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We have measured the inclusive deep inelastic scatter-

ing of muons on nucleons in iron using beams of 93 and 215 

GeV muons. To perform this measurement, we have built and 

operated the Multimuon Spectrometer (MMS) in the muon 

beam at Fermilab. Using the known form of the radiatively-

corrected electromagnetic cross section, we extract the struc- ,5,,, 

ture function F2(x, Q2) with a typical precision of 2% over 

the' range 5 < Q2 < 200 GeV 2fc 2• We compare our mea-

Measurement of the Nucleon Structure Function in Iron surements to the predictions of lowest order quantum chro-

Using 215- and 93-GeV Muons modynamics (QCD) and find a best fit value of the QCD 

scale parameter ALo = 230 ± 40"'"t ± so•ll•t Mev I c, assuniing 

P.O. Meyers, Cal A.R. Clark, K.J. Johnson,(b) L.T.· Kerth, S.C. Loken, R = 0 and without applying Fermi motion corrections. Com-

T.W. Markiewicz,(<) W.H. Smith,(d) M. Strovink, and W.A. Wenzel paring the cross sections at the two beam energies, we measure 

Physics Department and Lowrcmee Berkeley Loboratory, R = -0.06 ± o.oo•tat ± o.n•11ot. Our measurements show qual-

University of California, .Berkeley, California 9471!0 itative agreement with QCD, but quantitative comparison. is 

and hampered by phenomenological uncertainties. The experimen-

R.P .. Johnson, C. Moore, M. Mugge,C•l arid R.E. Shafer tal situation is quite good, with substantial agreement between 

Fermi National Accelerator LoboratorJI, Batavia, Rlinois 60510 our measurements and those of others. 

and 

G.D. Gollin, F.C. Shoemaker, and P. SurkoUl PACS numbers: 13.60.Hb, 12.35.Eq, 12.35.Ht 

Joseph Henr11 Loboratories, Princeton Universit11, Princeton, New Jerse11 08544 
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1 2 



I. PROBING THE STRUCTURE OF MATTER 

Since the first decade of this century, the electromagnetic scattering of pointlike par-

tides has shown us the structure of atoms and the existence of the atomic nucleus, 1 - 3 

the structure of the atomic nucleus and its size,4 and the structure of the nucleon and 

the existence of partons,5 •6 later to be identified with quarks. More recently, a continuing 

series of experiments in the deep inelastic region has been directed toward developing an 

understanding of the strong interactions of the quarks. The experiment recorded here 

continues this investigation, using the principle essentially unchanged since 1909, but at a 

scale 105 times smaller. 

A. Kinematics 

The Feynman diagram for deep inelastic lepton-hadron scattering in the lowest order 

of QED is shown in Fig. 1, together with a summary of our kinematical notation. To 

this order, the process is described as the exchange of one virtual photon. QED allows 

us to calculate unambiguously what happens at the leptonic (upper) vertex. The goal of 

our experiment is to uncover what happens in the region surrounding the hadronic vertex. 

We will be studying inclusive scattering, p.N -+ p.X, with no reference to any particular 

hadronic final state. This means that the only relevant 4-vectors at the hadronic vertex are 

p and q, and the only Lorentz-invariant quantities are q2 and p · q (and p2 = MJ.). While 

isolating the hadronic vertex is a productive move toward understanding the scattering 

process, experimentally it is imp_ortant to note that these quantities can be measured 
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using only the initial and final muons: 

Q2 = -q2 = 4EE'sin2 ~. 
2 

v=:p·q/MN=E-E', 

(1) 

where E, E', and 9 are the initial and final muon energies and the muon scattering angle 

as measured in the laboratory frame (the target rest frame). Terms containing the lepton 

mass have been neglected. Another useful quantity is the invariant mass of the hadronic 

final state: W 2 = (p + q) 2 = MJ. + 2MNv- Q2 • The elastic limit is W2 = MJ. or 

Q2 = 2MNV. Resonances appear at fixed W 2 near this limit. Figure 2 shows the region 

of the Q 2-v plane accessible to inelastic scattering at fixed incident energy E. 

It is convenient to describe another set of variables that are Q2 and v scaled by their 

maximum values, neglecting lepton masses: 

x = Q2 j2MNV ~ 1, 

Y = vfE ~ 1, (2) 

v = Q2 j2MNE = xy. 

B. Cross section and structure functions 

By demanding Lorentz covariance and gauge invariance we can translate7•8 the dia-

gram of Fig. 1 directly into an expression for the spin-averaged inclusive cross section: 

~ = EE' ~- 4a2E'2 [ 2 . 2 9 9 
dE 1d0' 71' dQ2dv-~ 2Wl(Q ,v)sm 2 + W2 (Q

2
,v)cos

2 

2], (3) 

in terms of the two unknown "structure functions" wl and w2. scalar functions that 

describe the hadronic electromagnetic current. 
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Further enlightenment comes from a complementary approach to the same process. 9 

We treat the incident muon as a source of virtual photons and write the cross section as 

de= 2:;,df ,u., where r • and u, are the flux and absorption cross section, respectively, 

for virtual photons of polarization E. Using the Feynman rules for the reduced diagram of 

"''• N-+ X, we find 
411"20 

UT= K""Wh 

411"20 [ ( 112 ) ] uL = K"" w2 1 + Q2 - w1 , 

(4) 

where T and L refer to transversely and longitudinally polarized virtual ph'?tons and K is 

a flux factor. Defining R = uL/uT we can eliminate W1 in favor of R in the cross section 

Eq. 3. The advantages of this substitution will be described in the next section where it 

is shown that for some cases of interest R is expected to be small. For now we record the 

cross section in its new form, 

d
2
u = 47ro

2 
[ _ y

2 + 2MNxyjE _ MNX!I] W (Q 2 ) 

dQ2dv Q4 
1 !I+ 2(R + 1) 2E 2 

'
11 

47ro2 [ !12 ] 2 
~ Q4 1- !I+ 2(R + 1) W2(Q ,v). 

(5) 

The approximate form comes from taking the Bjorken limit where energies (E,Q 2,v)-+ oo 

with x and y- finite. 10 In the kinematic region covered by our data, making such an 

approximation has a maximum effect of < ! % on our measured structure function. 

C. The parton model 

In the parton model, the process of Fig. 1 is understood as the incoherent sum of 

diagrams such as Fig. 3. The nucleon is resolved into a swarm of pointlike partons, one 

of which is responsible for the scattering. During the scatterin~ the parton is assumed to 

be free. H the parton has spin ~. the virtual photon-parton vertex is calculated exactly 
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as the lepton vertex was. Our ignorance about strong interactions is now relegated to the 

processes that determine the spectrum of partons in the nucleon and produce the splash 

of hadrons in the final state. 

The parton model gives an interpretation of the structure functions. We consider the 

process in the frame where the nucleon momentum is large. 6 We neglect the transverse 

momentum and mass of the partons and assign to each parton of type· i a fraction of 

the nucleon's momentum x; from the unknown distribution f;(x;)dx;. Because the lepton-

parton scatter is elastic, we are left with the elastic scattering condition in the form 

6(2p; · q + q2
) = 6(2x;p · q- Q2

) 

1 
= --6(x;- x), 

MNII 

(6) 

where x = Q2 /2M Nil (see Eq. 2). The measurable quantity x is thus the fractional 

momentum of the struck parton. 

We now calculate the matrix elements, assuming the partons to be pointlike Dirac 

particles and find 

F1(x) = MNW1(Q2,v) = ~ Lli(x)e:, 
i 

F2(x) = vW2(Q2,v) = L:xf;(x)e;. 
i 

(7) 

The structure functions F; are seen to be functions of x only, with e; the charge of type-

i partons in units of the proton charge. This property is known as "scaling" 10 and is 

observed experimentally. 5 

Another property apparent from Eq. 7 is the relation F2 (x) = 2xF1(x). This is 

known as the Callan-Gross relation. 11 Inspection of Eq. 4 shows that, in the Bjorken 

limit (v2 fQ 2 -+ oo with x fixed), the Callan-Gross relation implies R = 0. For scalar 
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partons, OT = 0 and R = oo. Allowing finite parton masses m; and transverse momenta 

modifies these conclusions12 and leads to corrections of order (m~ + p~.1)/Q2 • 

To summarize, in the parton model, a measurement of F2(x) is a determination of 

the momentum distribution of partons in the target nucleon - the nucleon's "structure" 

in momentum space. A measurement of R yields information on the spin of the partons 

themselves. 

D. Quantum chromodynamics 

The theory of the strong interactions of partons, now identified with quarks, the 

numerical building blocks of hadrons, was developed in analogy to QED, with an internal 

quantum number called "color" taking the part of the electric charge. The resulting theory 

is known as quantum chromodynamics (QCD). The primary difference between QCD and 

QED is that, while photons are neutral, the "gluons" of QCD carry color and thus couple 

directly to one another. As a result, if we include Q 2-dependent terms in the renormalized 

coupling constant we find 

as(Q2) = as(l-'2) 
.. rt-- ..... .,.,., ...... , l..,,,t-.r»l""' (8) 

where ~.t 2 is an arbitrary renormalization point and N 1 is the number of quark flavors (up, 

down, strange ... ). For N1 < 17, the coupling constant gets weaker as Q 2 increases, a 

property known as "asymptotic freedom." 13 This expression for as is an approximation 

based on ignoring terms of the order ln(ln(Q2 / ~.t 2)) and is thus known as the "leading-

logarithm" approximation. We can remove the reference to the arbitrary renormalization 
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point 1-' in Eq. 8 by introducing the parameter A such that 

1271" 
as(Q

2
) = (33 _ 2N1)1n(Q2 /A 2) 

(9) 

While 1-' was arbitrary, A is defined by Eq. 9 and is measurable. Other definitions of A 

differ from this one in the next order of as. 14 Keeping the next-to-leading logarithm 

gives such a correction. For this reason, A as defined in Eq. 9 is sometimes called ALo for 

·"lowest order." 

Asymptotic freedom allows the understanding of the quasi-free appearance of partons 

in nucleons, despite our apparent Inability to produce free quarks- as in QED, the renor-

malized coupling is indeed small. This permits meaningful perturbation series calculations 

for strong interactions at large Q2 • At the low Q2 end, it is thought, but has not been 

proven, that the increasing as is a sign that the QCD interaction between quarks is con-

fining, meaning that free quarks cannot be separated from their parent hadrons. Even 

without such proof, it is clear from Eq. 9 that perturbative QCD cannot work at low Q 2• 

For this reason, perturbative QCD cannot give predictions for such static properties of 

hadrons as the x distribution of partons. With low Q2 information as input, however, 

QCD can calculate the Q2 dependence of such quantities. (Recall that the parton model 

predicts scaling, that is, no Q2 dependence at fixed x.) 

The most direct prediction of QCD 16 is not of the Q2 evolution of parton distributions, 

but rather of moments of those distributions. Fortunately, Altarelli and Parisi 16 have 

given a more direct interpretation of QCD's predictions, an interpretation that is a natural 

extension of the parton model. Figure 4a shows the parton model diagram for deep inelastic 

scattering via a virtual photon. Allowing the partons to interact generates processes such 
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as those in Figure 4b-d. These processes rob from the momentum fraction x carried by the 

struck parton. We therefore expect that these processes will reduce the structure function 

at large x and increase it at small x. Increasing Q2 resolves finer and finer structure of 

this type, but asymptotic freedom slows the evolution, leaving soft (logarithmic) scaling 

violations. The method of Altarelli and Parisi accounts for the processes in Fig. 4b by 

writing a set of transport-like. differential equations for the parton distribution functions. 

Starting at some reference Q2 = Q~ and defining t = ln(Q 2 jQ~), 

2N 1 [2Nt (X) (X)] d"L.;={ J;(x,t) = as(t) 1 dy L/;(y,t)Pqq y + 2NtG(y,t)PqG Y • 
dt . 2:rr % y i=1 

dG(x,t) = as(t) 11 

dy [E/;(y,t)Paq (;) + G(y,t)Paa (;)]· 
dt 27r % y i=l 

(10) 

The sum is over quark+antiquark flavors, and couplings are assumed to be flavor inde-

pendent. G(x,t) is the distribution of gluons in the nucleon as a function of momentum 

fraction x. We have anticipated our use of a nuclear target with a nearly equal mix of 

protons and neutrons. This leads to a mixture of quarks which is nearly a flavor singlet. 

Since the gluon is also a flavor singlet, there is coupling between the quark and gluon 

evolutions. The interpretation of Eqs. 10 is quite straightforward. The P(z)'s represent 

the probabilities of the processes where a daughter parton (either quark or gluon) is split 

from a parent parton, taking a fraction z of its momentum. Thus partons of momentum. 

fraction x (the left hand sides of Eq. 10) come from partons of larger momentum fraction 

y with probability P(xfy). 

The diagrams of Fig. 4c and d still remain. Those such as that of Fig. 4c are taken into 

account automatically. They either cancel infrared divergences from the emission of soft 

9 

real gluons and are handled by renormalization, or are contributions to the running cou-

piing constant and thus are included in the leading log approximation by using as(Q2 ).
17 

The diagrams of Fig. 4d are another story. Though not calculable in detail, their general 

behavior is known. Since they involve interactions with more than one target quark, they 

resemble elastic scattering, where multiple gluon exchanges are required to keep the re-

coiling nucleon intact. This leads to a form factor-like suppression which goes as powers of 

I/Q2 • At sufficiently large Q2, the logarithmic behavior discussed above should dominate 

these terms, which bear the name "higher twist". 

To test the predictions of QCD, one can measure the structure function as a function of 

Q2 for various fixed values of x. This Q2 dependepce or scaling violation can be compared 

to QCD by using the measured x dependence at a fixed Q2 = Q~ as the initial condition and 

integrating Eq. 10 to get predicted values of the structurefun~tion for all Q2• For the singlet 

case, it is also necessary to have G(x, Q~), the initial condition for the gluon evolution. 

This distribution is not directly measurable. Neutrinos, however, are sensitive to the 

difference between quarks and antiquarks. With this essentially non-singlet information, 

various QCD and phenomenological parameters can be determined without complications 

from gluons. With these values fixed, the singlet structure functions can be used to extract 

the gluon distribution.18 A hypothetically more direct but experimentally more difficult 

approach would be to use the production of heavy flavors in the "photon-gluon fusion" 

process to tag interactions with gluons.19 

E. Grand unified theories 

With the weak and electromagnetic interactions unified and understood as one gauge 
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theory with a spontaneously broken symmetry20 and with QCD as a candidate for the field 

theory of the strong interactions, it was immediately hoped that they could be combined 

into a "Grand Unified Theory" or GUT. In a typical GUT.(for a review, see Ref. 21.} quarks 

and leptons are placed in the same representation of a group (SU(5} for the simplest 

theory22). The mass scale Mx above which symmetry between quarks and leptons is 

restored is determined by following the various running coupling constants up to the energy 

where they become equal. Using a and as for this determination in one of the simpler 

models gives21 

Mx :::= 15 x 1014A(GeV}. (11) 

The symmetry that allows transitions between leptons and quarks implies that baryon 

number is not conserved and hence protons are no longer stable. The predicted proton 

lifetime is 

1 M 4 r, ex -- ---4 :::= 5 x 1032 [A(GeV)) 4 
yr, 

aGuT M, 
(12} 

with over an order of magnitude of theoretical uncertainty. Although GUT's have had 

some theoretical successes, the prediction of proton decay is one of the few that may be 

verifiable. Early determinations of A indicated values on the order of several hundred MeV. 

The resulting proton lifetimes were above, but close to, existing experimental lower limits 

of :::= 1029 years. 23 A new generation of proton decay experiments designed to probe 

the GUT regime is in progress. Results from one of these experiments24 for the decay 

mode p-+ e+,..o yield limits in conflict with the simplest GUT models. The fourth-power 

dependence of T, on A makes a reliable determination of A essential to .the confrontation 

of theory with experiment. 
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II. THE MULTIMUON SPECTROMETER 

A. Design constraints 

Our goal is to measure the nucleon structure function F2(x, Q2) over as large a range 

of Q 2 as possible, without being forced to include the non-perturbative very low Q 2 region. 

The kinematic limit, Q2 < 2MNE (see Eq. 2}, requires us to have a high energy lepton 

beam. The desire to reach Q2 >100 GeV 2fc 2 rules out existing electron beams, so we 

use the high energy muon beam at Fermilab. The virtual photon propagator suppresses 

the large Q2 cross section like 1/Q4• To reach high Q 2 we must therefore have high 

luminosity. We achieve high luminosity by using a beam of moderate intensity incident oil 

a long, heavy target. To maintain high acceptance throughout the long target, the target 

and the spectrometer used to analyze the final state are integrated into one package. 

The high magnetic fields required for momentum analysis above 100 Ge V / c and the large 

magnetized volume require an iron magnet. 

Along with deep inelastic scattering, the experiment is designed to observe multimuon 

final states: J.SN -+ J,SJ.SX, J.SJ.SJ.SX, etc. This imposes three constraints: suppression of low 

mass electromagnetically produced muon pairs; observation at the lower Q2 's typical of 

multimuon production (a few GeV 2 fc 2}, and thus at smaller scattering angles; and sup-

pression of secondary muons from pion and kaon decay in hadronic showers. To meet the 

first requirement, we use a Cartesian geometry with a uniform vertical magnetic field for 

momentum analysis. Muon trajectories bend (and muon pairs separate) in the horizontal 

plane. For pair mass discrimination we demand a minimum vertical opening angle, which 

12 
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is unaffected by the magnetic separation. When the large (:::: 20 em) size of the beam 

is folded in, .the second constraint requires that the spectrometer be active in the beam 

region and therefore that the magnetic field extend uniformly to the center of the beam. 

This dictates that the target material be the same iron used in the magnet. This target 

must be densely packed along the beam direction to suppress 11' and K decay. 

The result is the Multimuon Spectrometer {MMS) illustrated in Fig. 5. The MMS 

is a horizontal stack of 91 4-inch thick steel plates, each eight feet on a side. The stack 

is magnetized by coils running the length of the stack through slots cut in the plates. 

The iron serves as target, analyzing magnet, hadron absorber/muon identifier, and hadron 

calorimetry medium. The spectrometer is instrumented with multiwire proportional and 

drift chambers for recording muon trajectories and with plastic scintillation counters for 

triggering and calorimetry. Also shown in Fig. 5 is our coordinate system, with z in the 

beam direction, x horizontal, and y up. The various components of the MMS are described 

in the remaining parts of this section. 

B. The muon beam 

The Fermilab muon beam has been described elsewhere. 25 Our beam instrumenta­

tion is shown in Fig. 6. Experiments using the Chicago Cyclotron Magnet {CCM) ran 

simultaneously with the MMS, which was positioned along the CCM-defiected beam line. 

