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Abstract

Cognitive reserve is inherently a dynamic construct; however, traditional methods 

of estimating reserve have focused on static proxy variables. A recently proposed 

psychometric approach entails modeling reserve as residual cognition not explained by 

demographic and brain variables. In this study, we extended this approach to 

longitudinal measurement and examined how change in reserve relates to clinical 

outcomes in late life and influences the effect of brain atrophy on cognitive decline. 

Results indicated that cognitive reserve changes were associated with progression of 

clinical diagnosis. More rapid depletion of cognitive reserve was associated with faster 

decline in non-memory cognitive functions, even after accounting for longitudinal brain 

atrophy. The effect of longitudinal brain atrophy on cognitive decline differed based on 

the extent to which an individual’s reserve changed. Whereas depletion of reserve 

appeared to unmask the effects of brain atrophy on cognitive decline, maintenance of 

reserve buffered against the negative effects of brain atrophy. Study results highlight 

that changes in reserve may have important implications for individual differences in 

cognitive aging trajectories.

Keywords: Aging, cognitive reserve, cognitive decline, MRI, gray matter change, 

hippocampus



1. Introduction

A core feature of aging is the heterogeneity of cognitive trajectories. Clinically 

normal older adults and symptomatic older adults with memory impairment both show 

considerable variability in their cognitive courses, rendering it challenging to identify a 

single cause or etiology of individual differences in trajectories (Knopman et al. 2015; 

Nettiksimmons et al. 2014). The notion that cognition is influenced by multiple 

determinants originates from several lines of research, including recent evidence that 

canonical measures of brain disease (e.g., total gray matter volume; white matter 

hyperintensities; hippocampal volume) account for less than 50% of variance in memory 

performance (Boyle et al. 2013; Reed et al. 2010). In turn, accumulating evidence 

indicates that 20-40% of non-demented older adults meet neuropathological criteria for 

Alzheimer’s disease (AD) upon death (O’Brien et al. 2009; Price et al. 2009), suggesting 

that the presence of AD-related brain pathology alone does not fully account for 

individual differences in cognitive decline. The concept of ‘cognitive reserve’ has been 

used to explain this well-documented mismatch between pathology and cognitive 

performance and has stirred considerable interest in the dynamic interplay between 

measurable brain pathology and cognitive outcomes over time (Stern 2009).

Cognitive reserve is theorized to be an active process of cognitive adaptation to 

pathology. Within this framework, people display differential cognitive vulnerability to 

brain disease at a given time point as a function of their ability to adapt to neurological 

insults (Stern et al. 2018). Although cognitive reserve is inherently a dynamic construct, 

traditional methods of inferring reserve have focused on static proxy variables that 

represent a retrospective summation of early life experiences (e.g., years of education). 

Numerous conceptual and methodological concerns accompany this approach, including 

the correlation between demographic proxies and other confounding historical variables 



(e.g., socioeconomic status), the oversimplification of individual differences in brain 

disease susceptibility, and the inability of these proxies to change during late life (Jones 

et al. 2011; Satz et al. 2011; Zahodne et al. 2015). More recently, a psychometric 

approach to the measurement of reserve has been proposed, wherein cognitive reserve 

is operationalized as the difference between observed and expected cognitive function 

as predicted by brain and demographic variables (Reed et al. 2010). Utilizing this 

psychometric approach results in a residualized reserve index for each individual, with a 

higher residual reserve index indicating that the individual’s cognitive performance is 

better than expected when accounting for brain pathology and demographic 

characteristics.

The residual index approach circumvents many prior methodological concerns, as 

it provides a direct estimate of cognitive reserve while minimizing the inherent 

confounds of historical proxy variables. Perhaps most importantly, the residual index 

methodology allows for the longitudinal estimation of cognitive reserve. To understand 

individual variability in aging trajectories and person-specific susceptibility to brain 

pathology, longitudinal appraisal of cognitive reserve in both asymptomatic and clinical 

populations is critically needed; however, to our knowledge, application of the residual 

index approach beyond a cross-sectional framework has been reported by only one 

study (Zahodne et al. 2015). In the context of their two-time point study design, Zahodne

and colleagues reported that dynamic changes in reserve might be a better predictor of 

future clinical status in initially non-demented older adults than reserve measured at a 

single time point; however, it remains unclear whether longitudinal change in cognitive 

reserve across more than two time points moderates or influences the association 

between brain atrophy and rate of change in cognitive test scores (i.e., slopes).

To extend this important, foundational work, the current study examined dynamic 

cognitive reserve in a fully longitudinal design using a residual reserve index approach. 



The overarching goal of the study was to develop longitudinal models of dynamic 

cognitive reserve in a diverse clinical aging cohort to examine how changes in reserve: 

a) relate to changes in clinical diagnostic status; b) relate to cognitive decline; and c) 

interact with changing brain status to influence cognitive decline. To minimize circularity 

in the definition of our reserve index, measures used to build the cognitive reserve index

did not overlap with measures used to define clinical status. To accomplish our aims, we 

developed a latent variable model predicated on the assumption that changes in 

reserve, as defined by a memory residual index, influence the relation between changing

brain structure and cognitive decline in late life.

2. Materials and Methods

2.1 Participants: 

Study participants were from the UC Davis Diversity Cohort, a longitudinal study 

that includes high numbers of Hispanic (e.g., Latina/o and other Spanish origin), African 

American, and non-Hispanic White older adults. This cohort is also heterogenous in 

educational attainment, and their clinical severity levels span a spectrum of cognitive 

function from normal to mildly demented at baseline assessment. Cohort composition 

and recruitment methods are described in Hinton et al. (2010). In brief, participants were

identified through a community screening program designed to recruit individuals with 

cognitive functioning representative of the community-dwelling population in a six-

county catchment area in the central Sacramento/San Joaquin Valley and east San 

Francisco Bay Area of Northern California or are referred for research following a clinical 

evaluation at a university memory/dementia clinic.

