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UCB-PTH-14/07

Grand Unification, Axion, and Inflation in
Intermediate Scale Supersymmetry

Lawrence J. Hall, Yasunori Nomura, and Satoshi Shirai

Berkeley Center for Theoretical Physics, Department of Physics,

and Theoretical Physics Group, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA

Abstract

A class of supersymmetric grand unified theories is introduced that has a single scale
below the cutoff, that of the supersymmetry breaking masses m̃. For a wide range of the
dimensionless parameters, agreement with the observed mass of the Higgs boson determines
m̃ ∼ 109–1013 GeV, yielding Intermediate Scale Supersymmetry. We show that within this
framework it is possible for seesaw neutrino masses, axions, and inflation to be described by
the scale m̃, offering the possibility of a unified origin of disparate phenomena. Neutrino
masses allowing for thermal leptogenesis can be obtained, and the axion decay constant lies
naturally in the range fa ∼ 109–1011 GeV, consistent with a recent observational suggestion
of high scale inflation. A minimal SU(5) model is presented that illustrates these features. In
this model, the only states at the grand unified scale are those of the heavy gauge supermul-
tiplet. The grand unified partners of the Higgs doublets have a mass of order m̃, leading to
the dominant proton decay mode p→ ν̄K+, which may be probed in upcoming experiments.
Dark matter may be winos, with mass environmentally selected to the TeV scale, and/or
axions. Gauge coupling unification is found to be successful, especially if the wino is at the
TeV scale.
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1 Introduction

The key discovery from the first run of the Large Hadron Collider (LHC) is a highly perturbative

Higgs boson coupled with no sign of any new physics that would allow a natural electroweak

scale. Remarkably, the value of the Higgs mass implies that the Standard Model (SM) remains

perturbative to very high energy scales. Although this “Lonely Higgs” picture could easily be

overturned by discoveries at the next run of the LHC, at present we are confronted with a very

surprising situation. A variety of new physics possibilities was introduced in the 1970s and 1980s

yielding a standard paradigm of a natural weak scale that was almost universally accepted. While

the absence of new physics at LEP and elsewhere led to doubts about naturalness, the Lonely

Higgs discovery at LHC warrants new thinking on the naturalness of the weak scale and the likely

mass scale of new physics.

An intriguing feature of the Lonely Higgs discovery is that the Higgs quartic coupling, on

evolution to high energies, passes through zero and then remains close to zero up to unified scales,

providing evidence for a highly perturbative Higgs sector at high energies. This closeness to zero

of the quartic coupling cannot be explained by the SM, and hence is a guide in seeking new physics

at very high scales. The Higgs boson mass was predicted to be in the range ≈ (128 − 141) GeV

from a supersymmetric boundary condition at unified energies [1]. Furthermore, it was pointed out

that in such theories tan β near unity can result naturally, leading to a Higgs mass prediction of

(128±3) GeV, with the central value gradually decreasing as the scale of supersymmetry is lowered

below the unified scale. After the Higgs boson discovery, the connection between supersymmetry

at a high scale and the Higgs mass was investigated further [2, 3].

In a previous paper [4], two of us introduced Intermediate Scale Supersymmetry (ISS) to explain

two key observations

• The SM quartic coupling, when evolved to large scales, passes through zero at µc. This

can be accounted for by taking the SM superpartner mass scale m̃ ∼ µc. From Fig. 1(a),

µc ∼ 109 –1013 GeV at 1-σ (allowing for the possibility of a TeV-scale wino for dark matter).

• States of a minimal supersymmetric grand unified theory at m̃ can account for precision gauge

coupling unification.

In addition to these, in this paper we study ISS models that have a third key feature

• Below the cutoff scale of the theory Λ, which is likely close to the Planck mass, the theory

possesses only a single mass scale, m̃.

In this paper we study two different aspects of ISS. In Section 3, we pursue a class of ISS models

that lead more cleanly to the vanishing of the quartic coupling near m̃, have a new proton decay

signal and are more elegant. In Section 4, we argue that in ISS the mass scale m̃ may be identified
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Figure 1: (a) The renormalization group running of the Higgs quartic coupling λ for the SM
(solid black line, with 1-σ and 2-σ regions from uncertainties of the experimental input parameters
indicated by dark and light shades, respectively) and for the 1 TeV wino (solid blue) and gluino
(dashed green) in addition to the SM particles. (b) The value of tan β required to reproduce the
observed Higgs boson mass as a function of the superpartner mass scale m̃ in the case that the
theory below m̃ is the SM (red region bounded by solid lines), the SM with 1 TeV wino (blue
region bounded by dashed lines), and the SM with 1 TeV gluino (dashed green line). The regions
for the first two cases correspond to the 1-σ uncertainties for the input experimental parameters.

with one or more key mass scales of new physics: the axion decay constant, the energy scale of

inflation, and the seesaw scale for neutrino masses.

ISS provides a unifying theme to the diverse physics that we discuss, since it is all triggered by

the same underlying mass scale. The scale m̃ directly gives the superpartner masses and can also

be the origin of the axion decay constant, inflation, and right-handed neutrino masses. Within

this framework, the scale of weak interactions and of the Grand Unified Theory (GUT) need some

explanation.

In ISS the weak scale is highly fine-tuned, for example by twenty orders of magnitude for

m̃ = 1012 GeV, and can be understood in the multiverse, which provides a coherent framework

for understanding both the fine-tuning of the weak scale and the cosmological constant [5, 6].

In the SU(5) unified model introduced in this paper, the fields responsible for weak breaking,

H, H̄, and SU(5) breaking, Σ, do not have supersymmetric mass terms and are massless in the

supersymmetric flat-space limit. Once supersymmetry is broken and the cosmological constant is

fine-tuned, supergravity interactions induce an effective superpotential

Weff ∼ m̃×
(

Σ2, HH̄,
1

Λ
Σ3,

1

Λ
HΣH̄, ...

)
. (1)
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This yields an SU(5) breaking vacuum 〈Σ〉 ∼ O(Λ), and we choose order unity coefficients so that

this vacuum expectation value (VEV) is somewhat less than Λ. The heavy XY gauge supermulti-

plet lies just below Λ, while all other states in H, H̄,Σ have masses of order m̃. These states make

a significant contribution to gauge coupling unification, and the color triplet states in H, H̄ yield

an interesting proton decay signal.

The HΣH̄ coupling is of order m̃/Λ, and hence leads to a negligible contribution to the Higgs

quartic, which is dominated by the electroweak gauge contribution: λ(m̃) ' 0.03 (tan2β − 1)2 for

| tan2β − 1| � 1, where λ is normalized such that V (h) ⊃ (λ/2)(h†h)2, and the angle β defines

the combination of Higgs doublets that is fine-tuned light to become the SM Higgs. A value of

tan2β in the range of about 0.5 to 2 is sufficient to understand a small value of λ(m̃); however,

in the limit that the Higgs mixing parameter (the Higgsino mass) µ becomes larger than m̃,

tan2β − 1 ∼ O(m̃2/µ2), so that λ(m̃) rapidly drops below 0.01.1

The organization of the rest of the paper is as follows. In Section 2 we closely examine the

running of the Higgs quartic coupling in the SM, and with the addition of a TeV-scale wino, to

determine the range of µc. In Section 3 we introduce and study a specific simple SU(5) GUT

that is representative of a class of grand unified theories that have just a single mass scale, m̃.