The last dipole and the CCM were instrumented with multiwire proportional chambers 

(MWPC) and scintillator hodoscopes, {E98-1. .. 6, BH) giving four horizontal (x) and two 

vertical (y) measurements. These, in conjunction with two MWPC {B1 and B2) measuring 

x, y, and a diagonal (u) coordinate located in front of the MMS, were used to determine the 
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momentum of individual beam muons, ideally to better than 0.5% (up/p). In reality, the 

situation was complicated by material placed in the beam by the upstream experiment, 

including borax (to clean up the beam) and a lead-glass shower counter 20.5 radiation 

lengths thick. With enough MWPC information we could fit the Coulomb scattering an­

gle in the lead-glass, but at the cost of redundancy in the momentum fit. Energy loss in 

material upstream of the MMS could be corrected for in an average sense only. Straggling 

was accounted for by including it in the simulation used for acceptance and resolution 

modeling (see Sec. V). 

A system of scintillator hodoscopes (see Fig. 6) was used to define the beam size and 

choose usable beam muons. The last focus of the beam was in the aperture of the last 

beam line dipole. At the front of the MMS, the counter B and the hodoscopes X and Y 

defined the beam to be 35.1 em (x) by 22.9 em (y). A usable muon was defined to be 

one unaccompanied by a second muon, either in or out of the beam. The muon beam 

retained the 53 MHz signature of the synchrotron, leading to a time structure of 18.9 ns 

"rf buckets." Signals from counter B were put into advanced or delayed anticoincidence to 

veto muons which had another muon in either the preceding or following bucket. H another 

muon was in bucket ±2 or ±3, the track was used but tagged. Tracks with accompanying 

muons in the same bucket were rejected on the basis of pulse height information from 

scintillators Band Vb, and from hodoscope information from X andY. A 1.4x.mmimum 

ionizing signal from any three of the five pulse heights, or more than one count in either 

hodoscope plane vetoed the track. Muons out of the defined beam area are known as 

"halo." In the Fermilab muon beam, total intensity outside our defined beam was roughly 
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equal to the intensity in the beam. Beam muons with an in-time halo muon were rejected 

by three layers of veto scintillators, one at V w and two at V h· The signal for a usable beam 

track was called BV (for "vetoed beam"). BV was required in coincidence with all physics 

triggers, and a prescaled number, typically 1/350 000, was recorded with no further trigger 

requirements for calibration and use as a unbiased input for the simulation programs. 

The intensity of the muon beam was :::. 3 x 106 muons per pulse or a bucket occupancy 

probability of 0.07. The vetoes rejected from ~ to ~ of the muons, leaving a usable flux 

of 1.5-2 x 106 muons per pulse. For p.- running, the beam intensity was a factor of three 

lower, but the lower intensity meant less veto rejection, giving a usable flux of around 

0.9 x 106 / pulse. 

C. Target and magnet 

The 91 steel plates of the Multimuon Spectrometer had an average thickness of 10.28 

em. The plates were grouped into 18 modules of five, with 3 em gaps separating the plates. 

The remaining plate, known as plate 0, was placed at the front of the stack where the last 

plate of an otherwise nonexistent module 0 would have been. Following each module was a 

large gap for the insertion of an instrumentation package. This package was designed to.be 

as thin as possible to minimize total module length and thus maximize high Q2 acceptance 

and average target density. The large gaps were typically 25.4 em thick. This dimension 

was adjusted to give a module length of 88.90 ± 0.04 em. A module with instrumentation 

is shown in Fig. 7. The mass of the entire spectrometer was 4.3 x.105 kg or 475 tons. 

The target. was restricted by trigger geometry to be the first 13 modules plus plate 

0. This gave 678.3 em or 5.34 kgjcm2 of iron. Including scintillator, chambers, and 
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support structures gave a total target thickness of 5.61 ± 0.01 kg/ em 2 , where the error 

is combined uncertainty due to measurement error in the plate thickness and an estimate 

of uncatalogued material in the beam. This target thickness and our integrated flux of 

muons gave the experiment a sensitivity of nearly 1 eventjfemtobarn for unit acceptance. 

The iron target was magnetized by 4000 amperes x 18 turns of water-cooled copper 

running the entire length of the MMS through slots cut in the plates. The configuration 

and shape of the slots were designed to give an approximately uniform vertical magnetic 

field in the 107 em wide by 179 em high active area filling the region between the coils. 

The MMS was run for roughly equal durations in both field polarities to help cancel any 

systematic left-right asymmetries in the apparatus. The polarity was typically changed 

once a day. 

The magnetic field was mapped and calibrated using three sets of measured informa-

tion. Flux loops spanning 12 sections of each module and one large loop enclosing the 

entire magnet gave absolute measurements of the flux of B in the iron. Hall probe and 

flip coil measurements between plates mapped the x and y components of B in the air 

gaps. Precision measurements of iron samples removed from the coil slots gave B vs. H. 26 

These measurements were turned into an absolutely calibrated field map for the MMS by 

constraining the field to agree with both the measurements (used as boundary conditions) 

and the Maxwell equations. 27 The field integral for an average module was 9.998 x 106 

Gauss-em for an average field of 11.25 kG (19.46 kG in the iron). The field was mapped 

to 0.2% and observed to be uniform to 3% in the active region of the spectrometer. 
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D. Trigger 

Trigger hodoscopes of 12 scintillation counters were located after each even numbered 

module starting with module 4. There were eight trigger banks in all, separated by 102.8 

em of iron. Figure 8 shows a trigger bank, along with the rest of a large-gap instrumentation 

package. The central section of each trigger bank was a set of six narrow staves, each 3.9 

em high and extending the width of the active area. These staves covered the beam region 

and were used primarily for multimuon triggering. Above and below the set of narrow 

staves was a single wide (15.2 em) stave. These, along with the narrow staves, made up 

the beam veto for the deep inelastic scattering trigger. The regions above and below the 

staves were each divided vertically into two "paddles." These paddles, each 60.5 em high 

by 52.7 em wide, signaled the presence of a scattered muon. The deep inelastic trigger 

required a signal from any paddle and no signal in the beam veto (staves) in each of three 

or more consecutive trigger banks. There was no requirement made on hadronic energy 

deposition. The eight trigger banks made up six overlapping subtriggers of three banks 

each. These operated independently and a signal from any of them in coincidence with 

a BV signal from the beam logic created a full trigger signal which initiated the readout 

of the spectrometer information and the recording of an event. Along with chamber and 

calorimeter information, the logical status of each trigger and beam counter and each 

subtrigger were recorded. The trigger rate for the deep inelastic trigger was 3 x w-6 per 

usable beam muon. 

The wide staves between the paddles and the beam region imposed a minimum vertical 

scattering angle requirement of 12 mr. This minimum could be reached only by a scatter 
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in module 1 triggering the last subtrigger. Moving the interaction vertex downstream 

increased the minimum accepted scattering angle. The acceptance of the MMS in Q2, x, 

and E 1
, averaged over the length of the spectrometer, is shown for beam energies of 93 

and 215 GeV in Fig. 9. Since the cross section goes to infinity and the acceptance goes to 

zero as Q2 --> 0 the absolute value of the acceptance for a kinematic region that includes 

very low Q2 is arbitrary. The plots assume v > 0.015, or Q2 > 2.5,5.9 GeV 2 fc 2 for the 

two beam energies. Figure 10 shows the acceptance in the Q2-x plane. All of these results 

are from the Monte Carlo simulation discussed in Sec. V. 

The deep inelastic trigger was relatively free from background. The primary source 

of non-physics background, that is, triggers not involving an actual scattered muon, was a 

stopping or decaying beam muon (to give a BV signal, yet avoid the beam-vetoing staves) 

in coincidence with a halo muon, lobbed over or under the halo veto and entering the MMS 

from the top or bottom, directly into the paddles. The chief source of this component of 

the halo was believed to be otherwise harmless halo muons deflected back toward the beam 

by the return yoke of the Chicago Cyclotron Magnet. Approximately 1.6% of the triggers 

were from this source. They were easily eliminated in analysis by the failure of the beam 

and "scattered" tracks to meet at a consistent vertex. 

During the data analysis, we discovered that some of the paddle counters were quite 

inefficient. Worse, the inefficiency was spatially non~uniform. Since the x and 11 positions of 

a track at the back of the MMS translate quite directly into E 1 and 8 due to the Cartesian 

geometry of the spectrometer, this position dependent efficiency was a serious problem. 

Fortunately, the redundant nature of the trigger with its overlapping subtriggers, allowed 
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us to use the data to map the trigger efficiency completely (Sec. IV C). The stave counters 

were measured to be > 99% efficient. 

E. Proportional and drift chambers 

Muon trajectories in the MMS were determined from positions measured after every 

module in packages containing three multiwire proportional chamber (PC) planes and one 

drift chamber (DC) plane (see Figs. 5,7, and 8). The PC planes measured x, y, and a 

diagonal u coordinate; the DC's measured x only. There were 19 such packages, including 

one following plate 0, and the entire system contained over 14 000 channels. The chambers 

covered an area 106.7 em wide by 178.8 em high, slightly larger than that covered by the 

trigger hodoscopes. 

Details on the PC design and construction are given by Markiewicz. 19 A trigger signal 

opened a 70 ns write gate, and chamber signals arriving during this interval were latched to 

await readout by the computer. The resolution of the PC's was close to the expected u = 

(wire spacingjy'i2) or 920 ~J.m and 1500 ~J.m for the sense and induced planes. The sense 

planes, which measured positions in the magnetic bending direction and thus momentum, 

were designed to give sufficient position resolution so that the multiple Coulomb scattering 

(MCS) in the 29 radiation lengths between chambers would limit momentum resolution 

for average length tracks at the highest momenta. The efficiency of the PC's was > 90% 

away from the beam. However, at our high intensities the efficiency in the beam suffered, 

dropping to an average of 83% and 59% at beam center for x and y, respectively. 

High momentum tracks at large angles can be shorter than average. In order to 

maintain MCS-limited resolution for these high Q2 tracks, the x position measurement 
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was augmented by following each PC with a drift chamber (DC). The measured position 

resolution of these chambers was better than 250 ~J.m. The efficiency of the drift chambers 

was good, better than 98% in the beam area, but they were active for 260 ns or 13 rf 

buckets. Extra beam tracks were often recorded. These were eliminated, and the left-right 

ambiguities in the cells were resolved, by referring to the PC system. For further discussion 

of the drift chamber system, see Ref. 28. 

The average momentum resolution for deep inelastic scattering events in the MMS was 

u,, jp' = 8.6% at a beam energy of 215 GeV and 9.0% at 93 GeV. The average resolution 

is worse at the lower energy because the tracks are typically shorter. 

F. Calorimeter 

Although the kinematics of an inclusive deep inelastic scattering event can be deter­

mined entirely from the initial and final 4-momenta of the scattered muon (Eq. 1), there 

are experimental advantages in measuring v = E - E ' directly by measuring the energy 

of the hadronic final state. We used a calorimeter that sampled the hadronic shower in 

plastic scintillator between the 10.28 em iron plates. This is helpful because, at low v, 

E' = E - v with E from the beam system and v from the calorimeter gives better reso­

lution than the magnetic determination of E '. The energy resolution of the calorimeter 

is Uv ~::~ 1.4vv(GeV). Neglecting the beam momentum resolution, the calorimeter gives 

better E' resolution for E' > 140 GeV or v < 75 GeV at a beam energy of 215 GeV (see 

Fig. 11). 

Calorimeter counters were placed to cover the beam area after each of the first 75 

plates, not including plate 0. The plastic scintillator was 80 em high by 122 em wide by 
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1.9 em thick. The scintillation light was detected and the resulting signal amplified at 

one end of each counter by an RCA 6655 photomultiplier tube. Overall uniformity was 

achieved by inserting the counters from alternate sides of the spectrometer. The anode 

signal of each photomultiplier was amplified x 25 and sent both to a discriminator for use 

in the two-muon trigger and to a 1024 count analog-to-digital converter (ADC) for pulse 

measurement. For larger pulses, the ac signal on the last dynode (about 0.6x the anode 

signal) was read directly by a second ADC. The amplified-anode and dynode ADC's (LRS 

2249's) were known as the low- and high-ADC's, respectively. 

A typical hadronic shower reaches a maximum in the first or second plate following 

the vertex and extends 5-15 plates, with the mean length depending logarithmically on 

the shower energy. The individual counters and the calorimeter as a whole were calibrated 

in terms of "equivalent particles" (EP), the most probable pulse height produced in one 

counter by a minimum ionizing particle. This, rather than the mean, is used because the 

most probable pulse height is independent of the energy of the particle at large energies. 29 

Our source of minimum ionizing particles is, of course, the muon beam. A single muon 

gives a most probable signal in each low ADC of about 20 counts. The low ADC thus 

saturates at ~so EP, corresponding to the maximum of a 30 GeV shower. The high ADC 

saturates at ~ 2000 EP. The analysis of the calorimeter signal is described in Sec. III D. 

Calibration is discussed in Sec. IV B. 

G. Operation of the MMS 

The operation of the MMS was synchronized with the beam cycle through timing 

signals sent by the accelerator control system. Immediately prior to the one second beam 
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spill, the on-line computer sent out test pulses and then generated a trigger to record the 

resulting MMS signals as in a normal event. During a test event, chamber planes were 

pulsed and, on alternate spills, either a pedestal level or the response to an LED flash was 

measured for each calorimeter counter. 

During the spill, control of the experiment was handed back and forth between trigger 

and computer. The more complicated multimuon triggers, notably the dimuon trigger 

which required input from the calorimeter, necessitated a two-level structure of pretrigger 

and full trigger. For the deep inelastic trigger, pre- and full trigger were identical. An event 

which satisfied the deep inelastic trigger generated a. pretrigger signal which initiated the 

latching of chamber information and the digitiza.tion of calorimeter pulses and started the 

drift chamber clock. The pretrigger signal also inhibited further pretriggers for 3 JS8ec. H 

during that time no confirming full trigger signal arrived, digitiza.tion was aborted and the 

latches cleared. For deep inelastic events, a. full trigger always arrived. This signal blocked 

further triggers for 300 11sec and informed the computer that there was an event to record. 

At this point, the computer took over, ignoring triggers until it was through reading out 

the chamber systems, the ADC's and the trigger latches (~ 1 msec). At full intensity, 

typically 50 events were recorded per spill of which four were deep inelastic triggers. Total 

deadtime was under 10%. Events were stored in computer memory during the spill, then 

written to tape during the approximately 10 sec between spills. 

As a measurement of the beam flux, we use the number of recorded BV triggers (Sec. 

II B), a quantity that identically matched the livetime of the physics triggers. When 

multiplied by the known prescale value, this number, which was typically about the same 
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as the number of deep inelastic triggers, provided the normalization for the experiment. 
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III. EVENT RECONSTRUCTION 

A. Data sets 

Data taking began on 20 January 1978 with all subsystems fully operational by 16 

March. Muon running continued until 9 May 1978. During this time 1239 magnetic tapes 

were written. A typical tape contained one run of approximately 13 000 events, about 1200 

of which were deep inelastic triggers. Major analysis began in the summer of 1978 and 

concluded with production running early in 1980 of the final versions of the track finding 

and momentum fitting programs on all analyzable data. Results of the multimuon analysis 

were published first. 30- 33 A brief report on the deep inelastic analysis was published as 

Ref. 34. 

The deep inelastic scattering analysis used a somewhat restricted data sample, corre­

sponding to about 70% of the analyzable data. Of concern was our ability to simulate and 

make corrections for data with marginal analyzability or resolution. Runs were rejected 

due to various forms of hardware failure, primarily in two classes. The first included data 

taken without drift chambers. The drift chambers contributed to the resolution of the 

MMS not only through their superior spatial resolution, but also by filling gaps in tracks 

due to PC inefficiency. The second class of rejected data included runs where the E98 beam 

chambers (Fig. 6} were operating poorly. The use of measured beam tracks as the parent 

beam distribution for our simulation required confidence that the measured parameters of 

reconstructed beam tracks were negligibly different from the true values. For this reason, 

in the runs retained for analysis, we eliminated events where the beam track was missing 
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more than one of the possible four x hits in the E98 chambers (a 10% loss) or for which 

no beam track could be reconstructed at all (8%). Events of the latter type were mostly 

background, with an off-axis muon entering the MMS. 

The data sets comprising events with good beam tracks as defined in the previous 

paragraph are summarized in Table I. At 215 Ge V, for both ll + and ll-, roughly equal 

amounts of data were taken with each MMS magnet polarity. At 93 GeV, bending the 

muons to the west in the MMS was prohibited by radiation-safety considerations and all 

data were taken with the east-bending magnet polarity. Column (b) shows the average 

energy of beam muons at the interaction vertex. It differs from the nominal beam energy 

by the average energy loss (1.35 GeV /module at 215 GeV') suffered by beam muons in the 

MMS before scattering. Column (c) is the total.number of muons penetrating the MMS in 

the beam area during a spill. Columns (d) and (e) are the totals of incident and scattered 

muons used in this analysis. Columns (f) and (g) show the fates of these events up to the 

beginning of physics analysis and will be discussed below. 

B. Track finding 

Track finding was the most difficult part of the analysis of the experiment. It was 

complicated by several factors, some inherent to the distributed-target design of the MMS 

and some due to imperfections in the instrumentation. Jn the MMS muons travel in nearly 

solid iron. We must therefore allow for substantial multiple Couiomb scattering and energy 

loss between position measurements. The energy loss distribution has a tail which extends 

all the way up to the muon energy. In more than 20% of our single-muon events either the 

beam or scattered track suffered an energy loss of over 5 GeV in a single plate. This energy 
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appeared as an electromagnetic shower, fouling the calorimeter and chambers. Delta rays 

which escape into a chamber without showering can degrade track-finding by giving signals 

on wires adjacent to the one hit by the muon. These complications are compounded by 

instrumental effects, primarily the livetime and inefficiency of the proportional chambers. 

The 70 ns PC write window extended beyond the ±1 rf-bucket beam veto. This permitted 

the recording of out-of-time ~ghost tracks," ~20% of which showered. 

The PC inefficiency was a more serious problem. To allow for missing hits, it was 

necessary to allow projection through more than one module in extending a candidate 

track. The momentum uncertainty (initially very large) and multiple Coulomb scattering 

then demanded large search windows, increasing the probability of picking .an incorrect 

hit to add to the track. Inclusion of a nearby wrong hit was often sufficient to derail the 

extension of the track. Figure 27a shows a typical deep inelastic scattering event. Although 

its overall pattern is unambiguous, there is clearly a fair amount of electromagnetic hash 

obscuring the tracks. 

