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Bare Quantum Null Energy Condition

Zicao Fu1, ∗ and Donald Marolf1, †

1Department of Physics, University of California, Santa Barbara, California 93106, USA

The quantum null energy condition (QNEC) is a conjectured relation between a null version of quantum field
theory energy and derivatives of quantum field theory von Neumann entropy. In some cases, divergences cancel
between these two terms and the QNEC is intrinsically finite. We study the more general case here where they
do not and argue that a QNEC can still hold for bare (unrenormalized) quantities. While the original QNEC
applied only to locally stationary null congruences in backgrounds that solve semiclassical theories of quantum
gravity, at least in the formal perturbation theory at a small Planck length, the quantum focusing conjecture can
be viewed as the special case of our bare QNEC for which the metric is on shell.

Introduction.— Motivated by features desired when rela-
tivistic quantum field theories (QFTs) are coupled to gravity,
in Ref. [1], Bousso, Fisher, Liechenauer, and Wall proposed
the quantum null energy condition (QNEC), which states that
the (null) energy density at a point is bounded below by a sec-
ond derivative at that point of an appropriate von Neumann
entropy. Schematically, the relation takes the form

Q := Tabkakb− 1
2π

S′′ ≥ 0, (1)

where ka is the generator of the congruence N, Tab is the
stress tensor, and S is the von Neumann entropy on one side
of the null congruence N. The original conjecture assumed
the null congruence to be locally stationary at the desired
point p, meaning that the expansion θ and shear σαβ satisfy
σαβ |p = 0 and θ |p = θ̇ |p = 0, where the overdot indicates a
derivative with respect to an affine parameter along the gen-
erator through p and greek indices (α,β ,γ, . . .) run over the
d− 2 directions associated with the cut of the null congru-
ence at which S′′ was computed. With this restriction [2],
(1) has been shown to hold in Minkowski space for both free
theories [3] and interacting QFTs that flow to a nontrivial
conformal fixed point in the ultraviolet [4]. However, we
will drop the locally stationary condition below and will also
consider general curved spacetimes.

Now, both terms in (1) diverge for continuum QFTs. But
the divergences cancel in flat spacetime, on Killing horizons,
and also more generally when certain dimension-dependent
derivatives of θ and σαβ vanish [5, 6]. In such cases, the
quantity Q in (1) is intrinsically finite and may be equiva-
lently expressed in terms of either any renormalized Tab and
S or in terms of the corresponding bare quantities. The only
restriction is that one use the same regulator and/or renor-
malization scheme to define both Tab and S, say by comput-
ing both from a common regulated or renormalized partition
function, varying the background metric to obtain Tab and
using the replica trick to define S. With the above under-
standing, the difference Q is then also independent of the
choice of regulator or renormalization scheme. We thus de-
scribe such contexts by saying that the QNEC (1) is scheme-
independent. In contexts where this property is known to
hold, the QNEC was proven in Refs. [5, 6] for the univer-
sal sector of holographic QFTs in d = 2,3,4,5 spacetime di-
mensions at leading order in small bulk Newton constant GN
(and, when appropriate, also small string length `s).

Restricting the QNEC to scheme-independent contexts is
natural from the point of view of Ref. [1], as this work moti-

vated the QNEC by studying the weak gravity limit of an-
other conjecture, the quantum focusing conjecture (QFC),
which involved intrinsically finite quantities. Since the QFC
is always scheme independent, it can have only scheme-
independent consequences. The extra assumptions needed
to derive the QNEC from the QFC must thus guarantee
scheme independence for the QNEC. However, at least in
holographic theories, it was later noted in Ref. [5] that the
QNEC holds in contexts where it cannot be derived from the
QFC. Taking this as inspiration, we consider arbitrary curved
backgrounds below as well as general choices of N. We thus
explicitly allow the possibility that divergences in (1) fail to
cancel.

In scheme-dependent contexts, the physical content of
conjecturing (1) then depends on whether one uses bare or
renormalized quantities and also on the choice of regulator
and of any renormalization scheme. For inspiration, we thus
turn to more familiar inequalities such as positivity of en-
tropy or strong subadditivity. When such inequalities be-
come scheme dependent, they typically hold only for the bare
quantities and even then only when defined by an appropri-
ately physical cutoff such as putting the theory on a lattice.
Removing the regulator yields a divergence but of the phys-
ically correct sign. For example, in quantum mechanics, en-
tropy itself is an intrinsically positive quantity. And using a
lattice regulator to define the von Neumann entropy of a re-
gion in some continuum field theory gives a positively signed
infinite result, but see, e.g., [7] for a discussion of other reg-
ulators that can yield negative entropies. While such positive
divergences may make the inequalities appear trivial in the
continuum limit, they can still be useful.