Participants in this study were evaluated and followed within the research program

of the UC Davis Alzheimer’s Disease Center. A rolling enrollment design, initiated in 

2002, was used to build and maintain the cohort. Inclusion criteria for the larger cohort 

included age 60 or older at their first examination and ability to speak English or 



Spanish. Exclusion criteria included unstable major medical illness, major primary 

psychiatric disorder, or substance abuse or dependence in the last five years. All 

participants signed informed consent, and all human subject involvement was overseen 

by institutional review boards at UC Davis, the Veterans Administration Northern 

California Health Care System and San Joaquin General Hospital in Stockton, California.

The current study included 338 participants who had received at least two 

cognitive evaluations (median=6, range=2-14) and at least two MRI brain scans 

(median=2, range=2-6). There were 160 non-Hispanic Whites, 85 Hispanics, 76 African 

Americans, and 17 individuals from other racial and ethnic groups; 41 Hispanics were 

tested in Spanish, and all others were tested in English. The majority of the sample (91 

Whites, 80 Hispanics, 69 African Americans, 15 Other) was recruited through the 

community screening program. The remaining 82 (68 Whites, 5 Hispanics, 7 African 

Americans, 2 Other) were recruited from the clinic.

2.2. Clinical Diagnosis: 

All participants received multidisciplinary diagnostic evaluations at baseline and at 

approximately annual intervals following the baseline evaluation. Baseline and follow-up 

evaluations followed the same protocol with a detailed medical history, physical and 

neurological exam, and clinical neuropsychological assessment. A physician fluent in 

Spanish examined subjects who spoke only Spanish. A family member or other informant

was interviewed to obtain information about cognitive and independent functioning. 

Clinical neuropsychological tests were different from the cognitive measures used in 

analyses in this study to estimate reserve and longitudinal cognitive trajectories. Routine

dementia work-up laboratory tests were obtained at the baseline evaluation and when 

clinically indicated at the time of follow-up evaluations.

Diagnosis of cognitive syndrome (Normal, mild cognitive impairment (MCI), 

Dementia) and, for individuals with dementia, underlying etiology, was made in a 



multidisciplinary consensus conference following standardized criteria and methods. 

Dementia was diagnosed using DSM-III-R (Association 1987) criteria for dementia 

modified such that dementia could be diagnosed in the absence of memory impairment 

if there was significant impairment of two or more other cognitive domains. MCI was 

diagnosed according to standard clinical criteria and was further sub-typed according to 

current Alzheimer’s Disease Centers Uniform Data Set guidelines (Morris et al. 2006). 

Normal cognitive function was diagnosed if there was no clinically significant cognitive 

impairment. All diagnoses were made blind to the neuropsychological tests that were 

analyzed in this study. 

Change of diagnosis from the first to last evaluation was the independent variable 

in one of our primary analyses. This change variable included the following mutually 

exclusive groups: normal to normal (Stable Normal, N=126), normal progressing to MCI 

(Normal to MCI, N=46), normal progressing to dementia (Normal to Dementia, N=31), 

MCI to MCI (Stable MCI, N=29), MCI progressing to dementia (MCI to Dementia, N=76), 

and dementia to dementia (Dementia, N=22).

2.3. Cognitive Assessment: 

The cognitive outcomes in this study were measures of episodic memory, semantic

memory, executive function, and spatial ability derived from the Spanish and English 

Neuropsychological Assessment Scales (SENAS). The SENAS has undergone extensive 

development as a battery of cognitive tests relevant to cognitive aging that allow for 

valid comparisons across racial, ethnic, and linguistic groups (Mungas et al. 2004; 

Mungas, Reed, Haan, et al. 2005; Mungas et al. 2000; Mungas, Reed, Tomaszewski 

Farias, et al. 2005; Mungas et al. 2011). See Supplementary Materials for additional 

details.

2.4. MRI Measures



2.4.1. MRI Volume Measurements: Brain image acquisition was performed under a 

standard protocol at the UC Davis Imaging Research Center or at the Veterans 

Administration Northern California Health System Medical Center in Martinez, CA. MRI 

baseline measurements were derived using an in-house processing pipeline described 

previously (Fletcher et al. 2014; Lee et al. 2012). White matter hyperintensities (WMH) 

were computed by an in-house method combining native FLAIR with structural MRI as 

described previously (DeCarli et al., 2005). 

2.4.2. Gray Matter Volume Change: We computed longitudinal structural change 

between the two most widely separated time points. We used a tensor-based 

morphometry (TBM) method designed to enhance sensitivity and specificity for biological

change by incorporating estimates of likely tissue boundaries (Fletcher 2014; Fletcher et 

al. 2013). TBM generates deformation fields by registering brain scans at differing time 

points and using these to estimate local volume changes between the scans (Ashburner 

and Friston 2000). This processing was done via an in-house processing pipeline that has

been previously described (Fletcher et al. 2016). Gray matter (GM) volume was 

computed over a cortical GM region of interest (ROI) that averaged volume change over 

frontal, parietal, temporal (excluding hippocampus), and occipital lobar regions. These 

were the same ROIs used for measuring baseline cortical gray matter. Log-Jacobians 

from these ROIs from both hemispheres were averaged to constitute a global cortical 

gray matter change measure. Longitudinal change over these regions was computed as 

the mean log-Jacobian over the ROI intersected with the segmented GM. Cortical gray 

matter change defined in this manner had the strongest effect on cognitive decline in a 

previous study based on this cohort (Fletcher et al. 2018). Change in a hippocampus ROI 

was separately measured using these same methods.