The track finding algorithm was basically a brute force trying of combinations of hits. 

In limiting the number of tested combinations, a large number of decisions regarding, for 

example, the multiple usage of chamber hits, had to be made. These are described in Ref. 

35. For completeness, we will describe here the general operation of the track finder and 

discuss its limitations. 

The search for hits to attach to beam and scattered tracks was limited along the 

beam direction by a preliminary vertex z position found using individual calorimeter pulse 

heights to locate the beginning of the hadronic shower. The determination of this ver-
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tex was begun by finding the largest single pulse height. In large hadronic showers, the 

mean location of the shower maximum occurs after more than 10 em of iron. More 

important, hadronic showers have notorious fluctuations. It was therefore necessary to 

look upstream of the maximum to find the beginning of the shower. With A the maxi­

mum pulse height, a threshold of O.OBA was chosen empirically to define shower activity. 

To avoid missing the beginning of a shower with a large downward fluctuation in pulse 

height before the maximum and also to avoid incorporating electromagnetic splashes from 

the beam track into the shower, all pulse heights upstream of the maximum were com­

pared to the threshold. The vertex was placed in the middle of the plate that maximized 

N = (the number of pulse heights< O.OBA)- (the number of pulse heights> O.OBA) up­

stream of the vertex. The operation of this algorithm is illustrated in Fig. 12. 

The most frequent failure of the calorimeter vertex finder occurred when the largest 

single pulse height was due to an electr.omagnetic shower away from the true vertex. 

Electromagnetic showers give more pulse height per GeV than hadronic showers. They are 

also shorter, and thus can have very large maxima. When the vertex finder was fooled by 

an electromagnetic shower, either the beam or scattered track finding was stopped short. 

Even if the vertex was moved to the proper location during fitting (see the next section), 

the event was sometimes rejected for having a large gap in the track. Approximately 

0.6%{1.3%) of the 215 {93) GeV events were lost in this way. 

With the calorimeter vertex dividing the event into two sections, track finding pro­

ceeded with the separate reconstruction of the beam and scattered tracks. The beam track 

was begun in the beam chambers upstream of the MMS. Its momentum and trajectory in 
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x andy (including, if possible, the scattering in the lead glass) were fitted. The track was 

then projected to the front of the MMS and the momentum was corrected for energy loss in 

the lead glass and other material in the beam. From there, the beam track was extended, 

one module at a time, by using the track as reconstructed up to that point to predict a 

central position in the next proportional chamber. The position, angle, and momentum 

uncertainties for the track and the predicted magnitude of multiple scattering were used 

to open a search window. A PC hit within the window was added to the track, and this 

was continued until the last chamber before the vertex. Only one beam track was sought. 

From the back of the spectrometer, starting combinations of three hits were investi­

gated. One empty chamber was allowed between hits, but the combination had to meet 

angle and linearity requirements in y and angle and minimum momentum requirements 

in x. Valid starting combinations were pursued upstream module by module in the same 

fashion as for the beam track until the vertex was reached. The track was then projected 

to pick up hits downstream of the starting segment. Accepted tracks had x and y hits 

in at least four chambers, separated by no more than two consecutive empty chambers. 

At least two of the (x,y) pairs were required to be tied together by matching u hits. All 

possible starting combinations made up from hits downstream of the calorimeter vertex 

were investigated. All valid tracks of either charge were retained. 

For all valid tracks, including the beam track, drift chamber hits were added after track 

finding was complete. In each drift chamber, the two hits closest to the track position were 

saved. These two hits could be the left-right options of the same hit. The choice of which 

to use was postponed until a better fit of the trajectory could be performed. 
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C. Momentum fitting the path length in radiation lengths. This algorithm is described in Ref. 36. 

Our momentum fitting algorithm took the measured positions of a found track and 
In the first fit of each track, only proportional chamber hits were used. Using the 

calculated the 3-momentum of the track at some reference point (usually the vertex) and 
initial fitted trajectory as a guide, the x view of each track was refitted, this time with the 

a detailed trajectory of the track through the spectrometer. The calculated trajectory 
routine choosing the best hit in each chamber from the one PC and two DC hits provided 

included the effects of magnetic deflection, energy loss, and multiple Coulomb scattering 
by the track finder. Outgoing tracks were then compared to check if they were segments 

(MCS). The magnetic deflection was treated as a single transverse impulse between position 
of the same track. If so, they were rejoined. We then required that the trigger counters, 

measurements. It used the detailed field map produced during the MMS calibration, which 
which had output pulse lengths less than the width of an rf bucket, register the passage of 

all fitted tracks. This eliminated out-of-time muons. 
included the small x-component of the field. Energy loss was included as a continuous 

correction to the muon energy along the track. For a muon of energy E (GeV), the energy 
The next step in event fitting was to require that all tracks intersect at a common 

loss in MeV/(g-cm-2) is 
vertex. For each outgoing track, the point of closest approach to the beam track was 

dE ( E2 ) dx = 1.825 + 0.0716ln E + 10_
9 

+ 0.0045E. 

calculated. Tracks with too large an impact parameter were eliminated. The vertex was 

(13) 
constructed from the remaining tracks and the calorimeter vertex by finding the z position 

Besides the ionization loss, this expression includes terms due to 6-rays, bremsstrahlung, which minimized the weighted rms distance of the outgoing tracks from the beam track and 

and pair production. The terms for these processes, which do not occur smoothly, represent the distance of z from the calorimeter vertex. If this distance was too large, the calorimeter 

averages integrated up to some maximum allowed energy loss. It is presumed that energy vertex was ignored and, if necessary, tracks were eliminated. The x and 11 positions of the 

losses larger than this maximum would disrupt the track and confound the track finder, vertex were then the weighted averages of the positions of the surviving tracks at Zvertez· 

and thus would not appear within a single found track. All tracks were then refit with the m!w requirement that they pass through the vertex. 

MCS is handled by actually fitting the residual deflections between chambers after The distribution of vertex z positions from our 215 Ge V data set is shown in Fig. 13. Note 

removing those due to the magnetic field. With N measured positions, there are thus that the gaps between modules are easily resolved. 

N + 2 unknowns (the initial position, slope, and curvature, and N -1 MCS deflections 8;). 

This distasteful situation is rectified by the constraint that the average MCS PJ. is zero. 
D. Calorimetry 

This·constraint is applied by adding N- 1 "measurements" 8; = 0 with a "measurement Once the vertex was located, the pedestal-subtracted signals (calibrated in equiva-

uncertainty" equal to the expected rms value of the MCS p J., 6 = 15VX MeV f c, with X lent particles, see next section) from. calorimeter counters in the surrounding region were 
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summed to give a direct measurement of 11, the energy of the hadronic. final state. The 

summed region started five counters upstream of the estimated vertex position and ex-

tended to ten counters downstream of the vertex. This interval was extended if the coun-

ters at the ends showed more pulse height than expected from a single muon. In the 

sum, each counter signal had subtracted from it the mean pulse height from a single muon 

(:::: 2.6 EP). This summed pulse height was turned into GeV via the calibration procedure 

described in the next section. The conversion was approximately 6 EP /GeV. 

With 11 determined independently, we could measure the missing energy of events, 

Emiss = E- E 1
- 11 (Fig. 14). For deep inelastic scattering events, this was due entirely 

to instrumental resolution. As discussed in Sec. IT F, the otherwise redundant calorimeter 

information can be used to improve the E 1 resolution of individual tracks. The procedure 

assumed that the resolution of the beam energy measurement was negligible. E 1
, pre-

viously determined from the momentum fit, was redefined to be the weighted average of 

the original value and E- 11. The individual. components of p 1 were then adjusted using 

the correlations determined in the momentum fit. Events with large IEmiul were suspect. 

Large positive Emiss could mean that the shower was missed completely. Large negative 

Emi•• could accompany a wide angle bremsstrahlung event with an electromagnetic shower 

(see Appendix A). For this reason, the calorimeter information was used only inevents 

with IEmissl < 52 (26) GeV for the 215 (93) GeV data sets. These cuts correspond to 

approximately 2.5-3u in Emi••• independent of E 1
• 

E. Performance 

Table I, columns (e), (f), and (g) summarize our success in reconstructing events. 
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All entries refer to events with successfully reconstructed beam tracks. For the 215 (93)' 

Ge V data sets, the scattered track was found in 99.1% (98.8%) of the events. Of these 

events, 95.9% (94.0%) were successfully momentum- and vertex-fitted. Losses through this 

stage of the analysis were thus 5.0% (7.1%), of which inspection showed 1.9% (1.3%) to 

be background. 

Momentum resolution in ihe MMS was limited by multiple Coulomb scattering to 

about 8%. The resolution for short, low momentum tracks was somewhat worse - about 

10%. Using the calorimeter improved the resolution at high E 1 dramaiically. In the 215 

GeV data, ihe resolution for E 1 > 150 GeV without the calorimeter was UE• = 0.08E 1
• 

Using the calorimeter improved the resolution to UE• = 0.05E 1• Figure 15 shows our 

resolution in Q2 and x at various locations in the Q2-x plane. The inner and outer bars 

indicate u with and without calorimetry. The largest improvement occurs at low 11, that 

is, the lowest Q2 for each value of x. This figure includes the effects of radiative corrections 

which, in effect, change the internal kinematics of an event without changing its appearance 

to the outside world. The Q2 resolution was roughly constant at 13%. The x resolution 

varied between 13% and 30%. 

These values for the resolution come from a program which simulates deep inelas-

tic scattering events in the MMS. At 215 GeV, the width (u) of the distribution of 

(E 1 d - E 1 t. d)/E 1 t d is between 0.07 4 and 0.083, depending on how much measure genera e genera e 

of the tail is included. Another estimate of the resolution comes from the momentum 

uncertainty calculated by the fitting routine, combined with the calorimeter resolution. 

For the same simulated events, the mean uncertainty is 0.077. This is a useful quantity 

• 
' 
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because it can also be calculated for real events, where the result is 0.076. 

The results of the data reduction are shown in Fig. 16, where the measured spectra 

of reconstructed events in Q2 , x, and E' are plotted for both the 215 and 93 GeV data 

samples. The production running of the event reconstruction routines on our large amount 

of data was an arduous task that was performed only once on the full set of analyzable 

data. The effects of minor mistakes found after that point were corrected by subjecting the 

simulated events used in the acceptance calculation to the same errors in reconstruction. 
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IV. CALIBRATION 

A. Spectrometer calibration 

Surveying instruments were used to align both proportional and drift chambers in 

the MMS to an estimated 130~Lm accuracy. The alignment was checked and improved 

during data reduction by using muon trajectories from BY triggers to determine alignment 

constants, offsets to be added to raw coordinates in each chamber. The drift cha.Iilbers were 

aligned to about 80~Lm accuracy for the event reconstruction. After the production running 

of the analysis, the drift chamber offsets were remeasured to 20~Lm and these locations were 

put into the apparatus simulation, the events from which were reconstructed with the same 

set of constants used on the real data. 

With the position, angle, and curvature (momentum) of the tracks left free in the fit, 

constant systematic offsets in alignment or those that go as z or z2 are not detectable in 

the residuals. The assumption used in the alignment procedure was that there were no 

such effects and the mean offset, angle, and curvature of the alignment constants .was zero. 

Yet it is precisely the last of these terms that can systematically affect the momentum 

measurement. In fact, after the initial alignment, it was found that the average fitted 

momenta for east- and west-bending 215 GeV tracks differed by 1.06 GeV, indicating that 

a finite curvature did exist in the alignment, corresponding to a radius of curvature of 

214 miles. A quadratic correction was thus applied to the drift chamber offsets. This 

correction was everywhere less than 601'm. 

The possibility that the chambers were rotated about their centers also had to be 
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investigated. To be affected by chamber rotation, a track must have both a large scattering 

angle and a high momentum. Fortunately, the kinematic limit Q2 ~ 2MNII (or Bjorken 

x ~ 1) gives a maximum scattering angle that varies inversely with p'. Given our survey 

precision, this restricts the possible systematic effect on the momentum at 215 GeV to less 

than 0.1%. 

The absolute calibration of the MMS magnet was described in Sec. II C. In the beam 

system, both the last dipole and the Chicago Cyclotron Magnet (CCM) were used for the 

momentum measurement of beam muons and had to be calibrated. The field integrals of 

the last dipole and CCM magnets were numerically integrated from flip coil measurements 

of the field along the path of the beam. At 215 GeV, the dipole magnet was operated at 

4515 amp, giving a field integral of 205.9 kG-m. The CCM field integral at 3100 amp was 

59.70 kG-m. At 93 GeV, the field integrals were 88.84 kG-m and 29.60 kG-m. 

The beam chambers were aligned in a similar fashion to those in the spectrometer. 

Here we were aided by the fact that some of the chambers were on a direct unobstructed 

line and could be aligned with magnets off and no bending. With both the beam and 

spectrometer aligned and calibrated, BV triggers could be used to compare the two sys­

tems. Using equal amounts of 215 GeV east- and west-bending MMS data, a discrepancy 

of Pbea.m - PMMs = 2.39 Ge VIc was found, a value that was constant throughout the ex­

periment. This 1.1% difference was attributed to calibration or alignment errors in the 

beam system. There were two pieces of evidence backing this interpretation. The first was 

the estimated error in the MMS magnet calibration of 0.2%. This was confirmed at a level 

smaller than 1% by our measurement of the t/J mass using muon pairs in.the MMS. 19 For 
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the el~tic, inelastic, and total '1/1 samples, the differences between the measured and true 

mass were 0.7%, -0.9%, and 0.2%, with statistical errors of about 0.2%. We thus applied 

-2.39 and -1.67 GeV lc corrections to the measured momenta of individual beam tracks 

in the beam system for the 215 and 93 GeVIc beams. 

B. Calorimeter calibration 

Using the definition of equivalent particles (EP), the single muon pulse height spec­

trum for each calorimeter counter was inspected by eye to determine the location of the 

peak, after pedestal subtraction. As a preliminary study revealed no time variation of this 

calibration, only one set of constants was used. Single muons gave no appreciable signal in 

the high ADC's. The high scale was calibrated by comparing large low ADC signals from 

showers with their high ADC counterparts. 

The energy calibration was performed in two steps, each of which compared the. 

summed calorimeter signal to llma.g, the value of the shower energy measured magnetically 

as E- E '. The first calibration simply fit S = Cllmag where S is the sum of calorimeter 

signals in EP described in Sec. III D. The value found for c. was 5.965 EP I Ge V. This linear 

fit was adequate only as a starting point. Problems with it included a possible offset due 

to inadequacies in the muon pulse height subtraction and an observed nonlinearity (faster 

than 5.965 EP IGeV at large v). The muon subtraction used the mean pulse height for 

215 GeV muons. Unlike the most probable pulse height, the mean is energy dependent, 

and a correct subtraction should depend on v. The anti-saturation is believed to be due 

to radiative corrections, especially wide angle bremsstrahlung events, which add a large­

pulse-height electromagnetic component to the showers and which trigger the MMS only 
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at large 11. The final energy calibration was also the catch-all for curing the deficiencies in dependence showed an effect at large 11, beyond where the calorimeter contributes to the 11 

the previous calibration stages. resolution. This effect, visible also in the simulated data sample, is due to radiative events 

which occur preferentially at large ll and low Q2 • 

The final calibration was a correction derived from another comparison of llcalor with 

llmag, which necessarily has its worst resolution where we need the calorimeter the most. 
By methods similar to those used in the calibration, we determined the resolution of 

At low ll (or high E', see Fig. ~6c) the spectrum of triggered events drops off rapidly. 
the calorimeter. Using the same binned data, we used the widths of the histograms to 

Thus a bin of low measured llmag has (lltrue) > (llmag) due to smearing. This bias must be 
compute 

removed from the calorimeter calibration. This was done using the apparatus simulation (12 = (12 - (12 • 
calor v calor vgen (14) 

(see next section) which produced events with known values of both lltrue and llmag· 
The results are plotted as CTcalor/ ~ 1/8. (ligen) in Fig. 18. This procedure was very 

The final calorimeter calibration began with samples of real and simulated data, each susceptible to disruption by tails· in the histograms. For this reason, in Fig. 18 we show 

divided into bins of measured llmag· For each bin, we produced histograms of llcalor for also for comparison CTcalor extracted by this method from simulated data generated with 

the real data and ligen, the true value of E- E 1, for the simulated data. We then plotted CTcalor = 1.5Vli(GeV). From measurements such as this we estimate that CTcalor/,;1/ = 1.35 

(llcalor)- (ligen) 118. (ligen). One such plot is shown in Fig. 17. These points were then to 1.7 at ll:::; 80 GeV for various blocks of data, with a typical value of 1.4, substantially 

fit, using a fourth- or sixth-order polynomial with only even powers of (ligen)· The fit worse than the current state-of-the-art value of 1.0, a Value which we approached in early 

was then used to correct the original linear calibration. Inspection of the calibration small-scale tests in a pion beam. The reasons for this degradation are thought to lie 

plots for different blocks of data showed significant time dependence. Much of this was primarily in the early calibration stages (counter-to-counter and ADC high-to-low), but 

found to be synchronized with the field reversals of the MMS, an effect traced to magnetic include also an inherent component from fluctuations in the background energy loss of the 

field sensitivity in individual photomultiplier tubes. These effects were corrected in an muon (or muons). 

average sense only by separately calibrating blocks of data, each spanning only one MMS The use ofthe calorimeter information to improve the energy resolution of the MMS 

polarity. We also looked for the effects of transverse shower containment on the calibration. was described in Sec. III D. The relative values of the calorimetric and magnetic resolutionS 

Fortunately, large shower recoil angles are correlated with small shower energies and thus in ll naturally restrict the effect of the calorimeter to low values of ll (see Fig. 11). At large 

shorter showers. A look at the least favorable combinations of ll, Bahowe,., and the vertical ll, several problems appeared in the calorimetry including the radiative effects mentioned 

position of the vertex showed no visible effect. An empirically-motivated search for Q2 above, other poor calibration behavior, and lack of agreement between real and simulated 
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calorimeter resolution. For these reasons, we quenched the calorimeter's contribution to 

11 by unweighting the contribution of the calorimeter by a further factor of (11/lle} 2 for 

11 ~ lie. For the 215 (93} GeV data, lie was 80 (40} GeV. 

C. Trigger counter efficiency 

The discovery of a large, position-dependent inefficiency in some of the paddle counters 

that make up the deep inelastic trigger was a crucial one. The systematic pattern of 

inefficiency, largest near the beam and decreasing (improving) toward the top and bottom 

was almost exactly that needed to ·create spurious Q2 dependence - a disaster for an 

experiment attempting to measure precisely logarithmic scaling violations. Fortunately, 

the existence of parallel subtriggers in the deep inelastic trigger allowed this discovery 

and also the measurement and mapping of the inefficiency with triggered (i.e., recorded} 

events. 

