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Genetic variants associated with longitudinal changes in brain 
structure across the lifespan

A full list of authors and affiliations appears at the end of the article.

Abstract

Human brain structure changes throughout our lives. Altered brain growth or rates of decline 

are implicated in a vast range of psychiatric, developmental, and neurodegenerative diseases. 

Here, we identified common genetic variants that affect rates of brain growth or atrophy, in 

the first genome-wide association meta-analysis of changes in brain morphology across the 

lifespan. Longitudinal MRI data from 15,640 individuals were used to compute rates of change 

for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are 

associated with metabolic processes. We demonstrate global genetic overlap with depression, 

schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene-set 

findings implicate both early brain development and neurodegenerative processes in the rates of 

brain changes. Identifying variants involved in structural brain changes may help to determine 

biological pathways underlying optimal and dysfunctional brain development and ageing.
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Under the influence of genes and a varying environment, human brain structure changes 

throughout the lifespan. Even in adulthood, when the brain seems relatively stable, 

individuals differ in the profile and rate of brain changes1. Longitudinal studies are crucial 

to identify genetic and environmental factors that influence the rate of these brain changes 

throughout development2 and ageing3. Inter-individual differences in brain development 

are associated with general cognitive function4,5, and risk for psychiatric disorders6,7 and 

neurological diseases8,9. Genetic factors involved in brain development and ageing overlap 

with those for cognition10 and risk for neuropsychiatric disorders11. A recent cross-sectional 

study showed brain age to be advanced in several brain disorders. Brain age is an estimate of 

biological age based on brain structure, which can deviate from chronological age. Several 

shared loci were found between the genome wide association study (GWAS) summary 

statistics for advanced brain age and psychiatric disorders12. However, we still lack 

information on which genetic variants influence an individual‘s brain changes throughout 

life, since this requires longitudinal data. Discovering genetic factors that explain variation 

between individuals in brain structural changes may reveal key biological pathways that 

drive normal development and ageing, and may contribute to identifying disease risk and 

resilience: a crucial goal given the urgent need for new treatments for aberrant brain 

development and ageing worldwide.

As part of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) 

consortium13 the ENIGMA Plasticity Working Group quantified the overall genetic 

contribution to longitudinal brain changes, by combining evidence from multiple twin 

cohorts across the world14. Most global and subcortical brain measures showed genetic 

influences on change over time, with a higher genetic contribution in the elderly (heritability 

16 – 42%). Genetic factors that influence longitudinal changes were partially independent 

of those that influence baseline volumes of brain structures, suggesting that there might 

be genetic variants that specifically affect the rate of development or ageing. However, the 

genes involved in these processes are still not known, with only a single, small-scale GWAS 

performed for longitudinal volume change in gray and white matter of the cerebrum, basal 

ganglia, and cerebellum15. Here, we set out to find genetic variants that may influence 

rates of brain changes over time, using genome-wide analysis in individuals scanned with 

magnetic resonance imaging (MRI) on more than one occasion. We also aimed to identify 

age-dependent effects of genomic variation on longitudinal brain changes in mostly healthy, 

but also neurological and psychiatric, populations.

In our GWAS meta-analysis, we sought genetic loci associated with annual change rates 

in 8 global and 7 subcortical morphological brain measures in a coordinated two-phased 

analysis using data from 40 longitudinal cohorts (Extended Data Fig 1 and Supplementary 

Table 1). We extracted global and subcortical brain measures, and assessed annual change 

rates, using additive genetic association analyses to estimate the effects of genetic variants 

on the rates of change within each cohort. As brain change is not constant over age1 and 

gene expression also changes during development and ageing16, we determined whether 

the estimated genetic variants were age-dependent, i.e., differentially affected rates of brain 

changes at different stages of life, by using genome-wide meta-regression models with linear 

or quadratic age effects (Methods). It must be noted that although the cohorts analysed in 

this study together cover the full lifespan, there is relatively little age overlap between them. 
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This implies that we cannot rule out that cohort-specific characteristics other than age could 

influence our meta-regression findings.

We employed a rolling cumulative meta-analysis and -regression approach17. In phase 1, 

for which data collection ended on Feb 1st, 2019, we analysed the cohorts of European 

descent (N=9,623). We sought replication by adding data from three additional cohorts that 

became available after our analysis of phase 1: one developmental cohort (average age 10 at 

baseline) and two in ageing populations (N =5,477; all of European descent; total N=15,100 

in phase 2). For all follow-up analyses we used results from phase 2. Finally, we added 

cohorts of non-European ancestry (total N=15,640).

Longitudinal trajectories

Brain measures showed differing trajectories of change with age (Figures 1,2 and Extended 

Data Video 1) - either monotonic increases (lateral ventricles), monotonic decreases (cortex 

volume, cerebellar grey matter volume, cortical thickness, surface area, total brain volume), 

or increases followed by stabilization and subsequently decreases (cerebral and cerebellar 

white matter, thalamus, caudate, putamen, nucleus accumbens, pallidum, hippocampus and 

amygdala volumes). Each brain structure showed a characteristic trajectory of change. 

Within two of our largest cohorts in phase 1 (one in childhood and one in older age), 

we computed correlations between the rates of change of all possible pairs of these 15 

brain structures. These correlations in both childhood and older age were generally low 

in our data (Extended Data Fig. 2), except for the correlation between rates of change of 

cortical thickness and cortex volume. Therefore, we chose to investigate all brain structures 

separately, maximizing sensitivity of the GWAS to identify region-specific associations 

of genetic variants. Using the correlation structure, we estimated the effective number 

of independent variables through matrix spectral decomposition on the rates of change, 

yielding 14 independent traits for multiple testing corrections (Methods).

