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Abstract

We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the
discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9kpc
(in projection; 10 2) from the nucleus of NGC4993, an S0 galaxy at a distance of 40Mpc. We present a Hubble
Space Telescope (HST) pre-trigger image of NGC4993, Magellan optical spectroscopy of the nucleus of
NGC4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC4993. The spectrum
and broadband spectral-energy distribution indicate that NGC4993 has a stellar mass of = -

+
( )M Mlog 10.49 0.20

0.08

and star formation rate of 0.003 M yr−1, and the progenitor system of SSS17a likely had an age of >2.8Gyr.
There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor
system had an absolute magnitude > -M 5.8V mag. We detect dust lanes extending out to almost the position of
SSS17a and >100 likely globular clusters associated with NGC4993. The offset of SSS17a is similar to many
short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC4993. The environment of
SSS17a is consistent with an old progenitor system such as a binary neutron star system.

Key words: galaxies: individual (NGC 4993) – stars: individual (SSS17a)

1. Introduction

On 2017 August 17 (UT), the Laser Interferometer Gravita-
tional-wave Observatory (LIGO) and Virgo interferometer
detected a gravitational-wave source from a binary neutron star
(BNS) merger, GW170817 (LIGO/Virgo Collaboration 2017b;
LIGO Scientific Collaboration and Virgo Collaboration 2017, in
preparation). Two seconds after the LIGO/Virgo detection, the
Fermi Gamma-ray Space Telescope and INTErnational Gamma-
Ray Astrophysics Laboratory (INTEGRAL) detected a short-
duration gamma-ray burst (sGRB; INTEGRAL 2017; LIGO/
Virgo Collaboration 2017a). About 11 hr after the LIGO/Virgo
trigger, our team discovered an optical transient in NGC
4993 coincident with GW170817, called Swope Supernova
Survey 2017a (SSS17a; One-Meter Two-Hemisphere (1M2H)
Collaboration 2017; Coulter et al. 2017).

SSS17a is the first detection of an electromagnetic counter-
part to a gravitational-wave source. This discovery marks a
milestone and opens a new era in modern astronomy. The

gravitational-wave data suggests that SSS17a is a BNS merger,
the most popular progenitor model of sGRBs (e.g., Eichler
et al. 1989; Lee & Ramirez-Ruiz 2007; Berger 2014).
The host environments of astrophysical transients have long

been a profitable route to understanding the nature of their
progenitor systems and placing broad constraints on their
properties. For example, the long-duration GRBs and sGRBs
have very different host environments. While long GRBs
predominantly occur in star-forming galaxies (e.g., Bloom
et al. 2002), sGRBs can be found in both star-forming and
early-type galaxies (Prochaska et al. 2006; Fong et al. 2013),
indicating an older population. In addition, sGRBs tend to be
found in more massive galaxies and generally show larger
offsets from their hosts than long GRBs do (Zheng & Ramirez-
Ruiz 2007; Behroozi et al. 2014). The distinct host properties
suggest they are likely to arise from different progenitor
populations.
In this work, we investigate the host environment of SSS17a,

both globally and locally. By comparing our results to those
from different kinds of astrophysical transients, we constrain
the nature of the progenitor system.
A plan of the paper follows. In Section 2, we describe the

observations and data reduction, and Section 3 discusses the
methods used to analyze the data and show the determined host
properties. The discussion and conclusions are presented in
Sections 4 and 5, respectively. Throughout this paper, we
assume =H 700 km s−1 Mpc−1 and a flat universe with
W = 0.3M when necessary.
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2. Observations and Data Reduction

SSS17a was discovered 5. 3 E and 8. 7 N of NGC 4993
(1M2H Collaboration 2017; Coulter et al. 2017), an early-type S0
galaxy with redshift = z 0.009727 0.000050 (de Vaucouleurs
et al. 1991) in a galaxy group (Makarov & Karachentsev 2011).
The transient is only 1.9 kpc offset (projected) from NGC 4993,
assuming the distance to NGC 4993 of 39.5Mpc based on the
Tully–Fisher method (Freedman et al. 2001).

