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Abstract Consider a mechanism design setting in which agents acquire costly
information about an unknown, payoff-relevant state of nature before partici-
pating in the mechanism. Information gathering is covert. We investigate con-
ditions under which (i) efficient implementation and (ii) full surplus extraction
are Bayesian incentive compatible and interim individually rational.
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1 Introduction

We consider a mechanism design setting in which multiple agents may ac-
quire costly information about an unknown, payoff-relevant state of nature.
A mechanism proposed by the mechanism designer includes not only a so-
cial choice function (from agents’ reported information to a social outcome)
but also instructions from the mechanism designer to each agent as to how
much information to acquire. Agents are endowed with private information
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and they may covertly acquire additional information at some cost before de-
ciding whether to accept the mechanism. The mechanism designer implements
an outcome based on agents’ reported signals. An agent’s utility is a function
of the outcome, the state of nature, and the cost of acquired information. As
the state of nature is not observed perfectly and every signal is informative
about the state of nature, this leads to an interdependent values setting. We
investigate conditions under which (i) efficient implementation and (ii) full
surplus extraction is Bayesian incentive compatible and interim individually
rational.

An example of our model is an auction where values have an unobservable
common component. In most papers on auctions and on trading mechanisms,
it is assumed that agents are endowed with some information and may not
acquire any more. This assumption is implausible in many settings as agents
can usually acquire information at a cost without being observed by other
agents or the mechanism designer.

A social choice rule recommends a profile of (simultaneous) information
acquisitions to agents and maps agents’ reported information to an outcome.
A mechanism is a social choice rule together with a payment function that
maps reported information to each agent’s payment.

A social choice rule is ex post efficient if it selects an ex post efficient
outcome after every realization of information at the recommended level of
information acquisition. It is ex ante efficient if it is ex post efficient and
recommends a level of information acquisition that maximizes the sum of (ex
ante) expected utilities net of information acquisition costs. A mechanism fully
extracts surplus if its social choice rule is efficient1 and each agent’s interim
expected surplus is zero. A social choice rule is implementable if it is a part of
a mechanism that is Bayesian incentive compatible and interim individually
rational.

Crémer and McLean [9] show that if agents are costlessly endowed with cor-
related information, then under some conditions on the information structure
that are generically satisfied, full surplus extraction is Bayesian incentive com-
patible and interim individually rational. They provide two such conditions,
the stronger one of which is the so called full-rank condition. In our setting
with information acquisition, neither full surplus extraction nor efficiency is
assured under their full-rank condition. We provide two examples to illustrate
this: full-surplus extraction fails in one example and even efficient implemen-
tation fails in the other. In these examples, private signals are correlated and
the full-rank condition of [9] is satisfied at all information acquisition levels.

We provide two sufficient conditions for efficient implementation. First, we
show that efficient implementation is feasible for generic information structures
when, for each agent, the set of other agents’ endowed private signals is at least
as large as either the set of states of nature that determine their utility or the
agent’s signal space (Proposition 1 and 2). The efficient mechanism is a version

1 From here on, efficiency means ex ante efficiency when describing a mechanism or a
social choice rule. We will explicitly write ex post efficient when we mean efficiency in that
sense.
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of the expected externality mechanism (d’Aspremont and Gérard-Varet [10],
Arrow [2]).2

Another sufficient condition for efficient implementation is the existence
of semi-robust lotteries (Proposition 3). A set of semi-robust lotteries for an
agent is a menu of payments such that acquiring more information than the
recommended level would not help the agent make a better choice from the
menu. We also provide sufficient conditions for the existence of semi-robust
lotteries (Proposition 4).

Next, we show (in Proposition 5) that a sufficient condition for full surplus
extraction is the existence of robust lotteries, which are semi-robust lotteries
that are fair, i.e., give the agent an expected payoff of zero independent of his
private information. A sufficient condition for the existence of robust lotteries
for an agent is that the agent’s signal space is no larger than either the set of
states of nature or the set of other agents’ endowed signals (Proposition 6).

With independent information, it is known that efficient implementation is
Bayesian incentive compatible if and only if values are private (Bergemann and
Välimäki [4], Stegeman [26]). With positively interdependent values (and in-
dependent information), agents have an incentive to acquire more information
than the socially optimal level (Bergemann, Shi and Välimäki [3], Bergemann
and Välimäki [4]). The union of our sufficient conditions for efficient imple-
mentation covers the private value case as well as the case with interdependent
values and correlated information. Our sufficient condition for full surplus ex-
traction requires correlated information.

Although our primary focus is on the case with correlated information,
our results are not a simple application of Crémer and McLean [9]. The full-
rank condition of [9] is necessary for the existence of robust lotteries but not
sufficient. Condition B of d’Aspremont and Gérard-Varet [11] is necessary
and sufficient for balanced-budget implementation. Both [11] and [9] study
environments without information acquisition.3 We discuss the relationship
between semi-robust lotteries and Condition B of [11] in Section 4 and the
connection between (semi-)robust lotteries and the full-rank condition of [9]
in Sections 4 and 5.

Parreiras [24] shows that full surplus extraction may fail when each agent
obtains two kinds of information exogenously: his payoff type and the infor-
mativeness of his type about the other agents’ types. In our model, agents do
not know their own type and acquire information about the types of all agents
endogenously.