Following this model, we take the inequality (1) to be
defined by bare quantities associated with an appropriately
physical regulator below. We then show for d ≤ 4 that the
divergent parts of (1) are always of the right sign. The de-
tails of the regulator turn out to be irrelevant, and in fact
our analysis depends only on the assumption that it gives
divergent-but-positive von Neumann entropies (specifically,
with a UV divergence following an area law). Thus the bare
QNEC holds for such regulators if the arguments of Ref.
[4] can be extended from flat space to the general scheme-
independent context. We also show for d ≤ 5 that a suitably
smeared version holds for leading-order holographic theories
with Fefferman-Graham regulators. In all cases, we assume
that the dynamics at the point p used to evaluate (1) depends
on the spacetime location only through the background met-
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ric gab or, equivalently but in language that may be more fa-
miliar to some readers, that all nonmetric background fields
are constant scalars. More general background fields at p
will be saved for future investigation. However, one is free
to turn on arbitrary sources at points separated from p, and,
in particular, one may use such sources to prepare an arbi-
trary state of the field theory [8] at p.

The bare QNEC.— As is well known, for any local QFT
the divergences in the associated partition function Z are in-
tegrals of local quantities. To classify such divergences, we
assume our QFT to flow to some conformal fixed point in
the UV and take the divergences to be built only from scalar
operators and the metric. The absence of other background
fields is implied by the conditions at the end of the introduc-
tion, so this will be the case when nonscalar operators have
sufficiently large conformal dimensions ∆. For d ≤ 5, diver-
gent terms in the effective action must have dimension 5 or
less and so are limited to the following terms:

Idiv =
1

16πGN

∫
ddx
√
|g|
[
λCCOCC +λEHOEHR

+λR2R2 +λRicci2RabRab

+λGB

(
R2−4RabRab +RabcdRabcd

)]
,

(2)

where
√
|g| is the metric volume element, each λ is a (pos-

sibly divergent) constant, and OCC and OEH are local scalar
operators [9]. Our convention is to express each λ and O in
terms of the large energy scale Λ defined by the regulator.
Furthermore, R, Rab, and Rabcd are the Ricci scalar, Ricci
tensor, and Riemann tensor, respectively, of the spacetime
metric gab using the conventions of Ref. [10]. Up to log
terms and subleading terms, we have

λCC ∼ Λ
d , λEH ∼ Λ

d−2, and λR2 ,λRicci2 ,λGB ∼ Λ
d−4. (3)

Because unitarity bounds restrict the dimension of non-
trivial scalar operators to be larger than [(d−2)/2], for d ≤ 5
the 4-derivative terms must be c numbers. For d = 2, we
take the UV fixed point to contain no free fields in order
to forbid operators of dimension zero. Since all nontrivial
operators have positive dimension, the leading term in each
O is a c number. It is thus a scalar background field. We
have assumed such fields to be constant, so we may take
each O to be of the form a + Õ, where aCC and aEH are
finite (c-number) constants, Õ→ 0 as Λ→ ∞, and Õ is a
sum of operators having a positive conformal dimension at
the UV fixed point. In other words, each O is the sum of a
state-independent leading term and state-dependent correc-
tions that suppressed in the limit Λ→ ∞.

The divergent contributions to (1) must come from terms
in (2). We analyze each below and show them to satisfy (1)
in at least d ≤ 4 spacetime dimensions for regulators giving
S the positive area-law divergence required above. Together
with known results in scheme-independent contexts, this suf-
fices to establish the claims made in the introduction.

d = 2,3.—For d = 2,3, only the cosmological constant
(CC) and Einstein-Hilbert (EH) terms in (2) can diverge. As
described in detail in Ref. [5], the cosmological constant
term does not contribute to either Tkk or S. In contrast, the

Einstein-Hilbert (λEH) term contributes to both S and Tkk. As
the leading divergence which contributes to S, the Einstein-
Hilbert term plays a special role. The contribution to S for a
region A is proportional to the integral of λEHOEH over the
boundary of A, so, since our regulator must give a positive
area-law divergence, S > 0, we must have λEHOEH→ aEH >
0.