2.5. Data Analysis

2.5.1. Measures and Data Processing: SENAS measures of episodic memory, 



semantic memory, executive function, and spatial ability were the primary dependent 

variables. Independent variables included: MRI gray matter volume change (average of 

frontal, temporal, parietal, and occipital ROIs); hippocampal volume change (average of 

left and right); MRI baseline cortical gray matter, hippocampus, white matter 

hyperintensity (WMH), and intracranial volumes; and the demographic variables 

race/ethnicity, education, gender, and language of test administration. We applied a 

rank-based inverse normal transformation (Blom 1958) to normalize the variables and 

establish a common standardized scale (M = 0, SD = 1). Education was centered at 12 

years. Gender, race/ethnicity, and language of test administration were categorical 

covariates coded using indicator variables. Race/ethnicity was coded using three 

indicator variables: African American (1=yes, 0 =no), Hispanic (1=yes, 0=no), and Other

minority (1=yes, 0=no); non-Hispanic White was the reference group. Gender (male=1, 

female=0) and language of test administration (Spanish=1, English=0) were 

represented by single indicator variables. This coding establishes a White female, with 

12 years of education, tested in English, as a reference.

Change of diagnosis from the first to last evaluation was the independent variable 

in one of our primary analyses. The six groups of interest were represented by five 

indicator variables. The Stable Normal group was the reference group. There were a 

small number of individuals who reverted from MCI to Normal (N=8) who were not 

included in this analysis.

2.5.2. Longitudinal Modeling of Cognitive Trajectories: Mixed-effects, parallel 

process longitudinal analyses were performed using Mplus version 8.1 multilevel 

modeling platform (Muthén and Muthén 1998). Figure 1 shows a schematic of the basic 

modeling approach. Within each person’s longitudinal observations, each of the four 

cognitive outcomes was regressed on time in years since the first MRI scan. The Within-

Subjects part of the model included terms to account for practice effects and a practice 



effect by Spanish test administration interaction that has been identified in previous 

studies with this sample (Early et al. 2013; Brewster et al. 2014; Melrose et al. 2015). 

Random intercepts and slopes estimated in the Within-Subjects part of the model served 

as dependent variables in the Between-Subjects part of the model. All parameters in the 

model, including Within and Between components, were estimated simultaneously. The 

multilevel modeling platform allows for heterogeneity in the number of assessment time 

points and in the lags between assessments across persons.

Episodic Memory intercept (memint) and slope (memsl) random effects were used 

to measure baseline cognitive reserve and longitudinal change in reserve. Baseline 

reserve (memrbl) was estimated as a latent variable that captured residual variance in 

memint that was not explained by demographic variables (race/ethnicity, education, 

gender, language) and baseline brain variables (cortical gray matter and hippocampus 

volumes, residualized in the model for intracranial volume, and white matter 

hyperintensity volume). Reserve change (memrsl) was a latent variable that captured 

residual variance in memsl that was not explained by demographic variables, baseline 

brain variables, and brain change variables (cortical gray matter and hippocampus 

volume change). Baseline reserve measured how each individual's observed memory 

intercept differed from what would be expected given that person's observed 

demographic and baseline brain characteristics. Reserve change measured how each 

individual's observed memory slope deviated from what would be expected given that 

person's observed demographic characteristics, baseline brain, and brain change 

measurements.

Our three primary analytic aims were: 1) To examine how baseline reserve and 

reserve change differed across groups that were defined by clinical diagnosis at the first 

and last assessments, 2) To examine how baseline reserve and reserve change predicted

change in non-memory cognitive abilities, and specifically, the incremental effects of 



these reserve measures above and beyond effects of brain and demographic variables, 

and 3) To examine whether reserve measures interacted with and therefore modified 

effects of brain change variables on cognitive decline

For Aim 1, baseline reserve and reserve change were the primary dependent 

variables, and diagnosis change indicator variables were the primary independent 

variables. The model depicted in Figure 1 was modified by removing non-memory 

cognitive variables from the Within and Between models and regressing baseline reserve

and reserve change on diagnosis change indicator variables in the Between part of the 

model. The Stable Normal group was the reference for group comparisons for both 

reserve variables. For Aims 2 and 3, semantic memory (Semantic), executive function 

(Executive), and spatial ability (Spatial) slope random effects (semsl, execsl, spatsl) were

used as indicators for a second-order global cognitive slope factor. We used a model that

had a global slope second-order factor but individual intercept random effects. Slopes 

were highly correlated, and this model provided optimal fit (see Supplementary 

materials). 

Aim 3 added interactions of baseline reserve and reserve change with brain 

variables. One model included all of the effects from the Aim 2 model plus a Baseline 

Reserve by Cortical Gray Matter Change interaction effect, a second tested the Reserve 

Change interaction with Gray Matter Change, and two models tested the two reserve 

interactions with Hippocampus Change. Models for Aims 1 and 2 simultaneously 

estimated all model parameters and effects. The Aim 3 analyses involved interactions 

with latent variables. While latent variable interactions are possible within Mplus, 

estimation is computationally intensive, and we were not able to successfully estimate 

the latent variable interactions required for Aim 3 within a single model estimation. We 

addressed this limitation by estimating a model in Aim 2 that did not include interaction 

effects and saved the baseline reserve and reserve change factor scores from that 



analysis. These factor scores were entered as observed variables into analyses that 

included the brain by baseline reserve and brain by reserve change interactions.  

Because this approach problematically treats the reserve factor scores as observed 

variables without accounting for the error in their measurement (which could influence 

inferences by negatively biasing standard errors for effects involving the reserve 

factors), we further estimated the reliability of these reserve variables and their 

interactions with brain variables and modeled these empirical reliabilities in the models 

that included interaction effects. To estimate reliabilities, we used bootstrap resampling 

to estimate the reliability of the reserve factor scores and products of these factor scores

with brain variables across 500 bootstrap samples. Each bootstrap draw could include 

duplicated records from the same participant, fewer records for a given participant than 

in the original dataset, or no records for an individual. Cases that had only one unique 

record for a given participant were dropped from the draw. Reliability was estimated by 

calculating the intraclass correlation (ICC) of the relevant scores across the 500 

bootstrap samples using the R ICC module (ICCest with THD confidence intervals). We 

then fixed error variances in the models with interaction effects to the estimated amount

of error variance in these measures.

