UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Novices and Program Comprehension: Does Language Make a Difference

Permalink
https://escholarship.org/uc/item/79q346pd
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Authors

Good, Judith
Brna, Paul
Cox, Richard

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/7gq346pc
https://escholarship.org
http://www.cdlib.org/

Novices and Program Comprehension: Does Language Make a Difference?

Judith Good
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge, Edinburgh EHI 1HN
Scotland UK
judithg @dai.ed.ac.uk

Background

This study examined the effect of programming paradigm on
novice program comprehension. It follows work which sought
to characterise program comprehension by experts (Penning-
ton, 1987) and novices (Corritore & Wiedenbeck, 1991) in
terms of information categories. These categories, described
by Pennington, are: operations (information about specific
actions which take place in the code), control flow (infor-
mation about sequence of events occurring in the program),
data flow (the transformations which data objects undergo
during execution, including data dependencies and data struc-
ture information), state (time-slice descriptions of the state of
objects and events in the program), and function (information
about the overall goal of the program, essentially, “What does
the program do?").

Pennington (1987) studied expert COBOL and FORTRAN
programmers and proposed a two-stage process of program
comprehension in which the preliminary dominant mental
representation tends to be organised in terms of low-level
control flow information. A more in-depth understanding of
the program leads to the building of a domain model based on
a more functional perspective, and to an increase in the use of
functional and data flow statements to describe programs.

A similar study of Pascal novices found that they also
tended to use low-level procedural statements when sum-
marising a program, but that subjects in the upper ability
quartile tended to behave more like expert programmers in
terms of an increased ability to handle dataflow and func-
tional questions (Corritore & Wiedenbeck, 1991).

These findings raise the question of whether “procedural
predominance” results from the use of procedural program-
ming languages. Pennington herself questioned the generality
of results for languages other than COBOL and FORTRAN:
there was evidence that COBOL programmers were better at
questions about dataflow than FORTRAN programmers, and
that this might be due to features of the languages themselves.

To address this question, a study was carried out on Prolog
novices. Since Prolog emphasises functional and data flow re-
quirements, it was expected that novices would provide amore
abstract, functional account of program behaviour, rather than
a procedurally oriented one.

The Study

The subjects were 74 first year university students enrolled in
a Prolog course. Each received a packet containing a short
description of the experiment, instructions, a practice prob-
lem, six, randomly-ordered, short recursive programs and a

Paul Brna
Computer Based Learning Unit
University of Leeds
Leeds LS29)T
England UK
paul @cbl.leeds.ac.uk

Richard Cox
Human Communication Research Centre
University of Edinburgh
2 Buccleuch Place Edinburgh EH8 9LW
Scotland UK
rcox @cogsci.ed.ac.uk

questionnaire on their programming experience. Subjects had
five minutes to study each program, answer the accompany-
ing questions and write a summary statement before turning
to the next program.

Results and Discussion

Results on the comprehension questions showed much the
same trend as that of previous studies: questions focussing on
low-level aspects of control flow were answered significantly
more easily than questions requiring other types of informa-
tion. However, data flow questions were significantly harder
to answer than any other type of question.

Following Pennington, the program summaries were clas-
sified into three categories: procedural, data flow and func-
tion. Procedural program summaries predominated (45%),
although not to the same extent as in previous studies (Pen-
nington found 57% while Corritore and Wiedenbeck found
50%). Furthermore, functional program summaries domi-
nated over dataflow program summaries (38% vs 17%), a
trend not found in either of the two previous studies.

In further analyses, program summaries were indepen-
dently rated on a four point scale according to correctness
and completeness of explanation. It was found that func-
tional program summaries were much more likely to be rated
‘Good’ or ‘Excellent’ (66.7%) than data flow (51.1%) or pro-
cedural (50%) summaries. The implication that a functional
description is more likely to be correct is consistent with the
notion that the functional description correlates well with the
termination of the program comprehension process.

It was concluded that the choice of programming language
significantly affects novice program understanding, although
procedurally oriented viewpoints tend to predominate even
when, as in the case of Prolog, functional, data flow ap-
proaches are emphasised. The implications for the teaching
of programming are clear — more effective methods of chang-
ing novices' “procedural bias” are required beyond simply
teaching new programming languages.

REFERENCES

Corritore, C., & Wiedenbeck, S. (1991). What do novices
learn during program comprehension?. [nternational
Journal of Human-Computer Interaction, 3(2), 199-
222.

Pennington, N. (1987). Stimulus structures and mental rep-
resentations in expert comprehension of computer pro-
grams. Cognitive Psychology, 19, 295-341.

936


mailto:judithg@dai.ed.ac.uk
mailto:paul@cbl.leeds.ac.uk
mailto:rcox@cogsci.ed.ac.uk

	cogsci_1997_936