We study the spectrum, dark matter, gauge coupling unification and proton decay in this model.

In Section 4 we argue that in ISS other fundamental physics may be linked to the scale m̃, in

particular, neutrino masses, axions, and inflation. Finally we summarize in Section 5.

2 Higgs Quartic Coupling and ISS

Before entering into the main part of the paper, in this section we discuss the scale of super-

symmetry breaking suggested by the current experimental data within the ISS framework. In

Fig. 1(a), we show the running of the MS Higgs quartic coupling λ in the SM as a function of

the renormalization scale Q (solid, black line). Here, the dark and light shaded regions corre-

spond to the 1-σ and 2-σ ranges for the experimental input parameters, respectively, for which

we have used mt = 173.34(76) GeV [7], mh0 = 125.40(45) GeV [8, 9], mW = 80.367(7) GeV,

mZ = 91.1875(21) GeV [10], and α3(mZ) = 0.1184(7) [11]. The figure also shows the running

of λ in the cases that the wino and gluino exist at 1 TeV in addition to the SM particles (solid

blue and dashed green lines, respectively). In drawing these lines/regions, we have used, following

Ref. [12], 2-loop (1-loop) threshold corrections and 3-loop (2-loop) renormalization group equations

for the SM particles (the wino and gluino). As can be seen from the figure, λ crosses zero at an

intermediate scale µc ∼ 109–1013 GeV for the SM, although uncertainties from experimental input

parameters are still very large. The situation is similar if there is a wino at 1 TeV (which is not

1If µ is too large (µ/mt̃ & 4), however, there can be sizable threshold corrections to λ which affect the relation
between m̃ and tanβ in Fig. 1(b).
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entirely trivial as the crossing scale is highly sensitive to physics at lower energies as can be seen

in the case in which the gluino exists at 1 TeV).

In the rest of the paper, we assume that the Higgs quartic coupling indeed crosses zero at µc if

we evolve it to higher energy scales using the SM renormalization group equations (or those with a

TeV-scale wino), although the possibility of the crossing scale being around the unification/Planck

scale ∼ 1016 – 1018 GeV is not yet excluded if we allow 2- to 3-σ ranges for the current experimental

errors. As discussed above and in Ref. [4], we identify this scale to be the scale for the superpartner

masses m̃, at which the supersymmetric standard model (together with a part of the GUT particles)

is reduced to the SM (possibly together with a wino or Higgsino) at lower energies. Since λ� 1 at

this scale, this implies tan β ∼ 1. In Fig. 1(b), we show the value of tan β needed to reproduce the

observed Higgs boson mass mh0 ' 125 GeV as a function of the superpartner mass scale. Here, we

have assumed that all the scalar superpartners have common mass m̃; the gaugino and Higgsino

masses are also taken to be m̃ and the scalar trilinear A-terms are set to be zero. We find that for

the cases of the SM and the SM with a TeV-scale wino, the superpartner masses must be at an

intermediate scale:

m̃ ∼ 109–1013 GeV, (2)

for tan β ∼ 1 at the 1-σ level.2 As can be seen from the figure, and emphasized in Ref. [4], this

conclusion does not require tan β to be extremely close to 1. Indeed, for 0.5 . tan2β . 2, the

range of the superpartner masses suggested by the central values for the experimental data is still

close to Eq. (2), and there is a wide range of parameter space which leads to these values of tan β.

(In fact, even values of tan β very close to 1 can naturally be obtained if µ is somewhat larger than

m̃.) Below, we will use values of m̃ in Eq. (2) as our guide in discussing ISS theories.

In this paper, we mostly assume that supersymmetry breaking is mediated to the GUT sector

(the sector charged under the SM gauge group) at a high scale M∗ close to the UV cutoff scale

Λ of the unified theory, which we expect to be within an order of magnitude of the reduced

Planck scale MPl ' 2.4 × 1018 GeV: M∗ ∼ Λ ∼ MPl. We then find that the gravitino mass

m3/2 = F/
√

3MPl is roughly the same order of magnitude as m̃ ∼ F/M∗, where F is the F -term

VEV of the supersymmetry breaking field. In this paper we do not discriminate the sizes of the

two, and treat them to be of the same order: m3/2 ∼ m̃.

3 ISS with Intermediate Scale Colored Higgses

In this section, we present a simple model of ISS. It is representative of a class of ISS GUTs where

the only scale below the cutoff is that of supersymmetry breaking. The model presented here differs

2At the 2-σ level, the region with tanβ = 1 reaches the conventional GUT scale, ∼ 1016 GeV, for the case with a
TeV-scale wino, so that this becomes the “SM + w̃” case of Ref. [13]. It is interesting to see how future refinements
of experimental determinations of, e.g. mt and α3, imply about the scale in which λ crosses zero.
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from the one in Ref. [4] in that the mass of the whole H(5) + H̄(5∗) Higgs fields, of which the SM

Higgs field is a part, now arises from supersymmetry breaking, where the numbers in parentheses

denote representations under the SU(5) GUT group. This is achieved in a simple manner by

obtaining the whole Higgs potential, including the one associated with the GUT-breaking field

Σ(24), from the Kähler potential. We first describe the model and spectrum, discussing if/when

the wino mass is lowered to the TeV scale due to a cancellation among various contributions as

a result of environmental selection associated with the dark matter abundance. We then discuss

gauge coupling unification and proton decay. We also present a detailed phenomenological analysis

of the model in the case that the supersymmetry breaking parameters obey the mSUGRA-like

boundary conditions at the supersymmetry breaking mediation scale M∗.

3.1 Model

We consider that physics below the cutoff scale Λ ∼ MPl is well described by a supersymmetric

GUT with the same field content as the minimal supersymmetric SU(5) GUT. The matter content

of the model consists of the Σ(24), H(5), and H̄(5∗) Higgs fields as well as three generations of the

matter fields T (10) and F̄ (5∗), where we have suppressed the generation indices. (Right-handed

neutrino superfields N(1)’s will be introduced in Section 4 when we discuss neutrino masses.)

As in Ref. [4], we consider that the potential for the GUT-breaking field Σ arises from the

Kähler potential:

K ⊃ c2

2
Σ2 +

c3

3Λ
Σ3 + h.c., (3)

where c2,3 are dimensionless couplings of order unity, while Λ ∼MPl is the UV cutoff of the unified

theory. Similarly, here we also consider that the potential associated with the H, H̄ Higgs fields

arises from the Kähler potential terms

K ⊃ d2HH̄ +
d3

Λ
HΣH̄ + h.c., (4)

where d2,3 are dimensionless couplings of order unity. We assume that there is no interaction in

the superpotential corresponding to the terms in Eqs. (3, 4) at the fundamental level (i.e. in the

supersymmetric flat-space limit). This can be achieved, e.g., if the theory possesses an R symmetry

under which Σ and HH̄ are neutral:

Σ(0), HH̄(0). (5)

When supersymmetry is broken and the cosmological constant is fine-tuned, the Kähler poten-

tial interactions of Eqs. (3, 4) yield the effective superpotential through supergravity effects [14]:3

