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Methodological issues with deforestation baselines compromise the 
integrity of carbon offsets from REDD+
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A B S T R A C T   

The number of voluntary interventions seeking to generate carbon offsets by reducing deforestation and forest 
degradation, generally known as REDD+ projects, has increased significantly over the past decade. Offsets are 
issued based on project performance in comparison to a baseline scenario representing the expected deforesta
tion in a project area in the absence of REDD+. Baselines from most ongoing REDD+ projects were established 
following four methodologies approved by the largest voluntary carbon offset certification scheme worldwide, 
the Verified Carbon Standard (VCS) from Verra. These methodologies often rely on oversimplified assumptions 
about deforestation that remain overlooked by project developers, certification bodies, and buyers. Here, we 
explore what these methodological assumptions are and their implications. We then construct alternative 
deforestation baselines for four ongoing VCS-certified projects using the four VCS-REDD+ methodologies and 
examine how they differ. Overall, we observe large discrepancies among the project baselines. On average, the 
highest baseline value we calculate for each project is more than 14 times greater than the lowest value across 
the four projects studied. This illustrates the lack of robustness and consistency across the VCS-REDD+ meth
odologies. The results also call into question the additionality of carbon offsets issued based on these method
ologies. New baseline methods need to be urgently developed if voluntary REDD+ projects are to reliably 
estimate their additional contribution to climate change mitigation. The incorporation of causal inference 
methods represents current best practices in measuring the efficacy of REDD+ interventions. Regrettably, these 
methods remain largely overlooked by project developers, certification standards, and governmental and in
ternational bodies. Dynamic baselines developed by independent analysts could potentially enable project de
velopers to distinguish the impacts of the REDD+ intervention from confounding factors and properly estimate 
additionality.   

1. Introduction 

Reduced Emissions from Deforestation and forest Degradation 
(REDD+) attracted significant attention as a strategy to mitigate climate 
change following the discussions that started at the 11th Conference of 
Parties (COP11) to the United Nations Framework Convention on 
Climate Change in 2005 (UNFCCC; Thompson et al., 2011). Since then, 
while governments worked on institutional REDD+ arrangements at 
national and subnational levels (Börner et al., 2018; FAO, 2019; UN- 
REDD, 2021), multiple decentralized, voluntary REDD+ projects 
became operational worldwide (Wunder et al., 2020). These projects are 
largely funded through the commercialization of carbon offsets in 

voluntary carbon markets (West, 2016a). Currently, the volume of off
sets issued by REDD+ projects represents the largest share of trans
actions in the voluntary carbon market, involving project developers 
and thousands of buyers interested in neutralizing their greenhouse gas 
emissions (GHG; So et al., 2023; Donofrio et al., 2021; The World Bank, 
2021). Moreover, there are efforts in place to scale and integrate the 
GHG emission reductions claimed by these projects into cap-and-trade 
markets and Nationally Determined Contributions to climate change 
mitigation committed under the Paris Agreement (Blum and Lövbrand, 
2019; FAO, 2019; Lee et al., 2018; McAfee, 2022; Taskforce on Scaling 
Voluntary Carbon Markets, 2021; Verra, 2021). 

The effectiveness of voluntary REDD+ projects at reducing GHG 
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emissions from unplanned (illegal) deforestation is measured against a 
baseline (or counterfactual) scenario, representing the expected defor
estation in the absence of REDD+ activities (Bos et al., 2017; West et al., 
2018). In general, the higher the baseline deforestation, the more offsets 
a project can claim. Because deforestation can be affected by a number 
of factors that change over time, the use of ex-post methods—based on 
observable data from control units (i.e., areas not exposed to REDD+
activities) rather than forecasts—is considered the best practice for 
creating credible counterfactuals and assessing project performance 
(Balmford et al., 2023; Guizar-Coutiño et al., 2022; West et al., 2020a; 
2023). That is because such ex-post approaches can account for potential 
bias from confounding factors that change over time and affect both 
project and control units similarly, e.g., changes in governance or 
agricultural commodity prices (Ferraro and Hanauer, 2014). 

In contrast, the baseline methodologies adopted by most existing 
voluntary REDD+ projects—VM0006 (Terra Global Capital, 2017), 
VM0007 (Avoided Deforestation Partners, 2020a), VM0009 (Wildlife 
Works and ecoPartners, 2014), and VM0015 (Pedroni, 2012a)—are 
based on ex-ante approaches. According to these methodologies, 
approved under the Verified Carbon Standard (VCS) certification 
scheme from Verra (Verra, 2019), baselines are usually simplistic fore
casts that ignore the influence of confounding factors. For example, 
these forecasts can be based on extrapolations of historical deforestation 
trends or averages observed over a 10-year period, disregarding changes 
in political or economic contexts known to influence deforestation 
(Assunção et al., 2015; Busch and Ferretti-Gallon, 2017; Lambin et al., 
2014; West and Fearnside, 2021). As a result, simplistic ex-ante baselines 
can easily become unrealistic. Furthermore, because project sites are 
largely covered by forests (i.e., areas virtually without deforestation), 
deforestation baselines are informed by the historical deforestation 
observed at a broader spatial scale, known as the reference region. While 
VM0006 and VM0009 tend to measure historical deforestation rates in 
the reference region and proportionally apply these—in the form of 
annual averages or forecasts from statistical models—to the project area 
to create its baseline, the most popular methodologies, VM0007 and 
VM0015, include an additional step based on spatial, “pixel-level pri
oritization.” Under this approach, the baseline deforestation is not 
proportionally allocated to the project site, but rather spatially allocated 
across the reference region using a deforestation-risk (or suitability) 
map. These maps are produced based on relationships between histori
cal deforestation patterns and observable spatial attributes within the 
reference region, e.g., distances to roads and rivers, presence of pro
tected areas, elevation, slope, and soil type (Sloan and Pelletier, 2012; 
West et al., 2019). Annual baseline deforestation rates are then allocated 
across the reference region starting with the pixels with the highest 
estimated risk. Only the deforestation allocated inside project bound
aries throughout the lifetime of the project is considered part of the 
project’s baseline scenario. However, several algorithms can be 
employed for the construction of deforestation-risk maps, e.g., logistic 
regressions and artificial neural networks, often resulting in “equally 
valid,” and yet contradicting, spatial configurations (Lin et al., 2011; 
Soares-Filho et al., 2013; West et al., 2020b). As a result, VM0007 and 
VM0015 offer extra opportunities for baseline “gaming” given that 
configurations that allocate more baseline deforestation inside the 
project areas are financially more attractive than others (e.g., Soares- 
Filho, 2012). Previous studies found that ex-ante project baselines tend 
to be overestimated compared to those constructed using best-practice 
ex-post methods (West et al., 2020a, 2023). 