Age-independent associations

Two loci showed genome-wide significant effects on the rate of brain change in phase 1, 

one of which was also genome-wide significant in phase 2 (Figure 3; Supplementary Table 

4; p-value replication sample 0.08). This lead SNP, rs72772740 on chromosome 16, is an 

intronic variant located in the GPR139 gene and was associated with rate of change in 

lateral ventricle volume (Figure 4). Functional annotation identified numerous significant 

expression quantitative trait loci (eQTL) associations (FDR < 0.05) in different datasets 

and highlighted genes by either eQTL mapping (GPRC5B, IQCK, KNOP1, C16orf62) or 

chromatin interaction mapping (ACSM1, ACSM5, UMOD, GP2). GPR139 is the G-protein-

coupling receptor gene 139, which encodes a member of the rhodopsin family of G-protein 

coupled receptors. The gene is almost exclusively expressed in the central nervous system, 

with highest expression from 12 to 26 weeks post-conception, and has been suggested 

as a therapeutic target for metabolic syndromes and motor diseases18. GPR139 may play 

a role in foetal brain development19. Mice lacking GPR139 exhibited schizophrenia-like 

behavioural abnormalities20, and functional cell assays showed the inhibitory influence of 

GPR139 on dopamine receptor 2 (D2R) signalling20. The second lead SNP, rs449998, an 
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intronic variant on chromosome 21 located in the Down Syndrome Cell Adhesion Molecule 

(DSCAM) gene, was associated with rate of change in nucleus accumbens volume in phase 

1, but this association was not significant in the replication sample, or phase 2. Three 

SNPs were significant in the phase 2 analysis only. These include rs10990953, intergenic 

on chromosome 9, associated with rate of change in lateral ventricle volume; rs1425034, 

intergenic and located in long intergenic non-protein coding RNA on chromosome 2, 

associated with rate of change in pallidum volume; and rs12325429, intron of CDH8 on 

chromosome 16, associated with rate of change in total brain volume (Supplementary Table 

5; Supplementary Figs. 1,2 provide Manhattan plots, QQ plots, locus plots and circos plots). 

The association of CDH8 with total brain volume rate of change is particularly interesting, 

since CDH8 has been associated previously with learning disability and autism21. CDH8 is a 

protein-coding gene and encodes a type II classical cadherin from the cadherin superfamily, 

integral membrane proteins that mediate calcium-dependent cell–cell adhesion. Genome-

wide significant SNPs in phase 1 or phase 2 did not show heterogeneity (I2 < 10.2; p(I2) > 

0.31; Supplementary Tables 4,5, Supplementary Fig.3 for forest plots).

Age-dependent associations

Three additional loci had an association with rate of change that was variable across the 

lifespan in phase 1 (Figure 3; Supplementary Tables 6,8). For two of these, the association 

remained significant in the phase 2 analysis: rate of change in white matter cerebrum volume 

was affected by rs573983368 (intronic variant) in the Dachshund Family Transcription 

Factor 1 (DACH1) gene, and 5:157751672 (intergenic and located in long intergenic non-

protein coding RNA LINC02227) on chromosome 5 had an age-dependent effect on the rate 

of change in surface area (Figure 4; Supplementary Tables 6-9). Rate of change in cerebellar 

white matter volume was affected by the intronic rs10674957 in the Thyrotropin Releasing 

Hormone Degrading Enzyme (TRHDE) gene, but this third locus was not significant in 

phase 2.

The DACH1 locus shows significant chromatin interaction, which can play an important 

role in gene expression regulation. DACH1 encodes a chromatin-associated protein that 

associates with DNA-binding transcription factors to regulate gene expression and cell fate 

determination during development. DACH1 is highly expressed in the proliferating neural 

progenitor cells of the developing cortical ventricular and subventricular regions, and in the 

striatum22. We found the effect of DACH1 to have a quadratic age-dependence, with the 

variant being associated with faster growth in childhood and earlier but slower decline with 

ageing (Figure 4). The effect of 5:157751672 had a linear age-dependence, with the tested 

variant being associated with less growth of surface area in childhood, and less decline at 

older age.

For seven additional loci we found a significant age-dependent association with rate of 

change only in phase 2 (Supplementary Tables 7,9; Supplementary Figs. 1,2 provide 

Manhattan plots, QQ plots, locus plots and circos plots). One of these, rs429358, a missense 

variant of the Alzheimer’s disease (AD)-related23 apolipoprotein E gene (APOE) gene, was 

associated with change rate in hippocampus, showing prolonged growth into adulthood and 

faster reductions of volume of the hippocampus for carriers of the AD risk variant. APOE 
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plays a role in maintenance of cellular cholesterol homeostasis by delivering cholesterol to 

neurons on apoE-containing lipoprotein particles. Cholesterol is important for synapse and 

dendrite formation, and cholesterol depletion has been shown to cause synaptic and dendritic 

degeneration24. Other findings include rs12019523, an intronic variant in the CAB39L gene 

associated with rate of change of the caudate volume; rs34342646, an intronic variant in the 

NECTIN2 gene associated with rate of change in surface area and rs73210410, an intronic 

variant in the SORCS2 gene associated with rate of change in pallidum volume.

To visualize the age-dependent effects, we plotted the meta-regression results for the 

significant loci (Methods, Supplementary Fig. 3). Genome-wide significant SNPs in phase 

1 or phase 2 did not show significant residual heterogeneity (p > 0.23; except for the 

age-dependent effect of rs429358 on hippocampus change rate (p=0.02)). A summary of the 

genome-wide significant results and the top-10 loci for each phenotype and age model are 

presented in Supplementary Tables 4-9.

Gene-based analyses

Gene-based associations with all phenotypes were estimated using MAGMA (Methods). We 

found six genome-wide significant genes influencing structural rates of change in phase 1, 

four of which were also significant in phase 2 (Supplementary Table 10, 11); among these, 

DACH1 and GPR139, which were implicated through SNP-based GWAS, also reached 

genome-wide significance in this gene-based GWAS. In addition, we found APOE to be 

associated with change rates for both hippocampus and amygdala. The phase 2 analysis 

showed two new findings: an association of the FAU gene with rate of change in cerebellum 

white matter volume, and again APOE, associated with rate of change in surface area. Of 

note, the APOE findings were based on GWAS and subsequent gene analysis, and we did 

not investigate the classical APOE status, since that is determined by a combination of two 

SNPs. However, we observed that the effect of APOE on change rate of hippocampus and 

amygdala was fully driven by rs429358, with the risk variant for AD causing prolonged 

growth into adulthood and faster decay for both amygdala and hippocampus volumes later in 

life.

To visualize the age-dependent effects, we plotted the meta-regression results for the top 

SNP in each of the significant genes (Supplementary Fig. 3). Supplementary Tables 10, 11 

display the top-10 genes for each phenotype and each age model. Supplementary Table 12 

details putative biological functions of associated genes and genes harbouring genome-wide 

significant associated loci.