NGC 4993 was observed by the Hubble Space Telescope
(HST) with the Advanced Camera for Surveys (ACS) on 2017
April 28 (UT) in the F606W filter as part of the “Schedule Gap
Pilot” program (Program 14840; PI: Bellini). We obtained the
HST images from the Mikulski Archive for Space Telescopes.
We reduced the HST image using the DRIZZLEPAC pipeline
(Avila et al. 2015). The calibrated frames were further
corrected for geometric distortion, sky background, and
cosmic-rays, and combined with ASTRODRIZZLE. We registered
the final combined images using TWEAKREG.

We performed photometry on the combined HST/ACS
image following standard procedures with DOLPHOT.12 The
DOLPHOT photometry was calibrated using the ACS/WFC
F W606 zeropoint for 2017 April 28 from the ACS zeropoint
calculator.13

We obtained Pan-STARRS1 (PS1) griz imaging of
NGC 4993 from the PS1 image cutout server14 (Chambers
et al. 2016). These data had been calibrated to the PS1 system
following procedures described in Magnier et al. (2016).

To measure the photometry of NGC 4993, we fit an elliptical
isophote to the galaxy profile using the IRAF package
ISOPHOTE. We measured an HST/ACS F W606 AB magnitude
of 12.23± 0.01 mag. Using the same method, we measured
PS1 griz AB magnitudes of 12.45± 0.02, 12.14± 0.02,
11.78± 0.02, and 12.62± 0.02 mag, respectively. In addition,
we obtained far-UV and near-UV (NUV) photometry from the
Galaxy Evolution Explorer (GALEX; Bianchi et al. 2017), JHKs
near-infrared photometry from the Two Micron All-Sky Survey
(2MASS; Skrutskie et al. 2006), and 3.6–22 μm IR photometry
from the Wide-field Infrared Survey Explorer (Wright
et al. 2010).

We examined the position of SSS17a in the HST/ACS
F W606 image and did not detect any sources at the transient
location. Placing artificial stars on similar surface-brightness
areas, we determined an AB magnitude limit at the position of
SSS17a of >m 27.2V mag, corresponding to > -M 5.8V mag
at the distance of NGC 4993, consistent with limits initially
reported by HST (2017).

We obtained an optical spectrum of NGC 4993 on 2017
September 5 (UT) using the f/4 camera of the Inamori-
Magellan Areal Camera and Spectrograph (ImacS; Dressler
et al. 2006) on the 6.5 m Magellan/Baade telescope at Las
Campanas Observatory. We used the 600 ℓ/mm grating with a
blaze angle of 8 .6 to cover the wavelength range 3500–6500Å
at a spectral resolution of »R 2500. We obtained three 600 s
exposures on NGC 4993 with a 0. 7-wide long slit in mediocre
conditions with some clouds. We carried out basic reductions
of the spectra (bias subtraction, wavelength calibration,
flatfielding, and coaddition) using the COSMOS software

package (Dressler et al. 2011).15 We then extracted the
spectrum over a 3. 7-diameter aperture in IRAF and applied a
flux calibration derived from observations of the standard star
LTT 6248. The flux-calibrated spectrum of NGC 4993 is
displayed in the upper panel of Figure 2.

3. Analysis

3.1. Stellar Mass and Star Formation Rate

We use the photometric redshift code Z-PEG (Le Borgne &
Rocca-Volmerange 2002), which is based on the spectral
synthesis code PÉGASE.2 (Fioc & Rocca-Volmerange 1997),
to estimate the host-galaxy stellar mass (Mstellar) and star
formation rate (SFR). Z-PEG fits the observed galaxy colors
with galaxy SED templates corresponding to nine spectral
types (SB, Im, Sd, Sc, Sbc, Sb, Sa, S0, and E). We assume a
Salpeter (1955) initial-mass function. The photometry is
corrected for foreground Milky Way reddening of

- =( )E B V 0.109 mag (Schlafly & Finkbeiner 2011;
Shappee et al. 2017) with =R 3.1V and a Cardelli et al.
(1989, CCM) reddening law.
Using our 14-band photometry (see Section 2), we measure a

host Mstellar of = -
+

( )M Mlog 10.49 0.20
0.08, corresponding to a

halo mass of =( )M Mlog 11.96halo using the Mstellar–Mhalo
relation derived in Yang et al. (2008), assuming