Here, we explore the methodological reasons why the ex-ante base
lines adopted by voluntary REDD+ projects tend to result in unreliable 
counterfactual scenarios. First, we examine the key assumptions un
derlying the four most adopted VCS-REDD+ methodologies. Then, we 
employ those key methodological assumptions to illustrate their impli
cations by creating alternative ex-ante deforestation baselines for four 
operational REDD+ projects around the world. 

2. VCS-REDDþ methodologies 

2.1. VM0006: “Methodology for carbon accounting for mosaic and 
landscape-scale REDD projects” (v.2.2) 

VM0006 is a VCS-REDD+ methodology for projects located in re
gions where deforestation follows a “mosaic” configuration (Terra 
Global Capital, 2017), where mainly small-scale deforestation agents 
and drivers “are spread out across the forest landscape” and “most areas 
of the forest landscape are accessible to human populations” (Verified 
Carbon Standard, 2017). In VM0006, baseline deforestation is based on 
a historical average or trend observed in the project’s reference region 
and is proportionally applied to the REDD+ project area (Table 1). A 
spatial allocation of the deforestation baseline is only required if the 
project area has more than one forest stratum (with different carbon 
stocks) or if more than one post-deforestation land-use class (e.g., 
pastureland and palm oil plantation) is considered in the baseline sce
nario (also associated with different carbon stocks). 

According to VM0006, the estimation of the baseline deforestation 
rate is based on “beta regressions,” fitted to historical deforestation 
data.1 These regressions are mainly a function of time (i.e., years prior to 
project start), but can include other covariates related to deforestation, 
such as protection status and distance to roads. If a model can be con
structed for which all covariates are significant (p-value ≤ 0.05), the 
lower limit of the 95 % confidence interval of the regression model’s 
forecast can be used as the deforestation baseline; otherwise, the base
line must be based on a historical average (Table 1). The baseline 
deforestation is further discounted by two “forest scarcity factors,” 
rendering the baseline more conservative. In effect, as the project area 
becomes increasingly deforested, the baseline deforestation rates also 
decline due to the discounting from the forest scarcity factors (Equation 
(1)). According to VM0006, the use of these factors is justified based on 
the forest transition theory, which postulates deforestation rates to 
decrease with socioeconomic development and shifts in the labor market 
(Köthke et al., 2013; Rudel et al., 2005). 

While VM0006 is complex, the calculation of the baseline defores
tation can be simplified to: 

DPA,t = dRR(t) ×
PA
RR

×
1

1 + e
s1

(

s2 −
NFAt
PA

) (1)  

where DPA,t is the baseline deforestation in the REDD+ site in year t (ha), 
which is a function of dRR(t), representing either an annual deforestation 
average or a forecast from a “beta regression” (or linear regression) 
model based on historical deforestation data from the project’s reference 
region, adjusted by the proportional size of the project area (PA) in 
relation to its reference region (RR), and discounted by the forest scar
city factors s1 and s2. In turn, the scarcity factors are a function of the 
non-forest area (NFAt) proportion within PA; s1 represents the defores
tation rate of decay, whereas s2 is the relatively cleared area at which 
deforestation is expected to reach 50 % of the initial deforestation rate in 
the project region. 

1 As defined in VM0006, beta regressions are “commonly used to model 
variables that assume values in the standard unit interval (0; 1),” where the 
dependent variable is beta-distributed with a mean related to a set of regressors 
through a linear predictor with unknown coefficients and a link function (Terra 
Global Capital, 2017, p. 48). However, such a definition of beta regressions is 
not compatible with the equations, steps, and examples provided throughout 
VM0006 on the calculation of baseline deforestation rates (Terra Global Capital, 
2017, pp. 48–52). It is our understanding that, despite its definition, the term 
“beta regression” is in fact used in the methodology to describe a linear 
regression model (hence, the use of the term in quotes throughout the text). 
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Table 1 
Overview of REDD+ methodologies approved under the Verified Carbon Standard.  

Factor VM0006 VM0007 VM0009 VM0015 

Minimum size of the 
reference region 

250,000 ha or the size of the project 
area (whichever is greater) 

For RRD*: 7500× PA− 0.7, where PA 
is the project area (ha); the area of 
forest in the RRL* must be ± 25 % of 
the area of the RRD* 

Greater than or equal to the project 
size 

Suggested: 5–7 times larger than 
>100,000-ha projects; 20–40 times 
larger than <100,000-ha projects 

Reference region’s 
forest cover at the 
project start 

≥15 % 100 % for RRD*; ≥50 % for RRL*. 
The area of forest in the RRL* must 
be within a ±25 % range of the 
corresponding values in the RRD* 

N/A N/A 

Shared characteristics 
between project 
area and reference 
region 

Drivers of deforestation; landscape 
configuration (forest type, 
elevation, slope); and socio- 
economic and cultural conditions 
(land-tenure status, policies/ 
regulations, degree of 
urbanization). Generally, the 
reference region values linked to 
these attributes should fall within a 
±10 % range of the corresponding 
values in the project area 

Agents of deforestation; landscape 
factors (forest class, soil type, slope, 
elevation); transportation networks 
and human infrastructure (roads, 
navigable rivers, settlements, etc.); 
social factor (presence of gangs or 
guerillas, the ethnic composition of 
local populations); policies and 
regulations. Generally, the values 
linked to these attributes should fall 
within a ± 20 % range of the 
corresponding values in the project 
area for the RRD* and within a ±30 
% range for the RRL* 