Weff =
mΣ

2
Σ2 +

λΣ

3
Σ3 +

mH

2
HH̄ + λHHΣH̄, (6)

3One way to see this is to use the conformal compensator formalism [15]. Using this formalism, the supergravity

Lagrangian in flat space is given by L ⊃ −3M2
Pl

∫
d4θΦ†Φ e−K/3M

2
Pl , where Φ = 1 + θ2m3/2 is the conformal

5



where mΣ = c2m
∗
3/2, λΣ = c3m

∗
3/2/Λ, mH = d2m

∗
3/2, and λH = d3m

∗
3/2/Λ, so that

mΣ, mH ∼ O(m̃), λΣ, λH ∼ O
(m̃

Λ

)
. (7)

Here, we have used m3/2 ∼ m̃.4 The first two terms of Eq. (6) provide a non-zero VEV of Σ,

〈Σ〉 ∼ mΣ/λΣ ∼ O(Λ), breaking SU(5) to the SM gauge group. In general, supersymmetry

breaking effects in the Σ potential lead to an O(1) shift of the Σ VEV,5 giving a VEV for the

F -component of Σ of order m̃Λ:

〈Σ〉 ∼ O(Λ), FΣ ∼ O(m̃Λ). (8)

We take parameters of the model such that 〈Σ〉 is parametrically, e.g. a factor of a few to an order

of magnitude, smaller than Λ, to ensure that there is an energy interval below Λ in which physics

is described by the SU(5) theory.

Below the energy scale 〈Σ〉, which we will see is determined from gauge coupling unification as

〈Σ〉 ∼ 1016–1017 GeV, (9)

the massive vector supermultiplets containing the GUT gauge bosons decouple, and physics is well

described by the low-energy supersymmetric gauge theory with the SM gauge group SU(3)C ×
SU(2)L×U(1)Y. An important property of the superpotential in Eq. (6) with Eq. (7) is that because

of the overall m̃ factor, the masses of the uneaten components of Σ—Σ8(8,1)0, Σ3(1,3)0, and

Σ1(1,1)0 where the numbers represent the SM gauge quantum numbers—are at the intermediate

scale:

MΣ8 ∼MΣ3 ∼MΣ1 ∼ O(m̃), (10)

where superpartners of the Supersymmetric Standard Model (SSM) exist [4]. This potentially

has cosmological implications. For example, if the Hubble parameter during inflation is large

HI > m̃, as suggested by the recent BICEP2 observation [16], then depending on the dynamics

during inflation (e.g. the sign of the Hubble induced mass-squared for Σ), the GUT symmetry may

be recovered during inflation, which would lead to unwanted monopole production after inflation.

Below, we assume that such symmetry recovery does not occur.

compensator field. After canonically normalizing fields, Σ→ Σ/Φ and similarly for H and H̄, this contains terms

L ⊃
∫
d4θ

(c2Φ†

2Φ
Σ2 +

c3Φ†

3ΛΦ2
Σ3 +

d2Φ†

Φ
HH̄ +

d3Φ†

ΛΦ2
HΣH̄ + h.c.

)
,

which, upon inserting Φ = 1 + θ2m3/2, leads to Eq. (6).
4If the supersymmetry breaking field X is neutral, the Kähler potential may contain terms of the form X†Σ2/Λ,

X†Σ3/Λ2, X†HH̄/Λ, and X†HΣH̄/Λ2. They also lead to the effective superpotential Eq. (6) with Eq. (7).
5In general, supersymmetry breaking effects, arising e.g. from X†XΣ†Σ/M2

∗ and X†X(Σ†Σ)2/M2
∗Λ2, may give

contributions to the Σ potential comparable to, or possibly larger than, the ones described above. We assume that
these contributions do not eliminate a vacuum breaking SU(5) to the SM gauge group.
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Figure 2: A schematic depiction of the spectrum of the model. Here, X, Y represent the massive
GUT gauge supermultiplets, Σ uneaten components of the Σ(24) superfield, and HC and H̄C the
colored Higgs supermultiplets; the other symbols denote particles in the SSM in the self-explanatory
notation (with G̃ being the gravitino). We have depicted the wino, W̃ , at a TeV scale, although
it may be at the intermediate scale m̃ if the reheating temperature after inflation is sufficiently
low or R-parity is broken; see discussions in Section 3.2. The scale m̃ can lead to neutrino masses,
inflation, and axions, as indicated on the right.

In a similar manner, in the present model the masses of the colored Higgs fields, as well as those

of the second Higgs doublet HD and Higgsino h̃ of the SSM, are also at the intermediate scale.

In the minimal SU(5) GUT, the doublet Higgses Hu and Hd of the SSM are embedded in the

fundamental representations of SU(5) as H = (Hu, HC) and H̄ = (Hd, H̄C). The superpotential

of Eq. (6) implies that the masses for all these fields are also of order m̃:

MHC
∼MHD

∼Mh̃ ∼ O(m̃), (11)

except for the light Higgs doublet h of the SM, which is environmentally selected to be of order

the weak scale v � m̃. One might think that such low values for the colored Higgs masses are

excluded by the proton decay constraints. This is, however, not the case as will be discussed in

Section 3.4. In Fig. 2, we give a schematic depiction of the spectrum of the present model. In

the figure, we have put the wino, W̃ , to be at a TeV scale, since its mass may be environmentally

selected to be in this range; see Section 3.2 below.

There are several virtues in the model presented here, with the last two terms in Eq. (6) arising

from the Kähler potential, compared to the model in Ref. [4], in which these terms exist in the

superpotential before supersymmetry breaking with mH ∼ O(〈Σ〉) and λH ∼ O(1). First, since

the supersymmetric masses of Σ3 and Σ1 are comparable to m̃, the interaction λHHΣH̄ in the

7



superpotential gives a non-decoupling contribution to the Higgs quartic coupling: δλ ∼ λ2
H sin2 2β.

In order to preserve the identification of m̃ to be at a scale close to the point in which λ crosses zero,

as in Eq. (2), this contribution needs to be small, λH . 0.1. In the model of Ref. [4], this condition

needs to be imposed by hand, while here it is automatic because λH ∼ O(m̃/Λ) � 1. Note that

since mH ∼ O(m̃) and λH ∼ O(m̃/Λ), the present model does not require doublet-triplet splitting

(except for the fine-tuning needed to make the SM Higgs light); namely, the contributions to the

mass of the heavy Higgs doublet from the third and fourth terms in Eq. (6) need not be nearly

canceled with each other. This allows us to have a natural size of FΣ ∼ O(m̃Λ) in Eq. (8) while

still allowing for successful electroweak symmetry breaking, since it only leads to the holomorphic

supersymmetry-breaking mass for the Higgs doublets of order µB ≈ λHFΣ ∼ O(m̃2). (In the

model of Ref. [4], FΣ ∼ O(m̃Λ) leads to a too large µB term of order m̃Λ, so that FΣ must be

suppressed by extra environmental selection.) Finally, the fact that mH ∼ O(m̃) implies that the

level of fine-tuning needed to reproduce electroweak symmetry breaking is of order v2/m̃2 in the

present model, while the one in Ref. [4] requires an extra factor of order m̃2/Λ2 to keep µ2 and

µB to be of order m̃2. While none of the above issues excludes the model in Ref. [4], their absence

adds an aesthetic appeal to the model discussed here.