Obara [23] generalizes the model of Crémer and McLean [9] to a setting
where agents take actions that change the distribution of their types that are
payoff-relevant and finds a generic necessary and sufficient condition for full
surplus extraction. Our paper also generalizes [9] by allowing endogenous in-
formation acquisition. However, since we introduce a more specific structure to

2 We are not aware of any paper that uses an expected externality mechanism with cor-
related information and interdependent types.

3 See d’Aspremont, Crémer, and Gérard-Varet [12] for a survey of this literature.
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our model where payoffs and information about payoffs are distinguished, the
necessary and sufficient condition in [23] on the joint distributions of private
signals is never satisfied. Nonetheless, full surplus extraction is still possible
in our setting because the set of possible utility functions is small as well.

Bikhchandani [6] shows that full surplus extraction fails if an agent can
acquire costly information about other agents’ types.4 Unlike in our paper,
agents are fully and costlessly informed about their own type in [6]. Another
difference is that in our paper the set of information signals available to each
agent cannot be ranked by informativeness. Our sufficient conditions for effi-
cient implementation are different from those in [6]. Robust lotteries are shown
to be sufficient for full surplus extraction in the model in [6]. Proposition 5
shows that robust lotteries are sufficient for full extraction in the more general
model of this paper.

Neeman [22] notes that it is essential for the full-extraction result of Crémer
and McLean that the belief of each agent pins down the payoff type of the
agent, i.e., beliefs determine preferences (BDP property). This property is not
necessarily satisfied in more general type spaces.5 Heifetz and Neeman [18]
establish that the BDP property is non-generic in a geometric sense and a
measure-theoretic sense in any convex family of (common) priors. On the other
hand, Chen and Xiong [7] show that the set of priors on the universal type
space where (almost) full surplus extraction is possible is topologically generic.
Gizatulina and Hellwig [16] show that BDP property is topologically generic
in finite dimensional type spaces.

The model is presented in Section 2. In Section 3 we provide examples
showing the failure of full surplus extraction and of efficient implementation.
Sufficient conditions for efficient implementation and for full surplus extraction
are presented in Sections 4 and 5, respectively. We end with a discussion in
Section 6. Some proofs are in the appendix.

2 The Model

Consider a set of agents N = {1, 2, . . . , n}, n ≥ 2. The state of nature ω ∈ Ω,
where Ω is a finite set, determines agents’ payoffs and is not observable, except
perhaps after the end of the game. Importantly, the mechanism designer and
the agents cannot contract on the state of nature. There is a common prior
q ∈ ∆(Ω), where ∆(Ω) is the set of distributions on Ω.

Agent i can observe up toKi+1 private signals s̃i,k, k ∈ Zi = {0, 1, . . . ,Ki}.
Each signal s̃i,k has support in a finite set Si,k with |Si,k| ≥ 2 for each k. These
private signals are conditionally independent across players given state ω. How-
ever, they may be correlated within each player. Formally, agent i’s action set

4 Fang and Morris [13] show that the revenue equivalence theorem fails in an auction
model in which each bidder observes a private signal about the other bidder’s payoff type.

5 When BDP property is not satisfied, there may be two types whose belief types are
the same, but payoff types are different. On the other hand, what causes a problem in [24]
and [6] is the existence of two types with the same payoff and different beliefs. Thus, these
papers provide somewhat complementary reasons for the failure of full surplus extraction.
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Ai = 2Zi is a collection of subsets of private signals. If agent i chooses ai ∈ Ai,
then he observes a realization of s̃i,k if and only if k ∈ ai and he pays cost
ci(ai) ≥ 0. The cost ci is increasing in the sense that ci(a

′
i) > ci(ai) for any a′i

that is strictly larger than ai and a′i\ai includes some k 6= 0. We assume that
ci(ai

⋃
{0}) = ci(ai) for any ai. That is, agent i always (costlessly) observes

signal s̃i,0. Essentially, agent i is endowed with signal s̃i,0. In the following,
we assume without loss of generality that agent i always observes s̃i,0 both in
equilibrium and out of equilibrium.

The symbol s̃ai denotes a vector of private signals (s̃i,k, k ∈ ai). Also,
s̃
a−i

−i = (s̃
aj
j , j 6= i).6 We say that information is independent if and only

if s̃Zi
i , s̃

Zj

j , for all i 6= j, are independent random variables. Otherwise in-

formation is correlated. Let pZi
i (sZi

i |ω) be the conditional probability distri-

bution given ω̃ = ω of the signal s̃Zi
i , which takes values in the finite set

SZi
i = Si,0×. . .×Si,Ki

. Note that pZi
i is independent of agent i’s action. Let pZ

be the collection of such conditional probability distributions [pZi
i (·|ω), ∀ω,∀i].

Let

paii (saii |ω) :=
∑
s
Zi\ai
i

pZi
i (saii , s

Zi\ai
i |ω)

be the probability distribution of s̃aii given ω̃ = ω. Similarly, define

p
a−i

−i (s
a−i

−i |ω) := Πj 6=ip
aj
j (s

aj
j |ω).