Gene-set analyses

To test whether genetic findings for brain structure change converged onto functional gene 

sets and pathways, we conducted gene-set analyses using MAGMA (Methods). Competitive 

testing was used and 10 and 12 genome-wide significant gene sets were found for phase 

1 and phase 2, respectively (Supplementary Tables 13, 14 for top-10 gene sets and 

genes included). Two main themes emerge from this analysis, as biological functions of 
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the gene sets converge onto involvement in early brain development and involvement in 

neurodegeneration, respectively.

One gene set was significant in both the phase 1 and phase 2 analyses, i.e. 

GO_neural_nucleus_development. This gene set consists of genes involved in the 

development of neural nuclei (compact clusters of neurons in the brain) and was associated 

with rates of change in cerebellar white matter volume in our study. Two other gene sets, 

significant in phase 1 (GO_substantia_nigra_development associated with rate of change in 

cerebellum white matter volume) and phase 2 (GO_midbrain_development associated with 

quadratic age-dependent surface area rates of change) were closely related to neural nucleus 

development in gene ontology terms.

The most significant gene set was GO_response_to_phorbol_13_acetate_12_myristate (p-

value=1.42e-08) in phase 2, related to surface area change. Phorbol 13-acetate 12-myristate 

is a phorbol ester and an activator of protein kinase C (PKC)25. Two other gene sets, 

significant in phase 2 (GO_tau_protein_binding and GO_tau_protein_kinase_activity) and 

both associated with rate of change in caudate volume, imply genes involved in interacting 

with tau protein. Tau is a microtubule-associated protein, implicated in Alzheimer’s disease, 

Down Syndrome and amyotrophic lateral sclerosis (ALS).

Follow-up analyses: overlap with cross-sectional findings

SNP-based heritability estimates (h2) of the rates of change based on linkage disequilibrium 

score regression (LDSC; Methods) were small overall (Supplementary Table 15). For 

all phenotypes, the h2 z-score was below 4. We thus tested for genetic overlap with 

cross-sectional brain data and other phenotypes by applying approaches other than LDSC, 

although these do not provide a measure of genetic correlation. To investigate whether 

cross-sectional GWAS for brain structure and our GWAS on rates of change identify 

the same or different genetic variants, we investigated overlap between rate of change 

and earlier published data on cross-sectional brain structure of the same structure, where 

available (Methods). Supplementary Fig. 4 displays the number of overlapping genes tested 

against the expected number of overlapping genes that would occur by chance, in the 

first 1–1,000 ranked genes. Supplementary Table S11 lists the top-10 gene findings for 

each of the 15 change-rate phenotypes and compares these with the gene ranks from cross-

sectional data. In the top-10 ranked genes, APOE for hippocampus occurred in the top-10 

for both cross-sectional data26 and age-dependent effects on rate of change (p=0.006). No 

overlap was seen for the other measured phenotypes. Extending this search to the top 200 

(~1% of genes), we found overlapping genes above chance level for cortical thickness of 

quadratic age-dependent genes and cross-sectional findings (p = 8.39e-05). In the top 1,000 

ranked genes (~5% of genes), further overlapping genes did emerge (Supplementary Fig. 

4). Overlapping genes at such a high aggregate level imply that largely different genetic 

backgrounds underlie changes in brain structure and brain structure per se.

To test for global genomic overlap between our findings and GWAS of cross-sectional 

volumes we applied independent SNP-Effect Concordance Analyses (iSECA) (Methods) 

and tested for pleiotropy. We found no significant pleiotropy between longitudinal and 
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cross-sectional results, confirming a largely different genetic background for changes in 

brain structure and brain structure per se (Figure 5).

Follow-up analyses: overlap with other traits

We applied iSECA for overlap between our age-independent summary statistics for 

structural brain changes and several neuropsychiatric, neurological, physical, ageing and 

disease-related phenotypes and psychological traits (Methods). We found significant 

genomic overlap (p < 1.6e-04) with genetic variants associated with depression27, 

schizophrenia28, cognitive functioning29, height30, insomnia31, body mass index (BMI)30 

and ever-smoking32. Despite significant pleiotropy between rates of change and these traits, 

we did not find evidence for concordance or discordance of effects (Figure 5, Supplementary 

Figure 5). For comparison, we computed the genomic overlap between cross-sectional 

volumes and these phenotypes using the same method. In general, cross-sectional volumes 

showed overlap for the same traits and several others. Of note, there was also little overlap 

between the summary statistics for the longitudinal brain measures and summary statistics 

for the corresponding volumes, based on cross-sectional data. This implies that despite 

the fact that both cross-sectional brain volume and rates of changes are associated with 

traits such as schizophrenia or cognitive functioning, these associations are likely not 

driven by the same genomic locations. Additionally, there was little overlap in the genetic 

loci associated with the longitudinal brain measures and intracranial volume at baseline, 

indicating that overall head size did not drive our findings (Figure 5).

Follow-up analyses: gene expression across the lifespan

We determined mRNA expression for genome-wide significant genes and genes associated 

with genome-wide significant SNPs (Supplementary Tables S5,7,9) in 54 tissue types 

and in both the developing and adult human brain (Methods). For the prioritized genes, 

a gene expression heatmap was created, based on GTEx v8 RNAseq data33. This 

revealed considerable expression levels across several brain tissues for the following genes: 

APOE, CAB39L, FAU, NECTIN2 (alias PVRL2) and SORCS2, the latter showing higher 

expression in brain tissue compared to all other tissue types (Supplementary Fig. 6A). 

These genes show different expression patterns across the lifespan in the BrainSpan data34. 

DACH1 shows highest expression during early prenatal stages (8–9 post conception weeks), 

compared to postnatal stages. Several genes demonstrate stable high expression levels 

throughout development and across the lifespan (APOE, CAB39L, FAU, NECTIN2 (alias 

PVRL2)). CDH8 shows lower expression in the early prenatal stages and higher expression 

later in life (Supplementary Fig. 6B).

Follow-up analyses: phenome-wide associations

For the prioritized SNPs and genes (Supplementary Tables 5,7,9,11), exploratory pheWAS 

(i.e., ‘phenome-wide’) analysis was performed to systematically analyse many phenotypes 

for association with the genotype and individual genes (Supplementary Table 17). 