2.6. Data availability

The raw data that support the findings of this study are available from the 

corresponding author upon request subject to establishing a data use agreement.

3. Results

3.1. Sample Characteristics: 

Sample characteristics are presented in Table 1. Results are stratified by baseline 

clinical diagnosis to clarify the range of clinical expression of cognitive impairment 

covered in this study. Sixty percent of the sample was normal, 33% had a baseline 

diagnosis of MCI, and 7% were diagnosed with dementia. About 60% were females. Sex 



differed across diagnosis groups (χ2[2]=5.734, p=0.057); Normals and dementia cases 

were more likely to be female, but MCI cases were evenly divided among males and 

females. About 22% were African Americans, 25% were Hispanics, 47% were non-

Hispanic Whites, and 5% were Other races or ethnicities. Race/ethnicity differed by 

diagnosis (χ2[6]=36.532, p=0.001) with Whites more likely to have a diagnosis of MCI. 

Approximately two-thirds of the sample were recruited from the community (76%). 

Recruitment source differed by diagnosis (χ2[2]=30.040, p=0.001), with MCI cases more 

likely to be clinic referrals. Average age was about 75 years, and this differed across 

groups (F[2,335]=3.902, p=0.021) with Dementia older than MCI who were older than 

Normals. Average education was 13.4 and differed across diagnosis groups 

(F[2,335]=5.968, p=0.003), with highest education in MCI and lowest in dementia. Gray 

matter volume change, baseline gray matter volume, and baseline cognitive test scores 

all differed across diagnostic groups (p's < 0.001), with a consistent pattern of normal > 

MCI > dementia.

3.2. Reserve Trajectories by Diagnosis Change: 

We first examined how the baseline reserve index and reserve change were 

related to change in diagnosis over the follow-up period. The average amount of follow-

up time differed across the diagnosis change groups (F[5,324]=12.213, p=0.001; mean 

Stable Normal =8.3 (SD=3.6) years, Normal to MCI =8.4 (3.8), Normal to Dementia = 7.7

(3), Stable MCI = 5.4 (3.1), MCI to Dementia = 5.4 (3), Dementia = 4.8 (3.6)). Length of 

follow-up was longer for those who started as Normal and was shortest for those who 

were demented at the baseline assessment.

Table 2 presents estimated diagnosis change group effects on Baseline Reserve 

and Reserve Change. Estimates in Table 2 are average values for the Stable Normal 

Group and are average differences from Stable Normals for the other groups. As would 

be expected, Stable Normals had the highest Baseline Reserve and the Dementia group 



the lowest, with progressive gradations across the other Normal and MCI groups. 

Average Reserve Index Change was significantly negative in the Stable Normal Group (-

0.053 SD per year). Rate of decline in reserve in the Stable MCI group did not differ from 

that of Stable Normals, but all other groups showed more rapid decline. Clear group 

differences in average Baseline Reserve could be observed, as well as substantial group 

differences in rate of Reserve Change (see Figure 2). It is noteworthy that the Normal to 

Dementia group had the fastest rate of decline (-0.225 SD per year). By contrast, 

Reserve Change in the MCI to Dementia and Stable Dementia groups were similar, (-

0.162 & -0.149 SD per year), while Reserve Change in the Normal to MCI group was less 

dramatic (-0.119 SD per year) but still differed significantly from that of Stable Normals.

3.3. Incremental Effects on Non-Memory Cognitive Trajectories of Reserve, Demographic,

and Brain Variables: 

To address Aim 2, we estimated Baseline Reserve and Reserve Change using the 

latent variable model depicted in Figure 1 and evaluated how these reserve indices, 

baseline brain variables, brain change variables, and demographic variables influenced 

cognitive decline. Results showing independent effects of the various classes of variables

on global cognitive slope are presented in Table 3.

The average cognitive decline of a reference case (female, non-Hispanic white, 12 

years of education, English speaking, average brain and brain change values in the 

sample) was -0.108 SD per year. African Americans (average decline rate =-0.037 

SD/year) and Hispanics (-0.059 SD/year) declined at significantly slower rates on 

average. Of the brain variables, cortical gray matter change had the largest effect on 

cognitive decline (0.047 SD/year per SD of gray matter change), followed by baseline 

hippocampal volume (0.022 SD/Year/SD) and hippocampal change (0.017 SD/Year/SD). 

Reserve change was related to cognitive decline independent of all other predictors in 

the model (0.052 SD/Year/SD) and had an independent effect that was about equal to 



that of cortical gray matter change. Baseline reserve was not independently related to 

cognitive change (p=0.363).

3.4. Interaction of Reserve and Brain Change: 

Aim 3 examined whether the reserve indices modified the effects of brain change 

on cognitive decline.  In terms of estimated reliabilities of the reserve indices and their 

cross-products with brain change variables, Baseline Reserve was more reliable 

(ICC=0.845, 95% CI=0.825 to 0.865) than Reserve Change (ICC=0.727; 95%CI=0.697 to 

0.757), and the reliabilities of the cross-products were generally about the same as that 

of the involved reserve variables (Baseline Reserve by Cortical Gray Matter Change: 

ICC=0.865; 95%CI=0.847 to 0.882; Reserve Change by Cortical Gray Matter Change: 

ICC=0.722; 95% CI=0.692 to 0.752; Baseline Reserve by Hippocampus Change: 

ICC=0.831; 95% CI=0.801 to 0.861; Reserve Change by Hippocampus Change: 

ICC=0.725; 95%CI=0.682 to 0.767). Table 4 summarizes results from the four analyses 

that tested reserve by brain change interactions. Significant interaction effects were 

observed for Baseline Reserve by Gray Matter Change (estimate=-0.021, s.e.=0.005, 

p=0.001), Reserve Change by Gray Matter Change (estimate=-0.015, s.e.=0.006, 

p=0.008), Reserve Change by Hippocampus Change (estimate=-0.013, s.e.=0.004, 

p=0.004), and Baseline Reserve by Hippocampus Change (estimate=-0.014, s.e.=0.005, 

p=0.007). These results can be interpreted to mean that the brain change effect is 

smaller in individuals with higher reserve indices. For example, the cortical gray matter 

change effect is 0.032 SD/year/SD gray matter change in those with Reserve Change 1 

SD above average, 0.047 SD/year/SD in those with average Reserve Change, and 0.062 

SD/year/SD in those with Reserve Change 1 SD below average.

