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a b s t r a c t

In this paper, we consider an in-network optimal resource allocation problem with multiple demand
equations. We propose a novel distributed continuous-time algorithm that solves the problem over
strongly connected and weight-balanced digraph network topologies when the local cost functions are
strongly convex. We also discuss the extension of our convergence guarantees to dynamically changing
topologies. Finally, we show that if the network is an undirected connected graph, we can guarantee sta-
bility and convergence of our algorithm for problems involving local convex functions. This convergence
guarantee is to a point in the set ofminimizers of our optimal resource allocation problem. The design and
analysis of our algorithm are carried out using a control theoretic approach. We demonstrate our results
through a numerical example.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the problem of designing a distributed
algorithm for an optimal resource allocation problem subject to a
set of affine equality constraints over a network of N agents with
communication and processing capabilities. In particular, each
agent i ∈ {1, . . . ,N} has a convex and differentiable local cost
function f i : R → R. These agents are meeting some demands
bj ∈ R, j ∈ {1, . . . , p}, through weighted contributions, in a way
that the total cost f (x) = ΣN

i=1f
i(xi) is at its minimum. In other

words, each agent i ∈ {1, . . . ,N} seeks x⋆i , the ith element of x⋆

given by

x⋆ = arg min
x∈RN

N∑
i=1

f i(xi), subject to (1a)

ω1
j x

1
+ · · · + ωN

j x
N

− bj = 0, j∈ {1, . . . , p}, (1b)

where, ωi
j ∈ R, i ∈ {1, . . . ,N}, is the weight on the contribution of

agent i to demand equation j ∈ {1, . . . , p}. The weights {ωi
j}

p
j=1 of

each agent i ∈ {1, . . . ,N} are known to that agent. The aforemen-
tioned problem appears in many optimal decision making tasks
such as economic dispatch over power networks [1,2], optimal
routing [3] and economic systems [4].

Literature review: Our paper is related to a large recent literature
on distributed algorithm design for solving a multi-agent opti-
mization problem where the global cost function is a sum of local

E-mail address: solmaz@uci.edu.

convex functions, each representing a private local cost only avail-
able to a single agent, subject to some convex constraints. Some of
the recent literature on distributed optimization algorithm design
includes distributed algorithms implemented both in discrete-
time [5–9] and continuous-time [10–14]. Although some of these
algorithms can solve the optimal resource allocation problem (1),
they require each agent to keep and evolve a copy of the global
decision variable of the problem which is of order N , where N is
the size of network. Such a requirement is costly and unnecessary
for problem (1), as the agents only need to obtain their own re-
spective component of the global decision variable. Distributed op-
timization algorithms that specifically target the optimal resource
allocation problem (1) are presented in [15] in discrete-time form,
and [2,16] in continuous-time form. These algorithms require the
agents to keep and evolve only their respective component of the
global decision variable. However, these algorithms all can solve
the optimal allocation problem (1) subject to single unweighted
demand equation, i.e., ωi

1 = 1, i ∈ {1, . . . ,N} and p = 1
in (1b). Also, these algorithms require the agents to transmit the
gradient of their local cost functions to their neighbors, which
makes these algorithms less favorable for privacy-sensitive appli-
cations. The composition of our algorithm is inspired by the multi-
time scale singularly perturbed systems in control theory (cf. [17]).
Singularly perturbed distributed algorithms are used in [12] for
unconstrained in-network convex optimization, and in [18] for
dynamic consensus problem over networked systems.

Statement of contributions: We propose a novel continuous-time
distributed algorithm to solve the optimal resource allocation
problem (1) over networked systems. We show that our algorithm

http://dx.doi.org/10.1016/j.sysconle.2017.07.012
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converges over strongly connected and weight-balanced digraphs
if the local cost functions are strongly convex. Such guarantees also
hold for time-varying strongly connected and weight-balanced di-
graphswith piecewise constant adjacencymatrices if the gradients
of all local cost functions are globally Lipschitz. When the commu-
nication graph is an undirected connected graph, the convergence
is guaranteed for convex local cost functions, as well. Our conver-
gence guarantee is to a point in the optimizer set. The composition
of our algorithm is inspired by the singular perturbation systems
in control theory. The idea behind this composition is that an
average consensus algorithm creates a local copy of the left hand
side of the equality constraint (1b) at each agent. This way, every
agent can create a local copy of its respective part in a centralized
saddle-point dynamical solver used in the literature to solve the
optimization problem (1). In the resulted algorithm, each agent is
only required to keep a copy of its own local decision variable. Also,
agents are not required to share the gradient of their local cost
functions with their neighbors. We use Lyapunov and invariant set
analysis to study the convergence and stability of our proposed
algorithm. A preliminary work related to our work has appeared
in [19].

2. Preliminaries

This section presents our notations, definitions, a review of rel-
evant algebraic graph theory, and the average consensus algorithm
of [20].

2.1. Notations

LetR,R≥0, andR>0, respectively, be the set of real, non-negative
real, and positive real numbers. We let 1n (resp. 0n) denote the
vector of n ones (resp. n zeros), and denote by In the n × n identity
matrix. When clear from the context, we do not specify the matrix
dimensions. We denote the standard Euclidean norm of vector
x ∈ Rn by ∥x∥ =

√
x⊤x. We denote the induced 1-norm, ∞-

norm and spectral norm of a matrix A ∈ Rn×m by, respectively,
∥A∥1, ∥A∥∞ and ∥A∥. In a network of N agents, to distinguish and
emphasize that a variable is local to an agent i ∈ {1, . . . ,N}, we
use superscripts, e.g., f i(xi) is the local function of agent i evaluated
at its own local state xi. Moreover, if pi

∈ Rd is a variable of
agent i ∈ {1, . . . ,N}, the aggregated pi’s of the network is the
vector p = [ p1⊤

, · · · , pN⊤
]
⊤

∈ (Rd)N .
A differentiable function f : Rd

→ R is convex (resp. strictly
convex) over a convex set C ⊆ Rd iff (z − x)⊤(∇f (z) − ∇f (x)) ≥ 0
(resp. (z−x)⊤(∇f (z)−∇f (x)) > 0whenever x ̸= z) for all x, z ∈ C ,
and it ism-strongly convex (m ∈ R>0) iff (z−x)⊤(∇f (z)−∇f (x)) ≥

m∥z − x∥2, for all x, z ∈ C . A function f : Rd
→ Rd is Lipschitz

with constant M ∈ R>0, or simply M-Lipschitz, over a set C ⊆ Rd

iff ∥f(x) − f(y)∥ ≤ M ∥x − y∥, for x, y ∈ C . Function f is globally
Lipschitz if it isM-Lipschitz over Rd. Moreover, it is locally Lipschitz
on Rd if for every point x ∈ Rd there exists a Mx ∈ R>0 such
that ∥f(x) − f(y)∥ ≤ Mx ∥x − y∥ for all y in an open and connected
neighborhood of x.