PheWAS was performed using publicly available data from the GWASAtlas32 (https://

atlas.ctglab.nl). Gene associations of DACH1, GPR139 and SORCS2 showed pleiotropic 
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effects mainly in the metabolic domain, e.g., with estimated glomerular filtration rate 

and BMI (Supplementary Table 17, Supplementary Fig. 7). SORCS2 and CDH8 also 

showed significant associations with psychiatric and cognitive traits. Both APOE and 

NECTIN2 showed strongest associations with Alzheimer’s disease, cholesterol and lipids 

(Supplementary Table 17, Supplementary Fig. 7).

Sensitivity analyses

We repeated the SNP and gene analyses in various subgroups: 1) by adding four cohorts 

of non-European or mixed ancestry (N=540; total N=15,640); 2) by omitting cohorts that 

did not meet a minimum sample size criterion (N>75) or a minimum scanning interval (> 

0.5 years) leaving N=14,601; 3) by excluding diagnostic groups in each cohort, leaving 

N=13,034, and 4) by including a covariate adjusting for disease status (Supplementary 

Tables 18,19). In SNP-based and gene-based analyses, effect sizes of SNPs were very 

similar in all subgroups, suggesting that our results are also applicable for individuals of 

non-European ancestry (with the caveat that the non-European subgroup was rather small) 

and were not driven by the smaller cohorts. Findings were also similar in the healthy 

subgroup and when correcting for disease status, with one notable exception: the association 

between APOE and rate of volume change in hippocampus and amygdala, with increasing 

influence of the top SNP with age, was no longer present after correcting for disease (see 

Supplementary Table 1 for diagnoses). This suggests that these APOE findings were in part 

driven by the presence of patients in the cohorts and could therefore be explained either by 

disease-related genes that also influence rates of change or by brain changes occurring as a 

consequence of the disease.

Given that our main analyses included patients, and iSECA analyses showed several 

associations with disease, we repeated iSECA analyses excluding diagnostic groups in each 

cohort. These analyses implicate the same traits, associated with largely the same rates of 

change of brain measures (Supplementary Fig. 5).

Discussion

Here, we present the first GWAS investigating influences of common genetic variants on 

brain-structural changes in over 15,000 subjects covering the lifespan. The longitudinal 

design of our study combined with the large age range assessed provides a flexible 

framework to detect age-independent and age-dependent effects of genetic variants on rates 

of structural brain changes. We identified genetic variants for structural brain changes 

between 4 and 99 years of age. Some of these were independent of age, showing effects 

that were stable throughout life in terms of strength and direction, suggesting that these 

genetic variants are equally crucial for early brain development as for brain ageing. In 

addition, we identified age-dependent genetic variants, suggesting that some genetic variants 

are predominantly associated with brain development while others are mainly associated 

with brain ageing.

Amongst our top findings is the APOE gene, a major risk factor for AD23, and specifically 

a missense variant in that gene, which influences rates of change in amygdala and 
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hippocampus volume with varying and differential effects across the lifespan, with probably 

most pronounced effects in those affected with brain disorders. While most of the 

additional genetic loci identified here have not previously been associated with any brain-

plasticity-related phenotypes, several others were also linked to brain disorders, including 

psychiatric (e.g., GPR139 and CDH8) and neurodegenerative disorders (e.g., NECTIN2). 

Notably, DACH1 and NECTIN2 show increased expression during early development, 

while other genes’ brain expression patterns are most pronounced during adulthood (e.g., 

APOE and CDH8), suggesting that these genes may exert specific effects during different 

developmental periods.

Gene-set analysis also implies a role for both developmental and neurodegenerative 

processes. We found a gene-set involved in ‘neural nucleus development‘ that influenced 

rates of change in cerebellar white matter. Other closely related gene ontology terms, 

‘development of the substantia nigra and midbrain nuclei’, were associated with rates 

of change of cerebral white matter volume and surface area. These all implicate the 

biological process of progression of a neural nucleus, a compact cluster of neurons in the 

brain, from its initial condition or formation to its mature state. This would also suggest 

that we observed the influence of genes involved in early developmental mechanisms of 

(subcortical) nuclei on cortical changes later in life. It is unclear whether this is a direct 

effect of these gene sets on cortical changes in adulthood, or the consequence of these 

early developmental pathways. In addition, we found several gene-sets interacting with 

tau-protein associated with rate of change in caudate volume, and a gene-set associated with 

rate of change in surface area that implicates phorbol 13-acetate 12-myristate, an activator 

of protein kinase C (PKC)25. PKC is a family of enzymes whose members transduce a 

large variety of cellular signals and plays a key role in controlling the balance between cell 

survival and cell death. Its loss of function is generally associated with cancer, whereas its 

enhanced activity is associated with neurodegeneration. PKC both directly phosphorylates 

tau and indirectly causes the dephosphorylation of tau, and has been suggested to play a key 

role in the pathology of Alzheimer’s disease35. Together these results suggest involvement 

of genes in ageing and neurodegeneration.

At the global, genome-wide level, we found significant genomic overlap between genetic 

variants associated with rate of change with genetic variants associated with depression, 

schizophrenia, cognitive functioning, insomnia, height, body mass index (BMI) and ever-

smoking. Several of these traits, such as schizophrenia, smoking, cognitive functioning, and 

body mass index, have been associated with longitudinal brain-structural changes5,36–38. 

The global overlap coincides with findings at the individual gene level: several of the 

identified genetic variants and genes were linked to metabolic processes (APOE, DACH1, 
GPR139, NECTIN2), cognitive functioning (CDH8), psychiatric traits (GPR139, SORCS2, 
CDH8) and Alzheimer’s disease (NECTIN2 and APOE) as apparent from the pheWAS 

results. Despite the pleiotropic effects, concordance of effects was generally null. This is 

not surprising, as rate-of-change measures for brain structures are not constant and often 

switch sign over the course of the lifespan1,39, whereas the GWAS for other traits assume 

stability of both the phenotype and the genetic influences on the phenotype over time. As 

such, concordance and discordance of effects would not be expected.
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The advantage of longitudinal analyses is that each individual acts as their own control, 

allowing us to separate the genetic effects on volumes in cross-sectional studies from 

those on the rates of change14. Indeed, we found little overlap between the two: top 

genes identified in the GWAS on cross-sectional brain structure26,40–42 generally did not 

overlap with the top genes for the corresponding rates of change. Longitudinal analyses 

have long been shown to provide different information from cross-sectional approaches. 