The Reserve Change by Cortical Gray Matter Change interaction effect is presented

graphically in Figures 3 and 4. Figure 3 shows annualized rate of non-memory change on

the y-axis and shows how this relates to Gray Matter Change rate (x-axis) for two levels 



of Reserve Change. Rate of cognitive decline was more strongly related to Gray Matter 

Change in those with more rapidly declining reserve (Reserve Change of -1 SD). Rate of 

cognitive decline was near 0 when there was little gray matter atrophy regardless of 

Reserve Change level. In contrast, if an individual displayed rapidly declining reserve in 

the context of faster gray matter atrophy over time, then their annual rate of cognitive 

decline doubled (compared to those whose reserve decline less rapidly than average). 

Figure 4 presents these results in terms of predicted cognitive trajectories for one 

outcome (Semantic Memory). The effect of Gray Matter Change on cognitive trajectories 

is stronger among participants with more rapidly declining reserve, but reserve that is 

declining less rapidly than average protects against the effects of declining gray matter.

4. Discussion:

In a diverse cohort of aging adults with clinical severity levels ranging from normal 

to mildly demented, we developed longitudinal, latent variable models of cognitive 

reserve to examine how changes in reserve influence the effect of brain atrophy on 

cognitive decline. We defined reserve as residual memory performance not explained by 

brain and demographic variables. Results showed that cognitive reserve changed in 

tandem with progression of clinical diagnosis, with more rapid depletion of reserve 

observed in those who transitioned to a more impaired clinical state. Depletion of 

cognitive reserve was related to faster decline in non-memory cognitive domains, even 

after accounting for longitudinal brain atrophy. Finally, in a stringent test of the construct

validity of the residual-defined dynamic measure of cognitive reserve, we found that 

maintaining reserve buffered the negative effect of brain atrophy on cognitive decline. 

Results from the study underscore the dynamic nature of reserve in late life, and 

highlight that changes in reserve may have meaningful clinical implications for individual

aging trajectories.



A primary aim of the study was to model changes in cognitive reserve and 

determine how these changes relate to longitudinal changes in clinical status (i.e., 

normal, MCI, dementia) adjudicated independently of the memory measure used to 

compute reserve. We extended cross-sectional (Hohman et al. 2016; Reed et al. 2010; 

Zahodne et al. 2013) and two-time point (Zahodne et al. 2015) residual approaches 

through our use of an extended, longitudinal framework, and we used latent variable 

modeling to appraise change in cognitive reserve over an average of 7 assessments. In 

our study, all diagnosis groups experienced, on average, a decrement in reserve over 

time, although significant differences in rates of change in cognitive reserve were noted 

across most clinical status groups relative to individuals who remained in the Stable 

Normal category. While change in reserve in the Stable MCI group did not significantly 

differ from that of the Stable Normal group, more robust declines in reserve were 

associated with worsening diagnostic classification over time (particularly Normal to 

Dementia status) and were also evident in individuals who entered the study with, and 

maintained, a dementia diagnosis.

The idea that cognitive reserve may be depleted over time is not a new concept, 

and has been proffered as an explanation for the widely reported finding that older 

adults with higher reserve show a more precipitous decline in functioning after they 

cross a dementia severity threshold (Scarmeas et al. 2006; Stern et al. 1999) and/or as 

brain degeneration progresses (Mungas et al. 2018). These studies have utilized 

historical variables (e.g., education) as proxies for cognitive reserve, rendering it difficult

to quantify the degree to which cognitive reserve changes over time and to measure 

how this change maps onto evolving clinical presentation. Change in cognitive reserve 

over time and its relation to clinical diagnostic status has previously been characterized 

by only one study (Zahodne et al. 2015), which reported that in non-demented, 



community-dwelling adults, change in reserve was a better predictor of a future 

dementia diagnosis than cognitive reserve measured at a single time point.

Our study further examined the association between dynamic cognitive reserve 

and longitudinal cognitive change and demonstrated that more rapid decline in reserve 

was associated with faster decline in non-memory cognitive domains (i.e., global 

cognitive slopes, excluding memory function). These results were consistent with our 

hypotheses and intuitive in many respects. Our dynamic measure of reserve was defined

by longitudinal memory performance, and it is reasonable to expect that declines in 

memory would be associated with non-memory cognitive decline. Indeed, previous 

studies with this cohort have shown that rates of decline of the cognitive domains 

measured in this study are highly correlated (Fletcher et al. 2018; Mungas et al. 2018). 

However, widespread volumetric brain changes are often presumed to be the underlying 

cause of diffuse cognitive decline. Results from this study, however, indicated that 

declining reserve (which, by definition, is memory performance not explained by brain 

atrophy) was associated with faster rates of global cognitive decline, independent of 

both baseline and longitudinal brain atrophy (i.e., cortical gray matter; hippocampal gray

matter) and white matter hyperintensities. To rephrase, dynamic change in reserve was 

an independent predictor of cognitive decline, even after accounting for canonical 

measures of brain health. If correlations between cognitive domains are strictly due to 

shared, underlying brain morphology, then we would not expect this outcome.  Instead, 

our findings highlight a critical and independent role for reserve in global cognitive 

trajectories.