2.2. Graph theory

We briefly review basic concepts from algebraic graph theory
following [21]. A digraph, is a pair G = (V, E), where V =

{1, . . . ,N} is the node set and E ⊆ V × V is the edge set. An
edge from i to j, denoted by (i, j), means that agent j can send
information to agent i. For an edge (i, j) ∈ E , i is called an in-
neighbor of j and j is called an out-neighbor of i. A graph is undirected
if (i, j) ∈ E anytime (j, i) ∈ E . A directed path is a sequence
of nodes connected by edges. A digraph is strongly connected if
for every pair of nodes there is a directed path connecting them.

A weighted digraph is a triplet G = (V, E,A), where (V, E) is a
digraph and A ∈ RN×N is a weighted adjacency matrix such that
aij > 0 if (i, j) ∈ E and aij = 0, otherwise. A weighted digraph is
undirected if aij = aji for all i, j ∈ V . A connected graph is a strongly
connected and undirected graph. The weighted in- and out-degrees
of a node i are, respectively, di

in = ΣN
j=1aji and di

out = ΣN
j=1aij.

A digraph is weight-balanced if at each node i ∈ V the weighted
out-degree andweighted in-degree coincide. Any connected graph
is weight-balanced. The (out-) Laplacian matrix is L = Dout

− A,
where Dout

= Diag(d1
out, · · · , d

N
out) ∈ RN×N . Note that L1N = 0. A

digraph is weight-balanced iff 1T
NL = 0. We let {λi}

N
i=1 and {λ̂i}

N
i=1,

respectively, be the set of eigenvalues of L and Sym(L) = (L +

L⊤)/2. Based on the structure of L, at least one of the eigenvalues
of L is zero (λ1 = 0) and the rest of them have nonnegative real
parts. For a strongly connected and weight-balanced digraph, zero
is a simple eigenvalue of both L and Sym(L). Moreover, we have

0 < λ̂2I ≤ R⊤ Sym(L)R ≤ λ̂N I, (2)

where λ̂2 and, λ̂N are, respectively, the smallest non-zero eigen-
value and maximum eigenvalue of Sym(L). Here, R ∈ RN×(N−1)

along with r ∈ RN satisfies

r =
1

√
N
1N , r⊤R = 0, R⊤R = IN−1, RR⊤

= IN − rr⊤. (3)

For connected graphs λ̂i = λi, i ∈ V , therefore, 0 < λ2I ≤ R⊤LR ≤

λN I.

2.3. Average consensus algorithm

Let G be a strongly connected and weight-balanced digraph of
N agents. Assume each node i ∈ V has access to a static reference
input ri ∈ Rp. [20] shows that for β ∈ R>0, if each agent i ∈ V ,
implements

v̇i = β

N∑
j=1

aij(yi − yj), (4)

ẏi = −(yi − ri) − β

N∑
j=1

aij(yi − yj) − vi,

starting at yi(0), vi(0)∈Rp,
∑N

j=1v
j(0) = 0, then as t → ∞, its state

yi converges to 1
N

∑N
j=1r

j exponentially fast.

3. Problem statement

We consider the optimal resource allocation problem (1) over
a network of N agents interacting over a digraph G, and under the
following assumption.

Assumption 1. Matrix Ω = [ω1, · · · ,ωN
], where ωi

=

[ωi
1, · · · , ω

i
p]

⊤, i ∈ V , is full row rank. Moreover, the optimization
problem (1) has a finite optimum f ⋆ = f (x⋆). Finally, ∇f i, i ∈ V , is
locally Lipschitz on R.

The first part of Assumption 1 ensures that the feasible set
of optimization problem (1) is non-empty and the problem has
a finite minimizer in the feasible set. Local Lipschitzness of ∇f i,
i ∈ V , guarantees existence and uniqueness of the solutions of
the dynamical solvers that we study in this paper for problem (1)
(cf. [22, Theorem 3.3])—these solvers use ∇f i, i ∈ V .
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The Karush–Kuhn–Tucker (KKT) conditions give a set of neces-
sary and sufficient conditions to characterize the solution set of the
convex optimization problem (1) as follows (cf. [23] for proof).

Lemma3.1 (Solution Set of (1)). Let f i : R → R, i ∈ V , in constrained
optimization problem (1) be a differentiable and convex function onR
and Ω be full row rank. A point x⋆ ∈ RN is a solution of (1) iff there
exists a µ⋆ ∈ Rp, such that

∇f i(x⋆i ) +

p∑
j=1

ωi
j µ

⋆
j = 0, i ∈ V, (5a)

ω1
j x
⋆
1 + · · · + ωN

j x
⋆
N − bj = 0, j ∈ {1, . . . , p}. (5b)

When the local costs are all strictly convex, KKT equation (5) has a
unique solution. □

We represent the set of points satisfying the KKT condition (5)
by

O⋆
=

{
(µ, x) ∈ Rp

×RN
⏐⏐∇f i(xi) + µ⊤ωi

= 0,

i ∈ V, Ω x − b = 0
}
, (6)

where b =
[
b1 · · · bp

]⊤ is the aggregate demand vector.
To define our objective, consider the integrator dynamics

ẋi = ψ i(t), (7)

at each agent i ∈ V . Our aim is to design the driving commandψ i
:

R≥0 → R, i ∈ V , such that (a) t ↦→ x(t) converges asymptotically
to a minimizer of the optimization problem (1), (b) the structure
of and the inputs to the dynamics that generates ψ i depend only
on the local variables of agent i and information it receives from its
out-neighbors.

Our proposed distributed algorithm is inspired by the saddle-
point dynamics

µ̇ = ω1x1 + · · · + ωNxN − b, µ(0) ∈ Rp, (8a)

ẋi = −∇f i(xi) − ωi ⊤µ, i ∈ V, xi(0) ∈ R, (8b)

in which when the local cost functions are strictly convex, ev-
ery trajectory t ↦→ (µ(t), x(t)) converges to O⋆ (see [24]). Our
distributed solver uses the average consensus algorithm (4) to
distribute the coupled equation (8a).

4. Distributed continuous-time algorithm for optimal resource
allocation

In this section, we present our distributed solver of the in-
network optimal resource allocation problem (1). We show that
when the communication topology is a strongly connected and
weight-balanced digraph, this algorithm converges to the solution
of (1) if the local cost functions are strongly convex. Next, we show
that when the communication topology is a connected graph, the
convergence guarantees extend to the class of optimal resource
allocation problems with convex local cost functions. We close the
section with discussion on convergence guarantees over dynami-
cally changing topologies.