=( )M Mlog 9.80 , =( )M Mlog 10.7h , a = 0.6 and
b = 2.9 in their Equation (7). The observed photometry and
best-fit template can be found in Figure 3.
In Figure 4 we compare the measured Mstellar to that for the

host galaxies of supernovae (SNe) and both short and long
GRBs. Similar to SNeIa and core-collapse SNe, sGRBs can be
found in galaxies with a wide range of Mstellar. By contrast, long
GRBs are predominantly found in low-mass galaxies. We find
that NGC4993 is more massive than 50% of host galaxies for
all classes. In fact, NGC4993 is more massive than every long
GRB host galaxy in the Leibler & Berger (2010) sample.

Z-PEG also indicates negligible recent star formation (at least
over the past 0.5 Gyr) in the host galaxy. The same result is
obtained by intentionally forcing Z-PEG to better fit the UV
photometry (but sacrificing the goodness of the full SED
fitting; see the gray curve in Figure 3). This is further supported
by the non-detection of nebular emission lines in the host
spectrum. Using the GALEX NUV photometry, we estimate an
SFR of only 0.003 M yr−1 (see also VAST 2017) based on the
conversion from Kennicutt (1998).

3.2. Age and Metallicity

The spectrum of NGC4993, through its continuum and
possible emission lines, provides information about its
extinction, SFR, metallicity, age, and velocity dispersion.
To measure these quantities, we fit the emission lines and
stellar continuum using the Interactive Data Language (IDL)
codes PPXF (Cappellari & Emsellem 2004) and GANDALF
(Sarzi et al. 2006). A complete description of this process
can be found in Pan et al. (2014). Briefly, PPXF fits the
line-of-sight velocity distribution (LOSVD) of the stars in the
galaxy in pixel space using a series of stellar templates.
Before fitting the stellar continuum, the wavelengths of
potential emission lines are masked to remove any possible
contamination. The stellar templates are based on the MILES

12 http://americano.dolphinsim.com/dolphot/
13 https://acszeropoints.stsci.edu/
14 http://ps1images.stsci.edu/cgi-bin/ps1cutouts

15 http://code.obs.carnegiescience.edu/cosmos
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empirical stellar library (Sánchez-Blázquez et al. 2006;
Vazdekis et al. 2010). A total of 288 templates are selected
with = -[ ]M H 1.71 to +0.22 in six bins and ages ranging
from 0.063 to 14.12 Gyr in 48 bins.

After measuring the stellar kinematics with PPXF, the
emission lines and stellar continuum are fit by GANDALF

simultaneously. Through an iterative fitting process, GANDALF
finds the optimal combination of the stellar templates, which
have already been convolved with the LOSVD. Extinction is
handled using a two-component reddening model. The first
component assumes a diffusive dust screen throughout the
whole galaxy that affects the entire spectrum, including
emission lines and the stellar continuum, while the second is
a local dust component around the nebular regions, and

therefore affects only the emission lines. The spectral fit results
from PPXF and GANDALF can be found in Figure 2.

PPXF determines a heliocentric radial velocity
= cz 2961 5 km s−1 and central velocity dispersion of

161±8 km s−1 for NGC4993. The best-fit value for the
diffusive dust component is zero (the local dust component
cannot be constrained due to the lack of nebular emissions in
our spectrum), suggesting that dust extinction within the inner
3. 7 of NGC4993 is negligible.
In Figure 2 we show the stellar age and metallicity

distributions of the host-galaxy stellar populations given by
the PPXF fit. We determine a mass-weighted mean stellar age of
10.97 Gyr, with the youngest and oldest stellar populations
having ages of 2.8 Gyr and a Hubble time, respectively. This

Figure 1. Upper left: false-color (RGB channels corresponding to PS1 irg filters) image of the field surrounding NGC4993 (indicated by the yellow arrow). The green
arrow marks the closest galaxy to NGC4993 in the same galaxy group, ESO508-G018. Upper right: zoom-in of the upper-left image centered on NGC4993. The red
cross marks the location of SSS17a. Lower left: HST/ACS F606W image near the center of NGC4993. The yellow circle represents the 1-σ error circle of the SSS17a
location. The dust lanes surrounding the galactic center are obvious. Lower right: zoom-in of the lower-left image after subtracting a GALFIT model, centered on the
SSS17a location. The yellow circle and red circle represent the 1-σ and 3-σ astrometric uncertainty, respectively. Blue circles mark the potential globular clusters near
the transient location. For all images, north is up and east is left.
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result strongly suggests that the progenitor system of SSS17a
was at least 2.8 Gyr old. Our result is consistent with previous
findings that sGRBs tend to originate from older populations
(Leibler & Berger 2010).