A primary tenet of the cognitive reserve construct is that it moderates the impact 

of brain insults on clinical presentation. Thus, a critical appraisal of the reserve change 

index is to assess how it influences the effect of brain change on cognitive decline. 

Consistent with our hypotheses, the present study demonstrated that maintenance of 



reserve reduces the impact of brain atrophy (both global cortical atrophy and 

hippocampal atrophy) on non-memory cognitive decline. The effects sizes were notably 

strong, such that for a decline in reserve that was 1 standard deviation (SD) faster than 

the average (i.e., depleting reserve), the effect of a 1 SD loss of hippocampal volume on 

non-memory cognitive decline increased by 65% (from 0.020 to 0.033 SD/year). By 

contrast, if residual reserve change was 1 SD above average (i.e., maintaining reserve), 

the effect of longitudinal hippocampal atrophy on non-memory cognitive decline was 

minimized (0.007 SD/year). Similar moderating effects of the residual reserve index were

noted for the association between cortical gray matter change and non-memory 

cognitive decline. Overall, these findings suggest that the effect of longitudinal brain 

atrophy on cognitive decline is markedly different based on the extent to which an 

individual’s residual-defined measure of reserve changes. Thus, whereas depletion of 

reserve may reveal the effects of brain atrophy on cognitive decline, maintenance of 

reserve may exert a buffer against the effects of brain atrophy on cognitive decline. Our 

results also indicate that change in an individual’s residual-defined measure of cognitive 

reserve is a much stronger predictor of cognitive change than is baseline cognitive 

reserve, which did not exert a meaningful effect on non-memory cognitive slope 

independent of reserve change. This finding suggests that establishing a high level of 

cognitive reserve in and of itself may not confer protection against cognitive decline if 

that level of cognitive reserve cannot be maintained over time. 

Our study design and hypotheses were rooted in the idea that heterogeneity in 

cognitive trajectories may be driven –in part– by individual differences in the ability to 

cognitively adapt to or stave off impending brain disease (Stern 2009). The 

measurement of cognitive reserve has presented many methodological challenges and 

has raised questions regarding the utility of this construct in aging and AD research. 

Consistent with the consensus definitions and guidelines provided by the recent 



whitepaper on cognitive reserve (Stern 2018), oOne of the advantages of the residual 

reserve approach is that it provides an objective estimate of reserve that is not reliant on

retrospective proxy variables. While our approach cannot be considered a direct 

measure of reserve,  tThrough the parameterization of residual variance in memory 

performance, we were nonetheless able to operationalize reserve and dynamically track 

its changes over time, which is critical for understanding how this construct relates to 

symptom onset and salient clinical features of AD and dementia more broadly. 

Although our results suggest that applying a psychometric approach to the 

longitudinal measurement of cognitive reserve is not only feasible but also clinically 

meaningful, there are theoretical implications of this approach that warrant further 

consideration. A residual represents the variance in the outcome measure (in this case, 

memory performance) that is not explained by the predictors (in this case, 

demographics, baseline brain volumes and white matter hyperintensities, longitudinal 

brain volumes). As such, within the residual reserve framework, cognitive reserve can be

viewed as an index of what we do not know and what we may not currently be able to 

measure. This is also reflected in the broader literature, as cognitive reserve is 

frequently used to encapsulate the mismatch between pathology and measured 

cognition; however, it is more directly parameterized in the residual reserve index 

approach. With methodological advancements in the in-vivo measurement of brain 

pathology, improved accuracy in the diagnosis of complex syndromes, and increased 

knowledge of functional brain mechanisms (e.g., neuroplasticity) that underlie cognitive 

reserve, the residual memory variance should become smaller. Taking this one step 

further, a long-term implication of this work is that residual memory variance should 

ultimately lose some of its utility as we gain empirical knowledge of the mechanisms of 

cognitive decline. This is not to undermine the importance of the construct, however, as 



delineating the mechanisms for cognitive reserve is pivotal to our understanding of how 

the brain compensates for or adapts to disease-related changes.

In terms of study limitations, the residual reserve index ultimately summarizes the 

effects of unknown variables that influence memory function, as noted previously. 

Although our latent variable modeling approach minimizes the influence of measurement

error, the residual memory index may still capture error and unknown variables that do 

not truly reflect cognitive reserve (Reed et al. 2010). Our incorporation of measures of 

central nervous system integrity was also limited by a) what was available in the study, 

and b) what is currently measurable in the field. Although we included common 

neuroimaging variables of brain structure into our models, measures of disease-specific 

pathology (e.g., amyloid, phosphorylated tau) were not available. Moreover, 

proteinopathies, vascular changes, and synaptic changes that are not measurable in-vivo

at this time may underlie the observed heterogeneity in memory performance; these 

unmeasured pathological factors are likely subsumed under the residual reserve 

component in this study, which remains an important conceptual issue to consider when 

interpreting the meaning of residual-defined reserve outcomes. An additional limitation 

of the study is that our residual-defined dynamic measure of cognitive reserve does not 

address underlying mechanisms of reserve. As noted previously, direct measures of 

reserve - and by extension, mechanisms of reserve - have historically been challenging 

to implement. Functional imaging methods have been proposed as a possible means of 

assessing cognitive reserve directly, although these approaches are still tied to specific 

methodologies, as noted in the recent whitepaper (Stern 2018). While the delineation of 

processes that explain why some individuals are able to adapt to pathology is critically 

important, these mechanisms are outside the scope of our study. Finally, given 

considerations related to sample size and number of MRI measurements, we were 

limited in our ability to appraise non-linear trends in reserve trajectories; as such, our 



latent variable models assumed a linear change in both the residual reserve index and 

the cognitive outcomes, in the presence of modeled practice effects.