The following novel continuous-time distributed algorithm is
our solution to the optimization problem (1),

v̇i = β

N∑
j=1

aij(yi − yj), (9a)

ẏi = −(yi − (ωixi + µi
− b̃

i
)) − β

N∑
j=1

aij(yi − yj) − vi, (9b)

µ̇i
= −µi

+ yi, (9c)

ẋi = −∇f i(xi) − ωi ⊤yi, (9d)

for i ∈ V , where
∑N

i=1b̃
i

= b and β ∈ R>0. Algorithm (9)
is a distributed algorithm which generates the driving command
ψ i in (7) according to ψ i(t) = −∇f i(xi) − ωi ⊤yi, the output of
dynamics (9a)–(9c) whose inputs are (b̃i, {yj}j∈N i

out
, xi). Here,N i

out is
the set of the out-neighbors of agent i ∈ V . We assume that every
agent i ∈ V knows its own weights {ωi

j}
p
j=1 and also b̃i (possible

cases for b̃i are (a) b̃i
= b/N , i ∈ V , i.e., every agent knows the

demand vector and the size of the network, (b) b̃1
= b and b̃i

= 0p,
i ∈ {2, · · · ,N}, i.e., only, without loss of generality, agent 1 knows
the demand vector). It is worth noting that the dimension of the
local variables (vi, yi,µi, xi) ∈ R3p+1 of each agent i ∈ V in (9) is
regardless of the size of the network, i.e., the solution is achieved
without requiring each agent to keep a copyof the entireminimizer
vector which is of dimension N .

Let ΩD = Diag(ω1, · · · ,ωN ) and L = L ⊗ Ip. Then, in the
network aggregated variables v, y,µ ∈ RpN and x ∈ RN, the
algorithm reads as (recall f (x) = ΣN

i=1f
i(xi), therefore ∇f (x) =

[∇f 1(x1), · · · ,∇f N (xN )]⊤)

v̇ = β L y, (10a)

ẏ = −(y − (ΩD x + µ − B̃)) − β L y − v, (10b)
µ̇ = −µ + y, (10c)

ẋ = −∇f (x) − Ω⊤

D y, (10d)

where B̃ =
[
b̃1⊤, · · · , b̃N⊤

]⊤
. The composition of algorithm (9) is

inspired by the central solver (8) and use of multi-time scale anal-
ysis approach in the singular perturbation theory. Note that ((9a),
(9b)) has the form of the average consensus algorithm (4)with ri =

(ωi xi+µi
−b̃i). Now, assume that (9a), (9b) run in a faster time scale

than the rest of the dynamics. Thus, with appropriate initialization,
in this fast dynamics for i ∈ V , every yi converges to the common
value 1

N

∑N
j=1(ω

jxj + µj
− b̃j). Substituting this value for yi in (10c)

and left multiplying (10c) by (1⊤

N ⊗ Ip) result in
∑N

i=1µ̇
i
= (ω1x1+

· · ·+ωNxN −b). If we postulate that (10c) converges in a faster time
scale than (10d), we can use µi

→ yi as t → ∞ to obtain the slow
dynamics ẋi = −∇f i(xi) − ωi ⊤µi. Next, note that in the fast scale
eventually we canwrite µ̇i

=
1
N (ω

1x1+· · ·+ωNxN −b). Therefore,
every agent i ∈ V eventually reconstructs locally (almost) a copy
of saddle-point dynamics (8) (here right hand side of (8a) is scaled
by 1/N). The preceding discussion sketches the inspiration behind
the composition of the algorithm. In the following, we provide
a rigorous study of the stability and convergence properties of
algorithm (9) using the Lyapunov stability analysis. We start by
characterizing the equilibrium points of algorithm (9).

Lemma 4.1 (Equilibrium Points of Algorithm (9) Over Strongly Con-
nected andWeight-Balanced Digraphs). Let G be a strongly connected
and weight-balanced digraph. Assume f i, i ∈ V , is convex and differ-
entiable. Then, the set of equilibrium points of (9) is given by

U =

{
(v, y,µ, x) ∈ RpN

× RpN
× RpN

× RN
⏐⏐⏐v = ΩD x − B̃,

y = µ = 1N ⊗ θ,

N∑
i=1

vi =

N∑
i=1

ωixi −b, ∇f i(xi) + ωi⊤θ = 0, i∈V, θ∈Rp
}
. (11)

Proof. Let (v, y,µ, x) be an equilibrium point of (9), i.e.,

0 = β L y, (12a)

0 = −(y − (ΩD x + µ− B̃)) − β L y − v, (12b)

0 = −µ + y, (12c)

0 = −∇f (x) − Ω⊤

D y. (12d)

For the given network topology, the rank of L is N − 1 and its
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null-space is spanned by 1N . Therefore, from (12a), we obtain y =

1N ⊗ θ, θ ∈ Rp. Subsequently, from (12c) and (12d), we have µ =

y = 1N ⊗ θ and ∇f i(xi) + ωi ⊤θ = 0, i ∈ V . Moreover, we can use
µ = y together with (12a) and (12b) to establish v = ΩD x− B̃. On
the other hand, because the network topology is weight-balanced,
we have 1⊤

N L = 0. Then, by left multiplying (12b) by 1⊤

N ⊗ Ip, we
obtain

∑N
i=1v

i
=

∑N
i=1ω

ixi −b, which completes the proof. □

Next, we point out few remarks about the limiting state of
algorithm (9) if it converges to a point in its equilibrium set (under
the assumptions stated in the statement of Lemma 4.1).

Remark 4.1 (Dependence of the Limiting Points of Algorithm (9)
on Initial Conditions and Their Relation to the Minimizer(s) of Op-
timization Problem (1)). First, note that starting from any initial
conditions at t = 0, if algorithm (9) converges to an equilibrium
point in (11), that point depends on value of

∑N
i=1v

i(0). To see this
connection note that over weight-balanced digraphs, because of
1⊤

N L = 0, from (10a) we can write

N∑
i=1

v̇i = β (1⊤

N ⊗ Ip) Ly = 0 ⇒

N∑
i=1

vi(t)

=

N∑
i=1

vi(0), ∀t ∈ R≥0, (13)

which implies
∑N

i=1limt→∞vi(t) =
∑N

i=1v
i(0). Our second remark

is that if algorithm (9) is initialized such that
∑N

i=1v
i(0) = 0, then

if it converges to (v, y,µ, x) ∈ U , we will have (vi, yi,µi, xi) =

(ωi x⋆i − b̃i,µ⋆,µ⋆, x⋆i ), i ∈ V where (µ⋆, x⋆) is a KKT point in O⋆

(see (6)). This relationship is the consequence of invoking (10a) to
write that (v, y,µ, x) ∈ U now satisfies

vi = ωixi − b̃i, yi = µi
= θ ∈ Rp, i ∈ V (14a)

ω1x1 + · · · + ωNxN − b =

N∑
i=1

vi = 0,

∇f (xi) + ωi⊤θ = 0, i∈V (14b)

which, by comparing to the KKT condition (5), shows (θ, x) ∈

O⋆. We close this remark by pointing out that the dependence of
limiting states on the initial state is seen in numerous dynamical
systems including biomedical [25], chemical kinetics [26] systems
and also in network algorithms such as average static Laplacian
consensus [27] (for more examples see [28, p. 260]).