Drivers of deforestation; location 
and mobility of deforestation 
agents; landscape configuration 
(topography, land use/cover, soil 
type, infrastructure, market 
distance, land tenure). The 
reference region values linked to 
these attributes do not need to fall 
within a predefined range relative 
to the corresponding values in the 
project area 

Agents and drivers of deforestation; 
infrastructure drivers; any spatial 
drivers expected to influence the 
project area (resettlement 
programs, mining and oil 
concessions, etc.); landscape 
configuration and ecological 
conditions (forest/vegetation 
classes, elevation, slope, rainfall); 
socio-economic and cultural 
conditions (legal status of the land, 
land use); enforced policies and 
regulations. Generally, the 
reference region values linked to 
these attributes should fall within a 
± 10 % range of the corresponding 
values in the project area 

Estimation of baseline 
deforestation rate 

Historical average or “beta 
regression” (as a function of time) 
fitted to historical deforestation 
data from the reference region. 
Annual baseline deforestation rates 
from the reference region are then 
proportionally applied to the 
project area and discounted by 
“forest scarcity factors” 

Under the “simple historic” 
approach: based on historical 
average or linear/non-linear 
regression (as a function of time) 
fitted to historical deforestation 
data from the RRD* and 
proportionally applied to the RRL*. 
Under the “population driver” 
approach: based on per-capita 
historical deforestation, 
extrapolated from household survey 
or population census data. Under 
both approaches, the baseline 
deforestation rate at the project 
level is a function of the spatial 
allocation of the baseline 
deforestation estimated at the 
reference-region level across the 
reference region 

Logistic regression (as a function of 
time) fitted to random samples 
observed throughout a historical 
period within the reference region. 
The relative deforestation forecast 
(%) is then annually applied to the 
project area 

Historical average, linear/non- 
linear regression (as a function of 
time) fitted to historical 
deforestation data from the 
reference region, or other 
(simulation) modeling approaches. 
The baseline deforestation rate at 
the project level is a function of the 
spatial allocation of the baseline 
deforestation estimated at the 
reference-region level across the 
reference region 

Statistical 
requirements for 
the estimation of 
baseline 
deforestation rate 

Average historical deforestation is 
used if the estimated time 
parameter of the regression model 
is insignificant (p ≤ 0.05). If not, the 
lower limit of the 95 %-confidence 
interval of the forecast must be used 
when trending upwards 

Under the “simple historic” 
approach: regression model must be 
significant (p ≤ 0.05), with r2 ≥

0.75, and unbiased (i.e., lowest 
possible residuals). Under the 
“population driver” approach: 
regression model must be significant 
(p ≤ 0.05), with r2 ≥ 0.50, and 
unbiased (i.e., with a minimal trend 
in residuals) 

N/A N/A 

Baseline deforestation 
allocation 

Conducted at the project area level 
(only relevant if multiple forest 
strata and/or post-deforestation 
land-use classes are considered). 
Allocation is informed by a 
deforestation-risk map based on the 
spatial driver of historical 
deforestation. Any suitable method 
can be used to construct the risk 
map 

Conducted at the RRL* level. 
Allocation is informed by 
deforestation-risk maps based (at 
minimum) on the landscape (e.g., 
soil type, slope, elevation), 
accessibility (e.g., distance to rivers, 
roads), anthropogenic (e.g., 
distance to sawmills, settlements, 
cleared land), and land tenure and 
management factors (e.g., protected 
areas, concessions). Internationally 
peer-reviewed algorithms are 
eligible to prepare the risk maps. 
Several risk maps should be 
prepared and the most accurate 
should be selected based on model 
validation outcomes. Only the 
deforestation allocated within 
project boundaries is part of the 
project’s baseline scenario 

N/A Conducted at the reference region 
level. Allocation is informed by 
deforestation-risk maps based on 
the spatial driver of historical 
deforestation. Risk maps must be 
constructed with a peer-reviewed 
model. Several risk maps should be 
prepared and the most accurate 
should be selected based on model 
validation outcomes. Only the 
deforestation allocated within 
project boundaries is part of the 
project’s baseline scenario 

(continued on next page) 
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2.2. VM0007: “REDD+ methodology framework” (v.1.6) 

VM0007 is a VCS-REDD+ methodology composed of several mod
ules (Avoided Deforestation Partners, 2020a). The VMD0007, “Estima
tion of baseline carbon stock changes and greenhouse gas emissions 
from unplanned deforestation and unplanned wetland degradation 
(v.3.3),” is the module dedicated to the construction of unplanned 
deforestation baselines (Avoided Deforestation Partners, 2020b). This 
module provides two approaches to calculate baseline deforestation 
rates: “simple historic” and “population driver” (Table 1). Under the 
“simple historic” approach, baseline deforestation rates are based on the 
historical deforestation observed within a project’s reference region 
specifically selected to inform baseline deforestation rates (RRD); these 
rates can be based on historical averages or forecasts from statistically 
significant (linear, exponential, or logarithmical) regression models that 
are a function of time (i.e., associated with p-values ≤ 0.05 and R2 ≥

0.75). Under the “population driver” approach, rates are instead 
informed by a historical per-capita deforestation rate observed within a 
geopolitical unit where the REDD+ project site is located (e.g., a mu
nicipality or population census unit); this approach requires historical 
information about population size (e.g., from household surveys or 
census data), as well as a projection of population growth, which is then 
is used to forecast baseline deforestation rates based on a correlation 
between historical population size and deforestation (see VMD0007 for 
details). 

In VM0007, baseline deforestation rates are estimated at the refer
ence region level but are not proportionally allocated to the REDD+
project site as in VM0006 (Table 1). Although there may be exceptions, 
the baseline deforestation is ultimately a function of the spatial alloca
tion of the RRD-informed rates across a second reference region 
encompassing the project area, namely the “reference region for pro
jecting location of deforestation” (RRL). Only the RRL deforestation 
allocated inside project boundaries is considered part of the project’s 
baseline scenario. 