Of note, we elected to focus on episodic memory as the primary indicator of 

reserve. The decision to use episodic memory to define our reserve index was based on 

several factors, including prior literature on cognitive reserve (Reed et al. 2010; Stern et 

al. 1999; Zahodne et al. 2015; Zahodne et al. 2013), as well as its sensitivity to aging 

and Alzheimer’s disease (Bondi et al. 2014; Busse et al. 2006; Driscoll et al. 2003; Ewers 

et al. 2010). Prior studies suggest that the operationalization of reserve may be applied 

to non-memory domains, with comparable findings (Reed et al. 2010; Reed et al. 2011). 

Nonetheless, an imperative for future research will be to further refine the 

generalizability and practicality of the measurement of reserve. Whether based on 

memory or non-memory domains, the residual reserve index score is dependent upon 

the characteristics of the study participant sample and the measures that are available, 

which limits its current applicability to clinical settings. For any given person, the same 

cognitive test and MRI results may yield a different residual index score in a different 

sample used to derive the regression model and if different methods are used to 

measure cognition and brain status. Consequently, there is a need for standardization of 

measures used to define reserve and for calibration of the measurement model for 

reserve in a suitably diverse sample that represents the diverse target population of 

older adults. Future work of this nature will be critical for establishing practical and 

clinically useful, dynamic measurement of cognitive reserve.

The current study has multiple strengths, including the use of latent variable 

modeling to measure residual reserve in a longitudinal design. By leveraging a residual 

reserve approach, we were able to operationally define, measure, and track changes in 

reserve over time. The application of the residual reserve approach to a longitudinal 

framework further allowed us to capitalize on multiple time points and thereby more 



precisely estimate cognitive slopes. Importantly, a long-term implication of this residual 

reserve approach is that we may ultimately be able to use this method to identify and 

better understand mechanisms for cognitive reserve in late life. An additional strength of

the study was the minimization of circularity in our design. The measures used to define 

reserve (i.e., SENAS memory, MRI measures of central nervous system integrity) were 

not used to define clinical status or non-memory cognitive change. Diagnostic status 

(i.e., normal aging, MCI, dementia) was based on a separate neuropsychological 

evaluation, with no overlapping cognitive measures. Moreover, in the context of 

correlated cognitive domains, circularity was further minimized by appraising the 

moderating effects of reserve on the relationship between brain atrophy and cognitive 

decline; given that reserve was defined as residual memory performance not explained 

by brain atrophy and demographics, its modifying effects on the association between 

longitudinal brain changes and non-memory decline are all the more striking. Finally, our

sample was composed of ethnically diverse participants and included individuals with a 

range of cognitive impairment levels at baseline, both of which are critical to the 

generalization and applicability of study finding to a wider aging population.

In summary, our study suggests that cognitive reserve changes dynamically over 

time, is associated with change in clinical diagnostic status, and has modifying effects on

the association between brain atrophy and cognitive decline. Importantly, the effects of 

gray matter atrophy on cognitive trajectories were unmasked by rapidly declining 

reserve, whereas maintenance of high reserve over time —or less rapidly declining 

reserve— exerted a protective buffer against the effects of changing brain status on 

cognitive decline. Our findings underscore the mutable nature of cognitive reserve and 

suggest that dynamic changes in reserve may have meaningful implications for the 

progression of clinical diagnostic status and individual cognitive trajectories.
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Table 1. Sample characteristics.

Demente
d MCI Normal Total

Gender - Female 11 
(50.0%)

60 
(53.1%)

133 
(65.5%)

204 
(60.4%)

Gender - Male 11 
(50.0%)

53 
(46.9%)

70 
(34.5%)

134 
(39.6%)

Age_IA - Mean (SD) 78.5 
(±7.7)

75.2 
(±7.3)

74.2 
(±7.0)

74.8 
(±7.2)

Education - Mean (SD) 11.9 
(±5.2)

14.5 
(±3.9)

13.0 
(±4.6)

13.4 
(±4.4)

Recruitment Source - Clinic 9 (40.9%) 45 
(39.8%)

28 
(13.8%)

82 
(24.3%)

Recruitment Source - Community 13 
(59.1%)

68 
(60.2%)

174 
(85.7%)

255 
(75.4%)

Recruitment Source - Missing 0 (0.0%) 0 (0.0%) 1 (0.5%) 1 (0.3%)

Race/Ethnicity - African American 
(N=76)

3 (13.6%) 23 
(20.4%)

50 
(24.6%)

76 
(22.5%)

Race/Ethnicity - Hispanic (N=85) 6 (27.3%) 10 
(8.8%)

69 
(34.0%)

85 
(25.1%)

Race/Ethnicity - Other (N=17) 0 (0.0%) 5 (4.4%) 12 (5.9%) 17 (5.0%)

Race/Ethnicity - White (N=160) 13 
(59.1%)

75 
(66.4%)

72 
(35.5%)

160 
(47.3%)

Follow-up Time (years) - Mean (SD) 4.8 
(±2.4)

5.5 
(±3.1)

8.2 
(±3.6)

7.1 (±3.6)

N Cognitive Assessments - Mean (SD) 4.8 
(±2.3)

5.6 
(±2.6)

7.6 
(±3.0)

6.7 (±3.0)

N MRI - Mean (SD) 2.1 
(±0.3)

2.4 
(±0.7)

2.7 
(±0.8)

2.5 (±0.8)

Global Gray Change (standardized) - 
Mean (SD)

-0.0 
(±0.0)

-0.0 
(±0.0)

-0.0 
(±0.0)

-0.0 (±0.0)

Global Gray Baseline (standardized) - 
Mean (SD)

-0.1 
(±1.0)

0.1 
(±1.2)

-0.1 
(±0.9)

-0.0 (±1.0)

Hippocampus Change (standardized) - 
Mean (SD)

-0.7 
(±1.2)

-0.3 
(±1.0)

0.3 
(±0.9)

-0.0 (±1.0)

Hippocampus Baseline (standardized) - 
Mean (SD)

-0.8 
(±0.8)

-0.1 
(±1.0)

0.5 
(±0.9)

0.2 (±1.0)