On a phenotypic level, ageing patterns of the hippocampus show different results in cross-

sectional studies than in longitudinal studies43. On a genetic level, a study that included a 

within-sample SNP-by-age interaction in the ADNI cohort showed that the power to detect 

genetic associations was larger for a longitudinal design than for a cross-sectional analysis44. 

Of note, that study also identified rs429358 in APOE as being associated with longitudinal 

hippocampal and amygdala volume change in older age (the ADNI cohort is also included 

in the current study). Through our meta-regression approach, we now show this variant to 

exert an effect across the lifespan, with the risk variant for AD causing faster increases 

in childhood for amygdala volume and faster volume reductions for both amygdala and 

hippocampus later in life.

Given the dynamics of brain structural changes during the lifespan, we investigated both 

age-independent and age-dependent genetic effects. The age-independent effects can be 

interpreted as neurodevelopmental influences that also impact brain structure at older 

ages45,46, whereas the age-dependent effects can be interpreted as possible changing effects 

of genes or gene expression during life16. The genome-wide meta-regression approach 

employed here may enable future GWAS for other phenotypes that change over the human 

lifespan.

We chose to analyse longitudinal changes for 15 separate brain structures, because we 

observed generally low correlations between these phenotypic changes. This approach 

allowed us to find brain-structure-specific associations. However, several longitudinal 

studies have described phenotypic correlations between structural changes 39,47,48; 

combining several phenotypes could thus be an alternative approach to identify genetic 

variants that exert a global effect. Of note, cohort and age are intertwined in our meta-

regression analysis. Although the cohorts analysed in this study together cover the full 

lifespan, there is relatively little age overlap between them; therefore, we cannot be sure 

that differences between cohorts can be exclusively attributed to age. Mega-analysis would 

circumvent this problem, but was not feasible in practice. Moreover, we imposed the same 

stringent criteria of genome-wide significance for the age-independent meta-analysis and 

age-dependent meta-regression, which renders chance findings equally unlikely in either 

type of analysis. In addition, residual heterogeneity for the top findings was generally small. 

That said, our sample size is still relatively modest for GWAS purposes, and replication 

in larger samples and inclusion of other ancestries is needed once more longitudinal data 

becomes available.

How exactly variation in these genes impacts brain changes in health and disease cannot be 

answered based on genome-wide association studies. To this end, our findings may direct 

future studies into brain development and ageing, and prevention and treatment of brain 

disorders. For example, biological pathways that guide neural nucleus development in the 
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foetal subcortical brain may be particularly relevant to the cerebral white matter growth 

and cortical thinning that takes place during childhood and adolescence. Neurodegenerative 

disorders might be better understood when we identify genetic variants that influence brain 

atrophy over time, compared with identification of static genetic differences. In conclusion, 

our study shows that our genetic architecture is associated with the dynamics of human brain 

structure throughout life.

Methods

Ethical approval

All participants gave written informed consent and all participating sites obtained approval 

from local research ethics committees/institutional review boards. Ethics approval for meta-

analyses within the ENIGMA consortium was granted by the QIMR Berghofer Medical 

Research Institute Human Research Ethics Committee in Australia (approval: P2204).

Inclusion criteria

Cohorts that had longitudinal magnetic resonance imaging (MRI) data of the brain and 

genotyped data extracted from blood or saliva available were invited to participate, 

irrespective of disease status and age. Patients were not excluded as aberrant brain 

trajectories are often observed and we hypothesize that genetic risk for disease may be 

associated with genetic influences on rates of change. We included cohorts that had a 

preferred sample size of at least 75 subjects and a follow up duration (for repeated MRI 

scans) of at least six months. After quality control of individual subject’s imaging and 

genotyping data, not all the cohorts could meet these criteria. In total, we included 15,640 

subjects aged 4 to 99 (49% female, 14% patients). Please see Extended Data Fig. 1 and 

Supplementary Table 1 for further description of the cohorts.

Longitudinal imaging

Eight global brain measures (total brain including cerebellum and excluding brainstem, 

surface area measured at the grey-white matter boundary, average cortical thickness, total 

lateral ventricle volume, and cortical and cerebellar grey and white matter volume) and 

seven subcortical structures (thalamus, caudate, putamen, pallidum, hippocampus, amygdala 

and nucleus accumbens) were extracted from the FreeSurfer processing pipeline49–51; see 

Supplementary Table 2 for details per cohort). We chose these measures based on the 

fact that they show generally high test-retest reliability for cross-sectional measures52–54, 

thereby selecting those measures that would have sufficient signal to noise in change 

measures. Image processing and quality control were performed at the level of the cohorts, 

following harmonized protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/) 

which included visual inspection of the segmentation. Annual rates of change were 

computed in each individual for each phenotype by subtracting baseline brain measures 

from follow up measures and dividing by the number of years of follow-up duration. We 

chose not to correct for overall head size in the main analysis: while it is common practice 

to correct for intracranial volume when investigating cross-sectional brain volumes55, 

the associations between intracranial volume and brain changes over time are small 

(Extended Data Fig. 2) and GWAS findings are very similar with and without correction 
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(Supplementary Note; Supplementary Figure 8). Distributions of baseline and follow-up 

measures - as well as annual rates of changes - were visually inspected and change rates 

were centrally compared for consistency.

Longitudinal trajectories of brain structure rates of change were estimated by applying 

locally, cohort-size weighted, estimated scatterplot smoothing with a Gaussian kernel, local 

polynomials of degree 2 and a span of 1 (LOWESS56) implemented in R57. Integrating these 

trajectories and then fitting these to the baseline values of the phenotypes in the cohorts 

provides trajectories throughout the lifespan. Trajectories were estimated in the full dataset 

including patients and by excluding diagnostic groups in each cohort separately.