We measure a mass-weighted mean stellar metallicity
= -[ ]M H 0.03, corresponding to ∼0.9Ze. Leibler & Berger

(2010) used the gas-phase metallicity + ( )12 log O H and
measured a mean metallicity of ∼1Ze for sGRB samples.
They also found that the metallicities of sGRB hosts are
generally higher than those for long GRB hosts (with a median
metallicity of only ∼0.3 Ze). Therefore, NGC4993 has a
typical metallicity for an sGRB host galaxy.

3.3. Offset and Fractional Flux

SSS17a is offset by 10. 2 from the center of NGC4993,
corresponding to a physical (projected) offset of 1.9 kpc using the
Tully–Fisher distance of 39.5Mpc (Freedman et al. 2001). In
Figure 4, we compare the measured offset to that for different
types of transients. It is evident that the locations of sGRBs tend
to be farther from the centers of their host galaxies (with a median
offset of 5 kpc) than long GRBs and other SNe. We find that the
offset of SSS17a is somewhat small in comparison to sGRBs,
with∼77% of all sGRBs having an offset of>1.9 kpc. This same
trend is true when normalizing the offset by the effective radius of
the galaxy, where SSS17a has a normalized offset of =r r 0.61e ,
and ∼80% of all sGRBs have larger normalized offsets.
To further study the local environment of the transient, we use

the fractional flux method (e.g., Fruchter et al. 2006). The
fractional flux is defined as the sum of all flux in all pixels that
are fainter than that measured at the location of the transient
divided by the total flux associated with the galaxy. Using the
HST/ACS F W606 image, we determine a fractional flux of 0.41
for SSS17a (Figure 4). With this metric, sGRBs do not trace the
optical light of the galaxy, with ∼45% of all sGRBs being at
positions with effectively no galaxy light. That is, sGRBs are
often found in the far outskirts of a galaxy. By contrast, long
GRBs tend to be in the brightest part of their host galaxies (with
a median fractional flux of 0.86), suggesting that their
progenitors are likely related to bright star-forming regions.
The fractional flux of SSS17a is relatively high compared to

sGRB samples (∼80th percentile; consistent with the offset
distribution), but low relative to long GRBs (only∼4th percentile).

3.4. Morphology

NGC4993 is clearly an S0 galaxy (Capaccioli et al. 2015).
To further quantify its morphology, we use GALFIT (Peng
et al. 2002) to fit the surface-brightness profile of NGC4993.
We fit the galaxy profile with a single Sérsic model given by

kS = S - -( ) { [( ) ]} ( )r r rexp 1 , 1e e
n1

where re is the effective radius such that half of the total flux is
enclosed within re, Se is the surface brightness at the effective
radius, re, n is the Sérsic index (a concentration parameter), and
κ is a variable coupled to n.
Fitting the HST image of NGC4993, GALFIT gives a

concentration parameter »n 4 (the de Vaucouleurs profile),
which is similar to typical elliptical galaxies. The effective
radius re is 17 , corresponding to a physical size of 3.3 kpc. A
residual image is created by subtracting the best-fit model from
the original image (see Figure 5).
Dust lanes are clearly seen in the residual image, extending

several kpc from the galactic center (see both Figures 1 and 5)
roughly in the direction of SSS17a (HST 2017). However, the
dust lanes do not appear to reach the position of SSS17a,
providing further evidence that SSS17a does not suffer strong

Figure 2. Top: Magellan/IMACS spectrum of NGC4993. The red spectrum
shows the spectral fit recovered with the GANDALF software package. Bottom:
a grid containing a total of 288 stellar templates (a combination of six
metallicities and 48 ages) used for PPXF fitting. Here, we only plot the
templates with age older than 1 Gyr. The weight of each template is represented
by the strength of the color. The templates with higher weights are brighter. We
present here the result for NGC4993. The green cross represents the weighted
mean stellar age and metallicity.