From Ref. [5], the Einstein-Hilbert contribution to Q is
[11]

∆QEH = 2λEHOEH

(
θ 2

d−2
+σαβ σ

αβ

)
−2λEHȮEHθ , (4)

where contractions on α, β , and γ include projections onto
the relevant (d − 2)-dimensional surface. Since ȮEH =
˙̃OEH → 0 as Λ → ∞, the contribution ∆QEH is positive at

large Λ whenever θ or σαβ fail to vanish. And since the fi-
nal term vanishes for θ = 0, it is non-negative in all cases.
Thus any divergent parts of Q satisfy (1) and it remains only
to check settings where θ and σαβ both vanish so that the
QNEC is scheme independent. From Refs. [3, 4], we know
(1) to be satisfied in such cases in flat space, and Ref. [5]
establishes (1) for leading-order holographic theories with
vanishing θ and σαβ in any background. Given the similar-
ity of Ref. [4] to the flat-space holographic argument of Ref.
[12], we expect that the techniques of Ref. [4] will allow
this to be established for general QFTs having nontrivial UV
fixed points. It would be interesting to attempt to extend the
free-field light-sheet analysis of Ref. [3] in a similar way.

d = 4.—The analysis of the cosmological and Einstein-
Hilbert terms remains as above in all higher dimensions. But
the R2 and Ricci-squared terms become relevant for d = 4.
While the Gauss-Bonnet term in (2) can also now diverge, for
d = 4 it is a topological invariant. It thus cannot contribute
to Tkk. The contribution to S turns out to be topological as
well, so there is no contribution to S′′.

The R2 (λR2 ) term contributes

∆QR2 = 4λR2R
(

θ 2

d−2
+σαβ σ

αβ

)
−4λR2 Ṙθ , (5)

where (5) corrects Ref. [5] in the case where their φ2 depends
on R. Note that we can ignore (5) as when either θ or σαβ

fail to vanish, from (3) it is then negligible when compared
with the leading Λ behavior of (4).

For the same reason, we need only compute the Ricci-
squared contribution when θ and σαβ both vanish. Now,
Ref. [6] computed the contribution of this term to S′′ for
θ = 0 and σαβ = 0 and expressed the result in terms of
Tkk. Moving this term to the left-hand side of the equa-
tion gives the contribution to −Q. And though Ref. [6]
used a so-called equation of motion, this was simply [13]
Tkk = kakb[−2/(

√
|g|)](δS)/(δgab), which for us is just the

definition of Tkk. We can thus read off the desired result from
their Eq. (3.11) to find

∆QRicci2 =2λRicci2 [(Dα θ +Rαk)(Dα
θ +Rα

k)

+
(
Dα σβγ

)(
Dα

σ
βγ

)]
,

(6)

which satisfies (1) for λRicci2 ≥ 0. Here we have used the
derivative operator Dα associated with the induced metric
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hαβ on the (d− 2)-dimensional cut of the null congruence,
though since σαβ vanishes at the point of evaluation the
Christoffel-symbol terms do not contribute.

It thus remains to discuss the sign of λRicci2 . Since the
Ricci-squared term contains a logarithmic divergence for
d = 4 the coefficient of this logarithm should be univer-
sal, meaning that it is independent of the renormalization
scheme. In fact, as shown in Ref. [14], λRicci2 is related
to the “c” anomaly coefficient by λRicci2 = [c/(16π2)] lnΛ,
and positivity of the stress-tensor two-point function requires
c > 0. So for d = 4 all divergent parts of Q satisfy (1).