Genome-wide association analysis

At each participating site, genotypes were imputed using the 1000 

Genomes project dataset58 through the Michigan imputation server59 (https://

imputationserver.sph.umich.edu/) or the Sanger imputation server60 (Supplementary Table 

3). Subsequently, each site ran the same multidimensional scaling (MDS) analysis protocol, 

computing MDS components from the combination of their cohort’s data with the HapMap3 

population61. This ensured that all sites corrected for ancestry in a consistent manner. See 

http://enigma.ini.usc.edu/protocols/genetics-protocols/ for the imputation and MDS analysis 

protocol. Within each cohort genome-wide association was conducted using an additive 

model, modelling change rate as a function of the genetic variant plus covariates age, sex, 

age*sex, age2, age2*sex and ancestry (the first four MDS components). While it is possible 

that rates of brain structural changes are different in males and females, we did not have 

the power to perform analyses separating the sexes. Dummy variables were added where 

appropriate, e.g., when multiple scanners were used. We re-ran these analyses adding a 

covariate for disease status if the cohorts contained patients and controls. Most sites used our 

harmonized GWAS protocol, which used raremetalworker62 for analysis (Supplementary 

Table 3). Regardless of the study design, a kinship matrix was incorporated in these 

analyses, accounting for relatedness in family studies, or possible unknown kinship in the 

other studies.

Given the small sample sizes of the individual cohorts, a stringent cohort level quality 

control was enforced, to exclude variants with a minor allele frequency (MAF) < 0.05 or 

variants with imputation R2 / info score < 0.75. Across cohorts and phenotypes, GWAS 

summary plots (Manhattan plots and QQ plots) were visually inspected at the central site. If 

a given cohort / trait showed deviation from expectations, sites were asked to re-analyse their 

data, which usually involved removal of outliers in the phenotypic data. QQ plots per cohort, 

per phenotype can be found in Supplementary Figure 10.

Meta-analysis and Meta-regression

In the phase 1 cohorts of European ancestry (N=9,604) we aggregated the cohort-level 

data for each phenotype, using standard-error weighted meta-analysis or meta-regression. 

We employed a cumulative meta-analysis and meta-regression approach for replication, in 

phase 2 (N=15,100). The meta-regression could not be performed separately in the three 

independent cohorts added in phase 2 since a regression line based on three points is 
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prone to overfitting. For age-independent analyses, we list results in the added sample 

(Supplementary Tables 4 and 10). We tested three models. Under the assumption that effect 

sizes of single nucleotide polymorphisms (SNPs) were consistent across the lifespan (i.e., 

a standard meta-analytic approach), where the subscript C denotes a cohort and ε an error 

term:

1. Effect_SNPC ∼ b0 + εc, under the null hypothesis that b0 = 0.

Given that brain changes throughout life are dependent on age, the effects of a genetic 

variant on brain change are likely to depend on age too. Within cohorts, such an age by 

SNP effect analysis would not have been feasible since longitudinal cohorts that span the 

age-range between 4–99 years do not exist. Given the widespread mean age among the 

cohorts included (Extended Data Fig. 1 and Supplementary Table 1), it was possible to 

calculate the age-dependent effects across the life span by comparing effects of loci between 

cohorts, through meta-regression. Meta-regression is a sophisticated tool for addressing 

heterogeneity between cohorts in meta-analyses when the source of heterogeneity is known 

(in this case, age)63. We estimated the following model under the assumption that the effects 

of SNPs may vary in size or direction across the lifespan:

2. Effect_SNPC ∼ b0 + b1∗agec + εc under the null hypothesis that b1 = 0 (1 degree of 

freedom), and

3. Effect_SNPC ∼ b0 + b2∗agec + εc under the null hypothesis that (b1 = b2 = 0, 2 

degrees of freedom).

SNP data were aligned using METAL64 for all three analyses. The age-independent effect 

of SNPs (model 1) was computed in METAL. For the age-dependent analyses (model 2 for 

linear age effects and model 3 for quadratic age effects) the aligned data were imported 

into R52 and fixed effects meta-regression was performed using the R-package metafor65 

(version 2.0–0). Results were filtered on SNPs that were present for at least 50% of the 

cohorts and in at least 50% of the subjects.

Functional mapping

Functional mapping was performed using the FUMA platform designed for prioritization, 

annotation and interpretation of GWAS results66. As the first step, independent significant 

SNPs in the individual GWAS meta-analysis summary statistics were identified based on 

their p-value (p < 5 × 10−8) and independence of each other (r2 < 0.6 in the 1000G 

phase 3 reference) within a 1Mb window. Thereafter, lead SNPs were identified from 

independent significant SNPs, which are independent of each other (r2 < 0.1). We used 

FUMA to annotate lead SNPs in genomic risk loci based on the following functional 

consequences on genes: eQTL data (GTEx v6 and v767), blood eQTL browser68, BIOS QTL 

browser69, BRAINEAC70, MuTHER71, xQTLServer72, the CommonMind Consortium73 

and 3D chromatin interactions from HI-C experiments of 21 tissues/cell types74. Next for 

eQTL mapping and chromatin interaction mapping, genes were mapped using positional 

mapping, which is based on a maximum distance between SNPs (default 10kb) and genes. 

Chromatin interaction mapping was performed with significant chromatin interactions 

(defined as FDR < 1 × 10−6). The two ends of significant chromatin interactions were 
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defined as follows: region 1 – a region overlapping with one of the candidate SNPs, and 

region 2 – another end of the significant interaction, used to map to genes based on overlap 

with a promoter region (250bp upstream and 50bp downstream of the transcription start 

site).

Visualization of SNP effects

We visualized the effects of our top SNPs on the lifespan trajectory, assuming no effects 

of the other SNPs, for easier interpretation of the direction of effect. Similar to the 

estimation of the lifespan trajectory, we estimated a smoothed version f(x) of the phenotypic 

change rate using LOWESS (see above) and integrated the rate of change. We added 

the unknown volume C at the start of our age range by fitting the integrated curve to 

the baseline data. Suppose ℎ(x) is the unknown rate of change for non-carriers. The 

additional change rate g(x) for carriers was estimated through the meta-analysis or meta-

regression. The full dataset contained a fraction p of the carriers of the tested allele. 

Assuming p + q = 1, f(x) = p ∗ (ℎ(x) + g(x)) + q ∗ ℎ(x) = ℎ(x) + p ∗ g(x). We created a rate of 

change curve for non-carriers as f(x) − p ∗ g(x) and a rate of change curve of carriers 

as f(x) + q ∗ g(x). The offset C is potentially different in carriers and non-carriers, so we 

estimated this difference by taking the effect of the cross-sectional GWAS data (see below) 

in this SNP, or a proxy SNP in high linkage disequilibrium (LD).