We make a full-support assumption: pZi
i (sZi

i |ω) > 0 for every sZi
i ∈ S

Zi
i , ω ∈ Ω

and i ∈ N .
Given q and pZi

i , agent i’s posterior belief over ω̃ = ω conditional on
observing s̃aii = saii ∈ Saii can be derived and is denoted by di(ω|saii ). The
conditional probability distributions d−i(ω|sa−i

−i ) can be derived similarly from

q and p
Z−i

−i . Each di (·|saii ) is a vector in R|Ω|. Agent i’s belief about the other
agents’ signals s̃

a−i

−i conditional on s̃aii = saii is

h
a−i

i (s
a−i

−i |s
ai
i ) :=

∑
ω∈Ω

p
a−i

−i (s
a−i

−i |ω)di(ω|saii ).

Let X be a compact set of outcomes. The monetary transfer from agent i
to the mechanism designer is denoted ti ∈ R. Agent i’s utility over outcome x,
money transfer ti, and information acquisition decision ai takes a quasi-linear
form

ui(x, ω)− ti − ci(ai)

where ui(·, ω) : X → R+ is continuous for each ω ∈ Ω. Each agent has a large
enough supply of the money commodity so that the budget constraint is not
binding.

6 For any vector x = (x1, ..., xn), x−i denotes (x1, ..., xi−1, xi+1, ..., xn). The symbol x̃
denotes a random variable and x its realization.
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Agent i’s induced utility of outcome x conditional on sa = (sa11 , . . . , s
an
n ) is

Vi(x, s
a) := E[ui(x, ω̃)|sa] (1)

We say values are private if and only if E[ui(x, ω̃)|sa] does not depend on
s
a−i

−i for any i and any a. Otherwise values are interdependent. If Zi = {0}
for each i, then agents cannot acquire any new information in addition to
endowed private information. Thus the model reduces to the model of Crémer
and McLean [9] when the values are private and Zi = {0} for each i.

An information structure is a set of states, a set of signals, and a set of
(conditional) distributions over states and signals: (Ω,SZ , q, p), where SZ =
(SZ1

1 , . . . , SZn
n ). A mechanism design problem is an information structure to-

gether with an outcome set, utility functions, and cost functions: (Ω,SZ , q, p,X, u, c)
where u = (u1, . . . , un) and c = (c1, . . . , cn).

Agent i sends a message mi ∈ Mi upon choosing ai and observing saii .
Since we focus on pure strategy equilibrium, we can use Saii as message space
Mi without loss of generality when ai is agent i’s equilibrium action.7 A social
choice function f : Sa → X maps agents’ message sa to outcome in X. A
social choice rule (a, f) is an information acquisition recommendation for each
agent and a social choice function. A payment function t : Sa → Rn maps
agents’ signals to transfers from the agents to the mechanism designer when a
is recommended. A mechanism (a, f, t) is a social choice rule and a payment
function t = (t1, . . . , tn).

The mechanism designer and agents play the following game. First, the
mechanism designer proposes a mechanism (a, f, t). As each agent i is cost-
lessly endowed with signal s̃i,0, in any mechanism we can assume 0 ∈ ai. Next,
each agent i covertly chooses an information acquisition level in Ai,

8 observes
the corresponding private signal(s), and then decides whether to accept the
mechanism or not. If he decides to accept, then agent i reports a signal real-
ization saii ∈ S

ai
i to the mechanism designer (simultaneously with all the other

agents).9 The mechanism designer implements the outcome f(sa) and collects
transfers t(sa) based on the reported signal profile sa ∈ Sa. We assume that
the amount of information each agent acquires and whether or not each agent
accepts the mechanism is not observable to the other agents. If an agent does
not participate, his payoff, ignoring any information acquisition cost, is zero.

The assumption of conditional independence is not crucial for our results.
In Proposition 3, 4, 5 and Corollary 1, the hypotheses are stated with respect
to conditional distributions h

a−i

i (s
a−i

−i |s
ai
i ) and di(ω|saii ), i ∈ N . These results

do not require independence of agents’ private signals conditional on ω, i.e.,
they hold for general joint distributions over Ω×SZ . As Corollary 1 suggests,
Proposition 1 and 2 can be modified to allow for private signals that are

7 See Proposition 1 in Obara [23].
8 Any information acquisition level selected by agent i always includes his endowed signal

0.
9 If agent i reveals that he did not acquire the recommended information, either directly

or indirectly by reporting s
âi
i 6∈ S

ai
i , then the mechanism designer treats the agent as a

non-participant.
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correlated conditional on ω. The sufficient condition for Proposition 6 is even
weaker when private signals are correlated.

We consider a pure-strategy perfect Bayesian equilibrium, where agents are
sequentially rational given their subjective belief computed via Bayes’ rule at
all private histories. As we are interested in efficiency and full surplus extrac-
tion, without loss of generality we restrict attention to mechanisms in which
every agent always accepts the mechanism in equilibrium.10

Bayesian Incentive Compatibility

Bayesian incentive compatibility requires that each agent gathers exactly
the amount of information specified by the mechanism designer and truthfully
reports his signal. Suppose that the mechanism designer wants to implement
a social choice rule (a, f). The mechanism (a, f, t) satisfies agent i’s Bayesian
incentive compatibility constraint if for all âi ∈ Ai

E [Vi(f(s̃a), s̃a)− ti(s̃a)] − ci(ai) (2)

≥ E

[
max

{
max

s
ai
i ∈S

ai
i

E

[
Vi(f(saii , s̃

a−i

−i ), (sâii , s̃
a−i

−i ))− ti(saii , s̃
a−i

−i )

∣∣∣∣s̃âii = sâi
]
, 0

}]
− ci(âi).