It now remains only to check settings where θ , σαβ ,
Dγ σαβ , and Dα θ + Rkα all vanish so that the QNEC is
scheme independent. The story is much the same as for
d = 2,3. From Refs. [3, 4], we know (1) to be satisfied
in such cases in flat space [15], and Ref. [6] establishes (1)
under the above conditions in any background for leading-
order holographic theories. The similarity of Ref. [4] to
the flat-space holographic argument of Ref. [12] again sug-
gests that the techniques of Ref. [4] will allow this arbitrary-
background result to be established for general QFTs having
nontrivial UV fixed points. And, again, it would be interest-
ing to attempt to extend the free-field light-sheet analysis of
Ref. [3] in a similar way.

d = 5.—Three new features arise for d > 4. The first is that
the Gauss-Bonnet term is no longer a topological invariant.
As shown in Ref. [16], when θ and σαβ vanish, it contributes

∆QGB = 2λGB

(
2Ckβα

βCkγ
αγ −CkαβγCk

αβγ

)
, (7)

where Cabcd is the Weyl tensor of the spacetime metric gab.
The second new feature is that, even for a fixed sign of

λRicci2 , the contribution of the Ricci-squared term no longer
has a definite sign. Instead, when θ and σαβ vanish, Ref. [6]
gives

∆QRicci2 =2λRicci2 [(Dα θ +Rαk)(Dα
θ +Rα

k)

+
(
Dα σβγ

)(
Dα

σ
βγ

)
− d−4

2(d−2)
(Dα θ)(Dα

θ)

]
.

(8)

Finally, the coefficient λRicci2 becomes power-law divergent
and is no longer universal. In particular, it is no longer re-
lated to a two-point function and we have found no physical
requirement that would fix its sign. In particular, for leading-
order holographic theories Ref. [17] finds [18]

λRicci2 =
`2

(d−2)2(d−4)
, λGB = 0, (9)

in terms of the bulk anti-de Sitter scale ` (which affects the
precise definition of the regulator). As pointed out by Eq.
(2.32) of Ref. [19], when θ and σαβ vanish, the Codazzi
equation implies a constraint on Dα θ , Dγ σαβ , and the space-
time Ricci tensor Rab, which is

d−3
d−2

Dα θ −Dβ σ
β

α =−Rαk. (10)

If we further impose Dγ σαβ = 0, Eqs. (10) and (8) yield

∆QRicci2 =−
1
9

λRicci2 (Dα θ)(Dα
θ) , for d = 5. (11)

Thus, (1) is violated for any congruence for which Dγ σαβ

vanishes and Dα θ does not vanish.
Such congruences indeed exist. To show this, we follow

the approach used in Sec. 2 of Ref. [20]. This reference
shows that a general hypersurface-orthogonal null geodesic
congruence can be written as a v(yα) = const surface in a
spacetime with the metric

ds2 = gαβ (dyα +guα dv)
(

dyβ +guβ dv
)
−2dvdu−guudv2,

(12)
where [∂/(∂u)]a is the null normal vector of the congruence
and the metric coefficients are arbitrary functions of all the
coordinates (yα ,v,u). After defining q :=

(
detgαβ

)1/[2(2−d)]

and γαβ := q2gαβ so that detγαβ = 1, the shear squared and
the expansion of the congruence can be written as σαβ σαβ =
1
4 γδα γγβ γγα,uγδβ ,u and θ = −(lnq),u, respectively. This
congruence is shear-free if and only if γαβ ,u = 0 everywhere
along the congruence. But since this condition does not
restrict q, it is straightforward to construct an everywhere
shear-free congruence for which θ vanishes at some point p
but Dα θ |p 6= 0. The bare QNEC (1) is thus violated for such
examples.

On the other hand, one should not expect there to be a
well-defined procedure for computing Q on length scales
smaller than the scale Λ−1 associated with the cutoff Λ. So,
as in Ref. [21], it is natural to study (1) only when smeared
over scales L� Λ−1. To be precise, we consider an operator
QL defined by smearing Q over the length scale L, fix L, and
study the asymptotic expansion of QL at large Λ.

From the results above, we need only consider smearing
about a point p where θ and σαβ both vanish, but if their
derivatives fail to vanish then the average Einstein-Hilbert
contribution from (4) can still be nonzero. For example, ex-
panding θ in a power series gives θ = 0+yα ∂α θ + · · · so that
the average 〈θ 2〉 of θ 2 is of the order of L2∂α θ∂ α θ and simi-
larly for σαβ . As a result, for L2Λ2� 1, the positive-definite
Einstein-Hilbert contribution to QL will dominate over any
possible Ricci-squared or Gauss-Bonnet contribution when-
ever θ or σαβ has a nonvanishing derivative.