Gene-based and gene-set analyses

Gene-based associations with 15 phenotypes were estimated using MAGMA75 (version 

1.09a) using the summary statistics from age-independent and age-dependent GWAS meta-

analyses of rate of change of global brain measures. Gene names and locations were based 

on NCBI 37.3 locations as provided by MAGMA. Association was tested using the SNP-

wise mean model, in which the sum of -log(SNP p-value) for SNPs located within the 

transcribed region was used as the test statistic. LD correction was based on estimates from 

the 1000 Genomes Project Phase 3 European ancestry samples58. To describe the direction 

of the age effect for significant genes in the age-dependent analyses, we subsequently 

identified the SNPs that were used in the gene-based p-value and plotted the age-dependent 

effect of the top SNP that contributed to the gene-based p-value.

The generated gene-based p-values were used to analyse sets of genes in order to test 

for association of genes belonging to specific biological pathways or processes. MAGMA 

applies a competitive test to analyse if the genes of a gene set are more strongly associated 

with the trait than other genes, while correcting for a series of confounding effects such as 

gene length and size of the gene set. For gene sets we used 9,975 sets with 10 –1,000 genes 

from the Gene Ontology sets76 curated from MsigDB 7.077.

Multiple testing corrections

We investigated annual rates of change for 15 brain phenotypes, but these are correlated 

to some extent (Extended Data Fig. 2). We therefore estimated the effective number of 

independent variables based on matrix spectral decomposition78 for the largest adolescent 

cohort (IMAGEN; N=1,068) and for the largest elderly cohort from the phase 1 sample 

(ADNI2; N=626). The most conservative estimate of the number of independent traits was 

Brouwer et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2023 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13.93. Despite the fact that models 2 and 3 are nested and therefore not independent, we also 

corrected for performing three analyses per trait. The study-wide significant threshold for 

the genome was therefore set at p < 1.2e-09 (5e-08/13.93*3). For gene-based significance, 

we applied a genome-wide significance level of 0.05/17541= 2.85e-06, and a study wide 

significance of 2.85e-06/(13.93*3), i.e. p < 6.82e-08. For gene-set significance, we applied a 

genome-wide significance level of 0.05/9,975 = 5.01e-06 and a study-wide significance level 

of 5.01e-06/(13.93*3), i.e. p < 1.20e-07.

SNP heritability

SNP heritabilities, h2
SNP, were estimated by using linkage disequilibrium (LD) score 

regression79 (LDSR) for the European-ancestry brain change GWASs to ensure matching 

of population LD structure. For LDSR, we used precomputed LD scores based on the 

European-ancestry samples of the 1000 Genomes Project58 restricted to HapMap3 SNPs61. 

The summary statistics with standard LDSC filtering were regressed onto these scores. 

SNP heritabilities were estimated based on the slope of the LD score regression, with 

heritabilities on the observed scale calculated. To ensure sufficient power for the genetic 

correlations, rg was calculated if the Z-score of the h2
SNP for the corresponding GWAS was 

4 or higher79.

Comparison with cross-sectional results

For the genome-wide significant genes and genes associated with genome-wide significant 

SNPs, we compared our findings with cross-sectional GWAS summary statistics when 

available. To this end, datasets26,40–42 were requested and downloaded from http://

enigma.ini.usc.edu/research/download-enigma-gwas-results/ and http://big.stats.ox.ac.uk/

download_page. Gene-based association analyses for cross-sectional brain GWAS summary 

statistics were performed using MAGMA (as described above). Additionally, we compared 

the overlap in the first 1,000 ranked genes to the expected number of overlapping genes 

based on chance. False discovery rate correction80 was applied to determine over- or 

under-representation of genes from our longitudinal GWAS to the cross-sectional previously 

published GWAS26,40–42.

Overlap with cross-sectional results and other traits

To investigate genetic overlap with other traits across the genome we applied an adapted 

version of iSECA81 (independent SNP effect concordance analysis) which examines 

pleiotropy and concordance of the direction of effects between two phenotypes by 

comparing expected and observed overlap in sets of SNPs from both phenotypes that are 

thresholded at different levels. From the results at each threshold, heatmap plots were 

generated containing binomial tests for pleiotropy and Fisher’s exact tests for concordance. 

An empirical p-value for overall pleiotropy and concordance was then generated through 

permutation testing. Our implementation of iSECA also included a p-value for overall 

discordance, as we expect some phenotypes to negatively influence brain-structural change 

rates. P-values were computed using a two-step approach: we first ran 1,000 permutations. 

If the p-value for pleiotropy was below 0.05/15 we reran the analyses with 10,000 

permutations to obtain a more precise p-value. Summary statistics of change rates were first 

filtered on SNPs for which > 95% of the subjects contributed data to remove the sample size 
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dependency of p-values and subsequently clumped (p=1,kb=1000) to ensure independence 

of input SNPs.

We investigated the genetic overlap between brain-structural changes and risk for 20 

neuropsychiatric, neurological and somatic disorders, and physical and psychological 

traits. Summary statistics were downloaded or requested for aggression82, alcohol 

dependence83, Alzheimer’s disease84, attention-deficit/hyperactivity disorder85, autism86, 

bipolar disorder87, body mass index30, brain age gap12, cognitive functioning29, 

depression27, diabetes type 288, ever-smoking32, focal epilepsy89, height30, inflammatory 

bowel disease90, insomnia31, multiple sclerosis91, Parkinson’s disease92, rheumatoid 

arthritis93 and schizophrenia28. These phenotypes were chosen because of known 

associations with brain structure or function, and availability of summary statistics based 

on large GWA-studies. For comparison, we computed the genetic overlap between cross-

sectional brain structure and these phenotypes, using the same method.

Apart from these, we also 1) included intracranial volume94 to investigate the effect of 

overall head size and 2) tested the overlap between each structure’s longitudinal change 

measure against its cross-sectional brain structure. Pleiotropy, concordance or discordance 

was considered significant when the p-value was smaller than 0.05/15*22 (#change rates * 

#phenotypes tested) = 1.5e-04.

Brain gene expression

GENE2FUNC, a core process of FUMA66 (Functional Mapping and Annotation of 

Genome-wide Association Studies), was employed to analyse gene expression patterns. For 

this, a set of 8 genes was used as input, including all genome-wide significant genes and 

genes harbouring genome-wide significant SNPs (compare Supplementary Tables 5,7,9,11). 

Gene expression heatmap was constructed employing GTEx v833; 54 tissue types) and 

BrainSpan RNA-seq data across 29 different ages or 11 different developmental stages32. 

