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Non-uniformly under-sampledmulti-dimensional
spectroscopic imaging in vivo: maximum entropy
versus compressed sensing reconstruction
Brian Burnsa,b, Neil E. Wilsona,c, Jon K. Furuyamaa,c and M. Albert Thomasa,b,c*

The four-dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) sequence allows for the simultaneous
acquisition of two spatial (ky, kx) and two spectral (t2, t1) dimensions in vivo in a single recording. However, its scan time is
directly proportional to the number of increments in the ky and t1 dimensions, and a single scan can take 20–40min
using typical parameters, which is too long to be used for a routine clinical protocol. The present work describes efforts
to accelerate EP-COSI data acquisition by application of non-uniform under-sampling (NUS) to the ky–t1 plane of
simulated and in vivo EP-COSI datasets then reconstructing missing samples using maximum entropy (MaxEnt) and
compressed sensing (CS). Both reconstruction problems were solved using the Cambridge algorithm, which offers
many workflow improvements over other l1-norm solvers. Reconstructions of retrospectively under-sampled
simulated data demonstrate that the MaxEnt and CS reconstructions successfully restore data fidelity at signal-to-noise
ratios (SNRs) from 4 to 20 and 5× to 1.25× NUS. Retrospectively and prospectively 4× under-sampled 4D EP-COSI
in vivo datasets show that both reconstruction methods successfully remove NUS artifacts; however, MaxEnt provides
reconstructions equal to or better than CS. Our results show that NUS combined with iterative reconstruction can reduce
4D EP-COSI scan times by 75% to a clinically viable 5min in vivo, with MaxEnt being the preferred method. Copyright ©
2013 John Wiley & Sons, Ltd.

Keywords: EP-COSI; maximum entropy; compressed sensing; non-uniform under-sampling; spectroscopy; spectroscopic
imaging

INTRODUCTION

Changes in metabolite concentrations as a result of the altered
metabolism of cancer can be detected non-invasively using
one-dimensional (1D) MRS in vivo (1–3). However, the overlap
of spectral peaks in 1D MRS is a major impediment to the
identification of individual metabolites. Two-dimensional (2D)
MRS has increased spectral dispersion over 1D MRS and can
disentangle overlapping complex spectral peaks (4). Single-voxel
2D MRS has been shown to increase the specificity and sensi-
tivity of tumor grade classification when used with dynamic
contrast-enhanced MRI in the breast (5). However, the acquisi-
tion of multiple t1 increments per voxel to form the second
spectral dimension limits its ability to provide multi-voxel
coverage because of the long scan times needed to combine
two spectral and two spatial dimensions.
With the advent of echo-planar spectroscopic imaging (EPSI),

MRSI scans with one spectral and two spatial dimensions can
be completed within clinically acceptable times by interleaving
the acquisition of a spatial and spectral dimension within the
EPSI readout (6–8). The four-dimensional (4D) echo-planar corre-
lated spectroscopic imaging (EP-COSI) (9) sequence allows the
acquisition of two spatial (ky, kx) and two spectral (t2, t1) dimen-
sions in a single recording to form 4D MRSI. The sequence inter-
leaves the acquisition of the kx and t2 dimensions within the EPSI
readout, but ky and t1 are incrementally acquired as indirect
dimensions during each TR. The EP-COSI sequence has the ben-
efits of increased spectral dispersion and multi-voxel support,
which improves metabolite identification over multiple spatial

regions simultaneously; however, its scan time is directly propor-
tional to the number of increments in the ky and t1 dimensions.
An EP-COSI scan using typical parameters of TR/TE = 1.5 s/30ms
and ky/t1 = 16/100 can take 40min, which is too long to be used
within a routine clinical protocol.
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When the Fast Fourier Transform (FFT) is used to transform
uniformly sampled 4D MRSI data (ky, kx, t2, t1) to the spatial,
spectral domain (Y, X, F2, F1), decreasing scan times require a
reduction in either the ky spatial or t1 spectral dimension through
truncation or lower sampling rates, and a corresponding unwanted
reduction in resolution or bandwidth. However, non-uniform
under-sampling (NUS) of the spatial, spectral ky–t1 plane, in combi-
nation with iterative non-linear reconstruction, can be used to
accelerate the collection of 4D MRSI data in vivo, whilst preserving
the spatial and spectral resolutions and bandwidths (10).

Earlier work has demonstrated the feasibility of under-sampling
the mixed-domain ky–t1 plane of a 4D echo-planar J-resolved
spectroscopic imaging (EP-JRESI) dataset and reconstructing the
missing points with compressed sensing (CS) (10), a popular
method of non-linear iterative image reconstruction which
promotes data sparsity in the reconstruction domain and data
fidelity in the sample domain (11,12). The nature of spatial, spectral
NUS artifacts in the ky–t1 plane was explored, and it was shown
that l1-norm-based CS reconstruction is a viable means of reducing
the scan times of 4D EP-JRESI in vivo through NUS. In recent years,
CS reconstruction has been successfully applied to NUS MRI
(13,14), three-dimensional (3D) MRSI (15), dynamic MRI (16,17),
and multi-dimensional Nuclear Magnetic Resonance (NMR) (23).

Maximum entropy (MaxEnt) image reconstruction is an alterna-
tive non-linear iterative reconstruction technique to CS. Rather
than minimizing transform sparsity, it maximizes the entropy of
the data in the reconstruction domain, whilst preserving data
fidelity in the sample domain (18,19). MaxEnt has been successfully
used to reconstruct under-sampled images in astronomy and
multi-dimensional spectra in NMR (19–21). However, MaxEnt has
not been applied to the mixed-domain ky–t1 plane of a 4D MRSI
dataset in vivo.