The electroweak symmetry is broken by the VEV of the light SM Higgs doublet h, whose mass-

squared parameter (and thus VEV) is fine-tuned to be of order the weak scale due to environmental

selection. Specifically, the mass-squared matrix for the two Higgs doublets at the scale m̃ is given

by

M2
H =

(
|µ|2 +m2

Hu
µB

µB |µ|2 +m2
Hd

)
, (12)

where |µ|2, |µB|, |m2
Hu
|, |m2

Hd
| are of order m̃2. These parameters are chosen such that one

Higgs doublet remain below m̃, i.e. the determinant of the matrix M2
H to be extremely small

compared with its natural size ∼ m̃4. The resulting SM Higgs doublet is given by the combination

h ≈ sin β hu + cos β h†d with

tan2β =
|µ|2 +m2

Hd

|µ|2 +m2
Hu

. (13)

Since the quartic coupling for the Higgs is given by

λ(m̃) =
g2 + g′2

4
cos22β, (14)

where g and g′ are the SU(2)L and U(1)Y gauge couplings at m̃, we consider tan β ∼ 1. Such

values of tan β are easily obtained, e.g., if |µ|2 & |m2
Hu,Hd

| or if m2
Hu

and m2
Hd

are nearly degenerate;

see also the discussion in Section 3.5. With electroweak symmetry breaking, the SM quarks and

leptons obtain masses through the standard Yukawa interactions in the superpotential

W = yUTTH + yDT F̄ H̄ +
ηU
Λ

ΣTTH +
ηD
Λ

ΣT F̄ H̄ + · · · , (15)

8



where we have suppressed the generation indices. Higher-dimension terms involving Σ are needed

to correct unwanted SU(5) relations for the quark/lepton masses.

To summarize, the model is characterized by the following holomorphic part of the Kähler

potential, K̃, and superpotential, W :

K̃ = Λ2 f
(Σ

Λ
,
HH̄

Λ2

)
, (16)

W = yU

(Σ

Λ

)
TTH + yD

(Σ

Λ

)
T F̄ H̄, (17)

(except for the terms needed for neutrino masses; see Section 4.1), where f is a holomorphic

function with the coefficients expected to be of order unity, and yU and yD are holomorphic

functions associated with the Yukawa couplings. Here, we have assumed R-parity. The form of

Eqs. (16, 17), including R parity conservation, can be easily enforced by an R symmetry; for

example, we may assign a neutral R charge to Σ, H, and H̄, as in Eq. (5), and a unit charge to

T and F̄ . (A different charge assignment will be considered in Section 4.1.) All the dimensionful

parameters, except Λ, are generated through supersymmetry breaking m̃, leading to the effective

superpotential of Eq. (6). The GUT symmetry is broken at 〈Σ〉 ∼ O(Λ), while the electroweak

symmetry—due to environmental selection—at 〈h〉 = v � m̃.

We finally discuss the gaugino masses. Unlike scalar superpartners, the gaugino masses may

be protected against supersymmetry breaking effects via some symmetry. For example, if the

supersymmetry breaking field X has some charge, its direct coupling to the gauge field-strength

superfields [XWαWα/Λ]θ2 is suppressed. There are, however, many other sources for the gaugino

masses: anomaly mediation [17], threshold corrections from H and/or Σ, and the higher dimension

operator [ΣWαWα/Λ]θ2 with FΣ 6= 0. In particular, since the operator [ΣWαWα/Λ]θ2 is used to

reproduce the observed SM gauge couplings (see Section 3.3) and we naturally expect FΣ ∼ O(m̃Λ)

(see Eq. (8)), the last contribution gives typically the gaugino masses not much smaller than m̃.

As we will see in the next subsection, however, the wino mass may have to be lowered to a TeV

scale as a result of environmental selection associated with dark matter. This occurs through a

cancellation of various contributions given above, which in turn could suppress the gluino and

bino masses through GUT relations. Note that the cancellation of the wino mass requires a

modest suppression of FΣ and/or the coefficient of [ΣWαWα/Λ]θ2 to allow the cancellation of its

contribution with the rest, which are one-loop suppressed. We thus expect that the gaugino masses

are in the range

Mλ ≈ O(10−2–1) m̃, (18)

except possibly for the wino, which may be at a TeV scale.

9



3.2 TeV-scale wino

If R-parity is unbroken, the lightest supersymmetric particle (LSP) is stable and contributes to

the dark matter once cosmologically produced.6 The abundance of the LSP in the universe may

depend strongly on the reheating temperature TR after inflation as well as the branching ratio of

the inflaton decay into the LSP. Here we see that this most likely requires the mass of the LSP,

mLSP, to be in the TeV region. Such a small LSP mass may result from a cancellation of various

contributions as a result of environmental selection associated with dark matter [18].

Let us first consider the case in which TR & mLSP. In this case, the LSP is thermalized and its

abundance is roughly given by

Ωthh2 ∼ 1016
( mLSP

1012 GeV

)2

. (19)

This grossly overcloses the universe for mLSP ∼ O(m̃). We now consider the case TR � mLSP. In

this case, thermal gas scattering and inflaton decay may still lead to a significant amount of the

LSP abundance. From thermal scattering, we obtain the approximate LSP abundance of

Ωsch2 ∼ 1021

(
TR
mLSP

)7

. (20)

(A similar estimate in a different context can be found in Ref. [19].) Furthermore, if the mass of

the inflaton mφ is sufficiently larger than mLSP, the inflaton may directly decay into LSPs which

do not effectively annihilate afterwards. The resulting LSP abundance is then roughly given by

Ωdech2 ∼ 1020Bφ

(
TR
mφ

)( mLSP

1012 GeV

)
, (21)

where Bφ is the branching fraction of the inflaton decay to the LSP. We thus find that unless

TR . 10−3mLSP and Bφ is essentially zero, the LSP with mLSP ∼ O(m̃) will overclose the universe.

The mass of the LSP, however, may be environmentally selected: it may be reduced to the TeV

region due to a cancellation of various contributions [18]. This occurs if there are environmental

constraints that strongly disfavor observers in universes with much more dark matter than our

own, as argued, e.g., in Ref. [20]. Here and below, we assume that the LSP is the wino, W̃ . In

this case, if the wino mass is smaller than about 3 TeV, Ωthh2 < 0.1 [21]. In general, the selection

effects for dark matter act on any candidate, no matter the production mechanism, so dark matter

may be multi-component; in particular, axions may comprise a part of the dark matter. This

consideration, therefore, gives the only upper bound on the wino mass: MW̃ . 3 TeV.

6In the present model, R-parity may naturally arise as a Z2 subgroup of the U(1)R symmetry described in
Eq. (5). For example, for the R charge assignment considered below Eqs. (16, 17), R-parity arises as an unbroken
Z2 subgroup of U(1)R after supersymmetry breaking, more precisely, after a constant term in the superpotential is
introduced to cancel the cosmological constant induced by supersymmetry breaking.
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An important signal for a TeV-scale wino is direct production at colliders. The charged wino

is slightly heavier than the neutral wino by ' 165 MeV [22]. The small mass difference makes

the charged wino live long: cτ = a few cm, which can be detected as a disappearing track at the

LHC [23, 24]. The current LHC bound for the wino mass is mW̃ > 270 GeV at 95% confidence

level [25]. At a future lepton collider, direct observation of such a charged track is important. In

addition to direct production, processes mediated by wino loops may also provide clues for wino

search; see e.g. Ref. [26].