This constraint takes into account the possibility that an agent may take any
information-gathering action and after observing his signal may not participate
or may participate but lie about his signal. Note that even if agent i takes an
information-gathering action âi different from ai, the action specified by the
mechanism designer, it is never in his interest to report a signal realization that
is not in Saii , the support of s̃aii . If agent i were to report a signal realization
ŝ 6∈ Saii then the mechanism designer concludes that agent i did not follow his
proposal to acquire ai and accordingly ignores agent i’s signal and treats him
as a non-participant (see footnote 9); the same outcome could be achieved by
not participating, an option that agent i has. Thus, without loss of generality,
agent i reports a signal saii ∈ S

ai
i if he decides to participate.

The incentive compatibility constraint, (2), also implies interim individual
rationality on the equilibrium path. To see this, consider a deviation where
agent i selects ai and opts out only when he observes a particular saii (otherwise
agent i participates and reports his signal truthfully), then (2) reduces to

E[Vi(f(saii , s̃
a−i

−i ), (saii , s̃
a−i

−i ))− ti(saii , s̃
a−i

−i )|s̃aii = saii ] ≥ 0, ∀saii ∈ S
ai
i . (3)

Consider a mechanism design problem (Ω,SZ , q, p,X, u, c) and a social
choice rule (a, f). If there exists t such that (2) is satisfied for each agent i
then (a, f) can be implemented in this mechanism design problem.11

10 As agents’ participation decisions are simultaneous and all agents participate in equi-
librium, we do not need to explicitly consider the possibility that some agents do not par-
ticipate. Thus we omit a detailed description of the mechanism after any non-participation.
For completeness, one may assume that if one or more agents do not accept the mechanism,
then an ex post efficient outcome for participating agents is implemented.
11 We consider weak implementation, i.e., we only require that there exists an equilibrium

that implements the desired social choice rule (a, f).
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An ex post efficient social choice function given a ∈ A is f∗a : Sa → X that
satisfies

f∗a (sa) ∈ arg max
x∈X

n∑
i=1

Vi(x, s
a), ∀sa ∈ Sa,

which is well defined by the compactness of X and continuity of Vi with respect
to x. Let

V (a, sa) :=

n∑
i=1

[Vi(f
∗
a (sa), sa)− ci(ai)]

be the ex post maximized social surplus given (a, sa) and let V (a) := E [V (a, s̃a)]
be the ex ante maximum social surplus given a ∈ A. Then, a∗ is an (ex ante)
efficient information acquisition level if

a∗ ∈ arg max
a∈A

V (a).

Efficient implementation occurs when (a∗, f∗a∗) is implemented as an outcome
of the Bayesian game induced by some mechanism (a∗, f∗a∗ , t). Note that, if
agent i deviates to ai 6= a∗i , an ex post efficient outcome given (ai, a

∗
−i) need

not be implemented.
We consider two possible objectives for the mechanism designer: efficiency

and profit maximization. The two objectives need not be in conflict and are
simultaneously satisfied if the mechanism designer is able to implement an
efficient social choice rule and extract the entire surplus.

3 Two Examples

If Crémer and McLean [9]’s full-rank condition or (weaker) cone condition is
satisfied, then there exist lotteries (i.e., transfers) ti(si, s−i) for each agent
such that

0 = E[ti(si, s̃−i)|s̃i = si] < E[ti(ŝi, s̃−i)|s̃i = si], ∀si,∀ŝi 6= si (4)

The Crémer and McLean lotteries induce truth-telling in the absence of infor-
mation acquisition.

In the first example below full surplus extraction is not possible, and in
the second example efficient implementation (and therefore also full surplus
extraction) is not possible. In these examples, Crémer and McLean [9] lotteries
exist at every information acquisition level. Nonetheless, that does not prevent
agents from acquiring more information than the efficient level.

Example 1: Failure of full surplus extraction
There are two agents, α and β. A single indivisible object is allocated to either
α or β. Agents have a common, unknown valuation ω̃ for the object; ω̃ takes
values in the set Ω = {0, 2∆, 3∆} where ∆ > 0. Each of the three possible
values of ω̃ is equally likely.
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Each agent i costlessly observes signal s̃i,0 ∈ {`, h} about ω̃. Agents’ signals
are independent conditional on ω̃ and for i = α, β,

Pr[s̃i = h|ω̃ = 3∆] = Pr[s̃i = `|ω̃ = 0] = q > 0.5

Pr[s̃i = h|ω̃ = 2∆] = 0.5

First, consider the scenario where agents do not have the option of acquir-
ing additional information about ω̃, other than the private signal that each
costlessly observes. Because agents have common values, any rule that always
allocates the object to, say, α, is efficient. Then we can extract the full surplus
from α by using Crémer and McLean lotteries.

Next, suppose that agent i, i = α, β has the option of acquiring, at cost
c > 0, a second signal s̃i,1 that reveals the true value of ω̃. The common value
assumption implies that it is not efficient for any agent to acquire this costly
information. Therefore, in any full surplus extraction scheme, no agent must
acquire the second signal.

Suppose that (f, t) (with no acquisition of additional information) is a full
surplus extraction mechanism. Since every allocation is efficient, we assume
that the object is always allocated to agent α for simplicity. The same con-
clusion would be obtained based on similar arguments even if a more general
social choice function is used.