Figure 3. Best-fit SED template by Z-PEG (black curve) to the observed
14-band photometry (red filled circle). The gray curve represents the template
by intentionally forcing Z-PEG to better fit the UV photometry but sacrificing
the goodness of fitting on other bands.
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extinction and is consistent with the results of Shappee et al.
(2017). The dust lanes found in early-type galaxies are usually
indications of recent minor mergers and likely to host active
galactic nuclei (Shabala et al. 2012).

3.5. Globular Clusters

Globular clusters contain very high densities of stars. This
high stellar density increases the probability of close interac-
tions and leads to mergers more frequently than for field stars
(Grindlay et al. 2006; Lee et al. 2010; Samsing et al. 2014).
Here we investigate the possibility that SSS17a originated from
a globular cluster in NGC4993.

To better detect sources hidden in the diffuse stellar light, we
use the GALFIT residual image (Section 3.4) and identify sources
using SEXTRACTOR (Bertin & Arnouts 1996, see Figure 5). To
identify possible globular clusters, we require that each source
have the following properties: (1) not obviously a foreground star
(we cross-check this by using a catalog such as USNO-B1.0), (2)
point-like PSF, and (3) a brightness consistent with a globular
cluster at 40Mpc given the globular cluster luminosity function
(e.g., Faifer et al. 2011), specifically those with  m21 24AB
mag (corresponding to  - -M10 7AB mag). A total of 119

sources pass these cuts and are selected as potential globular
clusters, with the closest one being ∼290 pc away in projection
from the position of SSS17a. In principle, we should be able to
detect all of the globular clusters in the image (the detection limit
is ∼27mag). However, the number estimated here could be
underestimated due to the dust extinction or the relatively bright
background near the host nucleus.
Previous studies (e.g., Peng et al. 2008) showed that the total

mass of globular clusters (MGCS) within the host galaxy can be
estimated by a simple scaling relation to the host-galaxy halo
mass (Mhalo) via

h= ( )M M , 2GCS halo

where η represents the absolute efficiency of globular cluster
formation. Assuming an efficiency h ´ - 4 10 5 (Harris
et al. 2015) and an average globular cluster mass of
´ M4 105 (Spitler & Forbes 2009), the number of globular

clusters (NGCS) within a galaxy of Mhalo can be estimated by

= ´ ´-( ) ( )N M1.0 10 . 3GCS
10

halo

Using =N 119GCS (the number of likely globular clusters
detected in the HST image), we determine

Figure 4. Upper left: cumulative distribution of host-galaxy stellar mass for different classes of transients. The host mass of SSS17a is represented by a vertical dashed
line. Also shown are the distributions for SNeIa (blue; Pan et al. 2014), SNeIb/c (violet; Kelly & Kirshner 2012), SNeII (green; Kelly & Kirshner 2012), sGRBs
(red; Leibler & Berger 2010), and long GRBs (gray; Leibler & Berger 2010). Upper right: same as the upper-left panel, but for the fractional flux. Also shown are the
distributions for SNeIa (Wang et al. 2013), SNeII (Svensson et al. 2010), sGRBs (Fong et al. 2013), and long GRBs from Fruchter et al. (2006) and Svensson et al.
(2010). Lower left: same as the upper-left panel, but for the projected offset from the host center. Also shown are the distributions for SNeIa (Pan et al. 2014),
SNeIb/c (Prieto et al. 2008), SNeII (Prieto et al. 2008), sGRBs (Fong et al. 2013), and long GRBs (Bloom et al. 2002). Lower right: same as the upper-left panel, but
for the normalized offset relative to the host effective radius re. Also shown are the distributions for SNeIa (Pan et al. 2014), SNeIb/c (Kelly & Kirshner 2012),
SNeII (Kelly & Kirshner 2012), sGRBs (Fong et al. 2013), and long GRBs (Bloom et al. 2002).
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=( )M Mlog 12.07halo , which is close to the value that we
found using the Mstellar–Mhalo relation (see Section 3.1).