Another promising way of searching for a TeV-scale wino is through cosmic-ray signals from

wino dark matter annihilation. The annihilation of winos leads to a variety of cosmic-ray species,

e.g. line and continuum photons [27] and antiprotons [28], whose cross section may be enhanced by

the Sommerfeld effect. Recent observations of γ-rays by the H.E.S.S. and Fermi experiments give

important constraints, although they are subject to astrophysical uncertainties [29, 30]. Cosmic-

ray antiprotons can also provide a powerful tool for searching for wino dark matter. While this

signal also suffers from astrophysical uncertainties, the on-going AMS-02 experiment can reduce

such uncertainties [31], so that this may allow us to probe essentially all the wino mass range if it

is the dominant component of the dark matter [32].

In summary, unless TR . 10−3mLSP and Bφ ≈ 0 (or R-parity is broken), the mass of the LSP

must be much smaller than m̃, and for the wino LSP

270 GeV < MW̃ . 3 TeV. (22)

(In addition, small portions of this mass range may be excluded by dark matter constraints; see

e.g. Ref. [30].) The spectrum of the model in this case is depicted in Fig. 2. Below, we consider

both this TeV-scale wino case and the case with mLSP ∼ O(m̃).

3.3 Gauge coupling unification

We now discuss unification of the SM gauge couplings in the ISS model described here. Following

Ref. [4], we consider two variables

RX =
1√
38

(
5

g2
1

− 3

g2
2

− 2

g2
3

)
, (23)

RH =
1√
14

(
3

g2
2

− 2

g2
3

− 1

g2
1

)
. (24)

In the absence of higher-dimensional gauge kinetic operators involving Σ, the energies at which

RX and RH cross zero would correspond to the masses of the XY GUT gauge fields, MX , and the

colored Higgs fields, MHC
, respectively. In general, however, we expect the gauge kinetic function

contains higher-dimensional terms involving Σ:

L ⊃ 1

2g2

∫
d2θ

{
Tr[WαWα] +

a

Λ
Tr[ΣWαWα] +O(Σ2)

}
+ h.c., (25)
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giving GUT-breaking threshold corrections with 〈Σ〉 6= 0, where g and Wα are the SU(5) gauge

coupling and gauge field-strength superfield, respectively. An important point is that the leading

dimension-five operator (the second term above) gives a correction to RH , but not to RX—RX is

corrected only at order 〈Σ〉2/Λ2, which is small. We can, therefore, read off the mass of the XY

gauge boson, MX ≈ 〈Σ〉, by plotting RX as a function of energy and seeing where it crosses zero,

RX(MX) ≈ 0. (26)

On the other hand, since RH receives a relatively large correction from the dimension-five operator,

it does not strongly constrain MHC
—any value of MHC

is consistent as long as RH at that scale is

reasonably small

|RH(MHC
)| ≈

∣∣∣∣−aVΛ
∣∣∣∣ . O(0.1), (27)

where V is the GUT breaking VEV, 〈Σ〉 = V diag(2, 2, 2,−3,−3)/
√

60.

In Fig. 3, we show the running of the SM gauge couplings for some selected ISS mass spectra.

In Fig. 3(a) we show the case in which all the superpartners and (uneaten) GUT particles have

a common mass of m̃ = 1012 GeV (corresponding to the case with mLSP ∼ O(m̃) in the previous

subsection, while in Fig. 3(b) we set the gaugino masses Mλ to be suppressed by a factor of 100

compared with the rest of the intermediate scale particles. We find that the unification scale,

determined by Eq. (26), is

MX ∼ 1016 GeV for mLSP ∼ O(m̃). (28)

The size of the threshold correction, determined by Eq. (27) with MHC
∼ O(m̃), is |aV/Λ| ≈ 0.2.

In Figs. 3(c) and 3(d), we show the same plots as Figs. 3(a) and 3(b), respectively, except that the

wino mass is lowered to 1 TeV. This slightly raises the unification scale

MX ∼ 1017 GeV for mW̃ ∼ TeV, (29)

and improves the precision for gauge coupling unification; the required size of the threshold cor-

rection from the dimension-five operator is now |aV/Λ| . 0.1.

We finally comment on bottom-tau Yukawa unification. In the minimal ISS model discussed

here, the ratio of the two couplings is yb/yτ ' 0.6 at the GUT scale, so that it requires a relatively

large threshold correction to be compatible with the GUT embedding of the quarks and leptons.

This can be achieved, for example, by taking (yD)33 . (ηD)33 in Eq. (15). Similar GUT-violating

contributions may also be needed to accommodate the observed quark and lepton masses for lighter

generations.
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(c) Same as (a) except that MW̃ = 1 TeV

20

30

40

50

60

70

α−1
1

α−1
2

α−1
3

28

30

32

34

1016 1017 1018

-0.1
0

0.1
0.2
0.3

104 106 108 1010 1012 1014 1016 1018

Q [GeV]

RH

RX

(d) Same as (b) except that MW̃ = 1 TeV

Figure 3: The renormalization group running of the SM gauge couplings for representative spectra
in the ISS model. Each shaded band represents the 3-σ experimental uncertainty for the gauge
coupling. Here, we have assumed tan β = 1. Important combinations of the gauge couplings,
RX and RH defined in Eqs. (23, 24), are also plotted; they determine the scale and precision of
unification, as in Eqs. (26, 27).

3.4 Proton decay

Here we discuss proton decay. As we have seen, the mass of the XY GUT gauge bosons, MX , is

comparable or larger than in the conventional weak-scale SSM. In particular, when the wino is at

a TeV, MX ∼ 1017 GeV as in Eq. (29), so that dimension-six proton decay caused by gauge boson

exchange is suppressed.
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(c) Correction to Yukawa couplings

Figure 4: Examples of diagrams relevant for proton decay.

How about proton decay caused by exchange of colored Higgs fields, which now have masses of

order m̃ � 〈Σ〉? In the conventional weak-scale SSM, the colored Higgs supermultiplets HC and

H̄C induce large proton decay rates. In this case the dominant contributions come from one-loop

diagrams involving weak-scale superpartners with amplitudes suppressed only by 1/(MHC
msoft),

where msoft ∼ v is the mass of the weak-scale superpartners. To avoid rapid proton decay, we need

to push the mass of the colored Higgs multiplets to be very large [33]. If the sfermion mass scale is

much larger than the weak scale, however, the proton decay rate from these processes (dimension-

five proton decay) can be suppressed, and the constraints can accordingly be relaxed [34].

In ISS models, the sfermion mass scale is quite large, m̃ � v, so that dimension-five proton

decay can be suppressed, which allows us to take MHC
∼ O(m̃) as has been described so far. In

fact, unlike the conventional case, the dominant contribution to proton decay typically comes from

tree-level colored Higgs-boson exchange, as shown in Fig. 4(a). This contribution is suppressed

by 1/M2
HC

in the amplitude, and is negligible in conventional GUTs; but here the suppression is

only 1/M2
HC
∼ O(1/m̃2), and its amplitude is larger than that for dimension-five proton decay

by a one-loop factor. The dominant decay mode is expected to be p → ν̄K+, with lifetime given

approximately by

τp ≈ O(1032–1033)

(
MHC

1011 GeV

)4

years. (30)

The current limit from the Super-Kamiokande experiment is τp(p → ν̄K+) > 5.9 × 1033 years at

90% confidence level [35], so that MHC
greater than O(1011 GeV) is consistent with the latest

observation. This limit is expected to be improved to 2.5 × 1034 year in the hyper-Kamiokande

experiment [36].