The first result below shows that when the communication
topology is a strongly connected andweight-balanced digraph and
the local cost functions are strongly convex, under an appropriate
initialization, the trajectories t ↦→ xi(t), i ∈ V , of algorithm (9),
as t → ∞, converge to the minimizer of problem (1). To simplify
notation, hereafter, given r and R in (3), we define and use

T = [r R], r = r ⊗ Ip, R = R ⊗ Ip, T = T ⊗ Ip. (15)

Theorem 4.1 (Asymptotic Convergence of (9) Over Strongly Con-
nected and Weight-Balanced Digraphs with Strongly Convex Lo-
cal Cost Functions). Let Assumption 1 hold. Assume that G is
a strongly connected and weight-balanced digraph, and each f i,
i ∈ V , is differentiable, and mi-strongly convex (mi

∈ R>0). Let
m = min{m1,m2, · · · ,mN

}. Then, for each i ∈ V , starting from
vi(0), yi(0),µi(0) ∈ Rp and xi(0) ∈ R with

∑N
i=1v

i(0) = 0,
algorithm (9) over G makes (µi(t), xi(t)) converge asymptotically to
(µ⋆, x⋆i ), where x⋆ is the unique minimizer of problem (1) andµ⋆ is its

corresponding Lagrange multiplier, (see Lemma 3.1), provided

β ≥
(φ + 1)2

λ̂2φ
such that ∥Ω⊤

D

((
IN −

1
N
1N1⊤

N

)
⊗ Ip

)
ΩD∥

< m(φ + 1), φ∈R>0. (16)

Proof. Because of mi-strong convexity of the local cost functions,
the global cost function in (1) is m-strongly convex, with m as de-
fined in the statement. Therefore, the optimization problem (1) has
a unique minimizer, i.e., O⋆ is a singleton (see Lemma 3.1). Next,
for convenience in convergence analysis, we apply the following
change of variables to the states of (9)

u = T⊤(v − (ΩD x⋆ − B̃)), z = T⊤(y − 1N ⊗ µ⋆),
χ =x − x⋆, η = µ − 1N ⊗ µ⋆,

(17)

where T is defined in (15), and (µ⋆, x⋆) ∈ O⋆. We write u =

(u1,u2:N ) and z = (z1, z2:N ), where u1, z1 ∈ Rp. Notice that
given (3), T = [r R] ⊗ Ip is an orthogonal matrix, i.e., TT⊤

=

T⊤T = IpN . Then, in the new variables, the algorithm (9) reads as

u̇1 = 0p, (18a)

u̇2:N = β R⊤LR z2:N , (18b)

ż1 = −z1 + r⊤(ΩDχ + η), (18c)

ż2:N = −z2:N + R⊤(ΩDχ + η) − β R⊤LR z2:N − u2:N , (18d)
η̇ = −η + T z, (18e)

χ̇ = −h(χ, x⋆) − Ω⊤

D T z, (18f)

where h(χ, x⋆) = (∇f (χ + x⋆) − ∇f (x⋆)). Here, we used r⊤v = 0p
which is the result of (13) togetherwith the given initial conditions.
Also, given that (µ⋆, x⋆) ∈ O⋆, we used r⊤(ΩD x⋆−B̃) =

1
√
N
(ω1x⋆1+

· · · + ωNx⋆N − b) = 0p and ∇f (x⋆) = −Ω⊤

D (1N ⊗ µ⋆).
Let (ū2:N , z̄, η̄, χ̄) be an equilibrium point of (18b)–(18f). Then,

thanks to R⊤LR being an invertible matrix for strongly connected
and weight-balanced digraphs, from (18b) we obtain z̄2:N = 0.
Subsequently, from (18e) we obtain −η̄ + r z̄1 = 0, and thanks to
orthogonality of T, we also obtain −r⊤η̄ + z̄1 = 0 and −R⊤η̄ = 0.
Then, from (18c) we can write r⊤ΩD χ̄ = 0, and from (18d) we can
write R⊤ΩDχ̄ − ū2:N = 0. Next, from (18f), thanks to orthogonal
matrix, we canwrite−∇f (χ̄+x⋆)−Ω⊤

D (rz̄1+1N ⊗ µ⋆) = 0, which
equivalently reads as ∇f i(χ̄i

+ x⋆i ) + ωi⊤( 1
√
N
z̄1 + µ⋆) = 0, i ∈ V .

Finally note that from r⊤ΩD χ̄ = 0 together with r⊤(ΩD x⋆ − B̃) =

0, we obtain r⊤(ΩD (χ̄ + x⋆) − B̃) = 0, which is equivalent to
1

√
N
(ωi(χ̄ i

+ x⋆1) + · · · + ωN (χ̄ i
+ x⋆N ) − b) = 0p. Recalling the KKT

condition (5), we can conclude that ( 1
√
N
z̄1 + µ⋆, χ̄ + x⋆) ∈ O⋆.

However, O⋆ is a singleton set with only one member (µ⋆, x⋆). As
a result, we obtain z̄1 = 0 and χ̄ = 0. Consequently, from the
preceding relations, we obtain ū2:N = 0 and η̄ = 0. Therefore,
(18b)–(18f) have a unique equilibrium point which is located at
the origin.