4. Discussion

In Section 3.3 we show that sGRBs tend to have larger
offsets from their host galaxies than other kinds of transients.
The observed offset distribution is generally consistent with the
predictions for compact object mergers (e.g., Behroozi
et al. 2014). Simulations show that these progenitor systems
experience a natal kick when the stars transition to white
dwarfs, neutron stars, or black holes. The kick velocity can be
up to several hundreds of kilometers per second (Fryer &
Kalogera 1997; Fryer et al. 1998)—potentially larger than the
escape velocity of its host galaxy, which could expel the
progenitor system and result in a large offset from the host
galaxy.

However, SSS17a has a relatively small offset compared
to the typical offsets of sGRBs. Combined with its likely old
age, the location close to the center of the host galaxy suggests
that the progenitor system of SSS17a was bound to NGC 4993.
Assuming a stellar mass of =( )M Mlog 10.49 (Section 3.1),
the escape velocity of NGC 4993 is 350 km s−1 at the transient
location. We therefore have a constraint on the SSS17a
progenitor system kick of 350 km s−1, which is consistent
with the kicks seen for Milky Way neutron star binaries (Fryer
& Kalogera 1997; Wang et al. 2006; Wong et al. 2010).

Assuming the distance to the nearest likely globular cluster
(290 pc; see Section 3.5) and the age of the youngest stellar
population (2.8 Gyr; see Section 3.2), a velocity of ∼0.1 km s−1

is sufficient for the progenitor to travel from a globular cluster to
its the current location. Thus, the progenitor kick should be
dominated by the escape velocity of the globular cluster
(typically several tens of kilometers per second), which makes
it hard to exclude the possibility that the progenitor originated in
a globular cluster.

5. Conclusions

In this work, we investigate the host environment of SSS17a,
the first electromagnetic counterpart to a gravitational-wave
source. We use optical spectroscopy and broadband UV-
through-IR photometry of the host galaxy to constrain the host

properties, such as stellar mass, SFR, age, and metallicity.
Below we summarize our main findings.

1. NGC4993, the host galaxy of SSS17a, is an S0 galaxy at
40Mpc. It is massive and shows negligible recent star
formation. Its mean stellar age is high, suggesting that the
progenitor system likely originated from an old stellar
population (an age of >2.8 Gyr). NGC4993 is similar to
galaxies that have hosted sGRBs and the expected host
galaxies of BNS mergers. It is unlike typical host galaxies
for other transient classes, being the most distinct from
long GRB host galaxies.

2. Its small projected offset combined with its likely old age
suggests that the progenitor system of SSS17a was
gravitationally bound to NGC4993. This then implies a
limit on the kick velocity of the progenitor system that is
�350 km s−1.

3. Many likely globular clusters are detected in the host
galaxy, including close to the position of SSS17a. We
cannot exclude the possibility that the progenitor of
SSS17a originated from a globular cluster.

The galactic environment of SSS17a provides additional
constraints on its progenitor system beyond that extracted from
the GW data and the EM observations of SSS17a itself. With
larger samples of BNS merger host galaxies, we will be able to
determine if they differ in any way from sGRB host galaxies.

We thank the University of Copenhagen, DARK Cosmology
Centre, and the Niels Bohr International Academy for hosting
D.A.C., R.J.F., A.M.B., E.R., and M.R.S. during the discovery
of GW170817/SSS17a. R.J.F., A.M.B., and E.R. were
participating in the Kavli Summer Program in Astrophysics,
“Astrophysics with gravitational wave detections.” This
program was supported by the the Kavli Foundation, Danish
National Research Foundation, the Niels Bohr International
Academy, and the DARK Cosmology Centre. We would also
like to thank J. Mulchaey (Carnegie Observatories Director), L.
Infante (Las Campanas Observatory Director), and the entire
Las Campanas staff for their extreme dedication, profession-
alism, and excitement, all of which were critical in the
discovery of the first gravitational-wave optical counterpart and
its host galaxy as well as the observations used in this study.

Figure 5. Left: HST/ACS F W606 image of NGC4993. Middle: residual image created by subtracting a single Sérsic profile modeled by GALFIT from the same
image. Right: candidate globular clusters detected (in green) after our cuts described in Section 3.5. The radius of the circle is proportional to size of the source. The
red cross in each image represents the location of SSS17a.
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