The spatial allocation of the baseline deforestation across the RRL is 
informed by a deforestation-risk (or suitability) map, which can be 
constructed in a variety of ways. Generally, spatial algorithms establish 
relationships between historical deforestation patterns observed within 
the RRL (i.e., the dependent variable) and biophysical and socioeco
nomic factors mapped across the landscape, e.g., soil type, slope, 
elevation, accessibility, tenure status, etc. (i.e., independent variables), 
returning a raster map with estimated “likelihoods” of deforestation at 
the pixel level. According to VM0007, any “international peer-reviewed 
algorithm” is eligible for use. Once a deforestation-risk map is con
structed, baseline deforestation rates are annually allocated to the pixels 
with the highest likelihood of deforestation until the total expected area 
of baseline deforestation is reached. Because the number and type of 
independent variables included in the spatial algorithm can substan
tially alter the estimated pixel-level likelihood of deforestation, and thus 
the final configuration of the baseline map itself, VM0007 requires 
several risk maps (and baseline maps) to be produced. In the end, the 
map associated with the highest accuracy, based on the outcome of 
model validation metrics, should be adopted as the project’s official 

baseline scenario. 
According to VM0007, the validation of the deforestation baseline 

maps should be based on the Figure of Merit method (Pontius, 2018). 
This method is based on map comparisons, where the output from the 
allocation algorithm (i.e., the simulated baseline map) for a specific 
historical period is compared to an observed, “real world” map. For 
example, a deforestation allocation algorithm (or model) can be cali
brated based on the historical patterns of deforestation observed from 
2001 to 2010 within the RRL. This algorithm can then be used to allocate 
the expected deforestation from 2011 to 2020 across the RRL. The 
Figure of Merit then compares the simulated RRL map of 2020 with an 
actual observed RRL map of 2020 and calculates a level of agreement 
between the two as a way to measure the accuracy of the allocation 
algorithm. The Figure of Merit can range from 0 % (when no simulated 
pixel-level deforestation matches what was observed in the real world) 
to 100 % (for a perfect match). According to VM0007, the minimum 
Figure of Merit threshold for the spatial algorithm (or model) to pass 
validation is defined by “the net observed change in the reference region 
for the calibration period of the model. Net observed change must be 
calculated as the total area of change being modeled in reference region 
during the calibration period as percentage of the total area of the 
reference region” (Avoided Deforestation Partners, 2020b, p. 28). Still, 
exceptions are allowed if supported by the literature. 

2.3. VM0009: “Methodology for avoided ecosystem conversion” (v.3.0) 

The estimation of baseline deforestation rates in VM0009 is similar 
to that in VM0006; they are based on the historical deforestation 
observed across the project’s reference region, which is then propor
tionally applied to the project area (Wildlife Works and ecoPartners, 
2014). However, according to VM0009, estimates are based on the 
forecast of a logistic regression model fitted to random samples collected 
from the reference region through time prior to the start of the project 
(Table 1). The logistic regression in VM0009 is a function of time, but, 
similar to VM0006, can also include additional covariates related to 
deforestation (e.g., population and road densities). Yet, because 
VM0009 provides little guidance on how these covariates should be 
constructed and used, they tend to be ignored by project developers.2 

Unlike VM0006, VM0009 does not use discounts such as the forest 
scarcity factors, nor require the lower limit of the 95 % confidence in
terval of the forecast to be adopted for conservativeness. 

As in a standard logistic regression model, baseline deforestation in 
VM0009 can be generally defined as: 

DPA,t =
1

1 + e− μ(t,θ) (2)  

where DPA,t is the baseline deforestation in the REDD+ site in year t (%), 
which is a function of time t and, optionally, other covariates related to 
deforestation (θ). 

Table 1 (continued ) 

Factor VM0006 VM0007 VM0009 VM0015 

Validation of baseline 
deforestation 
allocation 

If a regression model is used, the 
full model and all covariates must 
be significant (p-value ≤ 0.05). 
One-third of the data must be 
exclusively used for the validation 
of the spatial allocation model. A 
goodness-of-fit score ≥85 % is 
required 

Based on the Figure of Merit method 
for the comparison between 
simulated and observed land-use/ 
cover maps. The minimum 
threshold for the Figure of Merit is 
defined by the relative historical 
deforestation level in the RRL*. 
Exceptions are allowed if supported 
by the literature 

N/A Based on any appropriate method 
for the comparison between 
simulated and observed land-use/ 
cover maps. If the Figure of Merit 
method is used, the minimum 
validation threshold is defined by 
the relative historical deforestation 
level in the reference region 

*VM0007 adopts two reference regions: one for projecting the rate of baseline deforestation (“RRD”) and the other for the allocation of baseline deforestation (“RRL”). 

2 As of March 2022, only two VCS-certified projects included one additional 
covariate (i.e., population density) other than “time” (Haya et al., 2023). 
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Mathematically, the use of logistic regressions can lead to inflated 
baselines in two ways. First, the exponential growth behavior of the 
logistic functional form before its inflection point (i.e., concave up
ward), can potentially lead to a sharp increase in baseline deforestation 
within the first years of the project. Second, the intercept of the logistic 
regression can lead to an artificial spike in baseline deforestation at year 
zero of the project. This is because the time variate in the logistic 
regression model according to VM0009 is relative to the project start 
date, e.g., t = − 10, − 9, …, − 1 (Wildlife Works and ecoPartners, 2014, 
pp. 76–78). Despite these functional issues, VM0009 claims to be 
grounded on the “economic theory of resource consumption (i.e., 
ecosystem conversion) within a discrete area over time” (Wildlife Works 
and ecoPartners, 2014, p. 191). 