The method used to measure the efficiency took advantage of the fact that, for a muon 

penetrating more than three paddles, those paddles outside of any satisfied subtrigger are 

redundant and can be checked in an efficiency measurement. Thus the events satisfying any 

subtrigger provide an unbiased sample for the study of the five other trigger banks. Using 

such events, most of the active region of the paddles could be mapped. The exceptions were 

those regions which could not be penetrated by a muon that also lit three other counters. 

There were two such regions: the outer edges (away from the beam) of paddles in the first 

three trigger banks, and, more importantly, the inside edges of the last three trigger banks. 

Of these, the most crucial was the inside edge of bank 6, through which every low Q2 event 

in the experiment passed. These regions were filled in by using multimuon events after 
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a -0.5% correction determined by comparing the regions where multi- and single-muon 

events each give a good measurement. 

Using the entire sample of analyzed events, efficiency maps of each paddle counter 

were prepared on a grid with 6 em spacing in x and five cells in y ranging from 3 em 

high near the beam to 18 em high at the top and bottom of the spectrometer. Since time 

dependence was observed in the efficiency of several counters, the data set was divided 

into three blocks and three separate maps were produced. Where no time dependence was 

noticeable, the total sample was used for each map. The efficiency in each cell was typically 

measured to better than 5%. Figure 19 is a contour map of a trigger bank, showing typical 

good and bad counters. The completed maps were included in the apparatus simulation 

for the calculation of the acceptance of the MMS. 

Knowing the trajectory of a scattered muon, one can calculate the trigger efficiency 

for that track using the information from the maps. For muons penetrating more than 

the required three paddles, the efficiency, of course, goes up. The statistical uncertainties 

attached to the penetrated map cells can be similarly combined to give an uncertainty in the 

trigger efficiency for a single event. The distributions of trigger efficiency·and uncertainty 

for the events used in the deep inelastic analysis are shown in Fig. 20. The mean efficiency 

and uncertainty are 0.83 and 0.057, respectively, with the efficiencies of94.5% of the events 

known to better than 10%. Although expecting averaging to smooth statistical errors in 

the paddle maps is risky, one can count on at least a four-fold averaging from the four 

quadrants of the MMS which, after adding the two magnet polarities, are identical except 

for paddle inefficiency. (For the 93 GeV sample, the symmetry is only two-fold because 
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only one MMS polarity was permitted.) Looking at events from individual x-Q 2 bins used V. THE APPARATUS SIMULATION 

in the F2 analysis shows that at least five map bins in each quadrant of each trigger bank 

are illuminated in the worst (lowest Q2) case. Thus, even in the worst case, the efficiency A. Acceptance calculation 

measurements for events in a single x-Q2 bin are uncorrelated enough to reduce the effects 
The acceptance A of the MMS is primarily a geometrical quantity depending on what 

of statistical errors by a factor of four or five. Allowing for different combinations of map 
range of angles and energies will project scattered muons into the paddle counters of the 

cells in different trigger banks reduces the correlation further. The residual uncertainty 
trigger banks. It also includes the efficiency of the trigger counters and can be extended to 

in our results due to trigger counter efficiency will be discussed further in the section on 
include the efficiency of the reconstruction programs. A Monte Carlo calculation is used 

systematic errors. 
to integrate over variables that determine the acceptance such as trigger geometry, beam 

·, phase space, multiple scattering, and chamber efficiency. To do this, simulated events are 

generated and propagated through a computer representation of the MMS. 

With the acceptance known, the cross section can be calculated from 

oo(x, Q2) = D(x, Q2) 
_....,. •I _.._,-, (15) 

where I and D are the numbers of incident and triggered muons and T is the number of 

target nucleons per unit area. There is a more convenient. form of this expression that 

allows full advantage to be taken of the details of the simulation. Using the definition of 

A as it is calculated in the simulation, 

oomeaa(x Q2) = nD(x, Q2) oosen(x Q2). 
' M(z,Q2) ' 

(16) 

In this expression, oom•aa is our measured cross seetion, oos•n is the cross. section used to 

generate the simulated events, D and M are the numbers of triggered data and triggered 

Monte Carlo-generated events, and n is the normalization, the ratio of incident muons in 

the simulated and real samples. Equation 16 is the basis of our analysis. Its convenience 
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stems from the fact that no reference is make to untriggered events, either real or simulated. the width of the beam in all relevant variables. This is calculated to be the case normally. 

Only triggered simulated events have to be saved, and they can then be recorded and The elimination of data suspect under this criterion was discussed in Sec. III A. 

reconstructed in the same format as data. This equation is also used to make important In the simulation the vertex z position is chosen randomly in the material of the first 

corrections for resolution smearing. This procedure is described in the next section. 13 modules, including plate zero. The scatter may take place in any of the elements of the 

It is absolutely. crucial that our simulation accurately model in detail the behavior spectrometer (iron, scintillator, chamber windows, etc.). Because 95% of the scatters take 

of muons in the MMS. We have no "clean" data sample. Our acceptance and resolution place in the iron plates, the target is always treated as a nucleon in an iron nucleus. 

have long tails due to occurances that would be unlikely anywhere but in 5.34 kgfcm2 of 
C. Event generation 

iron. In kinematic regions of small cross section, these tails can dominate the observed 

population of events. It is essential that we have confidence in our ability to model not When the beam muon reaches the z position of the vertex, its energy (after dEfdx 

just typical behavior, but these tails as well. losses) is handed to the event generator which will determine the kinematics of the inter-

action and the 3-momentum of the scattered muon. The generator uses the deep inelastic 
B. Beam and target 

cross section in the form (see Eqs. 2 and 5) 

The rapidly rising deep inelastic cross section as Q2 -+ 0 makes us quite sensitive to 
d 2u 471'o: 2 1 [ 2 ] 
dvdy = 2MNE v2y 1 - Y + 2(/+ R) F2 (z = vfy,Q

2 
= 2MNEv}. (17) 

the details of the beam phase space. Our trigger makes us especially sensitive to the spatial 

and angular distributions of the beam in the vertical (y) coordinate. For this reason, and It first chooses v > Vmin and y > v. We use Vmin = 0.015, low enough so that the 

also because frequent adjustments were made in the beam line settings to improve the yield acceptance is nearly zero below Vmin· This Vmin corresponds to Q;,in = 5.9 (2.5) at the 

of muons, we did not try to simulate the beam. We instead used the random selection average energies at the vertex of the 215 (93) GeV data sets. The cross section at this 

of untriggered beam tracks recordec! in each run as the parent sample of incident muons v and y is then calculated using a nominal beam energy of 200 Ge V and R = 0. For 

for the simulation of that run. For each event, the real beam chamber hits are copied to F2(z, Q2) we use the parametrization of Buras and Gaemers.37 

the simulation output tape and the beam track as reconstructed in position, angle, and Once v andy are chosen and the nominal (E = 200 GeV) cross section for the event is 

momentum at the front of the MMS is propagated to the interaction vertex by the same known, the distribution is shaped to take into account the actual energy of the beam muon 

routine used for scattered muons (see below). This method, the use of reconstructed values at the vertex and radiative corrections. Radiative corrections are treated in four parts, 

as actual values, supposes that the resolution of the beam system is negligible compared to corresponding to the diagrams of Fig. 21. The first and last diagrams contain the radiation 
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of a real photon in conjunction with the deep inelastic scattering. These are handled using 

the peaking approximation which assumes that the radiation leaves the muon direction 

unchanged and the method of equivalent radiators which treats the radiation as a separate 

energy loss due to a Q2 dependent number of radiation lengths. 38 A new cross section 

is calculated for the actual beam energy, including energy Joss in the target before the 

vertex and in the initial equivalent radiator. This cross section is then corrected for the 

contribution from the vertex and vacuum polarization diagrams of Fig. 2lb.38 To this 

cross section is added the cross section for the wide angle bremsstrahlung (WAB) process 

of Fig. 2lc. 39 This can be viewed either as a background process or as a correction to the 

peaking approximation - a quasi-elastic scatter with most of the deflection of the muon 

occuring at the radiative vertex. WAB makes its largest contribution (~ 3% after cuts) at 

large y and low Q2• Radiative corrections are discussed further in Appendix A. 

For events successfully passing the final shaping, the outgoing muon's energy and 

polar angle with respect to the beam track are 

E' = E(l- y)(l- YJ), 
1/2 

[ 
MNV ] 6 = 2arcsin 2E(l _ y) ' 

(18) 

where Y! is the fractional energy loss in the final equivalent radiator. The azimuthal 

angle r/> is chosen randomly. Finally, the outgoing track is rotated from the coordinate 

system of the beam track to that of the spectrometer and its 3-momentum is handed to 

the propagation routine. 

D. Muon propagation 

The propagation routine constructs the trajectory of the beam muon from the front of 
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the spectrometer to the vertex, and that of the scattered muon from the vertex to where it 

exits the spectrometer. It projects the path through one element of the MMS at a time': In 

active elements (chambers, trigger counters, and calorimeter counters) the position of the 

trajectory is recorded. In these elements and in the air gaps the muon path is a straight 

line. In each iron plate the muon is subjected to energy loss, magnetic deflection, and 

multiple scattering. Although these processes are treated as occurring only in the iron, 

the net amounts assigned to each plate include contributions from the gaps. 

The energy lost by the muon in an iron plate. is calculated as the .sum of five terms: 

average ionization losses (below O.OlE), stochastically chosen ionization losses (to knock-

on electrons above O.OlE), average and stochastic losses to pair production (below and 

above O.OOlE, respectively), and stochastic losses to bremsstrahlung. 40 The probability 

distribution of energy losses above 5 GeV for a 200 GeV muon in one 4 inch iron plate 

is shown in Fig. 22. Muons are allowed to lose energy until the range in iron is less than 

one plate thickness. The subsequent decay is not simulated. For use in the propagation 

routine, the energy loss in a plate is divided in half and the halves are applied before and 

after the deflections due to the magnet and MCS. 

The magnetic deflection in each plate is calculated from the detailed field maps pr~ 

duced during the MMS calibration. Both the z and y components of the deflection are 

included. Each is treated as a single transverse impulse halfway through the plate~~· 

Multiple Coulomb scattering Pl.'s are chosen from a distribution calculated' using 

the method of Moliere as illuminated by Bethe. 41 In four inches of iron the Rutherford 

scattering formula predicts a significant probability for scattering at quite large p 1. 's, much 
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larger than the p .L 's anticipated by Moliere and Beth e. While the single scattering law used 

by these gentlemen includes a screening suppression at small P.L, it lacks the high P.L roll-off 

due to the nuclear form factor. The Moliere distribution thus has a tail extending to very 

large p .L which is dominated by single scattering well beyond where the form factor should 

suppress it (see Fig. 23). To cure this, we subtract from tlie distribution the absolutely 

normalized Rutherford cross section for single scattering multiplied by (1-IF(p.L 2)1 2
). 

The form factor we use is a Gaussian for the nucleus plus an incoherent sum of terms for 

the protons. The resulting suppression of the tail is also shown in Fig. 23. This procedure 

is only approximate because it does not deal correctly with the plural scattering region. 

The propagation of the scattered muon continues until the muon leaves the spectrom­

eter. The position of the muon in each trigger bank is inspected. If the counter is a paddle, 

the position is used to look up the efficiency in the maps constructed from the data. Only 

the appropriate fraction of penetrations result in latched counters. The pattern of latched 

counters is then tested against the deep inelastic trigger requirement. 

E. Data simulation 

Events which satisfy the trigger are turned over to a routine which simulates the 

information produced by the MMS, including its defects and blemishes. These blemishes­

chamber hits from showers, missing hits, adjacent wires hit by 6-rays, etc.-are important. 

As an example, the track-finding failure rate doubles in data taken with any one of ihe 

proportional chambers in the middle half of the spectrometer switched off. The results of 

this routine are shown in Figs. 24 and 25. Figure 24a shows distributions of x2 per degree 

of freedom for fits of real and simulated tracks in the x and y views. Figure 24b shows 
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an overall measure of chamber and track finding efficiency, the fraction of hits present on 

individual tracks in the DC's and the y view of the PC's. A value of 1.0 corresponds to 

a hit in every chamber penetrated by a track. In Fig. 25 we show the widths (a) of the 

residual distributions (xmea.s- X fit) in the drift chambers, where the fit has been performed 

ignoring the information in each chamber in tum. The&e distributions give us confidence 

that our modeling of the resolution of the MMS is adeqtiate. 

Every deep inelastic event has a hadronic shower which produces a distribution of 

pulse heights in the calori~eter and also creates a splash of hits in nearby chambers, 

The response of the calorimeter must be modeled to give data and simulation the same 

resolution at low v. The splash in the chambers must also be included in the simulation 

because it affects track finding and vertex resolution. The shower simulation was based on 

a parametrization of showers from our deep inelastic data. An example of the data used 

in the parametrization is shown in Fig. 26. There was no physics input whatsoever. 

Electromagnetic showers were parametrized and simulated in a similar fashion. The 

sample of real showers used to determine the parameters was found in BV (random) 

triggers using the calorimeter. The showers showed about 10% more pulse height per 

GeV than hadronic showers, with a resolution of a., 1':= 2.3y'ii. An electromagnetic shower 

was simulated for each energy loss exceeding 5 GeV in an iron plate. For wide angle 

bremsstrahlung events, an electromagnetic shower replaced the hadronic shower at the 

vertex. 

F. Operation and performance 

The use of real beam tracks as the beam sample for the simulation provided an au-
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tomatic normalization, both between simulated samples and with the data, through the 

known sampling fraction in the BV trigger. The total Monte Carlo simulated data sample 

corresponds to 1 x the 215 Ge V data and 2 x the 93 Ge V data. These events were then re-

constructed using the same routines used on the real data. Generating and reconstructing 

the total simulated sample consumed one week of CDC 7600 central processor time. 

The remaining figures in this section are evidence of the success with which we can 

model the complex acceptance and resolution of the MMS. Figures 27a and b show typical 

real and si::nulated events. The simulation reproduces all the features of a real event except 

for hits not related to the beam or scattered muons and the details of low-level fluctuations 

in the single-muon pulse heights in the calorimeter. Distributions of real and simulated 

events in two variables that depend only indirectly on the details of the cross section are 

shown in Fig. 28. In the figure, the samples are those which result from the application 

of the analysis cuts and shaping procedure described in the next section. The numbers of 

events in the two samples have been normalized. Figure 28a is the distribution of events 

in ¢, the azimuthal angle of the scattered muon with respect to the beam track's direction 

at the vertex. Bending of the beam in the spectrometer before the vertex correlates this 

coordinate system to that of the spectrometer and the distribution has peaks at j and 

¥ corresponding to the vertical scatters required by the trigger. Distributions of vertex z 

locations are shown in Fig. 28b. The mean z positions are 281.0 ± 0.3 em and 280.7 ± 0.4 

em for the real and simulated samples. 
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VI. ANALYSIS 

A. Cuts and the final data sample 

Our analysis is based on the-comparison of distributions of reconstructed real and 

simulated events with all differences attributed to differences between the actual cross 

section and that used in the simulation. In doing this, we are assuming that the effects of 

the apparatus and reconstruction on the distributions are adequately modeled. We apply 

cuts. simultaneously to the real and simulated samples to insure that this is the casi 

Our cuts fall into two general categories. The first set of cuts includes those that are 

necessary because of known limitations in the simulation. The event generator chose events 

only above Vmin = 0.015 (v = Q2 /2MN11). We must therefore eliminate regions which in 

the data have a contribution from v < Vmin· We choose a cut of v > 0.025. The data 

include events with scattering vertices upstream of the MMS. These are eliminated by a cut 

in Zvertex corresponding to the front of plate 0. Muons which penetrate a paddle counter 

near the edge adjoining the staves can veto themselves by producing a o-ray which hits a 

stave. While some of the effects of o-rays on track finding and resolution were empirically 

modeled, the effect on the trigger was neglected. For this reason an aperture cut of 0.5 

em was applied to the inside edges of the paddle counters. A study of real events whose 

muons passed near the edge of one paddle and triggered in three other paddles further 
~~ -

downstream showed this to be adequate. These cuts remove about 20% of the data. 

Additional cuts not absolutely required by the simulation are applied to remove events 

that are likely to have been badly misanalyzed or come from regions of poor resolution. 
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We require that there be one and only one scattered track and that the reconstructed track way. Of course, no correction to the normalization was made for the losses due to the 

be consistent with the recorded pattern of hit counters that triggered the event. Because "necessary" cuts discussed in the previous section, that were expected to be different for 

there was no calorimeter counter in the gap following plate 0, the calorimeter cannot be the real and simulated samples. The final corrections to the 215 and 93 GeV samples were 

used to improve 11 resolution for events with vertices in plate 0. We eliminate these events 0.020 ± 0.002 and 0.028 ± 0.003, respectively. 

and also, to allow for our finite vertex resolution, those in the first plate of module 1. Table The uncertainty in this correction was but one of the systematic uncertainties in 

II shows the set of kinematic cuts applied before analysis. Cuts in parentheses removed the normalization. Others include uncertainties in the target thickness, magnetic field 

only an infinitesimal number of events. The regions removed are populated by the extreme calibration, beam energy, and trigger counter efficiencies. Some of these are discussed in 

tails of the resolution and energy loss distributions. As an example, large missing energy more detail in the next section. We estimate that in total the normalization uncertainties 

indicates a catastrophic energy loss by the beam muon before scattering. Although such for the 215 and 93 GeV samples are each 3%. Since some ofthese uncertainties are common 

losses were included in our simulation, these events are badly misanalyzed. This second to both samples, the uncertainty in the relative normalization between the two samples is 

set of ~uts removes about 20% of the events surviving the first set. There remain 394 522 smaller and is estimated to be 2.5%. 