It remains only to study cases where these derivatives van-
ish in addition to θ and σαβ themselves. As in Ref. [21], the
Codazzi equation then requires

0 = Rkαβγ =Ckαβγ −
1

d−2
(
Rkγ hαβ −Rkβ hαγ

)
. (13)

As in Ref. [6], the above results then simplify to yield

∆QRicci2 +∆QGB

=2`2
(

λRicci2 +2
(d−3)(d−4)

(d−2)2 λGB

)
Rkβ Rk

β .
(14)

Using (9), we then find (1) to be satisfied by all divergent
terms in holographic theories with Fefferman-Graham regu-
lators.
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Note that for d = 5 and with our use of the smeared QNEC
the finite terms become relevant only when θ , σαβ , Dα θ ,
Dγ σαβ , and Rkα all vanish, in which case the QNEC is again
scheme independent. As before, Ref. [6] establishes (1) un-
der the above conditions in any background for leading-order
holographic theories and we again expect the method of Ref.
[4] to show this in scheme-independent contexts for general
QFTs with nontrivial UV fixed points, though it is less clear
what physical condition on the regulator could enforce pos-
itivity of the divergent curvature-squared contributions to Q.
It would be interesting to understand whether this is the case
for a simple discretization, i.e., for a lattice regulator on a
curved spacetime background.

Summary and discussion.— We argued that for spacetime
dimension d ≤ 4 the bare QNEC (1) should hold for uni-
tary relativistic quantum field theories on general spacetime
backgrounds with any choice of null congruence. The es-
sential ingredients were the observations that the anomaly
coefficient c is positive for d = 4 and that the contributions
of various local terms to the QNEC in a general background
were either computed in Ref. [5] or can be read off from
computations in Ref. [6] that were originally performed in
order to study the QFC. For d = 3,4 our only assumption
is that the dynamics can depend on the spacetime location
only through the background metric (i.e., all other sources
are constant scalars) and that the regulator gives any entropy
S a positive area-law divergence in the UV. Further assump-
tions required for d = 2,5 are summarized in Table I. In each
case, we showed above that all possible divergent terms sat-
isfy (1); hence, it follows from Refs. [5, 6] that the conjec-
ture holds for leading-order holographic theories. The full
conjecture will be established if the proofs in Refs. [3, 4]
can be extended to arbitrary scheme-independent contexts.

TABLE I. Summary of assumptions (beyond positivity of S and the
above restriction on sources) and results by spacetime dimension d.

d Further assumptions Do divergent terms
satisfy (1)?

2 No operators with free
field correlators;

Yes

forbidding ∆ = 0 scalars
3,4 None Yes
5 Holographic QFT with

holographic regulator
Yes when smeared

Now, the QNEC was introduced in Ref. [1] as a conse-
quence of the QFC which concerned theories of quantum
gravity in situations where the metric could be described as
classical. The QFC imposes the condition

−S′′gen ≥ 0, (15)

where Sgen includes both geometric gravitational entropy and
the entropy of all matter fields. The QNEC was argued to fol-
low from (15) by taking the weak gravity limit. Note that (1)
differs from (15) only by the addition of Tkk (the expecta-
tion value of the kk component of the quantum stress tensor).
But the QFC applies only to the total system including both
gravity and matter and, moreover, requires the metric to be

on shell. This means that the total partition function is sta-
tionary with respect to the variations of the metric. If we
now apply the QNEC to the total system, the total Tkk is de-
fined by this same variation and thus vanishes; i.e., the QFC
is just the special case of our arbitrary-congruence QNEC
for which the metric is on shell. In particular, the hierarchy
(3) used above matches precisely with the conditions under
which Refs. [6, 21] argued for a d = 5 smeared QFC. More-
over, the analysis of Ref. [16] suggests that for d = 5 the
QFC will generally be violated when λGB is larger than what
would be allowed by (3).

It is natural to ask whether our results extend to theories
with more general sources. In particular, conformal field the-
ories that admit exactly marginal deformations can be cou-
pled to scalar sources with conformal dimension zero. The
presence of such sources allows additional divergent terms
beyond those analyzed above. However, for d = 2,3, the
only change is that the leading (c-number) term in OEH can
now depend on such sources. Since the ȮEH term in (4) then
contributes even at leading order, (1) must fail for general
sources. For d = 3, the conjecture still holds in the Einstein
conformal frame [22], defined so that OEH becomes constant
at leading order in Λ. It would be interesting to find an anal-
ogous condition in higher dimensions that again forbids field
redefinitions and enforces positivity of the bare QNEC (1).
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