2.4. VM0015: “Methodology for avoided unplanned deforestation” 
(v.1.1) 

The construction of unplanned deforestation baselines in VM0015 is 
rather similar to the “simple historic” approach from VM0007 and how 
the allocation of the baseline deforestation is conducted and validated 
(Pedroni, 2012a). In addition to allowing the use of a historical defor
estation average observed within the project’s reference region and 
linear or non-linear regression models to forecast the baseline defores
tation rates, VM0015 explicitly allows the use of any other (simulation) 
modeling approach (e.g., Vitel et al., 2013; Table 1). 

The main difference between VM0007 and VM0015 is that the latter 
does not have an alternative “population driver” option. Furthermore, 
when baseline deforestation is based on a historical average rather than 
a model forecast, annual deforestation rates are proportionally applied 
only to the remaining forest area within the reference region over time. 
Thus, even though VM0015’s average proportional rate of deforestation 
(% year− 1) remains constant, the absolute deforestation rate (ha year− 1) 
shrinks over time, as: 

DRR,t =

(

ARR ×
PA
RR

)

× FAt (3)  

where DRR,t is the baseline deforestation in the project’s reference area in 
year t (ha), which is a function of the historical annual deforestation rate 
average (%) in reference region (ARR), adjusted by the proportional size 
of the project area (PA) in relation to its reference region (RR), and 
discounted by the remaining forest area within the project site at time t 
(FAt). This formulation implies an exponential decay of the deforesta
tion rate over time across the reference region, in line with the forest 
transition theory (Köthke et al., 2013; Rudel et al., 2005). 

When baseline deforestation is forecasted with the use of a model, 
VM0015 requires time-varying discounts to be applied to the forecasts 
which are a function of the remaining forest area “eligible” for defor
estation within the reference region based on biophysical constraints 
across the landscape (Pedroni, 2012a, pp. 44–47). As a result, baseline 
deforestation rates estimated based on VM0015 can be more conserva
tive than those based on VM0007. Still, unlike VM0006 and VM0007, 
VM0015 does not have explicit requirements about the statistical 
robustness of regression or simulation models used to forecast the 
baseline deforestation (Table 1). Similar to VM0007, VM0015 requires 
spatial allocation of the baseline deforestation across the reference re
gion, as well as validation of the allocation algorithm employed, but it 
allows for the use of alternative model validation methods other than the 
Figure of Merit (although that is the only validation method mentioned 
in VM0015). Again, only the baseline deforestation allocated within 
project boundaries is considered part of the project’s baseline scenario. 

3. Methods 

We systematically scrutinized and empirically tested the key as
sumptions used for the construction of unplanned deforestation 

baselines underlying the four VCS-REDD+ methodologies discussed 
above and their implications. We selected four VCS-certified voluntary 
REDD+ projects and constructed alternative deforestation baselines 
based on the key methodological assumptions underlying VM0006, 
VM0007, VM0009, and VM0015. Each of the selected projects adopted a 
different VCS-REDD+ methodology and had been rigorously evaluated 
in previous studies (West et al., 2020a; 2023). The four selected projects, 
according to their VCS identification numbers, were: Project 1112 from 
Brazil (based on VM0007); Project 1396 from Colombia (based on 
VM0006); Project 934 from the Democratic Republic of Congo (DRC; 
based on VM0009); and Project 944 from Peru (based on VM0015). 

For each project, we created seven alternative baselines, one from 
VM0009 and two from each of the others by adopting different meth
odological options allowed by each VCS-REDD+ methodology. Because 
Project 934 did not provide information on its baseline deforestation 
rates, those were estimated based on a forest carbon stock of 876.7 Mg 
CO2 ha− 1 obtained from the project’s certification report (DNV Climate 
Change Services, 2012) and the project’s reported ex-ante annual base
line emission reductions (Wildlife Works, 2012). 

Voluntary REDD+ project areas (in the form of spatial polygons) 
were obtained from the VCS project database (Fig. 1). We replicated the 
projects’ reference regions with similar sizes and shapes as reported in 
the official project descriptions (CarbonCo et al., 2014; Conservation 
International-Peru, 2015; ecoPartners et al., 2014; Wildlife Works, 
2012). We employed a buffering approach to create Project 934′s 
reference region instead of replicating its actual area because the latter is 
located ~650 km from the project site and does not comply with the 
requirements of other VCS-REDD+ methodologies. We also note that 
Project 934′s official reference region is apparently more heavily 
populated and closer to major markets than the project site, and exposed 
to different policy contexts and drivers of deforestation (Seyller et al., 
2016). 

We employed two algorithms from the Land Use Modeler/TerrSet 
software (v.18.2; Eastman, 2016) to create the deforestation-risk maps 
underlying the baselines from VM0007 and VM0015. This software is a 
commonly adopted land-use/cover change simulation model among 
project developers. The two algorithms were the Multi-Layer Perceptron 
(MLP), a feedforward artificial neural network, and SimWeight, a 
similarity-weighted, instance-based machine-learning tool (see East
man, 2016, and Sangermano et al., 2010, for details). In summary, both 
algorithms estimate deforestation risk at the pixel level by establishing 
empirical relationships between historical deforestation patterns (e.g., 
observed from 2001 to 2010) and spatial variables (e.g., distance from 
roads, elevation, and protected area cover)—and as in most simulation 
models, results can be rather sensitive to the underlying data used for 
calibration, as well as the analyst’s decisions. Table S1 describes the 
variables used to construct the deforestation-risk maps for this study, 
matching the ones also considered by the project proponents. Defores
tation data for Projects 934, 944, and 1396 were obtained from the 
Global Forest Change dataset (Hansen et al., 2013) for the 2001–2021 
period, whereas the data for Project 1112 were obtained from a 
reprocessed version of the MapBiomas land-use/cover dataset (Souza 
et al., 2020), which more closely matches Brazil’s official deforestation 
rates (see West et al., 2020a, for details). 