(39 061) events in the 215 (93) GeV sample. 
C. Extraction of F2 (x,Q2) 

B. Normalization correction and uncertainty 
The basis for the extraction of F2(x, Q 2) from the raw population of measured events 

The normalization of the data is determined by the fixed relation between data and is Eq. 16. Since our tJqsen includes radiative corrections, with an assumption about R we 

simulation achieved through the use of the prescaled sample of real beam tracks in the can cancel all the kinematic factors in Eq. 16 and are left with an expression for F2 

simulation. Deficiencies in the simulation are revealed by different losses to reconstruction 

failures and cuts in the real and simulated samples. This necessitates small corrections 

Fme""(x Q2) = nD(x, Q2) Fgen(x Q2) 
2 • M(x, Q2) 2 • · 

(19) 

to the normalization. Before comparing real and simulated event losses, the number of The normalization n now includes the corrections of the previous section. Besides providing 

rejected real events itself had to be corrected. This is because some rejection categories are the acceptance and radiative corrections to the data, Eq. 19 is also used to correct for 

dominated by background events which do not appear in the simulation. Thus samples of resolution smearing effects. The rapidly varying cross section and the poor x resolution at 

rejected events from each loss category had to be hand scanned to determine what fraction low 11 (see Figs. 15 and 16b) make this resolution correction essential. This is illustrated 

were real deep inelastic scattering events. Losses to cuts were also investigated in the same in Fig. 29 where the knowledge of the true kinematics of Monte Carlo-generated events is 
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used to show the average value of X true for bins of X measured· From this figure one can easily 

determine where data points will and will not appear in our final F2 plots. For example, 

we cannot determine F 2 at Q2 = 128 GeV 2 /c2 , x = 0.75, even though we have hundreds 

of events with (unsmeared) Q2 and x in this bin and the acceptance of the MMS in this 

region is at iis maximum. The resolution-induced feed down from the more populous low 

x region (see Fig. 16b) makes it impossible to isolate a subset of the data ·at this Q2 with 

an average true x of 0. 75. Even at smaller x, there is a discrepancy between the measured 

and average true values of x for the same reason. 

We correct for this feed down by using Eq. 19 and information of the type used to 

make Fig. 29. With real and simulated data divided into bins of measured x and Q2, 

(xm,Q;z,.), the simulated events in each bin are used to determine (xtrue} and (Q~rue} for 

that bin. F:en is calculated at these average true values of x and Q 2 and the resulting 

F2eas is assumed to refer to these same values. Eq. 19 thus actually reads 

F2eas(x(xm, Q~), Q2(xm, Q~)) = n;(~=:~ti F:"n(x(xm, q;z..), Q2 (xm, Q~)) (20) 

where x and Q 2 are the average true values for the bin of measured variables (xm, Q~). 

The presence of F:"n in Eqs. 19 and 20 suggests that the F2eas yielded by this proce-

dure is model dependent. Considering the simulation as merely an acceptance calculation 

or noting that M(x,Q 2) is proportional to F:en(x,Q 2), demonstrates that, to first order, 

this is not the case. However, changing the model· sufficiently could change the shapes of 

distributions enough to affect the smearing or the distribution of events within finite sized 

bins. We remove this model dependence by empirically fitting F2eaa and using this as the 

F:•n for a next iteration. This is done by weighting the existing simulated events by the 
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ratio of new to old F:en. The normalization correction due to the final set of cuts must 

be recalculated for each iteration. The values presented above are for the final iteration. 

The signals that the iteration has converged are 1) stability against further change, and 

2) identical distributions of data and simulation in many variables. In practice, one it-

eration satisfies both requirements. In Fig. 30 we show comparisons of data and Monte 

Carlo-simulated events in several variables before and after this iteration for the 215 GeV 

sample. Only the x and Q2 dependence is explicitly changed. Most of the effect in all 

three variables shown is due to changing the x dependence of F2. Note that the shaping is 

done in real (unsmeared) variables and that agreement in the resolution-dominated tails 

of measured distributions such as at large x depends on the accuracy of the apparatus 

simulation. The 93 GeV sample is done separately using the same procedure. When the 

iteration is complete, our parametrization is in fact a determination of F2 over the en-

tire x range, since true values of x from the entire range are smeared to yield agreement 

with the measured distribution. Away from the directly measured region, however, this 

determination is limited by the form of the parametrization and is riot very sensitive. 

Table III lists our measured values of F2 in the raw form produced .by Eq. 20, that is, 

with each point referred to its own average true x and Q 2• The entries have passed a final 

set of three cuts. We have eliminated points whose statistical uncertainty in F2 is greater 

than 40%. We have eliminated points from regions with acceptance less than about 0.1 

of the maximum, which corresponds to retaining the region x > 0.06 and Q2 > 15 (5) 

GeV 2/c 2 for the 215 (93) GeV data. We have also eliminated measurements with minimal 

sensitivity in x by rejecting points for which smearing from other bins contributes greater 
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than 90% of the events finally appearing in the bin. The correction to F2 due to resolution 

smearing in the retained points is typically 10%, increasing at large x. Our results are not 

sensitive to the exact values of these cuts. The interpolation to our final grid of x and Q2 

is described in the next section. 
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VII. RESULTS 

A. F2(x,Q2) 

The raw F2 measurements of Table III are interpolated onto a grid of fixed true x and 

Q2 using the final fit (see next section) as an interpolating function. The grid is chosen 

to be the same as that used to bin the events initially in measured x and Q2 • In Q 2 

the effects of resolution smearing, and thus of the interpolation, are minor. This is aided 

by the approximate scaling of F2. However, (Xtrue) may bear little resemblance to the 

corresponding measured x bin. For this reason the F2 measurements were interpolated to 

the center of the bin in the final grid which contained (X true) for that point, independent 

of which bin of measured x the point came from. Thus a point from a bin of measured 

x between 0.6 and 0. 7 with (Xtrue) = 0.42 would be interpolated to Xtrue = 0.45. This 

procedure can result in several bins producing measurements at the same true x and Q2 • 

A minimum requirement on our extraction method is that these measurements give the 

same value of F2 , that is, that they have the same ratio of real to simulated events. Figure 

31 shows the x = 0.45 section of our 215 GeV data. The agreement between points at the 

same Q2 (originally from different bins of measured x) is good. These points are averaged 

after fitting to create our final F2(x, Q2) results. 

The resulting measurements of F2(x, Q 2
) are presented separately for the two beam 

energies in Table IV and in Fig. 32. We have assumed R = 0 and have made no correction 

for Fermi motion. The F2 values thus represent Fr /56. The effects of Fermi motion and 

non-zero R are discussed below. As a consequence of the above procedure, the measure-
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ments refer to F2 at the indicated true x and Q2 and are not bin averages. Because of this 

a few of the points appear to have y > 1. This occurs when the center of the Q2 bin lies 

above the kinematic limit and the original (Q;rue) was near the lower edge of the bin. If 

the y dependence is important, these points can be ignored or the raw measurements of 

Table III can be used. The listed and plotted errors are statistical. Systematic errors are 

discussed in detail in a later section. As systematic errors cause correlated shifts in the 

data we do not attach systematic uncertainties to individual points. One powerful test of 

the internal consistency of our data is the quite good agreement of the 93 and 215 GeV 

measurements (Fig. 32). Although the x2 for the overlap is 33 for 15 degrees of freedom 

(dof), over half of this comes from two points. When these are ignored, the x2 drops to 

14/13 dof. In these data the scaling violation is plainly visible at x > 0.2. We treat this 

qu-antitatively below using lowest order quantum chromodynamics. 

B. Comparison to lowest order QCD 

Fits are performed to the data of Table III prior to the interpolation and coalescence 

of points in x. For convenience in fitting, the more gentle interpolation to Q2 bin centers 

is performed before fitting. The core of our fitting program was modified from a routine 

kindly provided by R. M. Barnett. Its operation and use are described in Ref. 42and 

summarized here. 

The fitting program uses the Altarelli-Parisi method 16 to calculate the Q2 dependence 

of F2 at fixed x predicted by lowest order QCD for the flavor singlet case. No correction 

is made for the neutron excess in iron. Starting with parametrizations of F2 (x) and G(x) 

at a reference value of Q2 = Q~ and an initial estimate of the QCD scale parameter A, 
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the routine numerically integrates the set of simultaneous differential equations of Eq. 10 

from Q~ to each Q 2 at which there are F2 measurements. There is one singlet-quark and 

one gluon equation for each bin of x with bin center x;. At each Q 2, the predictions for 

F2(x;, Q2
) are interpolated using a cubic spline to the average true x of each measured 

point at that Q2 • The predicted and measured values are compared and the minimization 

program MINUIT43 is used to vary A and the Q~ parametrization so as to minimize the x2 . 

Note that operationally Q~ is largely symbolic, as the data at all Q2 are used to determine 

all the parameters. 

Our parametrization at Q ~ = 5.535 Ge V 2 j c2 is 

2NJ 

F2(x, Q~) = ~ L x/;(x) = Ax"(1- x)P(1 +ax)+ B(1- xf', 
18 i=l 

G(x,Q~) = C(1- x) 6
• 

(21) 

The two terms of the F2 parametrization are inspired by the conceptual division of the 

quarks into "valence" and "sea" distributions. The fs is the average charge squared of the 

SU(2) singlet (valence) or SU(4) singlet (sea) quarks. This interpretation is not essential, 

however, and all we actually demand of Eqs. 21 is that they be sufficiently general. In our 

standard fit, we fix a = 0, '"f = 8, and 6 = 5. The variation of these parameters is discussed 

below. The parameters a, {3, A, B, and A are fitted. 'The parameter C determines the 

fraction of the nucleon's momentum that is carried by gluons. With the other parameters 

known, C is fixed by normalization ofthe fractional momentum distributions 

t [18 . ] lo 5F2(x) + G(-x) dx = 1 ,. (22) 

which gives 

. { 18 [ ( a(1 + a) ) B ] } C = (1 -'"f) 1 - S AB (1 + a, 1 + /3) 1 + 2 + a+ /3 + 
1 

_ 
6 

· (23) 
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B is the beta function, B(z,w) = f(z)f(w)/r(z + w). We find that 48% of the nucleon's 

momentum is carried by gluons at Q~ 

The result of the standard fit applied simultaneously to the 215 and 93 Ge V measure­

ments is shown in Fig. 33. The family ofcurves traces the Q2 variation of F2 at various 

values of x from the single global fit. We find a value for A of 225 MeV/ c with a statistical 

error of 43 MeV /c. The values of the other fitted parameters and their statistical errors are 

listed as entry (a) of Table V. Each error represents the allowed excursion ofthe parameters 

for a unit increase of x2 • The marginal x2 of the fit (154/91 degrees of freedom) implies 

that this is an underestimate of the actual uncertainties, either due to the inadequacy of 

lowest order QCD, to our structure of assumptions, or to the presence of systematic errors. 

As discussed below, the uncertainties due to these possibilities outweigh those of a purely 

statistical origin. Entries (b)-(d) of Table V show the minor effects of changing the form 

of the parametrization. The parameters are sufficiently correlated to allow a restructuring 

of the parametrization to give nearly the same F2(x, Q~), without affecting A. Changing 

Q~ from 5.535 to 25 Ge V 2 / c2 has no effect on A. 

C. Systematic uncertainties 

We define systematic uncertainties to mean uncertainties whose origins are purely 

experimental and affect the measured cross section. Uncertainties that affect the interpre­

tation of the measured cross section, say in terms of A, will be discussed in the next section. 

Neither the estimation nor the presentation of systematic effects is an exact science. We 

begin by making a catalog of possible sources of experimental uncertainty. An example 

would be the MMS magnetic field calibration. We next estimate the magnitude of the 
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uncertainty in each source and how it would affect our analysis. We then reanalyze the 

data with each source in turn changed to reflect its uncertainty, and we observe the effect 

on our measured and fitted F2(x,Q 2
). We also make various tests of internal consistency 

to reveal possible problems. The changes to F2 (x, Q2) from systematic effects are typically 

correlated. Thus assigning errors to individual measured points is misleading. Showing 

bands of uncertainty on our F2 plots is also urtsatisfactory - the top of one band may 

correspond to the bottom of another. We will thus give only a representative example of 

the effect on F2(x, Q2), but concentrate on the global effects on our fitted results, notably 

on A. Our catalog of systematic effects is listed in Table VI. 

The first source of systematic uncertainty to be checked was the MMS magnetic field 

calibration. From the evidence presented in Sec. IV A we conclude that the uncertainty 

in the field is, conservatively, ±0.5%. Since both the beam system and the calorimeter 

were calibrated to the spectrometer, the effect of a 0.5% MMS m.iscalibration would be 

an overall shift in the measured energy scale. This would be easy to simulate - change 

the incident beam energy and MMS field by 0.5% in the simulation and analyze with the 

original values - but time-consuming and expensive. Instead, we reason backwards from 

the existing simulated events, a procedure to be used often in this section. By using the 

existing simulated events we have fixed the trajectory, that is, the angle, curvature and 

triggering probability of each track in the MMS. We reinterpret the true momentum of 

both the incident and scattered tracks in accordance with the new assumed field value. If 

B = tB (with f = 1.005), we find Q2 = E2Q 2 , x = EX, and y = y. Had we actually redone 

the simulation, this change in kinematics would have caused a corresponding change in the 
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cross section for each event. We therefore assign each simulated event a new true x and above, the corresponding points of each set are highly correlated and only their separation 

Q2 and a weight given by is meaningful. The error bars have thus been suppressed. The curves show the fit to each 

da 1 F2(£x, £
2Q2

) 

da = f 3 F2(x, Q2) 
(24) 

case. They also demonstrate the effect of changing A, in this case by 20 MeV I c, on the 

slope of F2(Q2). Figure 35 shows the response of A to beam energy miscalibration. Our 

as implied by Eq. 17. This method is not exact. Radiative corrections, MCS, etc. are left estimate of the uncertainty in A from this source is ± 10 MeV I c. 

at the old energy scale and x = £X must break down at the kinematic l.imit. For small 

adjustments in B, however, it should be adequate. It has the advantage that by using the After mapping the efficiency of the trigger counters, there are residual uncertainties, 

same events, the modified results are highly correlated to the original set, and thus small both statistical and systematic. We can estimate the global systematic uncertainty in the 

changes are readily visible in spite of statistical fluctuations. The most notable change trigger efficiency by comparing events that trigger in different parts of the spectrometer 

caused by the adjustment in B is the shift in normalization. This, as well as the other or events that penetrate different numbers of paddle counters. We feel that any global 

effects of this section, has been taken into account in the estimate of the normalization efficiency offset is limited to ±0.5%. Even a uniform offset in efficiency can affect the shape 

uncertainty quoted earlier. The changes in shape are minor, as expected from an overall of the cross section because the number of paddles penetrated, and thus the sensitivity to 

scale change. As indicated in Table VI, the uncertainty in A from this source is Jess than the efficiency of individual paddles, varies with Q2• We find that a 0.5% change in efficiency 

10 MeVIc. changes A by 16 MeV I c. Even if there is no systematic offset in the efficiency maps, the 

We expect more substantial effects from a differential shift of the beam energy (mea- statistical errors in the maps may affect our results. In any kinematic region with a large 

sured exclusively in the beam system) relative to that of the scattered track. The precision geometrical acceptance, the statistical errors in many map cells are averaged and there 

of the calibration of beam to spectrometer rules out such a relative shift of greater than a is no effect. However, at low Q2 only small portions of the spectrometer are illuminated 

few tenths of a percent. We consider a total uncertainty of ±0.5% to allow for uncertainty and only a limited amount of averaging takes place. We probed this possibility by varying 

due to the discrepancy between the two MMS polarities and for possible effects in the by one statistical standard deviation the efficiency of the single most critical map cell (or 

analysis of the average energy loss of the beam muon en route to the vertex. The effect rather, the four cells, one in each paddle of trigger bank 6). From this worst case, we 

of beam energy shifts was determined in the same fashion as the previous case. Figure 34 estimate that the statistical uncertainty in the efficiency maps leads to an uncertainty in 

shows the effect of such an energy shift, magnified to E IE = 1.01 for clarity. We have A of ± 10 MeV I c. As an overall check, we compare results extracted separately from the 

allowed the 93 GeV normalization to adjust to that of the 215 GeV data. As mentioned events entering the four quadrants of the apparatus as seen by the beam. In Fig. 36, we 
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show A as separately fitted in the four quadrants using our 215 GeV data. This figure 

should be considered in the light of Fig. 19, which indicates how different the quadrants 

actually are. 

Another source of systematic uncertainty is resolution smearing, or rather our ability 

·to model and correct for it. Included here are effects due to the use of the calorimeter for 

resolution improvement, and thus possible calorimeter miscalibration. We study this by 

varying the degree to which the calorimeter is used. The two extreme cases are relaxing the 

missing energy requirement (see Sec. III D), thus using the calorimeter in all events (with 

the same weighting scheme as before), and ignoring the calorimeter information totally. 

The kinematic cuts described in the previous section were chosen to minimize. the effects 

of these changes. The uncertainty in A from this source is estimated to be ±50 MeV I c. 

The major source of uncertainty in A is the relative normalization of our 93 and 

215 GeV data sets. Since A determines the slope of the Q2 dependence of F2 at fixed x, 

and our low Q2 data comes from one set and high Q2 from the other, this is no surprise. 

We estimate the uncertainty in the relative normalization to be ±2.5%. This causes a 

±60 MeV I c uncertainty in A. We can also allow the relative normalization to float in 

the global fit. Table V, entry (e) shows the result of this fit. The result is to lower the 

93 GeV normalization by 2.0 ± 0.8%, within the estimated uncertainty. Alternatively, we 

can normalize directly by comparing the 15 points where the data sets overlap. The first 

normalization check is, of course, model dependent; the second is more sensitive to R. 

The direct normalization indicates that the 93 GeV event sample should be increased by 

2.9 ± 1.5%. Eliminating the same two points that contributed the most to the x2 of the 
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comparison between the two data sets reduces the normalization shift to 1.5± 1.5%. Unless 

otherwise indicated, all results of this section refer to the original (separate, absolute) 

normalizations, including the corrections discussed in the previous section. 

As another consistency check, we can separately fit the 93 and 215 Ge V measurements. 

Unfortunately, the resulting smaller Q2 ranges and our limited 93 GeV statistics reduce 

the significance of this comparison. The results are not terribly satisfying. The fit of the 93 

GeV data gives A= 633 ± 148 MeV lc, 2.6 statistical standard deviations higher than the 

215 GeV value of 227 ±55 MeV I c. Inspecting Fig. 32, it is apparent that the slopes of the 

93 GeV data are somewhat steeper. In fact, there has been.some attempt44 to attribute 

physical significance to a similar effect in the data of the European Muon Collaboration 

(though not by the experimenters). Our opinion is that systematic errors must be reduced 

in all of the experiments before such effects are to be considered significant. On the 

positive side, the agreement between the result of the combined fit and that of the 215 

Ge V data alone is excellent. The effects of shifting the relative normalization indicate that 

this agreement is not simply due to the 215 GeV data dominating the combined fit. 

Table Vl concludes with an estimate that our total systematic uncertainty in A is 

82 MeV I c, the sum in quadrature of the individual entries. This estimate is obviously 

accurate only to the extent that our catalog of sources is complete. It is apparent, however, 

that the systematic uncertainty already dominates the statistical uncertainty. 