The use of entropy as a regularizer in image reconstruction
predates l1-norm-based CS reconstruction and continues to be
used extensively in the reconstruction of under-sampled NMR
spectra in spite of the popularity of CS in other fields. It was first
suggested by Frieden (18) in the early 1970s after Jaynes (22)
proposed the idea of the Principle of Maximum Entropy, which
describes theMaxEnt distribution as the ‘maximally non-committal
distribution with regard to unavailable data’. This principle pre-
sents the MaxEnt prior as one that assumes nothing about the
unavailable data; by assuming nothing about those points, their
possible values are all equally likely to occur, and the reconstruc-
tion is that which most closely conforms to the uniform distribu-
tion, i.e. is flat. Peaks in the reconstruction domain are the result
of signals from the sampled data, and any artifacts from the miss-
ing data points are removed because they represent states of low
entropy that are not the result of k-space or time-domain signals.

In this article, we compare the MaxEnt and l1-norm-based CS
reconstructions of NUS 4D EP-COSI data and show that
MaxEnt is a viable alternative to CS for reducing scan times 4×
in human breast in vivo. We quantitatively characterize the
MaxEnt and CS reconstructions by comparing results for
retrospectively NUS-simulated 4D EP-COSI data at varying levels
of signal-to-noise ratio (SNR) and NUS rates. We show that retro-
spectively 4× NUS 4D EP-COSI in vivo breast data reconstructed
using either MaxEnt or CS show a comparable spatial, spectral
resolution to the fully sampled data. In addition, we show that
MaxEnt and CS reconstructions of prospective 4× NUS 4D
EP-COSI scans from the same breast study as the retrospective
data, using the same mask and sequence parameters, compare
favorably with the retrospective and fully sampled data.

Throughout this article, the NUS dataset that has not been
reconstructed and has zeros in place of missing samples is
referred to as the zero-augmented dataset to distinguish it from
the MaxEnt and CS reconstructions.

EXPERIMENTAL DETAILS

4D MaxEnt and CS reconstruction: theory

MaxEnt and l1-norm-based CS were used to reconstruct the NUS
ky–t1 plane of the 4D EP-COSI datasets.
l1-norm-based CS image reconstruction of 4D MRSI data is

formulated as a constrained convex optimization problem
(10–12):

minimize ∥ψm∥1 s:t ∥KFm� d∥2
2≤C0 [1]

where m= (y, x, F2, F1) is the reconstructed spatial, spectral-do-
main data, F is the 4D Fourier operator, K is the NUS mask that
determines which samples were acquired in the ky–t1 plane,
d= (ky,kx,t2,t1) is the k-space, time-domain sampled data, C0 is
the standard deviation of the noise in d and ψ is a known sparse
transform. ψ was chosen to be the identity transform because m
was already self sparse as shown in ref. (10).
MaxEnt image reconstruction of 4D MRSI data solves a similar

problem to CS, but uses S1/2 entropy instead of the l1-norm (19–21):

maximize S mð Þ1=2 s:t ∥KFm� d∥2
2≤C0 [2]

where S mð Þ1
2=
is the entropy of the estimated spectrum, and the

remaining terms are identical to those in the CS problem. S1/2
entropy is a concave function with a global maximum and no local
extrema, and so there is a single solution that satisfies the problem
within the feasible set of solutions defined by the data fidelity
constraint as shown in Fig. 1 (24). As can be seen, S1/2 entropy
has a global extremum and has slightly more curvature than the
l1-norm, but has far less curvature than the l2-norm.
The entropy used in the MaxEnt reconstruction was not the

often used � ∑ plog(p) entropy introduced by Shannon (25),
but the S1/2 entropy derived by Daniell and Hore (20) specifically

Figure 1. Plot showing –S1/2 entropy (blue), l1-norm (red) and l2-norm
(green). Each function has been normalized to equal unity at |x| = 1.
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for NMR spectra originating from spin 1
2= nuclei, such as 1H, used

in MRSI:

S mð Þ1
2
¼ � ∑

i¼N

i¼1

mij j
def

log
mij j�

def þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ mij j=def
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0
@
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�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ mij j

def

� �2
s

[3]

where def is a scaling parameter related to the sensitivity of the
scanner and is calculated for m of length N as

ffiffiffiffiffiffiffiffiffi
C0=N

p
(21). S1/2 is

used because the underlying physical processes that produce an
MR spectrum are not based on discrete particle events and so
cannot be modeled by simple Poisson-distributed processes as
required for the derivation of Shannon entropy (26). They are
governed by the density matrix of the spin system under inves-
tigation, and so the statistical distribution is different. Equation
[3] was derived from first principles using both a classical spin
model and a quantum mechanical model. Neither model made
any assumptions on the initial state of the spin system nor the
pulse sequence used. This equation can be applied to any MR
spectrum originating from spin 1

2= nuclei, and addresses previ-
ous concerns regarding the use of entropy in MRS and MRI
reconstruction (27).
In order to remove any differences between the MaxEnt and

CS reconstructions caused by differences in the solvers used,
both problems were solved by a Matlab implementation of the
Cambridge algorithm (19). This recasts the image reconstruction
problem into an unconstrained convex optimization problem
and uses a variant of the conjugate gradient method to itera-
tively find the extrema in two phases; the first phase minimizes
the fidelity constraint and the second phase minimizes or maxi-
mizes the objective function, while keeping the fidelity
constraint minimized. The stopping criterion for the problem is
reached when the gradients of the objective O(m) and the

fidelity constraint C(m) are parallel: ∇O
∥O∥2

� ∇C
∥C∥2

��� ��� < 0:001. Specific

details on the algorithm and modifications to accommodate
multi-dimensional MR data can be found in ref. (21).
The Cambridge algorithm calculates the gradient ∇∥m∥1∈CN

and Hessian ∇2∥m∥1∈C2Nx2N of the objective function, which
are not defined for ∥m∥1 when mi=0. Therefore, in order to
solve the l1-norm-based CS reconstruction problem, ∥m∥1 was
redefined as:

∥m∥1 ¼ ∑
i¼N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R mið Þ2 þ I mið Þ2 þ ϵ

q
[4]

whereR and I were the real and imaginary components of mi,
and ϵ is a small non-zero value to prevent mi= 0. The gradient
and Hessian were then defined as:

∇∥m∥1 ¼ W�1m [5]

∇2∥m∥1 ¼
"

mij j�1ð1�R miÞð Þ mij j�2 �I mið ÞR mið Þ mij j�3

�I mið ÞR mið Þ mij j�3 mij j�1ð1� I miÞð Þ mij j�2

#

¼ 2� 2 block diagonal matrix

[6]

whereW∈CNxN is a diagonal matrix with wii= |mi|, and elementmi

is associated with the i th 2 × 2 block in the Hessian. The gradient
and Hessian of S mið Þ1

2
are defined in ref. (21). Only the 2 × 2

diagonal blocks of the ∥m∥1 and S mið Þ1
2
Hessians were stored

in memory during reconstruction, not the full matrices.