Suppose that agent α deviates and covertly acquires the second signal
at cost c. This second signal provides agent α with many options that he
can exercise at the interim stage. For example, suppose that his expected
payment conditional on ω̃ = 3∆ is more than 3∆. Then consider the fol-
lowing deviation: agent α acquires the second signal, does not participate in
the mechanism if and only if ω̃ = 3∆, and follows the equilibrium strategy
otherwise. The gain from this deviation is q(3∆) (E[tα(s̃)|ω̃ = 3∆]− 3∆)− c,
which must be nonpositive. Conversely, suppose that his expected payment
conditional on ω̃ = 3∆ is less than 3∆. Then consider the following devia-
tion: agent α acquires the second signal, participate in the mechanism (and
follow the equilibrium) if and only if ω̃ = 3∆. The payoff from this deviation is
q(3∆) (3∆− E[tα(s̃)|ω̃ = 3∆]) − c. This must be nonpositive as well because
his equilibrium payoff is 0 by the assumption of full surplus extraction. Hence,
noting that q(3∆) = 1

3 , we obtain the following inequality:∣∣∣∣E[tα(s̃)|ω̃ = 3∆]− 3∆

∣∣∣∣ ≤ 3c.

This means that agent α’s expected payment must be almost equal to the
object’s value when he has the option of learning the true value and the cost
of doing so is small. Similarly we can obtain the following inequality regarding
ω̃ = 0: ∣∣∣∣E[tα(s̃)|ω̃ = 0]

∣∣∣∣ ≤ 3c.

Now consider the following deviation: agent α acquires the second signal,
participate in the mechanism (and follow the equilibrium) if and only if ω̃ =
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2∆. Agent α’s payoff from this deviation is given by

q(2∆) (2∆− E[tα(s̃)|ω̃ = 2∆])− c.

Note that E[·|ω̃ = 2∆] = 1
2E[·|ω̃ = 3∆] + 1

2E[·|ω̃ = 0] because of the structure
of the signal distribution. Hence the above value is bounded below by

1

3

[
2∆−

{
1

2
(3∆+ 3c) +

1

2
3c

}]
− c =

0.5∆− 3c

3
,

which is strictly positive when ∆ > 6c. Hence there does not exist any full
surplus extraction mechanism for this example when ∆ is large relative to c.

ut

It is clear that efficient implementation is possible in Example 1: randomly
assign the object to either α or β and do not collect any transfers. We turn to
Example 2 for failure of efficient implementation.

Example 2: Failure of efficient implementation
There are two symmetric agents α and β. A single indivisible object is to be
allocated to either α or β. Each agent’s valuation is the sum of a private value
and a common value:

Ṽi = Xi(ω̃) + Ṽ , i = α, β.

The value of Xi depends on whether the state ω̃ is ωα or ωβ . This dependence
is shown in the table below.

ωα ωβ
Xα 1 0
Xβ 0 1 + ε

Each of the states ωα and ωβ is realized with probability 0.5.
Each agent i may observe two signals about ω̃: s̃i,0 ∈ {ωα, ωβ} and s̃i,1 ∈

{ωα, ωβ}. The signal s̃i,0 is free and correct with probability q > 0.5 (i.e.,
Pr(s̃i = ωy|ω̃ = ωy) = q, where y = α, β). Moreover, s̃α,0 and s̃β,0 are in-
dependent conditional on the true state ω. The signal s̃i,1 costs cω > 0 and
completely reveals the realization of the state ω̃.

The common value Ṽ is either 0 or ∆ > 0, both equally likely. Moreover,
the distribution of Ṽ is independent of the state ω̃ and s̃0:12

Pr[Ṽ = ∆] = Pr[Ṽ = ∆|ω̃y] = 0.5, y = α, β

Each agent can obtain perfect information about the realized value of Ṽ at
cost cv > 0. However, acquisition of this costly information is inefficient as it
does not increase allocative efficiency.

Assume that cω is large enough that it is not ex ante efficient for either
agent to acquire s̃i,1. Further, assume that ε > 0 is small enough so that it is ex

12 This is not a critical assumption. We can use more general joint distributions at the
cost of making the example more complex.
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post efficient to allocate the object to agent α if and only if both agents’ signals
are ωα. Finally, note that it is ex ante efficient that neither agent gathers costly
information about Ṽ as this is a common value. Thus none of the costly and
perfectly informative signals (s̃i,1 about ω̃ and the signal about Ṽ ) should be
acquired by any agent for efficiency.

We show that this efficient rule is not Bayesian implementable.
Suppose, to the contrary, that there exists a Bayesian incentive-compatible

efficient mechanism. By assumption, agent α truthfully reports s̃α,0 without

acquiring s̃α,1 or information about Ṽ . That is, α follows the efficient rule.
Suppose that agent β deviates and always announces ωβ . Then he can

win the object with probability 1, while he would lose the object if s̃0 =
(ωα, ωα) and he announces his signal truthfully. Let tβ(s̃α,0, s̃β,0) be the trans-
fer from β as a function of the two agents’ reports. To deter this deviation,
E [tβ(s̃α,0, ωβ)− tβ(s̃α,0, ωα)|s̃β,0 = ωα] needs to be large enough. Thus, as ∆
goes to infinity (recall that the size of ∆ does not affect the efficient rule),
E [tβ(s̃α,0, ωβ)− tβ(s̃α,0, ωα)|s̃β,0 = ωα] must go to infinity as well for any
mechanism that implements the efficient rule.