In order to create the alternative deforestation baselines for each 
project in the study using the VCS-REDD+ methodologies, additional 
assumptions needed to be adopted. For the baselines based on VM0006, 
two sets of values were adopted for parameters s1 and s2: (i) both as 0.25 
and (ii) both as 0.75; these sets of values cover a wide range of defor
estation contexts and were found to result in the widest ranges of 
baseline deforestation compared to other realistically reasonable sets we 
tested (results not shown). Due to population data constraints, we 
restricted the construction of the alternative baselines based on VM0007 
to the “simple historic” approach. Last, following the standard practices 
adopted by project developers, additional model covariates related to 
deforestation (represented by the θ parameter from Equation (3)) were 
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Fig. 1. REDD+ project locations (inner borders): (A) Project 1112 from Brazil; (B) Project 1396 from Colombia; (C) Project 934 from the Democratic Republic of 
Congo; and (D) Project 944 from Peru. Reference regions (outer borders) were constructed based on the information available from the official project descriptions, 
with the exception of Project 934, whose official reference region is located ~650 km from the project area. 

Fig. 2. Variation in ex-ante cumulative deforestation baselines of voluntary REDD+ projects from different VCS-REDD+ methodologies (VM0006, VM0007, VM0009, 
and VM0015) versus the observed deforestation in the project sites (red solid lines). Dashed black lines separate the historical period used for the construction of the 
baselines (left side) from the baseline periods when the projects started (right side). Official baselines constructed by project developers based on the methodology 
reported in parenthesis (ochre dashed lines). FSF-1 and FSF-2 refer to different sets of the “forest scarcity factor” parameters of VM0006. Multi-layer perceptron 
(MLP) and SimWeight (SW) are the algorithms employed for the spatial allocation of the baseline deforestation in VM0007 and VM0015. The horizontal dotted line in 
the Project 1112 panel is a cutoff adopted to improve visualization. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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not included in the logistic regressions from VM0009. 
The time parameter estimates from VM0006′s, VM0007′s, and 

VM0015′s regression models were only significant for Project 944 
(Tables S3 & S4). Thus, deforestation baseline rates were based on his
torical averages for Projects 934, 1112, and 1396 under VM0006, 
VM0007, and VM0015, but based on forecasts for Project 944. As ex
pected, all logistic regression models from VM0009 returned significant 
time parameter estimates (Table S5). 

4. Results 

For all projects, we found large discrepancies in baseline deforesta
tion across the four VCS-REDD+ methodologies (Fig. 2). In the most 
extreme case, Project 1112′s alternative baselines ranged from 363 ha to 
8713 ha of cumulative deforestation through 2018, with the official 
project baseline set as 4547 ha for the same period. The variability in 
alternative baselines for Project 944 was also significant, ranging from 
3092 ha to 77,943 ha through 2017, with the official project baseline 
estimated at 26,528 ha for the period. Project 934′s alternative baselines 
ranged from 11,271 ha to 60,512 ha, versus our estimated 66,896 ha as 
the official baseline, through 2020. Finally, Project 1396′s alternative 
baselines ranged from 931 ha to 3166 ha, compared to 8735 ha from the 
project’s official baseline, also through 2020. 

Overall, VM0006 returned the most conservative baselines (but 
likely because our calculations were based on forecasts from linear, as 
opposed to beta, regression models, as discussed above), whereas 
VM0007 and VM0015 produced the least conservative scenarios. Among 
the methodologies, VM0006 was the one that most closely represented a 
simple linear extrapolation of historical deforestation trends. The 
spatially explicit baselines from both VM0007 and VM0015 were sub
stantially influenced by the algorithm employed for the construction of 
their underlying deforestation-risk maps (i.e., SimWeight or MLP; 
Figures S1–S17), as best illustrated by the Project 1112 case (Fig. 2). For 
that project, the baselines from VM0007 and VM0015 based on the MLP 
allocation algorithm were orders of magnitude higher than the baselines 
from VM0006 and VM0009. We also found small differences in defor
estation baselines between VM0007 and VM0015 when the same allo
cation algorithm was adopted (Fig. 2 & Figures S2–S17). 

Among all methodologies, VM0009 was the only one associated with 
artificial spikes in baseline deforestation at year zero of the REDD+
project (driven by the intercepts of the underlying logistic regressions, as 
discussed above). Project 944 best illustrates the potential for the initial 
exponential growth behavior of logistic regressions to substantially 
inflate baseline deforestation under VM0009. In contrast, we found that 
the range of different values adopted for the forest scarcity factors of 
VM0006 had relatively little impact on baseline deforestation. Overall, 
most of the alternative baselines (23 out of 28) were more conservative 
than the official project baselines in terms of cumulative deforestation at 
the end of the evaluation period of each project (Fig. 2). Similar patterns 
are observed when we focus exclusively on the project’s first five years 
of operation for a fairer comparison across projects and methodologies 
(Table 2). 

5. Discussion 

Our results illustrate critical issues with key methodological as
sumptions for the construction of deforestation baselines behind the four 
most adopted VCS-REDD+ methodologies for voluntary avoided defor
estation projects worldwide. Overall, we found the VCS-REDD+ meth
odologies to result in unreliable and inconsistent baselines, 
compromising their suitability for assessing project performance and 
thus additionality. Furthermore, each methodology offers substantial 
flexibility in creating baseline scenarios that could be exploited by 
project developers intending to maximize credit generation. Our review 
and empirical analysis unmistakably reveal that current VCS-REDD+
methodologies constitute intricate approaches for establishing 

simplistic—and often unrealistic—reference levels for the project sites, 
rather than creating credible counterfactuals (Bos et al., 2017; Ferraro & 
Hanauer, 2014; Guizar-Coutiño et al., 2022). And despite critical flaws 
behind the baseline methodologies, each carbon offset issued according 
to these methodologies is controversially promoted and traded as 
equivalent to one metric ton of CO2 that has not been emitted to the 
atmosphere but would have been in the absence of the REDD+ inter
vention. The ongoing policy discussions to scale and integrate offsets 
potentially derived from flawed REDD+ methodologies into national 
GHG inventories, emission reduction commitments, and cap-and-trade 
markets could create an illusion of greater success in our climate 
change mitigation efforts than is warranted and harm meaningful efforts 
to mitigate climate change by diverting investments into ineffective 
solutions (Blum & Lövbrand, 2019; FAO, 2019; Lee et al., 2018; McAfee, 
2022; Taskforce on Scaling Voluntary Carbon Markets, 2021; Verra, 
2021; West et al., 2020a; 2023). 