Sample mask generation

The ky–t1 plane of the 4D EP-COSI datasets used in these
experiments was under-sampled using 2D Poisson-gap sample
masks that were generated using a modified 1D Poisson-gap
process (28). In 1D Poisson-gap sample masks, the gaps between
samples follow a Poisson distribution, whereas the 2D extension
follows the convention that gaps between spaces follow a
Poisson distribution. However, both conventions result in the
spaces and sample points following Poisson distributions.
Poisson-distributed masks avoid large gaps between samples,
which are detrimental to the reconstruction, while ensuring that
the samples are randomly distributed (29). Compared with other
distributions, Poisson-distributed masks create the fewest
aliasing artifacts in the Fourier domain and preserve the SNR of
the under-sampled data (30).

The effects of the sample mask on the peak amplitude and
lineshape of spectral reconstructions are well documented
(29,31,32). Sample mask densities that follow the time-domain
NMR signal envelope and sample more points at higher SNR
have spectral reconstructions with lower root-mean-square
errors (RMSEs) and less non-linearity compared with sample
masks that do not. The t1 dimensions of the EP-COSI datasets
in this work were apodized with a sine-squared filter to enhance
the cross-peaks (9), but, because of T2* decay, the filtered EP-
COSI data had a skewed sine-squared signal envelope; therefore,
the 2D Poisson-gap sample mask density was modulated along
t1 with a skewed sine-squared function (33). The ky dimension
was modulated by an exponential decay function similar to that
used previously to maximize spatial SNR (34).

The sample density of a Poisson-gap mask can be modulated
by the rate parameter λ which determines both the mean and
variance of a Poisson distribution. The probability of generating
a gap g from a Poisson distribution is characterized by:

p g; λð Þ ¼ ðλg�e�λÞ=g! [7]

For large λ, large values of g are more likely, and for small λ,
small values of g are more likely. Therefore, the probability of g
can be modulated by varying the value of λ according to a sine
or exponential decay function, and the probability of large gaps
between spaces can be increased where the SNR is highest in
the MR signal envelope (28). To generate g as a function of λ, a
Poisson process can be simulated using various techniques that
do not depend on an a priori knowledge of g as above (35). For
these experiments, the poissrnd(λ) function in Matlab was used
to generate g as a function of λ. It takes as input an array of λ
and returns an array of gaps with local mean and variance λ.

2D Poisson-gap sample masks were iteratively generated in
Matlab by combining the 1D distributions of t1 and ky until the
desired NUS rate was reached.

Examples of the 2D λ, gap and mask arrays generated by 2D
Poisson-gap are shown in Fig. 2; as the size of λ and the spacing
gaps increase, the sample density increases in that area of the
mask. The magnitude point spread function (PSF) of the mask
is shown and demonstrates the viability of this approach; the
single dominant central peak with small side-lobes, surrounded
by low-amplitude, incoherent artifacts, is the desired profile of
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a NUS mask PSF (36,37). Incoherent sampling artifacts will have
low amplitudes and spurious peaks caused by coherent aliasing
will be negligible.

MR simulations

The effects of SNR and under-sampling rate on the reconstructions
were quantitatively assessed using a noise-free simulated 4D EP-
COSI dataset that contained choline+glycerophosphocholine+
phosphocholine (total choline, tCho), glutamate+glutamine
(Glx), creatine (Cr), aspartate (Asp) or nothing in each voxel, as
represented in the top of Fig. 3 by a diagonal peak from each
metabolite. Each metabolite was simulated using the GAMMA
NMR libraries (38) from a 3T localized 2D correlated spectroscopy
sequence (39) with the following parameters: 100 t1 increments,
1024 points in t2, TR/TE= 1.5 s/30ms, and spectral bandwidths of
1250 and 2000Hz along F1 and F2, respectively. Each 2D spectrum
was line broadened by 10Hz and apodized by a sine-squared filter
along t1 and a skewed sine-squared filter with skew parameter 0.5
along t2. No baseline corrections were performed on the spectra.

They were then copied into an 8×8 spatial grid to simulate
spatially distributedmetabolites as follows: the upper left quadrant
contained 2×2 voxels of tCho, the upper right quadrant contained
2×2 voxels of Cr, the lower left quadrant contained 2×2 voxels of
Glx and the lower right quadrant contained 2×2 voxels of Asp.
As a result of under-sampling the ky–t1 plane, the spatial,

spectral artifacts caused the tCho and Glx voxels to alias into
each other and the Cr and Asp voxels to alias into each other,
as illustrated by the zero-augmented data at the bottom of Fig. 3.
This changed the integrated peak area contained within each
metabolite as the spatial, spectral separation between the
metabolites broke down.
Noise was added to the simulated noise-free 4D EP-COSI

dataset to model the SNRs of 2–20 in increments of 2. It was
under-sampled 5×, 2.5×, 1.67× and 1.25×, and then separately
reconstructed by MaxEnt and CS. The SNR was varied by
simulating different levels of thermal noise in the dataset by
adding univariate Gaussian noise to the noise-free real and
imaginary channels of the 4D EP-COSI dataset (40). The desired
SNR was achieved by ensuring that the additive noise signal
power (σ2) was equal to 1/SNR of the noise-free dataset signal
power (ω2), such that:

noisy data ¼ noise free dataþ ω2

σ2 � SNR
� noise [8]

Because the additive noise was random, each SNR was
simulated and reconstructed 20 times per sample mask to
account for random fluctuations in the reconstruction. The
sampling masks were created using the 2D Poisson-gap method
described earlier.