Now consider the following deviation by β. Agent β acquires the signal
about V , then lies by announcing ωβ only when s̃β,0 = ωα and V = ∆. Oth-
erwise he always announces s̃β,0 truthfully. The incentive constraint regarding
this deviation is as follows:

Pr(s̃β,0 = ωα)
[
qQα(ωα) + (1− q)Qα(ωβ)

]
≥ Pr(s̃β,0 = ωα)

[
qQβ(ωα) + (1− q)Qβ(ωβ) + Pr(Ṽ = 0)E

[
tβ(s̃α,0, ωβ)− tβ(s̃α,0, ωα)|s̃β,0 = ωα

]]
−cv ,

where Qy(ωz) is β’s expected payoff (including utility and payments) given
that the true state is ωz and β announced ωy for y, z ∈ {α, β}.

Since Pr(s̃β,0 = ωα) = 0.5 and Pr(Ṽ = 0) = 0.5, we have

q [Qα(ωα)−Qβ(ωα)] + (1− q) [Qα(ωβ)−Qβ(ωβ)]

≥ 0.5E[tβ(s̃α,0, ωβ)− tβ(s̃α,0, ωα)|s̃β,0 = ωα]− 2cv

We observed that the right-hand side of the inequality above increases without
bound as ∆ increases, thus the left-hand side increases without bound as ∆
increases. Hence, either Qα(ωα)−Qβ(ωα) or Qα(ωβ)−Qβ(ωβ) goes to ∞ as
∆→∞.

Therefore, it becomes profitable for agent β to learn the true value of ω̃ by
acquiring the second signal s̃β,1. As this potential profit grows without bound
as ∆ increases and the cost of obtaining the second signal is constant, agent
β would prefer to obtain the second signal for a large enough ∆. This proves
that it is impossible to implement efficient social choice rule when ∆ is large
enough. ut

4 Efficient Bayesian Implementation

In this section, we provide two complementary sufficient conditions for efficient
implementation via pure-strategy perfect Bayesian equilibrium. The first one
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allows us to construct a version of the expected externality mechanism. The
second sufficient condition is the existence of a semi-robust lottery. Because our
setting allows information acquisition, this condition is not directly comparable
to the existence of a full surplus extraction lottery in Crémer and McLean [9].
However, as discussed at the end of this section, in models without information
acquisition, a sufficient condition for the existence of a semi-robust lottery is
weaker than the necessary and sufficient condition (i.e. cone condition) for
existence of a full surplus extraction lottery.

Both sufficient conditions hold when, loosely speaking, each agent’s signal
space is not too large relative to the signal spaces of the other agents.13

4.1 Expected Externality Mechanism

Our first efficiency result provides a sufficient condition for the existence of
a transfer for each agent that internalizes the expected externality on other
agents given any signal he observes and any action he takes on and off the
equilibrium path (assuming other agents take the equilibrium action).

We first define, for each agent i, a state space Ω−i that is sufficient to
describe the payoffs and information of the agents other than i. To be precise,
we define Ω−i as the coarsest partition of Ω, the state space of the model, such
that

∑
j 6=i uj(·, ω) and p−i(·|ω) are invariant on each element of the partition.

For example, consider a private value model where Ω = Ω1 × · · · × Ωn and

ωj ∈ Ωj only affects uj and the distribution of s̃
Zj

j . ThenΩ−i is simplyΠj 6=iΩj .

Let d′i(·|s
ai
i ) and d′−i(·|s

a−i

−i ) be the distribution on Ω−i that are derived

from di(·|saii ) and d−i(·|sa−i

−i ) respectively. Let MZi
i be a basis of the subspace

in R|Ω−i| that is orthogonal to the subspace spanned by {d′i
(
·|sZi
i

)
|sZi
i ∈ S

Zi
i },

i.e., d′i(·|s
Zi
i ) · γ = 0 for every sZi

i ∈ SZi
i and every γ ∈ MZi

i . Observe that

|MZi
i | ≥ max{|Ω−i| − |SZi

i |, 0}, with equality for generic (q, p).

Proposition 1 Let a∗ ∈ A be an efficient information acquisition profile for a
mechanism design problem (Ω,SZ , q, p,X, u, c). Suppose that for every i ∈ N ,

a subset of vectors in
{
d′−i(·|s

a∗−i

−i ), s
a∗−i

−i ∈ S
a∗−i

−i

}
and MZi

i form a basis for

R|Ω−i|. Then the ex ante efficient information-acquisition level, a∗, and the ex
post efficient social choice function, f∗a∗ , can be implemented.

Proof: In the following, it is assumed that no agent opts out. This is without
loss of generality because one can decrease transfers by a constant so that all
the participation constraints are satisfied.