Note that (18a) corresponds to the constant of motion (13).
To study the stability in the other variables, consider the radially
unbounded and positive-definite candidate Lyapunov function

V =
φ + 1

2
z⊤

1 z1 +
φ

2
z⊤

2:Nz2:N +
φ + 1

2
η⊤η

+
φ + 1

2
χ⊤χ +

1
2
(z2:N + u2:N )⊤(z2:N + u2:N ), (19)

with φ ∈ R>0 as in the statement. The Lie derivative of V
along (18b)–(18f) is given by (after some manipulations)

V̇ = −(φ + 1)z⊤z − φβz⊤

2:NR
⊤LRz2:N

− (φ + 2)z⊤

2:Nu2:N − (φ + 1)η⊤η

+ 2(φ + 1)η⊤
[r R]z − (φ + 1)χ⊤h(χ, x⋆)



S.S. Kia / Systems & Control Letters 107 (2017) 49–57 53

− u⊤

2:Nu2:N + u⊤

2:NR
⊤ΩDχ+ u⊤

2:NR
⊤η

= −φ (η − Tz)⊤(η − Tz) −

(
T⊤η − z −

1
2
ũ
)⊤

×

(
T⊤η − z −

1
2
ũ
)

− ((φ + 1)z2:N +
1
2
u2:N )⊤((φ + 1)z2:N +

1
2
u2:N )

− φβz⊤

2:NR
⊤LRz2:N

+ (φ + 1)2z⊤

2:Nz2:N −(φ + 1)χ⊤h(χ, x⋆) + χ⊤Ω⊤

D RR⊤ΩD χ

− (R⊤ΩDχ −
1
2
u2:N )⊤

(
R⊤ΩDχ −

1
2
u2:N

)
−

1
2
u⊤

2:Nu2:N ,

where ũ = [0⊤

p u⊤

2:N ]
⊤. Next, we establish an upper bound on V̇ .

Note that due tom-strong convexity of the global cost function we
can write −χ⊤h(χ, x⋆) = −χ⊤(∇f (χ + x⋆) − ∇f (x⋆)) ≤ −mχ⊤χ.
Moreover, using (2), we can write −z⊤

2:NR
⊤LRz2:N ≤ −λ̂2z⊤

2:Nz2:N .
Therefore, we have V̇ ≤ W , where

W = −φ (η − Tz)⊤(η − Tz)

−

(
T⊤η − z −

1
2
ũ
)⊤(

T⊤η − z −
1
2
ũ
)

− ((φ + 1)z2:N +
1
2
u2:N )⊤((φ + 1)z2:N +

1
2
u2:N )

− (φβλ̂2 − (φ + 1)2)z⊤

2:Nz2:N
− χ⊤((φ + 1)m I − Ω⊤

D RR⊤ΩD)χ

− (R⊤ΩDχ −
1
2
u2:N )⊤(R⊤ΩDχ −

1
2
u2:N ) −

1
2
u⊤

2:Nu2:N . (20)

Since Ω⊤

D RR⊤ΩD = Ω⊤

D ((IN −
1
N 1N1⊤

N ) ⊗ Ip)ΩD, by virtue of (16),

we have −χ⊤((φ + 1)m I − Ω⊤

D RR⊤ΩD)χ < 0 for χ ̸= 0, and
−(φβλ̂2 − (φ + 1)2)z⊤

2:Nz2:N ≤ 0. As a result, W is a sum of
nonpositive quadratic terms, guaranteeing V̇ ≤ W ≤ 0.

Because V̇ ≤ 0, the trajectories of (18) under the stated as-
sumptions are bounded. Next, we invoke the invariant set stability
analysis theorem to complete our proof. Let S = {(u2:N , z, η,χ) ∈

Rp(N−1)
× RpN

× RpN
× RN

| V̇ ≡ 0}. Because V̇ ≤ W ≤ 0, we have
S ⊆ S = {(u2:N , z, η,χ) ∈ Rp(N−1)

× RpN
× RpN

× RN
|W ≡ 0}.

By inspecting W we obtain S =
{
(u2:N , z, η,χ) ∈ R(N−1)p

×RpN
×

RpN
×RN

⏐⏐ z2:N ≡0, χ≡0, u2:N ≡0, η − Tz ≡ 0
}
. Then trajectories

of (18b)–(18f) that belong to S for all t ≥ 0 must satisfy (u̇2:N ≡ 0,
ż1 ≡ 0, ż2:N ≡ 0, η̇ ≡ 0, χ̇ ≡ 0). Because (18b)–(18f) have a
unique equilibrium point located at the origin, the only trajectory
of (18b)–(18f) that belongs to S for all t ∈ R≥0 is (u2:N ≡ 0, z ≡

0, η ≡ 0, χ ≡ 0). Because V̇ ≤ W ≤ 0 and S ⊆ S , then
using proof by contradiction we can show that the only trajectory
of (18b)–(18f) that belongs to S for all t ∈ R≥0 is also (u2:N ≡

0, z ≡ 0, η ≡ 0, χ ≡ 0). As a result the largest invariant set in S
is the equilibrium point of (18b)–(18f). Invoking the invariant set
theorem [28, Theorem 3.4], we conclude that starting at any initial
condition, the trajectories of (18b)–(18f) converge to its unique
equilibrium point as t → ∞. Then, given the state equation (18a)
and the affine and static state transformation (17), we conclude
that starting from any initial condition given in the statement, as
t → ∞, the trajectories t ↦→ (vi(t), yi(t),µi(t), xi(t)), i ∈ V
converge to (ωix⋆i − b̃i, µ⋆, µ⋆, x⋆i ), where (µ⋆, x⋆) ∈ O⋆. This
completes the proof. □

In Theorem 4.1, the requirement
∑N

i=1v
i(0) = 0 is trivially

satisfied if each agent i ∈ V starts at vi(0) = 0. The determination
of admissible value of β by individual agents can be achieved if
they know a lower bound on m, have knowledge of λ̂2, either
through a lower bound on it (see e.g., [29]) or dedicated algorithms
to compute it (see, e.g., [30] ), and know an upper bound on

∥Ω⊤

D ((IN −
1
N 1N1⊤

N ) ⊗ Ip)ΩD∥. Let each agent choose its local
weights as nonnegative scalars that satisfy

∑p
j=1ω

i
j ≤ 1. Then,

we can rely on ∥Ω⊤

D ((I −
1
N 1N1⊤

N ) ⊗ Ip)ΩD∥ ≤ ∥((I −
1
N 1N1⊤

N ) ⊗

Ip)∥∥ΩD∥
2

= ∥ΩD∥
2

≤ ∥ΩD∥1 ∥ΩD∥∞, ∥ΩD∥1 ≤ 1, and ∥ΩD∥∞ ≤

1 to use 1 as an upper bound on ∥Ω⊤

D ((I −
1
N 1N1⊤

N ) ⊗ Ip)ΩD∥. It
is also interesting to observe that to guarantee convergence over
strongly connected andweight-balanced digraph topologies, other
distributed optimization algorithms also require bounds similar
to (16) for a scalar parameter of the algorithm (see e.g., [11,14]
for unconstrained convex optimization and [16] for a constrained
optimization problems).