MRSI

The breasts of three healthy volunteers were scanned using the
4D EP-COSI sequence on a Siemens (SiemensAG, Erlangen, Germany)
3T Trio scanner with the following parameters: voxel size,
1×1×1cm3, 50 t1 increments, TR/TE/averages=1.5 s/30ms/1, field
of view, 16×16cm2 FOV, and spectral bandwidths of 1250Hz and
1190Hz along F1 and F2, respectively. Each breast was scanned twice:
a 4× prospective NUS scan and a fully sampled scan using the same
field of view and shim. The NUS scan took 5min to complete and the

Figure 2. Poisson sample mask creation along the ky–t1 plane for echo-
planar correlated spectroscopic imaging (EP-COSI). Top: modulated
values of λ. Upper middle: Poisson-distributed values for each λ indicat-
ing the gap between spaces in the sample distribution. Lower middle:
resulting two-dimensional (2D) Poisson-gap sample mask. Bottom: mag-
nitude point spread function (PSF) of the 2D sample mask.

Figure 3. Simulated quad phantom illustration. Top: spatial distribution of tCho [total choline (choline+ glycerophosphocholine+ phosphocholine)],
Cr (creatine), Glx (glutamate and glutamine) and Asp (aspartate) diagonal peaks when fully sampled. Bottom: spatial distribution of the same tCho,
Cr, Glx and Asp diagonal peaks of the 4× non-uniform under-sampled (NUS) zero-augmented dataset.

B. BURNS ET AL.
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fully sampled scan took 20min. Both scans were first apodized
using a sine-squared filter along t1 and a skewed sine-squared filter
with skew parameter 0.5 along t2. No baseline corrections were
performed on the in vivo breast data. The fully sampled scans were
then retrospectively under-sampled 4× using the same mask as
employed in the prospective scan shown in Fig. 4, and both NUS
datasets were then reconstructed using MaxEnt and CS.

RESULTS

MR simulations

Quantitative results for the MaxEnt and CS reconstructions of the
simulated 4D EP-COSI dataset at different NUS rates and SNRs
are shown in Fig. 5. The top panel shows the mean RMSE versus
SNR for zero-augmented and reconstructed datasets at each
NUS rate. The RMSE provides an estimate of the reconstruction

accuracy with respect to a fully sampled reference dataset that
increases as the two datasets become more dissimilar. The RMSE
was calculated in the spatial, spectral domain as:

RMSE ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ data �j jfullj jð Þ2

q
[9]

where N is the number of data points, ‘full’ is the fully sampled
dataset and ‘data’ is the zero-augmented or reconstructed
dataset. Error bars are not shown because the standard devia-
tions were three to four orders of magnitude smaller than the
mean RMSEs and did not vary noticeably over the NUS rate or
SNR. As can be seen, the RMSE of the zero-augmented dataset
increases as the NUS rate increases, but does not vary consider-
ably with SNR, except at low NUS rates. Both the CS and MaxEnt
reconstructions show large decreases in RMSE at each SNR and
NUS rate, but, at low SNRs, RMSE begins to rise. At low NUS rates,
CS and MaxEnt have comparable RMSEs at each SNR; however,
at higher NUS rates, the RMSEs for the MaxEnt reconstruction
are lower than for CS, and this difference increases with SNR.

The bottom panel of Fig. 5 shows the average RMSE of the
diagonal and cross-peaks of tCho, Glx, Cr and Asp versus SNR of
the zero-augmented and reconstructed datasets. The RMSEs
were calculated over the metabolite peaks at the ppm locations
listed in Table 1. Each RMSE was calculated only over the four
spatially distributed voxels for each metabolite. For example,
the tCho RMSEs were calculated over voxels (2, 2), (2, 3), (3, 2)
and (3, 3), as illustrated in Fig. 3. Therefore, these RMSEs reflect
local changes to the metabolite peak lineshape and amplitude
caused by the spatial, spectral aliasing along the ky–t1 plane from
the NUS and reconstruction.

All of the metabolite RMSEs in the bottom panel of Fig. 5 show
similar trends over SNR as the overall RMSEs in the top panel of
Fig. 5 at each NUS rate. The MaxEnt and CS reconstructions have
lower RMSEs than the zero-augmented datasets, indicating that
the metabolite peak lineshapes and amplitudes are being
properly reconstructed. The MaxEnt reconstructions have lower
RMSEs for many metabolites than the CS reconstructions at
higher NUS rates, but, at lower rates, their RMSEs are roughly
equivalent.

Figure 6 shows a 1D cross-section of the fully sampled, zero-
augmented and reconstructed spectra for high and low SNR
simulated spectra at 1.25× and 5× NUS, respectively. The 1D
cross-section is indicated by the broken line across F2 at F1 = 3.65
ppm in Fig. 7, and any NUS artifacts are from aliased peaks above
and below the line, not peaks shown in the cross-section. The
high SNR, 1.25× NUS zero-augmented spectrum shows only
small deviations from the fully sampled spectrum, but they are
clearly visible in the inset. Both reconstructions restored the
baseline to the level of the fully sampled spectrum and
preserved the amplitude and lineshapes of the peaks in the full
cross-sections. The artifacts in the low SNR, 5× NUS zero-augmented
spectrum show significantly reduced peak amplitudes, broader
linewidths and Gibbs ringing along the baseline. Both recon-
structions successfully restored the linewidths of the peaks in
the full cross-sections and removed the Gibbs ringing shown
in the insets; however, MaxEnt was generally better at
restoring the peak amplitude as indicated by the red arrows.
Many of the real and imaginary peak amplitudes in the CS
reconstructions were lower than those of the MaxEnt recon-
structions, and the baseline for CS was also slightly lower.