The proton decay rate in Eq. (30) is subject to several uncertainties. One of them comes

from GUT CP phases; there are two additional physical CP phases in the colored Higgs Yukawa
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couplings, which cannot be determined by the SSM Yukawa couplings. Depending on these phases,

cancellation between Wilson operators causing the proton decay may occur. This leads to an O(10)

uncertainty in the estimate of the proton lifetime. (We will see this uncertainty explicitly in the

study of the mSUGRA example in the next subsection.) Another source of uncertainties comes

from the long distance QCD contribution to the proton decay matrix elements, which also leads to

an O(10) uncertainty in the lifetime estimate. Furthermore, as we discussed before, accommodating

the observed quark and lepton masses in the model requires contributions from higher-dimensional

operators to the Yukawa couplings. These operators also affect the estimate of the proton decay

rate.

We finally comment on contributions from loop diagrams. As discussed in Ref. [37], if the

sfermion sector has large flavor violation, loop contributions may be significantly enhanced. For

instance, large flavor violation in the squark masses can induce large corrections to the first and

second generation Yukawa couplings, as in Fig. 4(c), and accordingly large corrections to the colored

Higgs Yukawa couplings. In some cases, proton decay induced through such one-loop diagrams

may dominate over the tree-level contribution. The importance of one-loop processes, however,

depends strongly on the gaugino masses, the structure of sfermion flavor violation, GUT-violating

threshold corrections from higher dimension operators, and so on. For example, amplitudes of

Figs. 4(b) and 4(c) are proportional to the gaugino masses, so that smaller gaugino masses result

in smaller contributions. Also, flavor violation in 5∗ matter, F̄ (d, l), generically leads to smaller

effects on proton decay than that in 10 matter, T (q, u, e), and, depending on the size of the GUT-

violating effects, cancellations between contributions from Figs. 4(b) and 4(c) may occur. The

general study of all these effects is thus highly complicated. In the explicit analysis in the next

subsection, we ignore these possible corrections and assume, for simplicity, minimal flavor violation

for the relevant flavor structure.

3.5 Example: mSUGRA-like spectrum

In this subsection, we present a detailed study of the model described here in the case that the

supersymmetry breaking masses obey mSUGRA-like boundary conditions. Specifically, we set

the following boundary conditions for the relevant parameters at the renormalization scale Q0 =

1017 GeV:

m2
T (10) = m2

F̄ (5∗) = m̃2 13×3, m2
Hu

= m2
Hd

= m2
HC

= m2
H̄C

= m̃2, (31)

MB̃ = MW̃ = Mg̃ = m1/2, µ = µHC
, B = BHC

. (32)

The A terms are set to zero, and the mass of the uneaten components of Σ is taken to be m̃. Here,

we have ignored possible GUT breaking effects for the above parameters. While the running mass

of the wino obtained from these boundary conditions is typically large, we assume that its phys-

ical mass is 1 TeV as a result of cancellations among various, including threshold, contributions.
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Figure 5: (a) Proton lifetime for the ν̄K+ mode and (b) mh0C
/m̃ (black solid) and µ/m̃ (red dashed)

for the mSUGRA-like boundary conditions in Eqs. (31, 32) with m1/2 = 0.01m̃. The boundary
conditions in Eq. (31) exclude the green regions at the top. The red bands for the proton lifetime
represent uncertainties from the GUT CP phases discussed in Section 3.4.

(This assumption affects renormalization group evolution from TeV to m̃.) We set the Yukawa

interactions between the colored Higgs and matter fields by matching them with the SSM Yukawa

couplings yu and yd; see Ref. [37] for details. In the analysis below, we treat tan β as an input

parameter, trading µ and B with v and tan β by the electroweak symmetry breaking condition, as

in conventional mSUGRA analyses.

In Fig. 5, we show the proton lifetime of p → ν̄K+ (in 5(a)) and the masses of the lightest

colored Higgs scalar h0
C and µ (in 5(b)) in the m̃-tan β plane. Here, we have set m1/2/m̃ = 0.01.

The green shaded region in the upper region of each plot represents parameter space in which

correct electroweak symmetry breaking cannot occur. We find that tan β − 1 cannot be larger

than O(0.1). This is because the boundary condition m2
Hu

= m2
Hd

at Q = Q0 implies m2
Hu
≈ m2

Hd

at Q = m̃, leading to tan β ≈ 1; see Eq. (13). (The electroweak symmetry can be broken by B.)

Because tan β ∼ 1, essentially all the allowed region with m̃ ≈ O(109–1013 GeV) and µ/m̃ . 4

is consistent with the observed Higgs boson mass, mh0 ' 125 GeV. (For µ � m̃, there could be

significant threshold corrections to λ, making it deviate from the condition λ(m̃) ≈ 0.) The red

bands in Fig. 5(a) represent uncertainties from the GUT CP phases discussed in Section 3.4. In

calculating the proton decay rate, we have used the CKM matrix in Ref. [38], the PDG average

of the light quark masses [39], and the four-loop renormalization group equations and three-loop

decoupling effects from heavy quarks [40] to estimate the Yukawa couplings of the light quarks.

We have followed Ref. [41] to obtain the Wilson operators relevant for the proton decay at the
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Figure 6: Same quantities as in Fig. 5 plotted in the m̃-m1/2/m̃ plane. We have set tan β = 1.1.

hadronic scale, and used matrix elements in Ref. [42].

In Fig. 5(b), we see that µ/m̃ increases as we go lower in the plot. This is because the value of

tan β is given by

tan β − 1 ≈ m2
Hd
−m2

Hu

2|µ|2

∣∣∣∣∣
Q≈m̃

≈ O

(
m̃2

|µ|2
)
, (33)

for |µ|2 & m̃2. Note that we need not have an extreme fine-tuning between m2
Hu

and m2
Hd

to

obtain tan β � 1 for |µ| reasonably larger than m̃. In the figure, we also find that the lightest

colored Higgs scalar h0
C is a factor of a few lighter than the heavier (colored and non-colored) Higgs

bosons, whose masses are around |µ| ∼ |µHC
|. This is because h0

C is almost the GUT partner of

the light fine-tuned SM Higgs h0, so that its mass is suppressed due to the approximate GUT

relation between the color-triplet and weak-doublet Higgs mass-squared matrices, which is broken

here only by the renormalization group running effect between Q0 and m̃. Note that the dominant

contribution to proton decay comes from exchange of h0
C , with the rate proportional to the inverse

fourth powers in the mass of h0
C . This implies that the proton decay rate is highly sensitive to

possible GUT-violating threshold corrections at Q0. For example, an O(10%) violating of, e.g.,

the relation µ = µHC
or m2

Hu,Hd
= m2

HC ,H̄C
could lead to a change of the proton decay rate by a

couple of orders of magnitude.