Next, we show that if strongly convex local cost functions have
globally Lipschitz gradients, then convergence of (9) over strongly
connected and weight-balanced digraphs is exponentially fast for
problems with single demand equation.

Proposition 4.1 (Exponential Convergence of (9) Over Strongly Con-
nected and Weight-Balanced Digraphs With Strongly Convex Local
Cost Functions and Globally Lipschitz Gradients). Let Assumption 1
hold. Assume that G is a strongly connected and weight-balanced
digraph, and each f i, i ∈ V , is differentiable, mi-strongly con-
vex and has M i-Lipschitz gradient (M i,mi

∈ R>0). Let m =

min{m1,m2, · · · ,mN
}, andM = max{M1,M2, · · · ,MN

}. In the op-
timal resource allocation problem (1) let p = 1 (single demand) and
ωi

= 1, i ∈ V . For each i ∈ V , starting from vi(0), yi(0), µi(0), xi(0) ∈

R with
∑N

i=1v
i(0) = 0, the algorithm (9) over G makes (µi(t), xi(t)),

i ∈ V , converge exponentially fast to (µ⋆, x⋆i ), where x⋆ is the
unique minimizer of problem (1) andµ⋆ is its corresponding Lagrange
multiplier, (see Lemma 3.1), provided

β ≥
(φ + 1)(φ + 2)

λ̂2φ
, such that φ + 2 >

1.25 + (M)2

m
,

φ ∈ R>0. (21)

Proof. We follow the proof of Theorem 4.1 until the choice of
Lyapunov function to analyze the stability of (18b)–(18f). Here,
we use the radially unbounded and positive-definite candidate
Lyapunov function

V =
φ + 1

2
z⊤

1 z1 +
φ

2
z⊤

2:Nz2:N +
φ + 1

2
η⊤η +

φ + 1
2

χ⊤χ

+
1
2
(z2:N + u2:N )⊤(z2:N + u2:N ) +

1
2
η⊤rr⊤η

+
1
2
(χ + r z1)⊤(χ + r z1) = ζ⊤E ζ,

where φ ∈ R>0 as in (26), and ζ = [z1, z⊤

2 ,u
⊤

2:N , η
⊤,χ⊤

]
⊤, with

E > 0 being the obvious matrix describing the quadratic V . Note
that this Lyapunov function consists of the Lyapunov candidate
function (19) plus the last two newquadratic terms. The Lie deriva-
tive of these last two terms along trajectories of (18b)–(18f) is given
by

η⊤rr⊤η̇ + (χ + r z1)⊤(χ̇ + r ż1) = η⊤rr⊤(−η + rz1 + Rz2:N )
+ (χ + r z1)⊤(−h(χ, x⋆)

− rz1 −Rz2:N − rz1 + rr⊤χ + rr⊤η)

=−

(
r⊤η −

1
2

r⊤χ − z1
)2

− χ⊤h(χ, x⋆)

−
3
4
z21 − (

1
2

rz1 + h(χ, x⋆))⊤(
1
2

rz1 + h(χ, x⋆))

+ h(χ, x⋆)⊤h(χ, x⋆) +
5
4
χ⊤χ

− χ⊤RR⊤χ −

(1
2

R⊤χ + z2:N
)⊤(1

2
R⊤χ + z2:N

)
+ z⊤

2:Nz2:N ,
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where given p = 1 and ωi
= 1, i ∈ V , we used r = r,R = R and

ΩD = IN . We also invoked rr⊤ = I − RR⊤. Using this manipulation,
V̇ along trajectories of (18b)–(18f) is

V̇ = − φ (η − Tz)⊤(η − Tz) −

(
T⊤η − z −

1
2
ũ
)⊤(

T⊤η − z −
1
2
ũ
)

− ((φ + 1)z2:N +
1
2
u2:N )⊤

(
(φ + 1)z2:N +

1
2
u2:N

)
− (φβz⊤

2:NR⊤LRz2:N − (φ + 1)2z⊤

2:Nz2:N )

− (φ + 1)χ⊤h(χ, x⋆) −
1
4
u⊤

2:Nu2:N

+ u⊤

2:NR
⊤χ −

1
2
u⊤

2:Nu2:N − (r⊤η −
1
2

r⊤χ − z1)2

− χ⊤h(χ, x⋆) −
3
4
z21

−

(1
2

rz1 + h(χ, x⋆)
)⊤(1

2
rz1 + h(χ, x⋆)

)
+ h(χ, x⋆)⊤h(χ, x⋆) +

5
4
χ⊤χ − χ⊤RR⊤χ

−

(1
2

R⊤χ + z2:N
)⊤

(
1
2

R⊤χ + z2:N ) + z⊤

2:Nz2:N .

Next, we establish an upper bound on V̇ . We start by us-
ing the M i-Lipschitzness property of local gradients to write
h(χ, x⋆)⊤h(χ, x⋆) ≤ (M)2χ⊤χ (recall that h(χ, x⋆) = (∇f (χ +

x⋆) − ∇f (x⋆)). We also write −χ⊤h(χ, x⋆) ≤ −mχ⊤χ due to the
m-strong convexity of global cost function and −z⊤

2:NR⊤LRz2:N ≤

−λ̂2z⊤

2:Nz2:N , which is true because the communication topology is
a strongly connected andweight-balanced digraph. Then, we have

V̇ ≤ − φ (η − Tz)⊤(η − Tz) −

(
T⊤η − z −

1
2
ũ
)⊤(

T⊤η − z −
1
2
ũ
)

− ((φ + 1)z2:N +
1
2
u2:N )⊤((φ + 1)z2:N +

1
2
u2:N )

− (φβλ̂2 − (φ + 1)(φ + 2))z⊤

2:Nz2:N

− χ⊤((φ + 2)m −
5
4

− (M)2)χ

−

(
R⊤χ −

1
2
u2:N

)⊤(
R⊤χ −

1
2
u2:N

)
−

(1
2

R⊤χ + z2:N
)⊤

×

(1
2

R⊤χ + z2:N
)

−
1
2
u⊤

2:Nu2:N −
3
4
z21 = −ζ⊤F ζ,

where F is the obviousmatrix describing the derived quadratic up-
per bound on V̇ . Given the conditions on φ and β in the statement,
we have −ζ⊤F ζ < 0 (or F > 0), and consequently V̇ < 0 along
the trajectories of (18b)–(18f). Because V is a quadratic positive
definite function and the upper bound on V̇ is a quadratic negative
definite function, (18b)–(18f) are exponentially stable, and its tra-
jectories converge to origin with the rate no worse than λmin(F)

2λmax(E)
,

where λmin(F) is the minimum eigenvalue of F and λmax(E) is the
maximum eigenvalue of E (cf. [28, Theorem 3.1]). Consequently,
we conclude that starting from any initial condition given in the
statement, as t → ∞, trajectories t ↦→ (vi(t), yi(t), µi(t), xi(t)),
i ∈ V converge to (ωix⋆i − b̃i,µ⋆,µ⋆, x⋆i ) exponentially fast with the
rate given above. This completes the proof. □

Below, we show that the correctness of algorithm (9) over
connected graphs is guaranteed for any β ∈ R>0. Such a result
is obtained by invoking the positive definiteness of R⊤LR to con-
struct a new Lyapunov function to study stability of (18b)–(18f).