Figure 5. Metrics comparing the zero-augmented, maximum entropy
(MaxEnt)-reconstructed and compressed sensing (CS)-reconstructed
four-dimensional (4D) echo-planar correlated spectroscopic imaging
(EP-COSI) simulated data. Top: overall root-mean-square errors (RMSEs)
of each dataset versus signal-to-noise ratio (SNR) for 5×, 2.5×, 1.67× and
1.25× non-uniform under-sampling (NUS) rates. Bottom: tCho [total
choline (choline + glycerophosphocholine + phosphocholine)], Cr (crea-
tine), Glx (glutamate and glutamine) and Asp (aspartate) metabolite-
specific RMSEs for each dataset versus SNR for 5×, 2.5×, 1.67× and
1.25× NUS rates.

Figure 4. Non-uniformunder-sampling (NUS)mask used to under-sample
the ky–t1 plane 4× in Figs 8 and 9.
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NUS of 4D EP-COSI in human breast

The results from a prospective 4× NUS EP-COSI scan of a 31-year-old
healthy human breast that was MaxEnt- and CS-reconstructed are

shown in Fig. 8A, B, respectively, with the zero-augmented data
shown in Fig. 8C. The contour levels employed in the fully sampled
results in Fig. 9Awere used in Fig. 8. Themask used to under-sample
the ky–t1 plane is shown in Fig. 4, together with the signal envelopes
for each dimension, and was generated using the 2D Poisson-gap
method described earlier in this article.
Figure 8A1, B1 shows 2D correlated spectroscopy (COSY)

spectra extracted from the MaxEnt and CS reconstructions,
respectively. They were taken from the fatty breast regions
highlighted in Fig. 8A2, B2. They clearly show the lipid diagonal
peaks, olefinic fat (UFD), methyl fat (FMETD) and fat (FAT/FAT2/
FAT3), and the cross-peaks, unsaturated fatty acid right (UFR),
unsaturated fatty acid left (UFL), and triglyceryl fat (TGFR) (5). The
spatial distribution of the UFL/UFR cross-peaks from the recon-
structions is shown in Fig. 8A2, B2with theMaxEnt reconstruction’s
spatial distribution overlaid on the anatomical MR image.
Figure 8C1 shows the same 2D COSY spectrum as in Fig. 8A1, B1

with 4× NUS applied to the ky–t1 plane using the mask in Fig. 4;
however, no MaxEnt or CS reconstruction was used. The spatial,
spectral incoherent artifacts from NUS manifest as smeared peaks
along F1, which is illustrated by the collapse of the peaks in the
1D projection of the F1 dimension on the right. The aliasing of the
large diagonal fat peaks around (F2 = 2ppm, F1 = 2ppm) obscures
the much smaller UFL/UFR cross-peaks around (F2 = 2.1 ppm,
F1 = 5.4 ppm). Figure 8C2 shows the spatial distribution of the
UFL/UFR cross-peaks and how spatial artifacts from the under-
sampling of ky–t1 manifest as errant peaks in adjacent voxels.

Table 1. Two-dimensional peak locations (ppm) for selected metabolites

tCho Glx Cr Asp

Diagonals (ppm) (3.2,3.2), (3.5,3.5), (4.0,4.0), (4.3,4.3) (2.3,2.3), (3.7,3.7) (3.0,3.0), (3.9,3.9) (2.8,2.8), (3.9,3.9)
Cross-peaks (ppm) (3.5,4.0), (3.5,4.3), (4.0,3.5), (4.3,3.5) (2.3,3.7), (3.7,2.3) N/A (2.8,3.9), (3.9,2.8)

Asp, aspartate; Cr, creatine; Glx, glutamate and glutamine; N/A, not applicable; tCho, total choline (choline +
glycerophosphocholine + phosphocholine).

Figure 7. Fully sampled two-dimensional (2D) correlated spectroscopy
(COSY) Glx (glutamate and glutamine) spectrum, with the broken line
across F2 at F1 = 3.65ppm indicating the one-dimensional (1D) cross-section
shown in Fig. 6.

Figure 6. One-dimensional (1D) magnitude, real and imaginary cross-sections of fully sampled, zero-augmented and reconstructed Glx (glutamate and
glutamine) spectra. Top: cross-sections from high-signal-to-noise ratio (SNR) spectra 1.25× non-uniform under-sampled (NUS) zero-augmented and
reconstructed using maximum entropy (MaxEnt) or compressed sensing (CS). Bottom: cross-sections from low-SNR spectra 5× NUS zero-augmented
and reconstructed using MaxEnt or CS. Insets: magnified cross-sections of spectral baselines.
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Comparing the MaxEnt- and CS-reconstructed spectra in
Fig. 8A1, B1, all of the significant diagonals and cross-peaks are
fully resolved in both datasets with qualitatively similar
linewidths and amplitudes. The only major differences between
them are that the amplitudes of the t1 ridges centered at (F2 = 1.3
ppm, F1 = 1.3 ppm) and (F2 = 1.0 ppm, F1 = 1.0 ppm) for CS are
lower than for MaxEnt.
The results from a fully sampled EP-COSI scan of the same

healthy breast as shown in Fig. 8, which was retrospectively 4×
under-sampled using the same mask and MaxEnt and CS
reconstructions, are illustrated in Fig. 9. Figure 9A shows the fully
sampled data and Fig. 9B, C shows the MaxEnt and CS recon-
structions, respectively. As the same field of view was used for
both scans, the spectra at the top of Fig. 9 show the same 2D
COSY spectra as those at the top of Fig. 8, and the bottom
shows the spatial distribution of the UFL/UFR cross-peaks. The
same contour levels used for the fully sampled data in Fig. 9A
were also employed for the MaxEnt- and CS-reconstructed
results in Fig. 9B, C.