For each project, deforestation baselines differed substantially across 
all four VCS-REDD+ methodologies. On average, the highest baseline 
value we calculated for each project was more than 14 times greater 
than the lowest value across the four projects studied. Such large vari
ations raise a concern about whether the claimed reductions in forest 
loss in fact occurred and, consequently, the environmental integrity of 
the carbon offsets—which are a function of the project performance 
relative to the baseline. Our findings unveil the potential driving factors 
for the inflated baselines identified in ex-post impact evaluations and 
other project assessments in the literature (Calyx Global, 2023; Delacote 
et al., 2022; West et al., 2020a; 2023). The disparities between the 
projects’ official baselines and our alternative scenarios can be partially 
attributed to differences among datasets, but also methodological flex
ibility and, in some cases, unclear descriptions of specific methodolog
ical steps or procedures. 

Unquestionably, the subjectiveness and flexibility in the VCS-REDD+
methodologies could be exploited by profiteers in the form of baseline 
“gaming” (Angelsen, 2017; Ehara et al., 2021; Mertz et al., 2018; Rifai 
et al., 2015). Overall, we observe significant discrepancies among the 
project baselines. The bluntest example of methodological flexibility is 

Table 2 
Comparison of cumulative baseline deforestation of voluntary REDD+ projects 
from different VCS-REDD+ methodologies (VM0006, VM0007, VM0009, and 
VM00015) during the projects’ first five years of operation. Percentages re
ported in parentheses represent how much the alternative baseline differs from 
the official project baseline (i.e., alternative baseline divided by the official 
baseline). Values approximately indicate the proportion of credits that would 
have been issued had the project used the alternative baseline. FSF-1 and FSF-2 
refer to different sets of the “forest scarcity factor” parameters of VM0006. 
Multi-layer perceptron (MLP) and SimWeight (SW) are the algorithms employed 
for the spatial allocation of the baseline deforestation in VM0007 and VM0015.  

Baseline 
method 

Cumulative deforestation during the project’s first five years of 
operation (ha) 

Project 1396 
(VM0006) 

Project 1112 
(VM0007) 

Project 934 
(VM0009) 

Project 944 
(VM0015) 

Official 
baseline 

6428 (100 %) 3199 (100 %) 30,544 (100 
%) 

17,056 (100 
%) 

VM0006- 
FSF-1 

900 (14 %) 354 (11 %) 10,535 (35 
%) 

3742 (22 %) 

VM0006- 
FSF-2 

840 (13 %) 311 (10 %) 10,020 (33 
%) 

3518 (21 %) 

VM0007- 
MLP 

1955 (30 %) 8713 (272 %) 23,970 (78 
%) 

2843 (17 %) 

VM0007- 
SW 

1265 (20 %) 320 (10 %) 28,887 (95 
%) 

11,853 (69 
%) 

VM0009 2373 (37 %) 2649 (83 %) 21,799 (71 
%) 

21,466 (126 
%) 

VM0015- 
MLP 

1953 (30 %) 8362 (261 %) 23,901 (78 
%) 

2843 (17 %) 

VM0015- 
SW 

1263 (20 %) 313 (10 %) 28,809 (94 
%) 

9334 (55 %)  
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illustrated by the construction of the underlying deforestation-risk maps 
in VM0007 and VM0015, which has a direct and often significant impact 
on deforestation baselines. These maps can be highly sensitive to the 
method and data used in the analysis (e.g., Ehara et al., 2021; Lin et al., 
2011; Sloan and Pelletier, 2012; Soares-Filho, 2012, 2013; West et al., 
2020b) and yet, different-risk maps of the same region could potentially 
be considered “equally valid” from a model validation perspective ac
cording to VM0007 and VM0015 (Pedroni, 2012a; Avoided Deforesta
tion Partners, 2020b). For example, a review of the Figure of Merit 
validation scores associated with nine voluntary REDD+ projects found 
the highest score (or accuracy) to be 11.7 %—with three other projects 
with scores lower than 1 %—and still, those project baselines were 
deemed “validated” (West, 2016b). The current, and seemingly arbi
trary, low threshold for the Figure of Merit validation (see Table 1) 
becomes even more problematic if compared to the original re
quirements from both VM0007 and VM0015: 40 %, 60 %, and 80 % for 
projects located in landscapes with frontier, transition, or mosaic 
deforestation configuration, respectively (Avoided Deforestation Part
ners, 2011, p. 27; Pedroni, 2012b, p. 64). The first versions of VM0007’s 
baseline module even stated that “where these minimum standards are 
not met the project shall be considered ineligible” (Avoided Deforesta
tion Partners, 2011, p. 27). While high Figure of Merit scores are not 
common in the land-use/cover change modeling literature (e.g., Pontius 
et al., 2008; Sloan and Pelletier, 2012), extremely small values severely 
compromise the usefulness of ex-ante baseline scenarios as a means to 
measure project performance and issue carbon offsets. 

The VCS-REDD+ methodologies also offer some flexibility in the 
selection of reference regions (as long as minimum requirements are 
met), which would also influence deforestation baselines. This could 
potentially explain the null project impacts and the location bias issue 
reported by Delacote et al. (2022) for voluntary REDD+ interventions in 
the Brazilian Amazon. Other factors used for baseline construction, such 
as the logistic regression’s sampling procedure from VM0009, the 
identification of biophysical deforestation constraints in VM0015, and 
even the forest scarcity factors from VM0006 and other default values, 
also largely rely on the analyst’s decisions and thus can be subjective or 
even deliberately biased, including “cherry picking” of the literature (e. 
g., Seyller et al., 2016). 