White Matter Hyperintensity Baseline 
(standardized) - Mean (SD)

0.2 
(±0.7)

0.1 
(±0.9)

-0.4 
(±1.0)

-0.2 (±1.0)

Semantic Memory BL - Mean (SD) -0.5 
(±0.9)

0.1 
(±0.7)

0.1 
(±0.9)

0.1 (±0.8)

Executive Function BL - Mean (SD) -0.5 
(±0.8)

0.0 
(±0.7)

0.4 
(±0.8)

0.2 (±0.8)

Spatial BL - Mean (SD) -0.4 
(±1.1)

0.1 
(±0.9)

0.2 
(±1.0)

0.1 (±1.0)



Table 2. Diagnosis Change Effects on Residual Reserve Index. The estimate represents the 

mean for the reference group; estimates for non-reference groups represent average differences 

from the reference group. (Stable Normal=Normal at first and last assessments (N=126); Normal

to MCI=Normal at first assessment, MCI at last (N=46); Normal to Dementia =Normal at first 

assessment, Dementia at last (N=31); MCI to MCI=MCI at first and last assessments (N=29); MCI 

to Dementia=MCI at first assessment, Dementia at last (N=76); Dementia=Dementia at first and 

last assessments (N =22))

Reserve_Type Diagnosis_Change estimate se p

Baseline Stable Normal (reference) 0.696 0.082 0.000

Baseline Normal to MCI -0.098 0.086 0.252

Baseline Normal to Dementia -0.356 0.125 0.004

Baseline Stable MCI -0.768 0.102 0.000

Baseline MCI to Dementia -0.915 0.099 0.000

Baseline Dementia -1.067 0.147 0.000

Change Stable Normal (reference) -0.053 0.012 0.000

Change Normal to MCI -0.066 0.013 0.000

Change Normal to Dementia -0.172 0.017 0.000

Change Stable MCI -0.015 0.021 0.472

Change MCI to Dementia -0.109 0.018 0.000

Change Dementia -0.096 0.026 0.000

Table 3. Brain, Demographic, and Reserve Effects on Global Cognitive Slope. The Intercept 

estimate represents the mean for the reference individual for group indicator variables and 

average values for continuous variables. Estimates for non-reference group indicator variables 

represent average difference from the reference value for that variable. Estimates for continuous

values indicate the effect of a 1 SD difference in that variable.

Independent Variable estimate se p

Intercept (reference) -0.108 0.011 0.000

Male -0.013 0.009 0.129

Spanish -0.009 0.013 0.487

Education (centered at 12 years) 0.001 0.001 0.379

African American 0.071 0.011 0.000

Hispanic 0.049 0.012 0.000

Other non-White Race/Ethnicity 0.024 0.019 0.209

Cortical Gray (baseline) -0.001 0.005 0.792

Hippocampus (baseline) 0.022 0.005 0.000



White Matter Hyperintensity (baseline) -0.006 0.004 0.147

Cortical Gray Matter (change) 0.047 0.009 0.000

Hippocampus (change) 0.017 0.006 0.004

Residual Reserve Index (baseline) 0.003 0.004 0.363

Residual Reserve Index (change) 0.052 0.006 0.000

Table 4. Reserve by Cortical Gray Matter (GM) and Hippocampus (HC) Interaction Effects 

(standard errors in parentheses). Separate models were used to test each of the four 

interactions. Main effects show average rate of global cognitive change for reference individuals 

with average values on other variables in the model. The interaction effects show how reserve 

variables modify the effects of brain change variables. (+ p<0.05, ++ p <0.01, +++ p<0.001)

Model
Reserve
Baseline

Reserve
Change

Brain
Change

Reserve by Brain
Change

Reserve Baseline by GM 
Change

0.005 (0.004) 0.034
(0.004)+++

0.048
(0.007)+++

-0.021 (0.005)+++

Reserve Change by GM 
Change

-0.001
(0.004)

0.036
(0.004)+++

0.047
(0.007)+++

-0.015 (0.006)++

Reserve Baseline by HC 
Change

0.002 (0.004) 0.036
(0.004)+++

0.019
(0.005)+++

-0.014 (0.005)++

Reserve Change by HC 
Change

-0.001
(0.004)

0.037
(0.004)+++

0.020
(0.005)+++

-0.013 (0.004)++

Figure Legends

Figure 1. Longitudinal Reserve Model.

Figure 2. Residual Reserve Index by Diagnosis Change. The upper panel shows average 

trajectories over time of reserve across groups defined by first and last clinical diagnosis. The 

lower panel shows distributions of reserve change by diagnosis change groups. D-D = Dementia 

at first and last assessments; M-D = MCI at first assessment, dementia at last, M-M = MCI at first 

and last assessments, N-N = Normal at first and last assessments, N-M = Normal at first and MCI 

at last; N-D = Normal at first and Dementia at last.

Figure 3. Reserve Change by Cortical Gray Matter Change Interaction Effect on Global Cognitive

Slope. The graph shows the association between annual change in non-memory cognitive 

function and annual change in cortical gray matter volume as a function of reserve status. 

Reserve status was based on model predicted trajectories that were faster than average (-1SD, 



shown in red; rapidly declining reserve status over time) or slower than average (+1SD, shown in

teal; slowly declining reserve status over time).

Figure 4. Expected 5-year longitudinal cognitive trajectory of Semantic Memory for specific 

reserve change levels (-1 and +1 SD) and specific cortical gray matter atrophy rates (-1 and +1 

SD).



Figure 1. Longitudinal Reserve Model

Figure 2. Residual Reserve Index by Diagnosis Change.



Figure 3. Reserve Change by Cortical Gray Matter Change Interaction Effect on Global Cognitive

Slope.

Figure 4. Expected 5-year longitudinal cognitive trajectories for specific reserve change levels (-

1 and +1 SD) and specific cortical gray matter atrophy rates (-1 and +1 SD).
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