As can be seen, all of the peaks in the fully sampled spectrum
in Fig. 9A1 are completely resolved in both the prospective and
retrospective reconstructions shown in Figs 8B1, C1, 9B1, C1;
their positions, linewidths, amplitudes and spectral resolutions
are all qualitatively comparable. However, the spatial distribu-
tions of the fully sampled and retrospective NUS results show
better agreement than the prospective NUS results in the upper
region of the breast; the excited volume of the prospective NUS
results is one row smaller than that of the retrospective NUS
results, as indicated by the arrows in Figs 8 and 9. This change
was also observed in the non-water-suppressed scans taken
prior to the prospective NUS and fully sampled scans, and there-
fore cannot be an artifact of the reconstruction.

Table 2 shows the F1 full width at half-maximum (FWHM) and
peak amplitudes of the zero-augmented and reconstructed
dataset magnitude peaks in Figs 8 and 9. For comparison, they
are normalized by the fully sampled peak amplitudes and FWHM
from Fig. 9, so that values greater than unity are larger than the
fully sampled value. As can be seen, there are quantitative

Figure 8. Prospective four-dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) results. Top: selected two-dimensional (2D)
correlated spectroscopy (COSY) spectrum from a 4D EP-COSI scan of healthy, fatty breast highlighted in the bottom images for maximum entropy
(MaxEnt)-reconstructed (A1), compressed sensing (CS)-reconstructed (B1), and 4× non-uniform under-sampled (NUS) zero-augmented (C1) data.
Bottom: spatial distribution of the unsaturated fatty acid left/unsaturated fatty acid right (UFL/UFR) cross-peaks highlighted in the 2D COSY spectrum
for MaxEnt-reconstructed (A2), CS-reconstructed (B2), and 4× NUS zero-augmented (C2) data. FAT/FAT2/FAT3, fat; FMETD, methyl fat; TGFR, triglyceryl
fat; UFD, olefinic fat.

Figure 9. Retrospective four-dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) results. Top: selected two-dimensional (2D)
correlated spectroscopy (COSY) spectrum from a 4D EP-COSI scan of healthy, fatty breast highlighted in the bottom images for fully sampled (A1),
maximum entropy (MaxEnt)-reconstructed (B1), and compressed sensing (CS)-reconstructed (C1) data. Bottom: spatial distribution of the unsaturated
fatty acid left/unsaturated fatty acid right (UFL/UFR) cross-peaks highlighted in the 2D COSY spectrum for fully sampled (A2), MaxEnt-reconstructed
(B2), and CS-reconstructed (C2) data. FAT/FAT2/FAT3, fat; FMETD, methyl fat; TGFR, triglyceryl fat; UFD, olefinic fat.
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differences between the CS- and MaxEnt-reconstructed peak
lineshapes. The zero-augmented dataset has broader, shorter
peaks as expected, and both the CS- and MaxEnt-reconstructed
peak lineshapes are closer to the fully sampled data; however,
the MaxEnt peak lineshapes are almost all closer to the fully
sampled data than are the CS peak lineshapes, which are
narrower and taller than both the MaxEnt and fully sampled
data. The increase in peak amplitudes in the CS reconstruction
is greater in the larger peaks (FAT, FAT2 and FAT3) than in the
smaller peaks (UFD, UFL, UFR) when compared with MaxEnt.

Additional quantitative differences between the MaxEnt and
CS reconstructions are illustrated in Table 3, which shows the
range of values for the (UFL +UFR)/(FAT3 + FAT2) integrated
peak area ratios and average errors from the fully sampled ratios
for the central 6 × 6 voxels of the three healthy human breasts.
As can be seen, NUS caused the ratios to vary considerably from
the fully sampled ratios with a high mean ratio error. The
reconstructed ratios show much better agreement with the fully

sampled ratios and have a much smaller mean ratio error in all
three scans than do the zero-augmented data. However, the
mean ratio errors for the MaxEnt reconstruction are almost all
smaller than their CS counterparts, indicating that the peak ratio
was more accurately reconstructed by MaxEnt. The retrospective
reconstruction results are only slightly better than the prospec-
tive results, which is not surprising, given the excitation volume
differences seen in Figs 8 and 9.

DISCUSSION

The simulated 4D EP-COSI dataset results in Fig. 5 demonstrate
how the MaxEnt and CS reconstructions perform at different
SNRs and NUS rates. Both reconstructions decrease the RMSE
significantly at each SNR and NUS rate, compared with the
zero-augmented dataset, but begin to increase at very low
SNR, which indicates that they are unable to fully reconstruct

Table 2. Relative full width at half-maximum (FWHM) along F1 and amplitude of metabolite peaks for zero-augmented, maximum
entropy (MaxEnt)-reconstructed and compressed sensing (CS)-reconstructed data from the voxel shown in Figs 8 and 9. Values are
normalized by the fully sampled peak FWHM and amplitudes

Prospective amplitude

FAT FAT2 FAT3 FMETD TGFR UFD UFL UFR

MaxEnt 1.249 1.342 1.232 1.614 0.951 1.125 1.060 1.078
CS 1.427 1.372 1.263 1.665 0.982 1.142 1.150 1.161

Prospective FWHM

MaxEnt 0.818 0.909 0.818 1.000 0.818 1.000 0.900 0.727
CS 0.727 0.909 0.818 0.900 0.909 1.000 0.900 0.727

Retrospective amplitude

Zero-augmented 0.634 0.701 0.662 0.639 0.639 0.627 0.518 0.845
MaxEnt 1.061 1.026 1.090 1.010 1.019 1.029 0.942 0.989
CS 1.237 1.138 1.017 0.961 1.077 0.995 1.071 1.043

Retrospective FWHM

Zero-augmented 1.273 1.273 1.182 1.30 1.00 1.30 1.40 1.010
MaxEnt 0.818 0.909 0.818 1.00 0.818 1.00 1.00 0.818
CS 0.727 0.818 1.010 1.00 0.727 1.10 0.80 0.727

FAT/FAT2/FAT3, fat; FMETD,methyl fat; TGFR, triglyceryl fat; UFD, olefinic fat; UFL, unsaturated fatty acid left; UFR, unsaturated fatty acid right.