In Fig. 6, we show the same quantities as in Fig. 5 in the m̃-m1/2/m̃ plane by taking tan β = 1.1.

As we increase m1/2/m̃, the mass of h0
C becomes larger and, accordingly, the lifetime of the proton

for fixed m̃ increases. This is because larger m1/2/m̃ leads to a larger violation of the GUT

relation between the mass-squared matrices for the color-triplet and weak-doublet Higgses, so that
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electroweak fine-tuning for the mass of h0 yields less suppression for the mass of h0
C .

4 ISS as the Origin of Scales for New Physics

In this section, we argue that the mass scale m̃ in ISS may provide the origin of a variety of new

physics occurring at intermediate scales, Eq. (2). Specifically, we consider the heavy mass scale

for seesaw neutrino masses, the axion decay constant, and the inflaton mass as originating from

m̃. The discussions here are not contingent on the specific model presented in the previous section

or in Ref. [4], and apply more generally to a large classes of ISS models. Also, all the mechanisms

described below need not be realized simultaneously; one or more of the mass scales appearing in

these phenomena may originate from other physics.

4.1 Seesaw neutrino masses

The simplest understanding of small neutrino masses follows from having lepton number broken

at a very high scale, ML. At energies below ML, lepton number becomes an accidental symmetry

of interactions up to dimension 4, yielding Majorana neutrino masses at dimension 5 via ll hh/ML.

Within ISS it is natural to associate ML with m̃, since this is the only mass scale below the cutoff,

giving neutrino masses of mν ∼ v2/m̃.

We can implement this by introducing SU(5) singlet right-handed neutrino superfields, N ,

neutral under U(1)R, so that the Kähler potential contains cνNN/2, with cν being O(1) coefficients.

Once supersymmetry is broken, the supergravity interactions generate an effective superpotential

W ν
eff = m̃νNN/2, where m̃ν is a 3 × 3 matrix in flavor space with entries order m̃. Introducing

a 3 × 3 Yukawa coupling matrix yν via the superpotential interaction yνNF̄H leads to a light

neutrino mass matrix

mν =

(
yTν

1

m̃ν

yν

)
v2. (34)

For example, with m̃ = 1013 GeV, the observed neutrino masses result from yν entries of order 0.1.

Previously we have used a U(1)R symmetry with charges R = 0 for H, H̄,Σ and R = 1

for T, F̄ . This symmetry does not work in the present case, since the yνNF̄H couplings would

then imply N ’s having R = 1, so that K ⊃ cνNN/2 cannot be written while the N2 terms are

allowed in the superpotential. Assuming that the supersymmetry breaking field X is neutral under

it, we find a unique flavor-independent R symmetry that allows both cν and yν to be non-zero:

R′ = R − X/5, where U(1)X is the Abelian generator that appears in SO(10)/SU(5) and has

charges T (1), F̄ (−3), N(5), H(−2), H̄(2),Σ(0), and we have chosen R = 1 for N . Imposing this
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U(1)R′ symmetry yields a theory with the general structure

K̃ = Λ2 f
(Σ

Λ
,
HH̄

Λ2
,
NN

Λ2

)
, (35)

W = yU

(Σ

Λ

)
TTH + yD

(Σ

Λ

)
T F̄ H̄ + yν

(Σ

Λ

)
NF̄H, (36)

leading to the neutrino mass matrix in Eq. (34). Here, K̃ is the holomorphic part of the Kähler

potential, and we have imposed matter parity under which Σ, H, H̄ are even while T, F̄ , N are

odd.7

It is interesting to note that values of the right-handed neutrino masses implied by the above

mechanism are consistent with thermal leptogenesis, which works for a wide range of conditions

after inflation if the lightest right-handed neutrino is heavier than about 109 GeV for hierarchical

right-handed neutrinos [43].

4.2 Axion

One of the major problems in the SM is the strong CP problem. A promising solution is to

introduce an anomalous Peccei-Quinn (PQ) symmetry spontaneously broken at a scale fa, leading

to an axion field with decay constant fa. Here we consider that the scale of fa is given by m̃, and

present a simple model realizing this idea. For a different implementation of a similar setup, in

which fa is related to m̃, see Ref. [44].

We consider the superpotential of the form

W ⊃ c SQQ̄+ c′ S2S̄. (37)

Here, c and c′ are coefficients of order unity, and chiral superfields S (which will be identified as

the PQ-breaking field), S̄, Q, and Q̄ have the U(1) PQ charges

S(1), S̄(−2), QQ̄(−1). (38)

The superpotential of the above form may be used to build a variety of axion models, including

DFSZ-type models in which a part of Q and Q̄ may be identified with the SSM Higgs doublets.

Here we choose the following simple SU(5) representation

S(1), S̄(1), Q(5), Q̄(5∗). (39)

Since Q and Q̄ comprise complete SU(5) multiplets, gauge coupling unification is preserved. This

simple choice also guarantees that the so-called domain wall number NDW is unity, which allows

us to avoid stringent cosmological constraints as discussed below.

7An introduction of separate matter parity can be avoided if we consider an R symmetry under which the
supersymmetry breaking field X is charged. In this case, the right-handed neutrino masses may be generated by
operators like K ⊃ X†NN/2, and R-parity may arise as an unbroken Z2 subgroup of the R symmetry.
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Once supersymmetry is broken, the S field may have a negative soft supersymmetry-breaking

mass-squared of order m̃2:

V ⊃ −m2
SS
†S, m2

S ∼ O(m̃2). (40)

Indeed, this negative mass-squared may be induced radiatively through renormalization group

running from M∗ (∼ Λ ∼ MPl) to the scale m̃, starting from the boundary condition that all the

fields have positive soft squared masses at M∗, in which case the soft supersymmetry-breaking

squared masses for S̄, Q, and Q̄ will be positive. The potential given by Eqs. (37, 40) leads to a

vacuum at

〈S〉 = fa ∼ O(m̃), 〈S̄〉 = 〈Q〉 = 〈Q̄〉 = 0, (41)

breaking the PQ symmetry at ∼ m̃. As a result, all the particles in the S, S̄, Q, Q̄ multiplets receive

masses of order m̃ except for the light Nambu-Goldstone axion field arising from S, whose decay

constant is given by 〈S〉 = fa.

The recent discovery of the B-mode polarization in cosmic microwave background radiation by

BICEP2 collaboration [16], r = 0.2+0.07
−0.05, suggests that the scale of inflation is large:

HI ' 7.8× 1013 GeV
( r

0.1

)1/2

, (42)

where HI is the Hubble parameter during inflation. This has significant impacts on axion models.

If the PQ symmetry is broken before inflation, the light axion field produces isocurvature pertur-

bation. With the large inflation scale in Eq. (42), this case is excluded by observation [45], unless

the dynamics associated with the PQ symmetry breaking is somewhat complicated, e.g., if fa is

much larger [46] or if the axion is heavier than HI [47] during inflation due to nontrivial dynamics.

We thus consider here the case in which the PQ symmetry is broken after the end of inflation. In

this case, topological objects formed associated with PQ symmetry breaking, in particular domain

walls, may give serious cosmological problems [48]. In the model presented above, however, the

domain wall number is unity, NDW = 1, so that domain walls, which are disk-like objects bounded

by strings, are unstable [49]. The decay of these domain walls produces axion particles, but

a detailed lattice simulation indicates that the value of fa . a few × 1010 GeV is consistent

with the current observation [50]. (A slightly weaker estimate of fa . 1011 GeV, coming from

the misalignment mechanism of dark matter production, is implied by the analysis in Ref. [51].)