The average of normalized expression per label (zero means across samples) was displayed 

on the corresponding heatmaps. Expression values are TPM (Transcripts Per Million) for 

GTEx v8 and RPKM (Read per Kilobase Million) in the case of the BrainSpan data set.

Phenome-wide association studies

To identify phenotypes associated with the candidate SNPs and genes (defined as genome-

wide significant SNPs and the genome-wide significant genes and genes associated with 

genome-wide significant SNPs), a phenome-wide association study (pheWAS) was done 

for each SNP and/or gene. PheWAS was performed using public data provided by 

GWASAtlas32(https://atlas.ctglab.nl). To correct for multiple testing, the total number of 

GWASs (4,756) was considered (including GWASs in which the searched SNP or gene 

was not tested) and the number of tested SNPs and genes (n=14), resulting in a Bonferroni 

corrected p-value threshold of 1.05e-05/14, i.e., p < 7.51e-07.

Sensitivity analyses

The phase 2 analyses include available data from all cohorts with European ancestry 

(N=15,100). The four cohorts of non-European and mixed ancestry together consist of 
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540 subjects, who are predominantly children and adolescents (Supplementary Table 3). 

The number of subjects, heterogeneity in ancestry and the age-distribution do not allow for 

separate meta-analysis or meta-regression. We therefore added the cohorts of non-European 

ancestry to the original datasets and reran analyses (N=15,640). In a second analysis, 

we excluded the 9 cohorts that had N < 75 or mean scanning interval < 0.5 years 

(Supplementary Table 2), leaving N=14,601 subjects. The main analyses include data from 

all subjects combined, without correction for disease. This approach was chosen because 

many neurological and neuropsychiatric diseases are characterized by aberrant brain changes 

over time, and genes involved in the disease may also be involved in these brain changes. 

To check whether our results were confounded by disease, we repeated the main analyses 

excluding diagnostic groups of each cohort (N=13,0349) and by correcting for disease 

status.

Data availability:

This work is a meta-analysis. Upon publication, the meta-analytic results will be 

made available from the ENIGMA consortium webpage (http://enigma.ini.usc.edu/research/

download-enigma-gwas-results). Cohort level data can be shared upon request, after 

permission of cohort principal investigators. Individual level data can be shared with 

interested investigators, subject to local and national ethics regulations and legal 

requirements that respect the informed consent forms and national laws of the country of 

origin of the persons scanned. Figures that contain cohort level (meta) data: Figures 1, 2, 

Extended data Figures 1,2, Supplementary Figures 1,3,8,10.

Public data used in this work include the ABCD cohort (data release 3.0, accessible through 

https://nda.nih.gov/abcd; http://dx.doi.org/10.15154/1519007), ADNI cohort (accessible 

through adni.loni.usc.edu), and the UK biobank cohort (data request 11559, https://

www.ukbiobank.ac.uk).
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Extended Data

Extended Data Fig. 1. Demographics and analysis
Overview of demographics (left). Per cohort, an age distribution is displayed, based on mean 

and standard deviation of the age at baseline. Cohorts of European ancestry are displayed 

in green, non-European cohorts are displayed in yellow. On the right, the total number of 

included subjects is displayed and a pie-chart of the distribution of diagnostic groups (pink) 

and subjects not belonging to diagnostic groups - often healthy subjects (aqua). Overview of 

analysis pipeline (right).
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Extended Data Fig. 2. Correlations between change rates
Pearson correlations between rates of change and between baseline intracranial volume and 

rates of change in the largest adolescent cohort (top, N = 1068) and the largest cohort in 

older age (bottom, N = 624) in phase 1. The size of the correlations is displayed by color and 

size of the circles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Phenotypic brain changes throughout the lifespan.

Visualization of growth and decline of brain structures throughout the lifespan. The 

subcortical structures are shown in exploded view.
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Figure 2: 
Annual rates of change Δ per cohort for each structure (a-o).

The estimated trajectories with 95% confidence intervals (in green) are displayed in the top 

row. Mean values of individual cohorts are displayed as points, with error bars representing 

standard errors displayed in grey. The size of the points represents the relative size of the 

cohorts, total sample size N=15640. Means and standard deviations are based on raw data 

– no covariates were included. Cohorts that were added in phase 2 are displayed in grey. 

Only cohorts that satisfy N>75 and mean interval > 0.5 years are shown. The estimated 
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trajectories of the volumes themselves are displayed in the bottom row, for all subjects (solid 
line) and for subjects not part of diagnostic groups (dashed line).
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Figure 3: 
Genetic effects on rates of brain changes throughout the lifespan.

Genome-wide significant SNPs and genes with effects on brain changes at their respective 

loci across the human genome, from phase 2 (total N=15,100). This plot was created using 

PhenoGram (http://visualization.ritchielab.org).
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Figure 4: 
Summary of findings for two top-SNPs.

Shown here is a summary of findings for a top-SNP of an age independent effect 

(rs72772746; intron to GPR139; associated with rate of change of lateral ventricle volume; 

left column) and a top-SNP of an age dependent effect (13:72353395; intron to DACH1; 

associated with rate of change in cerebral white matter volume; right column). Displayed 

are the locus plots (a) and (d), forest plot (b; total N = 14593, means and 95% confidence 

intervals are displayed for each cohort; confidence intervals that are outside the axis of the 
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plot are marked with an arrow) and plot of meta-regression (e; total N = 13864, center 

of the circles represent the effect size of the tested allele for each cohort, radius of the 

circles are proportional to sample size) and inferred lifespan trajectories for carriers (in red) 

and non-carriers of the effect allele (in black) (c) and (f). Note that 13:72353395 was not 

in the reference dataset containing LD structure; the displayed LD structure is based on 

13:7234009, R2 = 0.87 with the top-SNP.
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Figure 5: 
Genetic overlap with other phenotypes.

P-values for pleiotropy between change rates of structural brain measures (rows, indicated 

by Δ for change rate) and neuropsychiatric, disease-related and psychological traits 

(columns on the left). P-values for pleiotropy between change rates of structural brain 

measures and head size (intracranial volume) and the cross-sectional brain measure are 

displayed on the right. The colour legend is displayed on the right, indicating the -log10 

p-value. Significant overlap (p < 1.6e-04; obtained through permutation testing, two-sided, 

Bonferroni corrected) is marked with *. P-values underlying this figure can be found in 

Supplemental Table 16.
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