First, it is shown that there exists ti : Sa
∗ → R, a transfer function for

agent i, that satisfies (5) below, for every ŝ
a∗i
i ∈ S

a∗i
i , sZi

i = (s
a∗i
i , s

Zi\a∗i
i ) ∈ SZi

i ,

13 McLean and Postlewaite [21] discusses a notion of information size. However, their notion
of information size is not directly relevant here.
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where it is possible that ŝ
a∗i
i 6= s

a∗i
i :

∑
ω−i

E

[
ti(ŝ

a∗i
i , s̃

a∗−i
−i )

∣∣∣∣∣ω−i
]
d′i(ω−i|s

Zi
i ) =

∑
ω−i

E

[∑
j 6=i
−uj(f∗a∗ (ŝ

a∗i
i , s̃

a∗−i
−i ), ω−i)

∣∣∣∣∣ω−i
]
d′i(ω−i|s

Zi
i ).(5)

Let Di be a
∣∣∣SZi
i

∣∣∣ × |Ω−i| matrix, each row of which is the vector d′i(·|s
Zi
i )

for some sZi
i ∈ S

Zi
i . Let P−i be a |Ω−i| ×

∣∣∣Sa∗−i

−i

∣∣∣ matrix, each row of which is

the vector p
a∗−i

−i (·|ω−i) for some ω−i ∈ Ω−i. For each ŝ
a∗i
i ∈ S

a∗i
i , let b(ŝ

a∗i
i ) be the

|Ω−i|-dimensional column vector that has E

[
−
∑
j 6=i uj(f

∗
a∗(ŝ

a∗i
i , s̃

a∗−i

−i ), ω−i)

∣∣∣∣ω−i]
as its ωth element. Then, a function ti satisfying (5) is a solution to the fol-

lowing system of equations for each ŝ
a∗i
i .

DiP−ix = Dib(ŝ
a∗i
i ). (6)

Let Γi be a |Ω−i| × |MZi
i | matrix with the vectors in MZi

i as its column
vectors. By assumption, the number of independent column vectors of P−i and

Γi is |Ω−i|.14 Hence there exists x′ ∈ R

∣∣∣∣Sa∗−i
−i

∣∣∣∣
, z ∈ R

∣∣∣MZi
i

∣∣∣
such that b(ŝ

a∗i
i ) =

P−ix
′ + Γiz. This x′ is a solution for (6) because DiΓi = 0 by definition.

Next, it is verified that a∗i and f∗a∗ can be implemented with the transfer ti
just defined. The optimality of a∗i and truthful reporting follow from the fact

that, as can be seen in (5),
∑
ω E

[
−ti(ŝ

a∗i
i , s̃

a∗−i

−i )

∣∣∣∣ω−i] d′i(ω−i|sZi
i ) is exactly

the total expected utility of the agents other than agent i given i’s report ŝ
a∗i
i ∈

S
a∗i
i conditional on any sZi

i ∈ S
Zi
i . This means that the expected externality

of agent i’s report on other agents given any sZi
i ∈ SZi

i can be internalized
through transfer ti on and off the equilibrium path without eliciting agent i’s
true signals.

For example, suppose that agent i acquires all Ki signals. Then agent i’s

expected payoff conditional on observing sZi
i ∈ S

Zi
i and reporting ŝ

a∗i
i ∈ S

a∗i
i is

∑
ω

E

[
ui(f

∗
a∗ (ŝ

a∗i
i , s̃

a∗−i
−i ), ω)− ti(ŝ

a∗i
i , s̃

a∗−i
−i )

∣∣∣∣∣ω
]
di(ω|sZi

i )

=
∑
ω

E

[
ui(f

∗
a∗ (ŝ

a∗i
i , s̃

a∗−i
−i ), ω)

∣∣∣∣∣ω
]
di(ω|sZi

i )−
∑
ω−i

E

[
ti(ŝ

a∗i
i , s̃

a∗−i
−i )

∣∣∣∣∣ω−i
]
d′i(ω−i|s

Zi
i )

=
∑
ω

E

[
ui(f

∗
a∗ (ŝ

a∗i
i , s̃

a∗−i
−i ), ω)

∣∣∣∣∣ω
]
di(ω|sZi

i )−
∑
ω−i

E

[∑
j 6=i
−uj(f∗a∗ (ŝ

a∗i
i , s̃

a∗−i
−i ), ω−i)

∣∣∣∣∣ω−i
]
d′i(ω−i|s

Zi
i )

=
∑
ω

E

 n∑
j=1

uj(f
∗
a∗ (ŝ

a∗i
i , s̃

a∗−i
−i , ω)

∣∣∣∣∣ω
 di(ω|sZi

i )

14 The rank of P−i is the same as the rank of {d′−i(·|s
a∗−i
−i ), s

a∗−i
−i ∈ S

a∗−i
−i }. To see this, note

that q(ω−i)p
a∗−i
−i (s

a∗−i
−i |ω−i) ∝ d

′
−i(ω−i|s

a∗−i
−i ) by Bayes’ rule.
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by the definition of ti. Note that this is the expected social welfare (without the

information acquisition cost) of allocation f∗a∗(ŝ
a∗i
i , ·) given sZi

i ∈ SZi
i . Since

f∗a∗ does not take into account agent i’s true action (ai = Zi), it does not
maximize the social welfare given (Zi, a

∗
−i). Hence agent i’s ex ante expected

payoff when choosing (Zi, a
∗
−i) is bounded above by V (Zi, a

∗
−i) +

∑
j 6=i cj(a

∗
j ).