Together with the lower bound on fa from stellar physics (for reviews on axion physics, see e.g. [52]),

we find that

fa ≈ O(109–1011 GeV), (43)

gives consistent phenomenology. (We expect that the axino and saxion do not cause cosmological

problems in the present model, since they are heavy with masses of order m̃. The Q and Q̄

states may also be made to decay by coupling them with SM particles, without violating the PQ
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symmetry.) The value of fa in Eq. (43) can be easily obtained with m̃ in the ISS range, suggested

by the observed Higgs boson mass.

4.3 Inflation

A very simple inflation model is given by the following potential for the inflaton φ:

V (φ) =
m2
φ

2
φ2. (44)

Interestingly, this simple potential gives a good agreement with the observations of the scalar

spectral index ns by Planck [53] and the tensor-to-scalar ration r by BICEP2 [16] for

mφ ' 1013 GeV. (45)

It is, therefore, interesting to identify mφ as m̃, which is roughly in the same energy range.8

The construction of a complete inflation model in supergravity realizing the above idea, how-

ever, is challenging, since the value of field φ during inflation is beyond the reduced Planck scale

MPl, where the scalar potential obtained from supergravity loses theoretical control. Moreover,

depending on the mechanism of how the supersymmetry breaking masses are generated, the soft

supersymmetry breaking mass for φ may be shut off above some scale, e.g., M∗. One possibility is

to use a shift symmetry on φ along the lines of, e.g., Ref. [55], but the construction of an explicit

model seems nontrivial. Another possibility is that the apparent obstruction in supergravity of

having flat potential beyond φ ≈ MPl is not warranted, as has been discussed, e.g., in Ref. [56]

and more recently in Ref. [57].

An alternative direction for realizing the idea of connecting the ISS scale with inflation is to

use the constant term in the superpotential, W0, needed to cancel the cosmological constant. If

we assume that the superpartner mass scale m̃ is generated by some mediation mechanism at M∗,

the F -term VEV for the supersymmetry breaking field is given by F ∼ m̃M∗. This implies that

W0 ∼ m̃M∗MPl. Taking M∗ ∼MPl, this scale is thus

W
1/3
0 ∼ 1016

(
m̃

1012 GeV

)1/3

GeV, (46)

which is very close to the energy scale during inflation V
1/4
I ' 2× 1016 GeV suggested by the BI-

CEP2 data. Inflation, therefore, may occur associated with the dynamics generating this constant

term, for example through some gaugino condensations, along the lines of, e.g., Ref. [58]. We leave

explorations of explicit inflation models in the ISS framework to future work.

8While completing this paper a similar observation was made in Ref. [54].
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Figure 7: The experimentally allowed ranges of four key mass scales: µc (the scale at which the SM
Higgs quartic coupling vanishes); MHC ,Σ (the masses of the Hc and Σ states in the ISS model of
Section 3); ML (the scale of lepton number violation for seesaw neutrino masses and leptogenesis);
and fa (the axion decay constant in minimal models that solve the strong CP problem). All are
consistent with ISS, with supersymmetry breaking centered around the shaded region.

5 Summary

We have explored supersymmetric grand unified theories that have a single scale, that of super-

symmetry breaking, determined by the value of the Higgs boson mass to be in the intermediate

range of m̃ ∼ 109–1013 GeV. Mass terms for the SU(5) Higgs multiplets, Σ, H, H̄ are generated

at m̃ in the same way that in minimal supersymmetric models the Higgs mass parameter µ can

arise at the supersymmetry breaking scale. However, unlike electroweak breaking in these minimal

models, the breaking of the unified symmetry by Σ occurs at a scale parametrically higher than

m̃, close to the cutoff scale of the theory.

A variety of diverse physics can be described by such GUTs with ISS, as illustrated in Fig. 7.

For a wide range of parameters, the SM Higgs quartic coupling is constrained to be small at m̃;

indeed we determine the allowed range of m̃ by using the Higgs mass as input as shown in Fig. 1.

The result is illustrated by the upper horizontal green bar in Fig. 7, showing the range of the scale

µc where the quartic coupling vanishes in the SM (possibly augmented by a TeV wino for dark

matter).
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In the minimal ISS model, introduced and studied in depth in Section 3, proton decay is induced

by both the tree-level exchange of the colored triplet SU(5) partner of the Higgs boson HC , of

mass MHC
, and by the exchange of the GUT gauge bosons X. The mass of HC is expected to

be comparable to the mass of the uneaten states in Σ, MΣ, and the experimental constraint on

these masses is shown in the second horizontal green bar of Fig. 7. The lower end of the range

results from the limit on p → ν̄K+ from HC exchange, while the upper end of the range arises

from the limit on p → e+π0 from X exchange; the mass of X being sensitive to MΣ via gauge

coupling unification. Even though there are order unity couplings that lead to differences between

µc and MHC ,Σ, it is important for the consistency of the theory that the ranges of the top two

green bars overlap. While the presence of Σ states at m̃ solves the proton decay problem of non-

supersymmetric SU(5), having HC states at m̃ does not introduce a new proton decay problem,

but offers the possibility of a signal. The precision of gauge coupling unification is further enhanced

if dark matter is environmentally selected by fine-tuning the wino mass to the TeV region.

The basic model of Section 3 leaves open two key questions, the origin of neutrino masses and

inflation. Seesaw neutrino masses occur very naturally in our framework as the lepton number

violating mass for the right-handed neutrinos, ML, can arise from the same mechanism that gen-

erates the masses for Σ, H, H̄. The experimentally allowed range for ML is shown by the third

horizontal bar in Fig. 7. The upper end of the range arises from the need to explain the size of

the atmospheric neutrino oscillation, and is shown for neutrino Yukawa couplings of order unity,

while the lower end arises from the requirement of a leptogenesis origin for the cosmological baryon

asymmetry. Note that leptogenesis also requires that ML be less than the reheat temperature after

inflation, so that the upper bound on ML may be lower than shown.

Recent data from BICEP2 indicates that the scale of the vacuum energy that drives inflation is

' 2× 1016 GeV. However, this need not be a Lagrangian mass scale; for example, for an inflation

potential m2
φφ

2/2 the required inflaton mass is mφ ' 1013 GeV. We do not show this in Fig. 7

because it is specific to this particular potential. However, it is certainly consistent with the masses

µc,MHc,Σ,ML, so we may expect that this also arises from m̃.

Finally, the axion is the most promising solution to the strong CP problem, and may also

account for dark matter. The large value of the Hubble parameter during inflation indicated by

the BICEP2 data, implies that the simplest axion models having PQ symmetry broken during

inflation are excluded. In Fig. 7 we therefore show the experimentally allowed range of the axion

decay constant in theories having a PQ phase transition after inflation. The upper limit arises

from overclosure by axions, and the lower limit from axion emission from supernovae and white

dwarfs. Again, from Fig. 7 we notice a remarkable consistency between the mass scales required

for very different physics; in ISS these masses are not precisely equal, but may all arise from m̃,

the scale of supersymmetry breaking.
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