D. Phenomenological uncertainties affecting A 

Beyond the experimental uncertainties discussed in the previous section lie questions 

of interpretation. We have measured A by assuming that the cross section (Eq. 17 with 
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R = 0), the parametrization (Eq. 21), and lowest order perturbative QCD are a complete interpolation to x bin centers, we eliminate all measurements with x < 0.15. This results 

description of deep inelastic scattering. In this section we explore the effects of relaxing or in an increase in A of only5 MeV /c. 

varying the various pieces of this assumption. Table VII summarizes the results. We have already discussed the minor effects of varying some of the more arbitrary 

We start with the cross section and begin by varying R. In this exercise, the measured features. of our parametrization at Q~. One feature, however, has an unambiguous phys-

cross section remains constant; the measurement is simply apportioned differently between ical interpretation. This is the exponent o which determines the "hardness" of the gluon 

F2 and R. We choose R = 0.1 as an upper limit based on the measurements of R to be momentum spectrum. In inclusive muon scattering we cannot directly measure the glu-

discussed below. Even this small change decreases A by 100 MeV/c. ons. This is unfortunate, because it has been noted48 that A and this exponent can be 

strongly correlated. As mentioned earlier, the non-singlet information available from neu-
Another matter of interpretation concerns Fermi motion. As we have defined it in 

trino scattering allows a more constrained determination of the gluon sector. The CERN-
Eq. 17, our measured F2(x,Q 2) refers to an average over the nucleons in an iron nucleus. 

Dortmund-Heidelberg-Saclay (CDHS) neutrino collaboration18 has found the exponent o 
To translate this into F2 for a free nucleon, we can try to remove the known effects of 

to lie in the range 5 to 7, but the actual precision of this result has been questioned. 49 

the nuclear environment such as binding energy and its manifestation as Fermi motion. 

This correction has been demoted in importance by the discovery45 of another nucleus-
Our standard fit uses o = 5: Raising this to o = 6 decreases A by 25 MeV fc. Figure 37 

traces further the dependence of our best fit value of A on the assumed value of o. 
dependent effect which is larger in the x region covered by our data. This "EMC effect" is 

discussed in the next section. The situation of Fermi motion itself is surprisingly murky. 
As discussed in Sec. I D, our lowest order QCD fits neglect the contribution of higher 

The models we use are described in Appendix B. In brief, Fermi motion is primarily an 
powers of In Q2 and powers of 1/Q2 in the Q 2 dependence of F2 at fixed x. This is known 

x dependent phenomenon, and thus has a limited effect on A. Depending on the model 
as the "leading-log, leading twist" approximation. The next-to-leading-log contribution 

used, we find that A increases by 20 to 60 MeV/ c when Fermi motion corrections are 
can be incorporated into the Altarelli-Parisi evolution equations, but we have not done so. 

applied. Above the low Q2 region (Q 2 < 10 GeV 2fc 2), the EMC effect has no observed 
From the work of others49•50 we estimate that these higher order corrections increase A by 

Q2 dependence.46,47 
approximately 50 MeV /c. The 1/Q2 terms are, in general, not calculable. An exception is 

the "target mass correction" which can be taken into account51 by replacing the variable 

Our data extend into the kinematic region known to contain scaling violations due 
x with 

to the crossing of the charm threshold. 33 We have made no detailed attempt to correct e = 2x 

1 + .j1 + 4x2M~jQ2. 
(25) 

for this, but rather observe the effect of removing the region in question. Before the 
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In our Q2 and x range, this effect should be small. When this transformation is made 

we find that A increases by 15 MeV/ c. Considerably more freedom in A is allowed if we 

include an arbitrary 1/Q2 dependence in our parametrization. We first simply multiply 

our Fz parametrization by (1+k/Q2) with k determined by the fit. A drops by 100 MeV fc, 

with an improvement in x2 from 154/91 dof to 130/90 dof. To gain sensitivity, the EMC 

investigated 1/Q2 terms by combining their muon-proton data with lower Q2 electron­

proton data from SLAC.50 They allowed the x dependence of the 1/Q2 term to vary and 

found that this dependence was consistent with kx2f (I - x) 2• If we use this form and fix 

k = 0.45, which is the approximate level observed by the EMC, A drops by 25 MeV/c with 

a negligible improvement in x2
• If we instead try to use our data to determine k, we find 

k ~ 4, A= 30 MeVfc, and x2 = 144/90 dof. It is not clear that anyone is doing anything 

but quantifying systematic errors with these fits. The fact remains that our experiment 

alone cannot rule out large 1/Q2 corrections to lowest order QCD. 

E. Comparison with other experiments 

The most direct comparison we can make is to data from the European Muon Collabora­

tion (EMC). 52 Part of their data was taken on an iron target at beam energies similar to 

ours. Their spectrometer, however, was completely different from the MMS, and thus we 

can hope that some of the sources of systematic error are different for the two experiments. 

Figure 38 shows a comparison of our results with the EMC's iron target measurements. 

Both measurements are averaged over the various beam energies, both assume R = 0, and 

neither has been corrected for Fermi motion. For purposes of this comparison only, our 

values of F2 have been multiplied by a factor of 0.94, determined from the x dependence 
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comparison discussed below. This normalization is consistent with the 3% systematic un­

certainty quoted by each experiment. Except for the region of Q2 < 10 GeV 2 /c 2, the 

agreement is excellent. Table V includes an entry for a fit to the EMC's data using our 

fitting routine and assumptions. These fitted parameters are consistent with the EMC's 

published results,50 although the assumptions made here are slightly different. It should 

be noted that while the individual parameters of F2 (x) at Q~ appear different in fits (a) 

and (f), the actual values of F2(x, Q~) are quite similar after the 6% shift indicated above. 

In Fig. 39 the ratio of our F[e (multiplied by 0.94) to that of the EMC for Q2 > 20 

GeV 2/c2 is displayed as a function of x. Fits (a) and (f) of Table V have been used to 

interpolate each data point to_ Q 2 = 50 Ge V 2 / c2 prior to averaging. The errors shown are 

statistical; systematic uncertainties from our data alone are of comparable magnitude. The 

EMC has reported differences of up to 15% between deuterium and iron in the x dependence 

of F2.45 The existence of these discrepancies, not explained by Fermi motion, have been 

confirmed at SLAC.46 •47 The dashed line in Fig. 39 shows the trend of F2 (d)/ F2 (Fe) for 

the EMC's measurements. We, of course, cannot make the deuterium-iron comparison 

directly. However, from the evidence of Fig. 39, We can provide support for the existence 

of the discrepancy by noting that our iron measurements agree quite well with the EMC's 

iron measurements, but are distinctly different from their deuterium measurements. This 

is true even at x < 0.3 where a lower Q2 experiment sees no deuterium-iron difference.47 

We can also compare our results to those of charged current neutrino experiments. 

Here the comparison is somewhat less direct, due to the difference in the coupling to quarks 
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between the weak and electromagnetic probes used. The parton model predicts that 

5 
F:N(x) = 

18
F;'N(x) + e(x), (26) 

where the 5118 factor is the average electric charge squared of the quarks and f represents 

a residual difference in the coupling to the sea of heavy quarks and antiquarks. This f 

term, expected to be positive, is complicated by the threshold behavior in the neutrino 

interaction where an 8 quark must be turned into a massive c quark. Figure 40 shows 

our results compared to fs x F;'N from the CDHS collaboration, which also has an iron 

target. 53 For the comparison, our F2 has been multiplied by 0.89. Both sets assume 

R = 0 and neither has been corrected for Fermi motion. Although CDHS fits a value of 

A similar to ours, 18 the agreement with our x dependence (see Fig. 41) is not as good as 

that between the two muon experiments. The difference at low x is not in the direction 

expected from the heavy quark sea contribution mentioned above. This discrepancy has 

been noted before54 and will have to be resolved by future experiments. Figure 42 shows 

the x dependence of the three experiments, again for Q2 > 20 Ge V 2 I c2and interpolated 

to Q2 = 50 Ge V 2 I c2, with the arbitrary normalizations mentioned above. 

We can compare our measurement of ALo = 225±43't<it±82•Y•t MeV lc to the results 

of other investigations of the strong coupling constant as(Q 2). In e+e- annihilation, as 

appears whenever gluons are present·. For example, the value of as can be determined by 

observing the modifications due to gluon emission to the two-jet structure of events. There 

are various methods of characterizing this modification, but all appear to be subject to 

substantial uncertainties from the (non-perturbative) fragmentation of the primary quarks 

and gluons into the observed hadrons. At a center of mass energy .,f8::::: 30 GeV, values 

69 

• ., 

of as typically between 0.13 and 0.20 are found. 55 If we use Eq. 9 with Q2 = 8 and 

N J = 5 to turn these results into measurements of ALo. we find ALo = 60 - 400 MeV I c. 

The expectation that the hadronic decay of the T is dominated by by T --+ 3 gluons 

allows a determination of as from the observed decay widths of the T. 56 It is found 

that as(MT) = 0.158 ± 0.011. This translates into ALo = 80 ± 30 MeVIc. One of the 

interpretational difficulties here is the appropriateness of using MT as the argument of as. 

It is apparent that in e+e- annihilation, as in deep inelastic scattering, the confrontation of 

theory with experiment is limited as much by questions of interpretation as by experimental 

precision. 

F. Measurement of R 

Although our results discussed previously have assumed that R (= uLiuT) is fixed 

(usually R = 0), our overlapping measurements of F2(x, Q2
) taken at different beam 

energies allow us to measureR. At fixed Q2 and v (i.e., at fixed Q2 and x) we have fixed 

the 4-momentum of the virtual photon, independent of the muon beam: energy. However, 

this does not exhaust the photon's quantum numbers; it also carries polarization. We can 

. isolate the dependence on the virtual photon polarization and write9 

S = _!__ d2u 
fT dQ2dv = t1T(1 + eR), (27) 

with r T and UT the flux and cross section for transversely polarized virtual photons, and 

the polarization 

1- (viE)- (Q2/4E2) 
f= • 

1- (v/E) + (v2f2E2) + (Q2f4E2) 
(28) 

At fixed v and Q2, varying the muon beam energy changes the polarization of the "beam" 
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of virtual photons, and R is obtained from the slope of S vs. t. To extract R, we recall that fits is minimized for R ~ 0.1 (see Table VII). 

our measurement of F2 is actually a measurement of the cross section that is independent The greatest contribution to the systematic uncertainty in R comes from the uncer-

of R, coupled to an assumption about R. Using this cross section, we get a measurement tainty in the relative normalization of the 93 Ge V and 215 Ge V data sets. This uncertainty 

of R for each point where the two data sets overlap: was estimated in Sec. VI B to be 2.5%. In Sec. VII C, we calculated a model dependent 

R(x,Q2)= S2-S1 = F~(x,Q2)-Fi(x,Q2) 
SIE2- S2El Fi(x,Q2)E2- Fi(x,Q2)EI' 

correction to the relative normalization by including it as a variable in our QCD fit (with 
{29) 

R = 0). The result was a -2.0% correction to the 93 GeV normalization. We can attempt 

where the indices 1 and 2 refer to the 93 and 215 GeV beam energies, respectively, and F~ a model- and R-independent normalization as suggested in Ref. 57 by looking in the low 

is the measured F2 with R = 0. v region where both polarizations are near 1. Unfortunately, if we restrict ourselves to 

It is clear that this measurement of R will be sensitive to systematic experimental E1,2 > 0.9, we are left with only three points and a correction to the 93 GeV normalization 

differences between the data sets. Beginning with the F2 measurements of Table ill, we find of ( -2.8 ± 3.6)%. If we make these corrections, R becomes 0.01 ± 0.06 or 0.04 ± 0.06 for 

that the average true x and Q2 can be different for the two beam energies due to differences the -2.0% or -2.8% corrections, respectively. 

in smearing, energy loss, etc. To correct for this, we interpolate each measurement to the We also estimate the contributions to the systematic uncertainty in R from the rest 

average X true and Q~rue of both measurements using the final F2 fit for each energy. We of the effects considered previously in fitting F2. These uncertainties are shown in Table 

eliminate measurements for which ~Xtrue or ~Q~rue is greater than 10% to minimize the X. Included in the table is the contribution of a 2.5% relative normalization uncertainty. 

sensitivity to this procedure. Our final result is R = -0.06±0.06•tat ± o.n•y•t. For comparison, the EMC has reported 

The resulting measurements of R are listed in Table VIII and shown in Fig .. 43. Points R = 0.00 ± 0.10 in muon-proton interactions for 60 < v < 160 GeV and the same average 

with uncertainties greater than 10 units of R have not been plotted. In Table IX and Fig. Q2• 57 Electron-nucleon scattering experiments at SLAC found R = 0.22 ± 0.1 at lower 

44 we show separately the dependence of R on Q2 and x. Because no strong dependence Q2 • 58 No experiment observes any significant kinematic dependence in R. 

is apparent, we average all the measurements and find R = -0.06 with a statistical error 
G. Search for a IJ.+-~- asymmetry 

of 0.06. The kinematic range covered by the measurements is 20 < v < 70 Ge V and 

18 < Q2 < 60 GeV 2 /c2 , with (v) =53 GeV and (Q2
) = 23 GeV 2/c2

• In Sec. VII D we In considering only the radiatively-corrected process of Figure 45a, we have neglected 

observed the effect of varying R on our fitted results. This procedure can be used to infer both the higher-order QED process of Fig. 45b and the weak neutral current interaction 

a model dependent value of R. We find that, at fixed normalization, the x2 of our QCD of Fig. 45c. Although too small to measure directly, these processes can give measurable 
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effects through their interference with the one-photon exchange diagram. 59 Weak inter-

action effects have been observed in eN interactions in atomic physics60 and in high energy 

eN interactions61 by searching for a parity-violating signal. 

Recently the BCDMS Collaboration at CERN reported an asymmetry between the 

cross sections for J.' + N and J.'-N interactions:62 

ooi- oo; 
A= oo+ + oo; 

L 

(30) 

The L and R refer to the predominant helicities of the J.'+ and J.'- beams due to their 

production in the forward decay of pions. Because this asymmetry violates neither parity 

nor charge conjugation, both the two photon and weak neutral processes contribute. After 

correcting for the former, BCDMS finds an asymmetry consistent with the Weinberg-Salam 

model prediction. 

Although all of our 93 GeV data and nearly all of our 215 GeV data was taken with 

a J.' + beam, Table I shows that we do have a small amount of J.'- data. While statistically 

insufficient to probe the expected level of asymmetry (see below), the measurement has 

value as a check of the systematic consistency of our data. It should be pointed out 

that a serious attempt to measure this asymmetry would require more than additional J.'-

statistics. It would also demand better control of possible systematic differences. Although 

both the J.'+ and J.'- data sets represent roughly equal amounts of east and west bending 

spectrometer settings, the J.'- running was done ail in one block and at a beam intensity of 

only about ~ that of the J.'+ beam. Our Monte Carlo simulation takes into account known 

time-, intensity-, and beam phase space-dependent effects, but no attempt was made to 

make these the same for the J.'+ and J.'- running. 
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The asymmetry63 predicted by the parton and Weinberg-Salam models is 

·2 (9G)()2 Aws = -4sm llw ----;:;:--- g y Q , 
20y27ra 

1- (1- y) 2 

g(y) = ( )2 
1 + 1- y 

(31) 

Here llw is the Weinberg angle, G ~ 10-5 fMp is the weak interaction coupling constant, 

and y = 11 f E. This approximation assumes Bjorken scaling, an isoscalar target, and 

polarization of ±1 for the beams. It neglects Cabibbo mixing and non-valence quarks. 

Because the currently accepted value of sin2 llw ~ 0.23 is near ~·-the asymmetry is nearly 

independent of the actual polarization of the beams. The expected asymmetry is then 

Aws = -1.45 x 10-4g(y)Q 2 • The two-photon asymmetry is expected to be smaller and 

opposite in sign.62 

We measure the asymmetry by extracting F2(x,Q2) for the J.'+ and J.'- samples sepa-

rately following the procedures described in Sec. VI C. For each bin of x and Q2 for which 

there is an F2 measurement from both samples, the J.'- measurement is interpolated to 

the average x and Q 2 of the J.'+ measurement. We then calculate g(y)Q2 and A for each 

point. Figure 46 shows the asymmetry measurements after binning in g(y)Q2 • The line is 

the best fit of A = a+ bg(y)Q2 to all the points before binning. The result of this fit is 

A= {6.9±6.7) X 10-3- {1.4± 2.4) X 10--4g(y)Q2 with a x 2 of 48 for 44 degrees of freedom~ 

As the statistical error in the slope b indicates, setting b = 0 has a negligible effect on x2• 

While, as expected, our lack of J.'- statistics bars us from the realm of the weak 

interaction asymmetry, this measurement adds to the confidence we have in our ability 

to correct for systematic effects due to beam intensity and phase space. It alsO rules out 

an unexpectedly large contribution from the one photon-two photon interference term in 
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muon scattering from iron that might affect the deuterium-iron comparison. Figure 47 

shows the asymmetry vs. x. There is no significant asymmetry at the 2% level out to 

x= 0.5. 

75 

,, 

VIII. SUMMARY AND CONCLUSIONS 

We have built and operated the Multimuon Spectrometer, an iron target-spectrometer-

calorimeter in the muon beam at Fermilab, to observe muon-nucleon interactions with high 

luminosity and broad acceptance. We have measured the cross section for the deep inelastic 

scattering of muons on nucleons in iron at incident energies of 93 and 215 GeV. Using the 

known properties of the electromagnetic interaction, we have extracted from the measured 

cross sections measurements of the structux:_e function F2(x, Q 2) with a statistical precision 

of better than 2% over a wide kinematic range. These measurements, extending in Q 2 

from 5 to 200 GeV 2 fc 2 , are presented in Table IV and in Fig. 32. Our measurements are 

in good agreement with results from similar contemporary experiments. The agreement 

in x dependence between our data and that of the European Muon Collaboration's iron 

target experiments is especially notable in the light of the controversy surrounding the 

recently discovered A dependence of F2 (x). 

We have compared our measurements to the predictions of lowest order quantum 

chromodynamics (QCD) in which the Q2 dependence of F2 at fixed xis calculable. QCD 

reproduces the qualitative pattern of scaling violation seen in the data. Within our 

set of phenomenological assumptions, we measure the QCD scale parameter ALo to be 

230 ± 4o•t<>t MeV fc. With the s~e assumptions, we estimate the systematic uncertainty 

in ALO to be 80 MeV/ c. This value of A agrees within quoted errors with the determina-

tions from other deep inelastic scattering experiments using muons and neutrinos. While 

the statistical precision and Q2 range of the new experiments represent an improvement 

over those of several years ago, systematic uncertainties still limit the precision with which 
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we measure A to about 100 MeV I c. If we relax some of our assumptions about imprecisely 

known parameters, we can again generate "" 100 MeV I c uncertainties in A. These uncer-

tainties will diminish as the quantities in question, not~bly R and the shape of the gluon 

spectrum, become better known, but progress in this direction has been slow and difficult. 