Table 3. Range and mean error of (UFL +UFR)/(FAT3+ FAT2) integrated peak area ratios for fully sampled, zero-augmented,
maximum entropy (MaxEnt)-reconstructed, and compressed sensing (CS)-reconstructed data from three healthy breasts

Ratio range Mean ratio error Ratio range Mean ratio error Ratio range Mean ratio error

Breast 1 Breast 2 Breast 3

Full 0.1277–0.0456 N/A 0.1984–0.0656 N/A 0.3542–0.0277 N/A
Zero-augmented 0.2162–0.1496 0.0823 ± 0.0198 0.4699–0.3082 0.2640 ± 0.0734 1.0077–1.1785 0.2047 ± 0.0916
Retrospective MaxEnt 0.1061–0.0281 0.0244 ± 0.0071 0.1576–0.0413 0.0254 ± 0.0142 0.4134–0.0291 0.0215 ± 0.0149
Prospective MaxEnt 0.1049–0.0216 0.0326 ± 0.0083 0.1215–0.0420 0.0415 ± 0.0164 0.3422–0.0414 0.0404 ± 0.0463
Retrospective CS 0.1103–0.0275 0.0246 ± 0.0073 0.1781–0.1004 0.0357 ± 0.0235 0.4114–0.0269 0.0268 ± 0.0175
Prospective CS 0.1084–0.0211 0.0334 ± 0.0082 0.1276–0.0425 0.0397 ± 0.0140 0.3594–0.0374 0.0434 ± 0.0487

FAT2/FAT3, fat; N/A, not applicable; UFL, unsaturated fatty acid left; UFR, unsaturated fatty acid right.
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the data when features and sampling artifacts are obscured by
high levels of noise. The data fidelity constraint in Equations [1]
and [2] determines how closely the reconstructed points must
be to the sampled points within the standard deviation of noise,
which increases as the noise floor increases. This increase in the
noise floor effectively ‘loosens’ the fidelity constraint, which al-
lows the reconstructed points to deviate from their sampled coun-
terparts and increases the entropy or sparsity of the reconstructed
spectrum by narrowing the peak linewidths and de-noising smaller
features. This, in turn, increases the non-linearity and RMSE of the
reconstruction because of the loose fidelity constraint (41). The
data fidelity constraint can be ‘tightened’ beyond the standard de-
viation of the noise in an effort to reduce the RMSE and reconstruc-
tion non-linearity, but this prevents the Cambridge algorithm from
completely removing the spatial, spectral NUS artifacts close to the
noise floor, which could potentially obscure small features (21).
The metabolite RMSEs in Fig. 5 show that the reconstructions

offer significant improvements in the amplitude and lineshape of
individual peaks over the zero-augmented data, even without
using methods to reduce the reconstruction non-linearity (32).
CS and MaxEnt produce very similar results at low NUS rates,
but MaxEnt generally has a lower RMSE at higher NUS rates than
this implementation of CS. As demonstrated by Figs 6 and 7,
both reconstruction methods successfully restored the peaks
and removed the Gibbs ringing artifacts; however, CS had a
tendency to over-smooth smaller features close to the noise
floor and narrow peak linewidths. It was this over-smoothing
that reduced the amplitude of the CS-reconstructed fat tails at
(F2 = 1.3 ppm, F1 = 1.3 ppm) and (F2 = 1.0 ppm, F1 = 1.0 ppm) in
Fig. 8. The differences in peak linewidths between MaxEnt and
CS contributed to the disparity in RMSE values at higher NUS
rates, but the main contributing factor was the change in the
noise floor in the non-peak regions of the spectra. The noise floor
was slightly reduced over the entire 4D dataset in the CS recon-
structions, which was the vast majority of points in the volume;
therefore, small changes in the noise floor had large effects on
RMSE. The over-smoothing in the CS reconstructions may have
been caused by choosing ϵ= def/1000 in Equation [4], and will
be investigated in the future, although previous work has used
similar values with success (13).
The healthy human breast results in Figs 8 and 9 show that CS

and MaxEnt reconstructions work well for prospective and
retrospective NUS, filtered, in vivo EP-COSI scans. There were
minor differences between the prospective and retrospective
reconstructions; however, these can be attributed to intra-scan
variations in the excitation volumes, as these differences were
reflected in the MaxEnt and CS reconstructions, as well as in
the non-water-suppressed scans. The greater SNR loss caused
by T2* decay which was not present in the simulated 4D EP-COSI
dataset did not reduce the efficacy of the reconstructions. There
was still sufficient SNR in the time domain to reconstruct the
in vivo diagonal and cross-peaks in the spectral domain.
Although theMaxEnt and CS reconstructions of healthy human

breast were qualitatively similar, Tables 2 and 3 illustrate quanti-
tative differences between them. Both reconstruction methods
improved the ratios of the lipid peaks in Table 3 and the ampli-
tudes and FWHM of major peaks in Table 2, which shows that
they were able to reconstruct the large, aliased diagonals, as well
as the smaller cross-peaks that were obscured by the diagonals
aliasing over the ky–t1 plane. However, as shown in Table 2, the
CS-reconstructed peaks were narrower with higher amplitudes
than their MaxEnt counterparts. This discrepancy increased with

peak amplitude, indicating a higher degree of non-linearity in
the CS reconstruction relative to MaxEnt. Using the relative peak
amplitudes and FWHM values from Table 2 to calculate the peak
area, instead of the integrated peak area that was used for Table 3,
the relative (UFL +UFR)/(FAT3+ FAT2) ratios for MaxEnt and CS
for the retrospective reconstructions are 0.960 and 0.825, respec-
tively. Because the FAT3 and FAT2 peaks from the CS reconstruc-
tion are relatively larger than the MaxEnt peaks from the
increased non-linearity, their relative ratio with the UFL and UFR
peaks is smaller. This increased non-linearity was a contributing
factor in the larger mean ratio errors in Table 3 for the CS recon-
structions relative to the MaxEnt reconstructions.