We also show that the convergence guarantees of algorithm (9)
over connected graphs extend to optimal allocation problemswith
local convex functions. Recall that when local cost functions are
convex, the optimization problem (1) can have infinite number
of minimizers. Given the discussions in Remark 4.1 which con-
nect the equilibrium points of algorithm (9) to the minimizers
of optimization problem (1), algorithm (9) for convex local cost
functions has infinite number of equilibrium points. Next, we use
results from semi-stability analysis to show that, under proper
initialization, algorithm (9) converges to one of the minimizers of
the optimization problem (1).

Theorem 4.2 (Convergence of (9) to a Point in the Minimizer Set
of Optimization Problem (1) Over Connected Graphs). Let Assump-
tion 1 hold. Let G be a connected graph. Assume each f i, i ∈ V ,
is differentiable and convex. Then, for each i ∈ V , starting from
yi(0), vi(0),µi(0) ∈ Rp, and xi(0) ∈ R with

∑N
i=1v

i(0) = 0, as
t → ∞, algorithm (9) over Gmakes (µi(t), x(t)) converge to (µ⋆, x⋆i ),
where x⋆ is a minimizer of problem (1) and µ⋆ is its corresponding
Lagrange multiplier, (see Lemma 3.1).

Proof. For convenience in analysis, here, once again we apply the
change of state (17) to obtain (18), an equivalent representation
of (9). Once again, (18a) corresponds to the constant ofmotion (13).
To study the stability in the other variables, here we take advan-
tage of structural properties of the Laplacian matrix for connected
graphs (recall (2)) to consider the following radially unbounded
and positive-definite candidate Lyapunov function

V =
1
2β

u⊤

2:N (R
⊤LR)−1u2:N +

1
2
(z⊤z + η⊤η + χ⊤χ). (22)

The Lie derivative of V along (18b)–(18f) is given by (after some
manipulations)

V̇ = − β z⊤

2:NR
⊤LRz⊤

2:N − (η − T z)⊤(η − T z)
− ((χ + x⋆) − x⋆)⊤(∇f (χ + x⋆) − ∇f (x⋆)) ≤ 0. (23)

Here, we invoked the convexity of the local cost functions and (2)
for connected graphs to establish −((χ + x⋆) − x⋆)⊤(∇f (χ + x⋆) −
∇f (x⋆)) ≤ 0, and −z⊤

2:NR
⊤LRz2:N ≤ −λ2z⊤

2:Nz2:N < 0. respectively.
So far, by virtue of V̇ ≤ 0, we have shown that the trajecto-

ries of (18) and as a result (9) under the stated assumptions are
bounded. Next, we use the invariant set stability analysis theorems
to complete our proof. Let S = {(u2:N , z, η,χ) ∈ Rp(N−1)

× RpN
×

RpN
× RN

| V̇ ≡ 0}. For a connected graph, we have

S =
{
(u2:N , z, η,χ) ∈ R(N−1)p

× RpN
× RpN

× RN
⏐⏐

z2:N ≡ 0, η − r z1 ≡ 0, χ⊤(∇f (χ + x⋆) − ∇f (x⋆)) ≡ 0
}
.

Next, we identify the largest invariant set of (18b)–(18f) in S. A
trajectory t ↦→ (u2:N (t), z(t), η(t),χ(t)) of (18b)–(18f) belonging
to S for t ≥ 0 must satisfy

u̇2:N ≡ 0, (24a)

0 ≡ r⊤ΩDχ, (24b)

0 ≡ R⊤ΩDχ − u2:N , (24c)
η̇ ≡ 0, (24d)

χ̇ = −(∇f (χ + x⋆) − ∇f (x⋆)) − Ω⊤

D rz1. (24e)

From (24a)–(24c), for trajectories in S , we obtain [r R]
⊤ΩDχ̇ ≡ 0

which results in χ̇ ≡ 0 (recall that [r R]
⊤ is a full rank matrix

and ΩD is full column rank). Therefore, we can establish that the
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trajectories in S should satisfy (u̇2:N ≡0, ż≡0, η̇≡0, χ̇≡0). There-
fore, the largest invariant set in S is the set of equilibrium points
of (18b)–(18f). Invoking the invariant set theorem [28, Theorem
3.4], we conclude that starting at any initial condition, as t → ∞

the trajectories of (18b)–(18f) approach the set of its equilibrium
points. Next, we show that all the equilibrium points of (18b)–
(18f) are Lyapunov stable. Then, because the set that trajectories
of (18b)–(18f) are asymptotically approaching is the set of stable
equilibrium points, we can invoke [28, Theorem 4.20] to establish
that (18b)–(18f) are semi-stable and the trajectories of (18b)–(18f)
will converge to a point in this set.

To study the stability of any equilibrium point (u2:N , z1, z2:N , η,
χ), we transfer that equilibrium point to the origin using p =

u2:N − u2:N , q1 = z1 − z̄1, q2:N = z2:N − z2:N , ζ = η − η, and
ℵ = χ − χ to write (18b)–(18f) in the following equivalent form

ṗ = β R⊤LRq2:N , q̇1 = −q1 + r⊤(ΩDℵ + ζ), (25a)

q̇2:N = −z2:N + R⊤(ΩDℵ + ζ) − β R⊤LR q2:N − p, (25b)

ζ̇ = −ζ + T q, ℵ̇ = −h̃(ℵ, x⋆) − Ω⊤

D T q, (25c)

where h̃(ℵ) = h(ℵ + χ) − h(χ) = ∇f (ℵ + χ + x⋆) − ∇f (χ + x⋆).
To study the stability of the origin in (25), we use the Lyapunov
candidate function (22) in which (u2:N , z, η,χ) is replaced, respec-
tively, with (p, q, ζ,ℵ). Taking the derivative of this V along the
trajectories of (25), gives, similar to (23),

V̇ = − β q⊤

2:NR
⊤LRq⊤

2:N − (ζ − T q)⊤(ζ − T q) − ℵ
⊤h̃(ℵ) ≤ 0.