We have compared our F2 measurements from the 93 and 215 GeV beam energies and 

measured R = -0.06 ± O.Q6•tat ± o.n•v•t, a value consistent with zero, but with enough 

uncertainty to affect A substantially. Similarly, the rejection of large contributions to the 

observed scaling violations from 1/Q2 terms in favor of the logarithmic behavior predicted 

by QCD is difficult, especially with little constraint on the form of such terms. Although 

the confirmation from deep inelastic scattering experiments of QCD as the theory of the 

strong interactions must still be considered somewhat qualitative, the improved agreement 

between the various experiments represents a distinct clarification of the experimental 

situation, without which no progress can be possible. 
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APPENDIX A: RADIATIVE CORRECTIONS 

As summarized in Sec. V C, we correct the deep inelastic scattering cross section 

Eq. 17 for processes involving the radiation of photons (Fig. 21a-d). We.do this by using 

the method of equivalent radiators38 in which these internal bremsstrahlung diagranis 

are ·replaced by an equivalent amount of radiation emitted separately from the primary 

(deep inelastic) scatter. The connection to the primary scatter remains in the amount of 

radiation, which is effectively that due to a Q2 dependent number of radiation lengths 

t = Ja [ln(Q 2/m~) -1]. 
41f 

This radiation has the characteristic spectrum 

P(y)dy= (1-y+~y2)d:• 

(A1) 

(A2) 

where y = (E- E ')/ E is the muon's fractional energy loss in the radiator. We radiatively 

correct the cross section in our event simulation by explicitly radiating a photon before 

the interaction with a probability and spectrum given by Eqs. A1 and A2. Since the Q2 

of the interaction is not known before the interaction, we use a large limiting value, to be 

corrected later. The divergent spectrum is cut off at Ymin = 0.001. We invoke the peaking 

approximation, in which the. muon's direction is unaffected by the photon emission, and 

the incident muon, with its energy degraded, is handed to the deep inelastic generator. 

Besides the energy loss due to the process of Fig. 21a, the cross section is modified by the 

processes of Fig. 21b and c. The vertex and vacuum polarization corrections (Fig. 21b) 
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have the effect_ of multiplying the cross section by38 found in each bin of measured x and Q2 is subtracted from both the real and simulated 

2a [ 14 13 ] 1 + c5(Q 2
) = 1 +- -- + -ln(Q 2 /m!) . 

1f 9 12 
(A3) 

events before the F2 extraction procedure of Section VI C. The iteration of the F:•n used 

in the simulation does not modify the WAB events. 

We cogenerate the wide angle bremsstrahlung (WAB) events of Fig. 21c using the per 

nucleon cross section64 

APPENDIX B: FERMI MOTION 
d217WAB 
---

dvdy 
1 4Z2a 3 y(1- Y + Y2 

/2) G(Q2) 
A 2MNE (1- y)v 2 11 

(A4) 

In analyzing our data we have calculated the various kinematic quantities using Eqs. 1 
where G( Qfl) is the nuclear form factor integrated over the component of q perpendicular to 

and thus have assumed that the laboratory frame and the target rest frame were the same. 
the incident muon direction. Finally, photon emission from the outgoing muon is simulated. 

In our experiment, this is fine if the target is considered to be an iron nucleus, as in most 
The actual Q2 of the event is then calculated and excess radiation is removed. 

of our results where we have presented Fr /56. In order to interpret our results in terms 
To investigate the effects of the radiative corrections, we have convolved numerically 

of F2 for a single nucleon, we must remove the effects of nuclear binding, beginning with 
the deep inelastic scattering cross section with the radiative effects of Eqs. A1-A3. The 

Fermi motion. Although the energy scale of Fermi motion seems negligible compared to 
results of this calculation are shown in Fig. 48 for a beam energy of 200 Ge V and the same 

that of our 200 GeV muons, a proton with a Fermi momentum of 240 MeV /c can change 
F2(x, Q2) used in the event simulation routine.37 Plotted is ducorr /duuncorr as a function 

the effective beam energy by over 50 GeV. The treatment of Fermi motion and binding 
of Q2 for fixed x. For a fixed observed cross section, ducorr / duuncorr > 1 corresponds to 

can be broken into three nearly independent phases. The first is the determination of 
a downward correction in measured F2• Changing the beam energy to 100 GeV has an 

the momentum spectrum of the target nucleons. The second is the treatment of binding 

effect very similar to sliding the plot down by a factor of two in Q2 • Although it was not 
energy. The third is the calculation of the effect on the cross section, and thus on the 

included in our event simulation, in this calculation we also studied the contribution of the 
measurement of F2. 

radiative tail from elastic scattering. This correction turns out to be invisible where we 

have data, reaching a maximum of< 1% at the highest Q 2, lowest x point of the 93 GeV The nucleon momentum spectrum we use is derived from measurements of the nuclear 

data. form factor,65 augmented by a tail inferred from studies of antiproton production below 

After the cuts restricting the region over which we present F2 (x, Q2) are applied, the threshold.66 A zero-temperature, spherically symmetric Fermi gas has a kinetic energy 

contribution of WAB is never greater than 3%. The number of simulated WAB events (T) spectrum proportional to T112 below the Fermi energy Tt· Our spectrum has a form 
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corresponding to a finite temperature plus the tail: 

T < 70 MeV; 

-oc r-2.6 
dT ' 70 < T < 385 MeV; 

{ 

Tl/2 /{l + e<T-36)/6.4), 

dN 

0, T > 385 MeV. 

(Bl) 

This spectrum as a function of nucleon momentum is shown as the solid curve in Fig. 49. 

Also shown in the figure is the spectrum used by Bodek and Ritchie.67 The interpretation 

of the tails in these spectra is not entirely clear. Rather than single high energy nucleons, 

the tail may represent a collective eff~t in the nucleus, such as the scattering off a higher 

mass cluster of nucleons. 

The treatment of binding is, in effect, the calculation of the energy component of the 

target nucleon's 4-momentum. The various models thus provide a function E(p) giving the 

energy for any momentum chosen from the spectrum of the previous paragraph. We will 

consider two such models here. The first is an independent particle model -each nucleon in 

the potential well formed by the others. 68 •69 Bodek and Ritchie use an entirely different 

model which can be described as the spectator or coherent recoil picture. In their model, 

the target nucleon is required to conserve energy and momentum by recoiling against an 

on-shell spectator nucleus with mass number A - 1. The two models are shown in Fig. 50 

for iron (Tt r::= 36 MeV). 

To apply these Fermi motion models to deep inelastic scattering, we follow the work 

of West. 70 The starting point is the impulse approximation in which the complicated 

interactions within the nucleus are considered to affeet things only by determining the 

wave function of the target nucleon, that is, the momentum spectrum and E(p). Hence 

w:v(PA,q) =A["' 47rp2dpf(p)Wt'v(p,q), (B2) 
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where W l'v is a tensor representing the square of the hadron current8 and A and N refer 

to the nucleus and nucleon. Using the representation of W l'v in terms of the structure 

functions W1,2 and inspecting the 3-3 component of Eq. B2 we find 

[
00 

[( Q2 )2( ')2 p2Q2] 
Wi'(PA,q) =A fo 47rp2dpf(p) 1 + .:;v'qa : + .:1qi W:fl(p,q), (B3) 

where we have chosen the 3-axis along the direction of q, and v' = p·q/MN,V = pA.qfMA. 

The remaining difficulty is that W :fl in Eq. B3 still refers to the structure function of an 

off-shell nucleon. That this might complicate the situation is evident. The derivation of 

W I'V was based on the presence of only two relevant scalars (see Sec. I A). Now, with 

p2 # M1, W2N can be a function not only of Q2 and v', but also p2 • Following Bodek 

and Richie, we identify the off-shell W :fl (p, q) with the on-shell version at the same Q2 and 

invariant mass W 2• Hence 

w:·off-•hen(p,q) = F:fl(x',Q2)fv, 

Q2 = -q2, (B4) 

, Q2 
X = --, 

2MNv' + p2 - M1 

where F:fl is the standard on-shell structure function. 

With f(p), E(p), and an assumed F:fl(x, Q2), one can perform the integral in Eq. B3 

numerically and calculate the Fermi motion correction defined as Ffl (x, Q2)/( f&Fie(x, Q2
)). 

The results of such a calculation are shown in Fig. 51 for the independent particle model 

.and our spectrum. For comparison, the dashed curves are the results of Bodek and Ritchie 

using the spectator model. Both calculations used the Buras-Gaemers parametrization of 

Ffl as input.37 The two calculations agree fairly well in Q2 dependence, which is minor 

below x = 0.45. However, the x dependence differs substantially above x = 0.4. It should 
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be noted that a calculation which neglects the effects of binding entirely, that is, with 

E(p) = .j(p2 + M~), yields a correction with a similar shape to those shown, but which 

is everywhere less than one. Applying these corrections to our measured F["(x, Q2) /56 

before fitting resulted in the changes noted in the text. ·The independent particle model 

yielded the smaller correction to A, although others have found corrections nearly as small 

using the model of Bod~k and Ritchie. 52 
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TABLE I. Data sets. Columns ( d)-(g) refer to events with reconstructable beam tracks. 

(a) (b) (c) (d) (e) (f) (g) 
Beam <E> Intensity Incident 1J Triggen Track found Event fit 

(GeV) (IJ/Bpill) 

215 GeV IJ+ 209. 3.0 X 106 1.91 X 1011 560872 555 346 531781 
215 GeV IJ- 209. 1.0 X 106 2.61 X 1010 58365 58110 56615 
215 GeV tot 209. 2.17 X 1011 619237 613456 588396 
93 GeV IJ+ 88.0 2.5 X 106 8.75 X 109 66533 65740 61794 

TABLE II. Kinematic cuts. Those in parentheses remove a negligible number of events. 

Variable 93 GeV 215 GeV 

E 75 < E < 96 GeV 196<E<217GeV 
II > 10 GeV > 20 GeV 
E' ( > 10 GeV) > 10 GeV 
W2 ( > 8 (GeV /c 2 ) 

2
) > 16 (GeV/c2 ) 

2 

Emioo < 48 GeV < 96 GeV 
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TAB:LKUI. Raw F2(x, Q 2) at 93 GeV. For each measured bin, F2(x, Q2) is presented at 
·.,,:, 

,. 

the average true X and Q 2 of that bin. Errors are statistical. 

X Q2 (GeV 2/c 2) F2(x, Q2 ) X Q2 (GeV 2/c 2) F2(x, Q 2) 

0.0965 5.30 0.3890 ± O.D105 0.3299 24.19 0.1722 ± 0.0082 
0.0992 7.13 0.3766 ± 0.0099 0.3355 32.99 0.1601 ± 0.0098 
0.1050 9.53 0.3661 ± 0.0114 0.3542 42.67 0.1187::!: 0.0168 
0.1161 12.36 0.3729 ± 0.0228 0.3554 7.60 0.2337 ± 0.0294 
0.1591 5.29 0.3375 ± 0.0092 0.3719 9.49 0.1773 ± 0.0093 
0.1584 7.26 0.3600::!: 0.0084 0.3825 12.81 0.1602 ± 0.0089 
0.1575 9.78 0.3478::!: 0.0074 0.3946 17.83 0.1495 ::i: 0.0085 
0.1601 13.30 0.3227 ::!: 0.0077 0.4049 24.11 0.1374 ± 0.0088 
0.1703 17.67 0.3207 ± 0.0104 0.4162 32.33 0.1169 ± 0.0090 
0.1904 22.25 0.2716 ± 0.0201 0.4199 42.87 0.0964 ± 0.0112 
0.2343 5.33 0.2923 ::i: 0.0111 0.4101 9.87 0.1240 ± 0.0132 
0.2384 7.15 0.2867 ± 0.0088 0.4269 12.61 0.1141 ± 0.0085 
0.2401 9.74 0.2666 ± 0.0075 0.4551 17.40 0.1092 ± 0.0090 
0.2398 13.28 0.2574 ± 0.0073 0.4646 23.62 0.0911 ± 0.0085 
0.2403 17.94 0.2578 ± 0.0080 0.4768 32.27 0.0764 ± 0.0086 
0.2435 24.22 0.2436 ± 0.0091 0.4951 43.11 0.0542 ± 0.0082 
0.2647 31.06 0.2259 ± 0.0163 0.5146 56.97 0.0499 ± 0.0176 
0.2802 5.69 0.2677 ± 0.0344 0.4871 17.09 0.0888 ± 0.0096 
0.3067 7.16 0.2257 ± 0.0103 0.5091 23.22 0.0830 ± O.D105 
0.3131 9.62 0.2144 ± 0.0083 0.5235 31.05 0.0550 ± 0.0090 
0.3189 13.13 0.2021 ± 0.0081 0.5332 42.23 0.0467 ± 0.0093 
0.3284 17.94 0.1986 ± 0.0083 0.5801 56.65 0.0444 ± 0.0138 
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TABLE III. (Continued.) Raw F2(x, Q2) at 215 GeV. For each measured bin, F2(x, Q2) is 

presented at the average true x and Q2 of that bin. Errors are statistical. 

X qz (GeV2fc2) F2(x, Q2) X qz (GeV2fc2) Fz(x, Q2) 

0.0736 16.31 0.3852 ± 0.0053 0.3920 24.60 0.1416 ± 0.0045 
0.0781 18.13 0.3967 ± 0.0652 0.4049 33.48 0.1319 ± 0.0036 
0.0925 18.29 0.3794 ± 0.0028 0.4091 45.32 0.1276 ± 0.0033 
0.1026 23.70 0.3667 ± 0.0028 0.4149 61.01 0.1086 ± 0.0028 .... 

30.61 0.1073 ± 0.0032 0.1175 0.3603 ± 0.0045 0.4163 82.30 
0.1326 34.22 0.2972 ± 0.0306 0.4303 111.10 0.0927 ± 0.0035 
0.1563 18.68 0.3261 ± 0.0037 0.4431 136.49 0.0788 ± 0.0095 
0.1564 25.06 0.3246 ± 0.0029 0.4175 19.48 0.1282 ± 0.0129 
0.1575 33.56 0.3257 ± 0.0027 0.4313 24.12 0.1188 ± 0.0054 
0.1686 43.68 0.3146 ± 0.0030 0.4514 33.04 0.1047 ± 0.0041 
0.1917 55.67 0.2765 ± 0.0055 0.4684 44.44 0.0919 ± 0.0035 
0.2438 18.68 0.2466 ± 0.0044 0.4855 60.45 0.0720 ± 0.0028 
0.2439 25.25 0.2428 ± 0.0034 0.4822 80.84 0.0661 ± 0.0027 
0.2415 33.85 0.2469 ± 0.0030 0.4933 109.42 0.0672 ± 0.0035 
0.2427 45.74 0.2446 ± 0.0029 0.5148 143.17 0.0407 ± 0.0037 
0.2470 61.64 0.2336 ± 0.0030 0.4815 32.60 0.0892 ± 0.0052 
0.2670 78.30 0.2113 ± 0.0045 0.5159 44.07 0.0670 ± 0.0037 
0.2922 92.56 0.2120 ± 0.0410 0.5255 59.27 0.0566 ± 0.0033 
0.3220 18.45 0.1940 ± 0.0052 0.5353 79.92 0.0492 ± 0.0030 

. 0.3255 24.91 0.1852 ± 0.0040 0.5575 107.94 0.0394 ± 0.0029 
0.3306 33.82 0.1830± 0.0034 0.5812 142.99 0.0382 ± 0.0040 
0.3307 45.67 0.1762 ± 0.0031 0.6056 186.69 0.0394 ± 0.0161 
0.3352 61.68 0.1644 ± 0.0030 0.5880 79.71 0.0393 ± 0.0036 
0.3421 83.72 0.1589 ± 0.0033 0.6187 107.23 0.0296 ± 0.0031 
0.3598 106.28 0.1427 ± 0.0054 0.6026 137.44 0.0285 ± 0.0042 
0.3780 18.58 0.1514 ± 0.0063 0.6511 182.23 0.0120 ± 0.0043 
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TABLE IV. The structure function F2(x, Q2) on a fixed grid of x and Q2• R = 0 is assumed 

and no Fermi motion correction has been applied. 

X Q· : 2 93 e F ( G V) I F 2 215 GeV) I 2 com me F ( b d) 
! 