The under-sampled data in Fig. 8C1, C2 show artifacts spread
along F1 and Y, as well as reduced spectral resolution along F1
and larger FWHMs in Table 2, caused by convolution with the
broad NUS PSF. The homogeneous nature of healthy fatty breast
spectra, coupled with the inherently low spatial resolution of 4D
EP-COSI, made it difficult to determine from the figures whether
the spatial resolution along Y decreased as a result of the NUS
PSF. However, it is clear that the effects of the NUS PSF along
F1 were removed by MaxEnt and CS by the narrower FWHM
values in Table 2 and the lack of NUS artifacts in Figs 8A1, B1,
9A1, B1. The errant spectral peaks in the spatial distribution were
removed in Figs 8A2, B2, 9A2, B2, suggesting that the spatial PSF
along Y was also improved. Any spectral bleed from the spatial
PSF of the EP-COSI pulse sequence along X was orthogonal to
the effect of the NUS PSF along Y, and was not affected by the
MaxEnt and CS reconstructions.

The results in Figs 5–9 indicate that MaxEnt and CS produced
qualitatively similar reconstructions; however, the MaxEnt results
were quantitatively better by a small margin as discussed above.
This is not surprising, given that the objective functions of
CS and MaxEnt are similar, but there are minor differences
between them as shown in Fig. 1. CS uses the l1-norm of the
reconstructed spectrum in some transform domain, and MaxEnt
uses entropy, which is a log-sum function that can be rewritten
as a reweighted l1-norm, ∑wi � |mi|, where wi is log[f(mi)], the log
of a function of the reconstructed spectrum. Previous work has
shown that reweighted l1-norm objective functions can outperform
l1-norm-based CS reconstruction (42), and direct comparisons bet-
ween MaxEnt and l1-norm-based CS reconstruction have shown
them to be qualitatively equivalent (43). This is the first known work
to show quantitative comparisons between these techniques, how-
ever, and further research into their relative performance is ongoing.

The Cambridge algorithm used to solve the MaxEnt and CS
reconstruction problems was demonstrated to be robust against
different levels of SNR and NUS rates for the simulated and
in vivo datasets. There are other l1-norm solvers available for
the CS reconstruction problem; however, many require parame-
ter tuning for different datasets in order to find the optimal
reconstruction parameters (44,45). The Cambridge algorithm
does not have any tuning parameters that must be adjusted to
find the optimal reconstruction for a dataset, which offers a sub-
stantial workflow improvement over other solvers. Although the
Cambridge algorithm can be modified to solve the CS l1-norm
reconstruction problem, it takes, on average, 5–10 times longer
to converge as the MaxEnt problem, which took 7–10min, on
average, using a 64-bit dual-core, 3.4-GHz Core i7 processor with
16GB RAM. Therefore, we do not recommend its use as an
l1-norm solver; it was only used for the current work in order to
compare results for MaxEnt and CS reconstruction that were
not biased by different solver implementations. However,
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because it is relatively fast, robust to SNR changes, does not
require parameter tuning, and provides MaxEnt results that were
equal to or better than those of CS, the Cambridge algorithm is
well suited as a MaxEnt solver.

The Poisson-gap sampling masks used in these experiments
were generated by a random Poisson distribution, which
injects a degree of uncertainty into the reconstruction. It has
proven to be a reliable technique that generates masks with
desirable PSFs, as shown in Fig. 2, and the RMSEs of the
reconstructed datasets using different Poisson-gap sample
masks are stable (28). Previous attempts by our group to use
deterministic masks that were not randomly generated were
difficult to optimize and suffered from coherent aliasing,
which cannot be removed by MaxEnt or CS reconstruction
(32,46). Recent work in NUS multi-dimensional NMR datasets
using deterministic sample masks has shown promise and
could be adapted to 4D MRSI (47).

Because of the random nature of the Poisson-gap sampling
masks, they were chosen by an empirical heuristic that minimized
the width of the central peak, the total power of the incoherent
artifacts, and the ratio of the largest artifact peak to the central peak
in themask PSF. They followed a skewed-sine bell modulation func-
tion to maximize the reconstruction SNR, but were not optimized
for specific metabolites or post-processing spectral filters. In our
experiments, we observed that mismatches between a sample
modulation function and the filtered signal envelope of a metabo-
lite results in failure to sufficiently sample the high-SNR points along
t1 and prevents the full metabolite peak area from being
reconstructed (31,32,48). Therefore, it should be emphasized that
the sample mask is crucial to the SNR of each reconstructed metab-
olite for 4D EP-COSI data, and there is a dependence on the shape
of standard spectral filters applied prior to reconstruction (33).

Further research into reducing the non-linearity of the
reconstructed peaks to make accurate quantification possible,
and comparisons with additional CS methods, is ongoing. In addi-
tion, future papers will address the use of Poisson-gap versus
deterministic sample masks, and the optimization of the modula-
tion functions for specific metabolites and different spectral filters.

CONCLUSIONS

This work has demonstrated that MaxEnt is a viable alternative to l1-
norm-based CS reconstruction for accelerating the acquisition of 4D
EP-COSI data in vivo. MaxEnt provided reconstructions equal to or bet-
ter than those of CS, and the robust nature of theCambridge algorithm
without the need for parameter tuning makes it a good candidate for
clinical use. The CS and MaxEnt reconstructions throughout this
work were qualitatively similar; however, the quantitative results
indicated increased non-linearity in the CS reconstruction when
compared to MaxEnt. Simulated 4D EP-COSI data provided a quan-
titative characterization of both reconstruction methods at differ-
ent NUS rates and SNRs, and the 4× NUS in vivo EP-COSI breast
data showed that a clinically viable 5-min breast scan is possible.
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