Convexity of local cost functions gives (ℵi
+ χ i

+ x⋆i − (χ i
+

x⋆i ))(∇f i(ℵi
+ χ i

+ x⋆i ) − ∇f i(χ i
+ x⋆i )) ≥ 0, i ∈ V , or equivalently

ℵ
⊤h̃(ℵ) ≥ 0 for all ℵ ∈ RN . Moreover, because the network

topology is a connected graph we have R⊤LR > 0. Therefore,
we conclude that along the trajectories of (25) we have V̇ ≤ 0.
Therefore, any (u2:N , z1, z2:N , η,χ) is a Lyapunov stable equilib-
rium point.

So far, we have shown that starting from any initial condition,
the trajectories of (18b)–(18f) converge to a point in its equilib-
rium set. Then, given the state equation (18a) and the affine and
static state transformation (17), we conclude that starting from
any initial condition given in the statement, the trajectories t ↦→

(vi(t), yi(t),µi(t), xi(t)), i ∈ V , of (9) converge to one of its equilib-
rium points as t→∞. Then, with a discussion similar to that made
in Remark 4.1,we can conclude that as t → ∞ the trajectories t ↦→

(vi(t), yi(t),µi(t), xi(t)), i ∈ V , converge to (ωix⋆i − b̃i,µ⋆,µ⋆, x⋆i )
where (µ⋆, x⋆) is a KKT point in O⋆. This completes the proof. □

We close this section by discussing how the convergence of (9)
can be extended to the dynamically changing topologies. Such
extension is immediate as the proof of Theorem 4.1 relies on a
Lyapunov function that has no dependency on the systems param-
eters and its derivative is negative definite with a quadratic upper
bound. The proof details are omitted for brevity.

Proposition 4.2 (Convergence of (9) Over Dynamically Changing
Strongly Connected and Weight-Balanced Digraphs). Let Assump-
tion 1 hold. Assume that G is a time-varying digraph which is strongly
connected and weight-balanced at all times and whose adjacency
matrix is uniformly bounded and piecewise constant. Let each f i, i ∈ V ,
be differentiable, mi-strongly convex and have M i-Lipschitz gradient
(M i,mi

∈ R>0). In the optimal resource allocation problem (1) let
p = 1 (single demand) andωi

= 1, i ∈ V . For each i ∈ V , starting from
vi(0), yi(0), µi(0), xi(0) ∈ R with

∑N
i=1v

i(0) = 0, algorithm (9) over
G makes (µi(t), xi(t)), i ∈ V , converge exponentially fast to (µ⋆, x⋆i ),
where x⋆ is the minimizer of problem (1) and µ⋆ is its corresponding
Lagrange multiplier, (see Lemma 3.1), provided

β ≥
(φ + 1)(φ + 2)

(λ̂2)minφ
, such that φ + 2 >

1.25 + (M)2

m
,

φ ∈ R>0, (26)

where (λ̂2)min = min
p∈P

{λ̂2(Lp)} where P is the index set of all

possible realizations of G and m = min{m1,m2, · · · ,mN
}, M =

max{M1,M2, · · · ,MN
}.

5. Simulations

We consider an in-network resource allocation problem for
a group of 7 agents interacting over a strongly connected and
weight-balanced digraph depicted in Fig. 1. The local cost function
for each agent is given by f i(xi) = αixi2 + β ixi + γ i, where
(αi, β i, γ i), i ∈ {1, . . . , 7}, are selected randomly in the intervals,
respectively, ([0.10875, 0.06967], [10.76, 74], [6.78, 32.96]). The
cost functions are selected according to the cost for power gen-
erators in IEEE 118 bus. In this problem, agents {1, 2, 3, 4, 7} are
meeting a demand b1 = 850 and agents {4, 5, 6, 7} are meeting
another demand b2 = 750. Agents 4 and 7 contribute equally
to each of these demands by splitting their allocated value into
half between them. Our objective here is to meet these demands
with least possible cost for the group. The optimization problem
we solve is

x⋆ = arg min
x∈R7

∑7

i=1
f i(xi), subject to

x1 + x2 + x3 + 0.5 x4 + 0.5 x7 = 850,

0.5x4 + x5 + x6 + 0.5 x7 = 750. (27)

Fig. 2(a)–(c) show the time history of xi’s generated by implement-
ing the distributed optimization algorithm (9) over the network
shown in Fig. 1(a) for different values of β , and compares it to the
solution obtained when (27) is solved as a centralized problem by
Matlab’s constraint optimization solver ‘fmincon’. As expected the
decision variable xi of each agent i ∈ {1, . . . , 7} converges to its
corresponding solution of the optimization problem (27). Fig. 2(d)
shows the execution of algorithm (9) when network topology
changes every 20 seconds from network in Fig. 1(a) to the one
in Fig. 1(b). In this example, we have observed that the algorithm
converges for any positive value of β .

Fig. 1. The digraphs used in the simulation study (adjacency weights are 1).
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(a) Fixed digraph, β = 0.5. (b) Fixed digraph, β = 1.

(c) Fixed digraph, β = 2. (d) Time-varying digraph, β = 1.

Fig. 2. Plots (a)–(c) show the result of execution of algorithm (9) over the network depicted in Fig. 1(a) for three different values of β . Plot (d) shows the execution of (9) over
a network whose topology changes every 20 s from the network depicted in Fig. 1(a) to the one in Fig. 1(b). In all plots, the colored solid curved plots depict the time history
of decision variable of each agent generated by algorithm (9). Horizontal dashed lines depict the centralized solution obtained using Matlab’s constraint optimization solver
‘fmincon’. As plot (a)–(c) show, by increasing β the rate of convergence of the algorithm increases.

6. Conclusions

We presented a novel distributed algorithm to solve an optimal
in-network resource allocation problemwhere the total cost is the
sum of local cost functions and the constraint is the weighted sum
of contribution of each agent. We showed that when the com-
munication topology is a strongly connected and weight-balanced
digraph and the local cost functions are strongly convex, with an
appropriate initialization, the proposed algorithm converges to the
minimizer of the optimal resource allocation of interest. We also
showed that if the local cost functions all have globally Lipschitz
gradients, then the convergence is exponential. Finally we showed
that if the communication topology is a connected graph, the
convergence to a point in the set of minimizers of the problem
of interest can be extended to convex local cost functions. Future
work includes rigorous treatment of use of exact penalty methods
to extend the proposed algorithm to solve allocation problems
with limited local resources at each agent. As future work we will
also study the event-triggered communication implementation of
our proposed algorithm and characterize its privacy preservation
properties.
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