0.08 5.54 i 0.3997 ± 0.0108 

I 
0.3997 ± 0.0108 

I 7.52 0.3905 ± 0.0103 0.3905 ± O.Q103 
10.2 0.3855 ± 0.0120 0.3855 ± 0.0120 
18.8 0.3894 ± 0.0026 0.3894 ± 0.0026 
25.6 0.3906 ± 0.0030 I 0.3906 ± 0.0030 

. 0.15 I 5.54 0.3430 ± 0.0094 0.3430 ± 0.0094 I 

I I 7.52 0.3657 ± 0.0085 0.3657 ± 0.0085 I 
I 

10.2 0.3531 ± 0.0075 I 0.3531 ± 0.0075 
13.9 0.3321 ± 0.0074 I 0.3321 ± 0.0074 
18.8 0.3364 ± 0.0109 I 0.3309 ± 0.0037 0.3315 ± 0.0035 
25.6 0.3017 ± 0.0223 i 0.3296 ± 0.0030 0.3291 ± 0.0030 

I 
34.8 0.3330 ± 0.0023 0.3330 ± 0.0023 
47.2 0.3303 ± 0.0031 0.3303 ± 0.0031 
64.1 0.3148 ± 0.0062 0.3148 ± 0.0062 

0.25 5.54 0.2811 ± 0.0102 0.2811 ± 0.0102 
7.52 0.2764 ± 0.0085 0.2764 ± 0.0085 

10.2 0.2576 ± 0.0072 0.2576 ± 0.0072 
13.9 0.2480 ± 0.0070 0.2480 ± 0.0070 
18.8 0.2481 ± 0.0077 0.2413 ± 0.0043 0.2429 ± 0.0038 
25.6 0.2365 ± 0.0088 0.2373 ± 0.0033 0.2372 ± 0.0031 
34.8 0.2351 ± 0.0170 0.2386 ± 0.0029 0.2385 ± 0.0029 
47.2 0.2370 ± 0.0029 0.2370 ± 0.0029 
64.1 0.2300 ± 0.0029 0.2300 ± 0.0029 
87.1 0.2253 ± 0.0048 0.2253 ± 0.0048 

118.3 0.2479 ± 0.0479 0.2479 ± 0.0479 

0.35 7.52 0.1961 ± 0.0084 0.1961 ± 0.0084 
10.2 0.1874 ± 0.0059 

I 
0.1874 ± 0.0059 

13.9 0.1791 ± 0.0058 I 0.1791 ± 0.0058 
18.8 0.1808 ± 0.0061 0.1729 ± 0.0039 I 0.1752 ± 0.0033 
25.6 0.1578 ± 0.0076 0.1686± 0.0030 0.1671 ± 0.0028 
34.8 0.1500± 0.0091 0.1692 ± 0.0031 0.1672 ± 0.0029 
47.2 0.1192 ± 0.0168 0.1628 ± 0.0029 . 0.1615± 0.0029 
64.1 0.1545 ± 0.0028 0.1545 ± 0.0028 
87.1 0.1534 ± 0.0032 0.1534 ± 0.0032 

118.3 0.1475 ± 0.0056 0.1475 ± 0.0056 

0.45 10.2 0.1009 ± 0.0107 0.1009 ± 0.0107 
13.9 0.0989± 0.0074 0.0989 ± 0.0074 
18.8 0.1092± 0.0071 0.1082 ± 0.0109 0.1089 ± 0.0059 
25.6 0.1032 ± 0.0055 0.1062 ± 0.0048 0.1049 ± 0.0036 
34.8 0.0929 ± 0.0059 0.1035 ± 0.0022 0.1022 ± 0.0021 

. 47.2 0.0756 ± 0.0070 0.1009 ± 0.0022 0.0986 ± 0.0021 
64.1 . 0.0882 ± 0.0019 0.0882 ± 0.0019 
87.1 0.0844 ± 0.0020 0.0844 ± 0.0020 

118.3 0.0833 ± 0.0025 0.0833 ± 0.0025 
160.7 0.0739 ± 0.0089 0.0739 ± 0.0089 

0.55 25.6 0.0611 ± 0.0077 0.0611 ± 0.0077 
34.8 0.0444 ± 0.0072 0.0444 ± 0.0072 
47.2 0.0403 ± 0.0080 0.052"2 ± 0.0028 0.0509 ± 0.0026 
64.1 0.0443 ± O.D105 0.0469 ± 0.0027 0.0467 ± 0.0026 
87.1 0.0457 ± 0.0023 0.0457 ± 0.0023 

118.3 0.0412 ± 0.0030 0.0412 ± 0.0030 
160.7 0.0353 ± 0.0025 0.0353 ± 0.0025 

0.65 118.3 0.0210 ± 0.0022 0.0210 ± 0.0022 
160.7 0.0171 ± 0.0025 0.0171 ± 0.0025 
218.3 0.0137 ± 0.0039 0.0137 ± 0.0039 
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TABLE V. Results of lowest order QCD fits to F2(x, Q 2). F2(x, Q~) = Ax 0 (1- x)~(l + 

ax)+ B(l- x) 1 ; G(x,Q~) = C(l- x) 6
; a, "f, o fixed; C from momentum sum rule; a, {3, 

A, B, and A fitted. Errors are statistical and represent ..:lx 2 = 1 excursions in the fit. 

Fit A (MeV/c) 
,;:• 

Q ~ A B a X 2/dof Comment 

a. Std: 1 = 8, 225 ± 43 1.00 3.80 2.74 0.410 154/91 Q~ = 5.535 GeV 2 /c 2 

6 = 5,a = 0 ±0.10 ±0.15 ±0.44 ±0.036 

b. Fit a 225 ± 43 0.51 3.97 0.84 0.948 3.24 153/90 

c. 1· = 12 230± 44 0.71 3.56 1.92 0.350 153/91 

d. o = B = 0, 217 ± 43 3.43 0.37 3.73 160/92 
fit a 

e. Fit 93 GeV 176± 43 0.99 3.83 2.67 0.409 148/90 nonnalilation lowered 
nonnalilation by 2.0±0.8% 

f. Standard, EMC 159 ± 25 0.65 3.29 1.41 0.258 230/153 Q~ = 5.50 GeV 2/c 2 

data (Ref. 52) 

.. 
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TABLE VI. Systematic uncertainties in A. The total indicates the sum of the other entries 

in quadrature. 

Source 

MMS B-field calibration 
Beam energy 
Trigger efficiency (systematic) 
Trigger efficiency (statistical) 
Resolution smearing 
93/215 GeV normaliJation 

Total 

Uncertainty 

0.5% 
0.5% 
0.5% 

(see text) 
(see text) 

2.5% 

6A (MeV/c) 

< 10 
10 
16 
10 
50 
60 

82 

TABLE VII. Effects of various phenomenological assumptions on the fitted value of A. 

Assumption 

Standard 
R = 0.1 
Fermi motion correction 
X >0.15 
Gluon exponent = 6 
Higher order QCD 
Target mass correction 
Include 1/Q2 term 

!:1A (MeV /c) 

(A= 225) 
-100 

+20 to +60 
+5 
-25 

+50 (estimated) 
+15 

-25 or more (see text) 
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x 2 /dof 

154/91 
142/91 

149 to 151/91 
134/81 
152/91 

155/91 
152/91 



TABLE VIII. R measurements.- Errors are statistical. The final entry is a global average. 

X Q2 (GeV 2/c 2) t (93 GeV) t (215 GeV) R 

0.1633 18.18 0.5870 0.9464 -0.057± 0.085 
0.2421 18.31 0.8359 0.9772 -0.160± 0.185 
0.3252 18.20 0.9184 0.9880 -0.378± 0.291 

"'. 0.3863 18.20 0.9445 0.9916 -0.550± 0.325 
0.2437 24.73 0.6682 0.9564 O.D11 ± 0.138 
0.3277 24.55 0.8390 0.9776 0.758± 1.071 
0.3985 24.35 0.8996 0.9855 -0.269± 0.461 
0.4480 23.87 0.9265 0.9891 -5.002 ± 23.776 
0.2531 32.45 0.4220 0.9258 -0.003± 0.137 
0.3331 33.41 0.6766 0.9574 0.659± 0.518 
0.4106 32.91 0.8104 0.9739 0.610± 1.164 
0.4641 32.66 0.8603 0.9803 -4.844 ± 11.585 
0.5025 31.83 0.8904 0.9842 -1.857± 0.975 
0.3425 44.17 0.4131 0.9246 1.045± 0.727 
0.4145 44.10 0.6269 0.9512 1.557± 1.732 
0.4818 43.78 0.7436 0.9656 -4.027± 3.908 
0.5246 43.15 0.7975 0.9723 -4.764± 11.744 
0.5001 58.71 0.5274 0.9389 0.732± 1.821 
0.5528 57.96 0.6382 0.9526 -0.316± 0.525 

0.2278 22.80 -0.064± 0.057 
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TABLE IX. R VB. Q2 ' R vs. X 

Q2 (GeV 2fc 2 ) R % R 

18.2 -0.120 ± 0.073 0.194 -0.055 ± 0.067 
24.7 -0.004 ± 0.130 0.274 0.02 ±0.12 
32.5 0.034 ± 0.133 0.392 -0.37 ±0.25 
44.2 0.95 ±0.65 0.541 -0.57 ±0.43 
58.0 -0.27 ±0.47 

. 
TABLE X. Systematic uncertainty in R. The total shows the sum of the other entries in 

quadrature. 

Soun:e Uncertainty 6R 

MMS B-field calibration 0.5% 0.0049 
Beam energy 0.5% 0.0644 
Trigger efficiency (•ystematic) 0.5% 0.0102 
Trigger efficiency (1tatiltical) (eee text) 0.0018 
Reeolution (eee text) 0.0509 
93/215 GeV nonnaliaation 2.5% 0.0743 

Total 0.1113 
,;..'-' 
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k = (E,k) k' = (E',k') 
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p = (M,O) X 

XBL 831 0-708 

FIG. 1. Deep inelastic J.LN scattering, showing our notation for the 4-momenta and their 

representation in the laboratory frame. 
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FIG. 2. Deep inelastic scattering kinematics. The region below the diagonal is accessible. 

Lines of constant W 2, x, and fJ are indicated. 
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XBL 831 0-709 

FIG. 3. The parton model picture of deep inelastic scattering. 
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(a) (b) 

(c) (d) 

XBL 8310-719 Y 

FIG. 4. QCD modifications to the parton model diagram (a) for deep inelastic scattering. 

(b) Logarithmic Q 2 evolution; (c) renormalization; (d) "higher twist". 
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Multi-Muon· Spectrometer 
Berkeley-Fermi lab-Princeton 

S
1

_
12 

in modules 4, 6, 8 ... 18 PC+DC in 1-18, 5C in 1-15 

PC(x+y+u) 
(b) Section s 

0 
~ 

0 

C") 

C/) 
1m 

(a) Top 

(c) Side 

Modules 1 2 3 4 5 6 7 8 9 1 o 11 12 13 14 15 16 17 18 · 

1m 

XBL 831 0-733 

FIG. 5. The Multimuon Spectrometer (MMS). (a) Top view, showing the arrangement of 

iron plates into modules and the magnet coils running the length of the stack. (b) Section, 

looking into the beam, showing the coils in their slots, our coordinate system, and a trigger 

scintillator hodoscope. Paddles 81,2,11 ,12 are used to signal a scattered muon, while staves 

83-10 serve as a beam veto. (c) Side view of one module- detailed in Fig. 7. 
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XBL 8310-721 

FIG. 6. The beam monitoring system used to define a valid beam muon and determine 

its momentum. Not to scale. 
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Proportional 
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FIG. 7. An MMS module showing the location of the calorimeter scintillators and a large 

gap instrumentation package including a trigger hodoscope, a proportional chamber, and 

a drift chamber. 
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FIG. 8. A large gap instrumentation package. Trigger hodoscopes were located in even 

numbered gaps only, starting with module 4. 
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FIG. 9. MMS acceptance at 215 and 93 GeV vs. Q2 (a, b), x (c, d), and E' (e, f). 
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FIG. 10. Contours of constant MMS acceptance vs. Q 2 and x. The x axis origin is at the 

top to facilitate comparison with the F2(x, Q2) plots of Sec. VII. Solid (dashed) contours 

are for a beam energy of 215 (93) Gev. 
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FIG. 11. Calorimeter and magnetic resolution in v showing the improvement possible at 

low v using the direct calorimetric measurement. 
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FIG. 12. The calorimeter vertex-finding algorithm. The vertical bars indicate the pulse 

heights in individual counters. Each pulse height is compared to a threshold of 0.08 times 
, 

the maximum pulse height. The result for each counter of the algorithm discussed in 

the text is shown as N. The vertex is assigned to the plate following the maximum of N 

(arrow). The point of the algorithm is to allow for fluctuations before the shower maximum 

(b), without including separate electromagnetic showers (c). 
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FIG. 13. The distribution of event vertices along the beam direction for the 215 GeV 

data. 
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FIG. 14. The missing ~nergy distribution of the 215 GeV data. The mean is calibrated 

to be zero, and the width (u = 21 GeV) is consistent with our expected beam, momentum, 

and calorimeter resolution. 
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FIG. 15. MMS resolution in x and Q2• The inner and outer bars indicate the resolution 

(±u) with and without the use of the calorimeter. Note that the origin in x is at the top. 

111 



25.000 r---,---,--:--.....,---, 

20,000 

.-;--
.!:!. 

~ 16.ooo F 

!2 
-;;; 
E 1o.ooo 
Q) 

~ 

5:ooo -

0 
0 

(a) 

93 GeV 

20 40 60 BO 100 

0 2 (GeV2 /c2
) 

KCG 8311-7282 

5000 ,...--......,----;---,.---;-----, 

4000 

N 3000 0 
0 ...... 
"' E 
Cl) 
> 2000 -

UJ 

1000 

0 02 0.4 0.6 O.B 

Xejorken 
XCG 8311·7284 

3500 
(e) 

3000 ~3 GeV 

2500 

~ 
(.!) 

2000 
LD 
N ...... 
.II) 

E 1500 
Q) 

> 
UJ 

1000 

25 50 75 100 125 

E' (GeV) ltCG 8311·7286 

100,000 

(b) 

215 GeV 
80.000 

.-;--
.!:!. 

N 60.000 
~ 

* ...... 
!!! 40.000 c= 
Cl) 

> 
UJ 

20.000 

60 100 160 200 

0 2 (GeV2/c2
) 

KCGBlll-7281 

70.000 

(d) 

60,000 

50,000 -

N 
0 40.000 0 ...... 
"' E 
Cl) 30.000 -
> 

UJ 

20.000 

10.000 

0 0.2 0.4 0.6 O.B 

Xajorken 
XCG.8311-7283 

25.000 
(f) 

215 GeV 

20.000 

~ 15.000 -
(.!) 

LD ...... 
"' E 
Q) 

10.000 > 
UJ 

5,000 -

0 
0 50 100 150 200 250 

E' (GeV) 
XCG 8311 728&A 

FIG. 16. Spectra of all reconstructed events m Q 2 , x, and E '· 
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FIG. 17. Typical calorimeter final calibration plot. Uncorrected v(calorimeter) -v(true) 

is plotted vs. v(true) determined bin by bin using our Monte Carlo simulation. The curve 

is the fit to be subtracted from the uncorrected measurements to give the final calorimeter 

energy. 
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FIG. 18. Calorimeter resolution. The circles show the results of the calculation when 

applied to simulated events generated with Ucalor = 1.5Jl/. The method thus somewhat 

overestimates the resolution. The simulated resolution was later adjusted to match that 

of the data. 
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FIG. 19. Efficiency contour map of one trigger hodoscope showing counters of varying 

quality. 
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FIG. 20. Total triggering efficiency (a) and its uncertainty (b) calculated for individual 

events in the 215 GeV data. 
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FIG. 21. Radiative corrections. (a, d) Internal bremsstrahlung; (b) vertex and vacuum 

polarization; (c) wide angle bremsstrahlung. 
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FIG. 22. Energy loss spectrum for 200 GeV muons in 4 inches of iron. 
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FIG. 23. Multiple Coulomb scattering P.L spectrum for 4 inches of iron. The tail with 

and without form factor suppression of single scattering is shown. 
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FIG. 24. Comparisons of real data and simulation in (a) momentum-fit x2 per degree of 

freedom and (b) fraction of chamber hits on tracks. 
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FIG. 25. Widths of the residual distributions in each drift chamber. 
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FIG. 2'1. Typical real (a) and simulated (b) event. Shown are computer displays of raw 

data from the track finding program with line segments connecting PC hits assigned to 

tracks. From top to bottom are: a bar graph of calorimeter pulse heights, low ADC above 

and high ADC below; the side view of the spectrometer; and the top view. The beam 

enters from the left. Vertical lines are hit trigger counters. In each chamber, the width 

of the caret indicates the span of consecutive hit wires. In the top view, the upstream 

and downstream hits in each module are those in the PC and the DC, where both of the 

left-right ambiguous solutions are shown. Note the electromagnetic splashes in both the 

chambers and the calorimeter; and the dense distribution of hits in the hadronic shower. 
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FIG. 28. Comparison of real and simulated distributions in (a) azimuthal scattering angle 

and (b) vertex position along the beam. 
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FIG. 29. Limiting effects of x resolution. Plotted is the average value of Xtrue for bins of 

Xmeasured as calculated in our apparatus simulation. 

125 



80,000 80,000 

(a) 
215 GeV 

(b) 

Data 
60,000 

N"" 
60,000 

N"" Monte Carlo 
~ ~ &tier-iiei&ii"on 

N Data N 

> ~ Q) 

g Monte Carlo g 
40,000 -------------- 40,000 

lD before iteration lD 
........ ........ 
en en - -c:: c:: 
Q) Q) 

> dj w 
20,000 20.000 

50 100 150 200 50 100 150 200 

o2 (GeV2 tc2) xcG 8311·7207 o2 (GeV2 tc2) xcG 8311·7288 

50,000 50,000 

(c) 
215 GeV 

(d) 
215 GeV 

40,000 - Data 40,000 - Data 

Monte Carlo Monte Carlo -------------- --------------
N 

before iteration 
N 

after iteration 
0 30,000 -

0 ........ 

0 30,000 -

g 
en en - -c:: c:: 
Q) 

20,000 > w 
Q) 

20,000 dj 

10,000 10,000 

0 
0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

X8jorken 
XCG 8311-7281 

XBjorken 
XCG 8311-7292 

14,000 14,000 

(e) (f) 
12,000 12,000 

N 10,000 N 10,000 -
N"" N"" 
~ ~ 
~ 8,000 ~ 8,000 
g g 
(() (() 
........ 6,000 ........ 6,000 en en - -c:: c:: 
Q) Q) 
> 4,000 w Data dj 4,000 Data 

~~!'-'~--'=~~~~ 
2,000 before iteration 2,000 

0 0 
0 100 200 300 400 0 100 200 300 400 

W2 (GeV/c2
)
2 

XCG 8311-7298 W2 (GeV/c2
)
2 

XCG 8311·7299 

FIG. 30. Distributions of real and simulated events before and after the Ff~n iteration 

procedure described in the text. 
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point. Values at the same point have been displaced slightly in Q2 for clarity. 
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FIG. 32. F2 for nucleons in iron as a function of Q2 at various fixed values of x. 93 and 

215 Ge V data are shown separately. Errors are statistical. 
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FIG. 33. Results of the lowest-order QCD fit applied simultaneously to the 93 and 215 

GeV measurements of F2(x, Q2). These measurements have been averaged after fitting. 

The curvesrepresent the Q 2 dependence of F2 at various fixed values of x predicted by 

the single global fit. 
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FIG. 34. Systematic effects of a 1% shift in beam energy (~ 2x the estimated uncer-

tainty). The normalization of the 93 GeV data has been allowed to float in each case. The 

solid (dashed) curves are the QCD fit to the standard (shifted) data. The difference in A 

betw.een the fits is 20 MeV/ c. 
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FIG. 35. The dependence of A on systematic error in the beam energy calibration relative 

to that of the MMS. The estimated uncertainty is 0.005. The line is a fit to the points 

with slope (19 MeV /c) per (1% shift). 
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FIG. 37. The correlation between our best-fit value of A and the value assumed for 6, 
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systematic uncertainties in our standard fit of A are shown. 
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FIG. 38. A comparison of our measured F2(x, Q 2) (multiplied by 0.94) to the EMC's 

iron target measurement (Ref. 52.). 
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FIG. 48. The effect of radiative corrections on the deep inelastic scattering cross section. 
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nucleon and for the two nuclear models of iron discussed in the text. 
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