVAILABILITY
The datasets generated and/or analyzed in this study have been submitted to the
NCBI sequence read archive (SRA) under BioProject number PRJNA831438 and will
become available upon publication. The vOTU fasta sequences and R scripts are
available on https://github.com/ellasiera/Nat_res_vOTUs.
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creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

D.M. Durham et al.

5

ISME Communications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Substantial differences in soil viral community composition within and among four Northern California habitats
	Introduction
	Results and discussion
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