At the time this research was conducted, Verra was working on a 
new, consolidated methodology for voluntary avoided unplanned 
deforestation interventions that would replace all existing VCS-REDD+
methodologies, including the four covered in this study (Climate Focus, 
2023). The consolidated methodology (VM0048), released on 27 
November 2023, significantly constrains much of the methodological 
flexibility discussed above (Verra, 2023). According to the new meth
odology, deforestation baselines will be based on historical averages, 
rendering them more conservative than baselines informed by 
upward-trending forecasts, such as those from logistic regression 
models. Similar to VM0007 and VM0015, the new methodology relies 
on the use of deforestation-risk maps, which can be highly influenced by 
modeling choices, as demonstrated in this study. Still, risk maps will be 
developed by independent third-party contractors at a subnational, 
jurisdictional scale (i.e., using whole jurisdictions as reference regions), 
thereby removing the responsibility and flexibility from project de
velopers to possibly “cherry pick” reference regions and create indi
vidual—and potentially inflated—project baselines. 

While these actions represent a substantial improvement over 
existing VSC-REDD+ methodologies, developers could still potentially 
choose project areas that would unlikely be deforested because of factors 
known by them, but which jurisdictional deforestation-risk maps may 
have failed to capture. Furthermore, these deforestation-risk maps, 
combined with simplistic (“static”) forecasts of baseline deforestation 
rates, may eventually become outdated due to changes in the landscape, 
governance, and the economy. Crucially, the proposed methodology 
remains inadequate in addressing dynamic changes in deforestation 
drivers (i.e., controlling for confounding factors), as it continues to rely 

on a problematic ex-ante approach for baseline construction. This 
approach lacks the capacity to serve as a robust foundation for 
measuring project performance rigorously, demonstrating additionality, 
and thereby ensuring the integrity of carbon offsets from voluntary 
REDD+ interventions (Balmford et al., 2023; Bos et al., 2017; West et al., 
2020a; 2023). 

The adoption of ex-post methods that monitor deforestation in non- 
project (i.e., control) areas and use those as the basis to assess project 
performance would drastically increase the credibility of REDD+ offsets 
(Balmford et al., 2023; Guizar-Coutiño et al., 2022; West et al., 2020a; 
2023). Nevertheless, “good” controls for the project sites may be diffi
cult to find and could become outdated over time (e.g., if converted to 
protected areas or allocated to legal agricultural production). Econo
metric approaches based on the use of autoregressive and exogenous 
factors, e.g., macroeconomic indicators—as demonstrated in Wang et al. 
(2023) for sustainability-linked bonds in the Brazilian Amazon—could 
also potentially solve, or at least alleviate, some of the inherent problems 
with the use of “static” baseline methodologies. However, relying on 
such “dynamic” baseline approaches would heighten the financial risk 
for project developers, introducing uncertainty about the expected 
project performance and its offset generation potential. Alternatively, 
more reliable baseline scenarios could potentially be constructed if 
based on more advanced simulation modeling frameworks, and properly 
designed, calibrated, and validated land-use/cover change models, as 
demonstrated in Vitel et al. (2013). Irrespective of the methodological 
approach chosen, the complete disclosure of baseline calculations and 
underlying assumptions, facilitating third-party assessment of project 
baselines, stands as another pivotal step in bolstering market confidence 
in voluntary REDD+ interventions and offsets. 

6. Conclusion 

We systematically scrutinized the key underlying assumptions 
behind the four most adopted baseline methodologies for voluntary 
REDD+ projects worldwide. Results from the empirical analyses 
demonstrate how major differences in methodological assumptions 
result in large baseline discrepancies, indicating a generalized lack of 
robustness and consistency. Since baselines directly influence the 
number of offsets that projects can claim, our results also question the 
environmental integrity of carbon offsets based on those methodologies. 
If voluntary REDD+ interventions are to credibly offset GHG emissions 
and contribute additionally to climate change mitigation, new baseline 
methodologies need to be urgently developed. The new methods must be 
robust enough to guarantee—at least to a satisfactory degree—that 
every issued carbon offset is equivalent to at least one ton of CO2 that has 
not been emitted into the atmosphere. Otherwise, claims of achieving 
net-zero emissions by individuals, organizations, and governments 
through carbon offsets from REDD+ interventions will persistently lack 
credibility. 

This study offers new insights about some of the underlying reasons 
why voluntary REDD+ projects appear to fall short of delivering the 
benefits they claim to have achieved (Calyx Global, 2023; Delacote 
et al., 2022; Guizar-Coutiño et al., 2022; Haya et al., 2023; West et al., 
2020a; 2023). It suggests that the current process of baseline construc
tion according to the VCS-REDD+ methodologies is more akin to sto
rytelling and arbitrary modeling choices than to genuinely accounting 
for the threats of deforestation. While Verra’s consolidated methodology 
addresses many problems with the methodologies examined in this 
study, it fails to address the most fundamental challenge of rigorous 
performance assessment by unwarrantedly disregarding the influence of 
confounding factors on project outcomes. Furthermore, “vintage” offsets 
from VM0006, VM0007, VM009, and VM0015 continue to be actively 
traded in the voluntary carbon market. While the root cause of the 
problem remains overlooked by the offset industry and regulators, off
sets from voluntary REDD+ interventions may be causing more inad
vertent harm than good to our efforts to mitigate climate change (Carton 
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et al., 2021; McAfee, 2022; Seyller et al., 2016; Haya et al., 2023). 
It is imperative that baseline methodologies (1) ensure parameter 

selection leads to conservative offset estimates, i.e., at the lower bound 
of uncertainty, (2) meticulously eliminate conflicts of interest from 
modeling decisions, and, most importantly, (3) adopt rigorous ex-post 
methods to credibly measure performance and additionality. The ability 
to discern the impacts of REDD+ interventions amid confounding fac
tors and to accurately estimate additionality hinges on the proactive 
adoption of dynamic baselines. The integration of causal inference 
methods, coupled with enhanced data transparency, not only represents 
a significant opportunity but is also essential to elevate the credibility of 
gauging the effectiveness of REDD+ initiatives. These valuable methods 
can no longer be disregarded by project developers, certification stan
dards, as well as governmental and international bodies. Still, more 
empirical research is needed to identify how causal inference methods 
can be best employed for the evaluation of REDD+ interventions. 
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