Similarly it can be shown that (i) agent i’s ex ante expected payoff condi-
tional on (ai, a

∗
−i) for any ai 6= a∗i is at most V (ai, a

∗
−i) +

∑
j 6=i cj(a

∗
j ) and (ii)

agent i can achieve V (a∗) +
∑
j 6=i cj(a

∗
j ) exactly by choosing a∗i and always

announcing his signal truthfully. Since a∗ is the action profile that maximizes
the social welfare, it is optimal for agent i to play a∗i and report his signal
truthfully under transfer function ti. Hence social choice rule (a∗, f∗a∗) can be
implemented by mechanism (a∗, f∗a∗ , t). ut

If ω is not observable ex post, then we may like to find a sufficient condi-

tion on the distribution of signals only. A condition on h
a∗−i

i that is stronger
than the sufficient condition for Proposition 1, hence guarantees efficient im-
plementation, is provided in Corollary 1. The proof is in the appendix.

Corollary 1 Let a∗ ∈ A be an efficient information acquisition profile for a
mechanism design problem (Ω,SZ , q, p,X, u, c). Suppose that for every i ∈ N ,

the set of vectors
{
h
a∗−i

i (·|sZi
i ), sZi

i ∈ S
Zi
i

}
has rank

∣∣∣SZi
i

∣∣∣. Then a∗ and the ex

post efficient allocation f∗a∗ can be implemented.

Remark 1

(i) This mechanism builds on the idea of internalizing externality through
transfers, like many well-known mechanisms such as the VCG mechanism
(Vickrey [27], Clarke [8], Gloves [17] and the expected externality mecha-
nism (d’Aspremont and Gérard-Varet [10], Arrow [2]).

(ii) Proposition 1 holds as stated even if agent i’s utility is directly affected by
his action (ui(x, ω, ai)).

(iii) Corollary 1 holds even if private signals are not conditionally independent.
(iv) The model assumes that each agent chooses a set of signals once and

for all simultaneously. We can also think of situations where each agent
chooses signals sequentially. Then an agent may decide which costly signal
he wishes to acquire next based on the realization of signals he has observed
previously without knowing the information acquired by the other agents.
Call this sequential information acquisition within agents. We can define
efficient information acquisition rule within this class of sequential infor-
mation acquisitions. Such sequential information acquisition improves effi-
ciency, but Proposition 1 still extends to this case almost immediately. For
within-agents sequential information acquisition, an efficient information
acquisition rule is defined as a profile of contingent strategies (σ∗1 , . . . , σ

∗
n).

Let S
σ∗j
j be the set of all possible signal realizations for agent j given σ∗j .

Proposition 1 holds in this case if we replace s
a∗−i

−i with s
σ∗−i

−i .
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To understand the condition for Proposition 1, consider the standard model
with no information acquisition (i.e. Zi = {0}). Let Ω = Ω1× . . .×Ωn, where
ωi completely determines agent i’s utility function and the distribution of si,0.
Then the following two familiar conditions imply the condition for Proposi-
tion 1. First, the condition is satisfied with independent private values (i.e.
agent i’s signal si,0 does not depend on ω−i and (ω1, ..., ωn) are indepen-

dent).15 In this case, MZi
i is a set of |Ω−i − 1| vectors that are orthogonal

to agent i’s prior about ω−i, which is a convex combination of the posteriors
about ω−i given the private signals of all the agents other than agent i. Hence
those posteriors and MZi

i span entire R|Ω−i|. Second, the condition is satisfied
when the information structure satisfies the full-rank condition in Crémer and
McLean [9], which requires

{
h
a∗−i

i (·|sZi
i ), sZi

i ∈ S
Zi
i

}
to be independent vec-

tors. As already mentioned, this condition is stronger than the condition for
Proposition 1 as shown in the proof of Corollary 1.16

Efficient implementation result for the independent private value case re-
mains valid even with information acquisition. As long as agent i’s signal is
not informative about ω−i given any information acquisition level, the dimen-
sion of MZi

i is |Ω−i − 1|. Thus efficient implementation is always possible in
private values models with information acquisition. This replicates the result
of Bergemann and Välimäki [4] in a more general setting.

It is known that, with information acquisition, efficient implementation
is impossible for the case with interdependent value and independent infor-
mation.17 Proposition 1 shows that efficient implementation is possible when
values interdependent and information is correlated.

Neither the VCG mechanism nor the expected externality mechanism guar-
antees efficiency in the standard interdependent value model. This is because
agent i’s true signal needs to be elicited to evaluate the externality of agent
i’s report on the other agents. In our setting, this corresponds to the fact that∑
j 6=i Vj(x, s

a) depends on saii . So we cannot internalize such externality for
each realization of sa. However, a crucial observation for our result is that the

expected externality conditional on ω−i, which is E
[∑

j 6=i uj
(
x(ŝaii , s̃

a−i

−i ), ω−i
)
|ω−i

]
,

can be evaluated without eliciting agent i’s signal. Although ω−i is not avail-
able, we can use the signals of the agents other than agent i to replicate this

value in expectation. If
{
d′−i(·|s

a∗−i

−i ), s
a∗−i

−i ∈ S
a∗−i

−i

}
forms a basis for R|Ω−i| by

themselves, we can in fact replicate these expected values exactly state by

15 The signal si,0 is often ωi itself in the standard model, including the model of Crémer
and McLean [9].
16 The weaker condition (cone condition) in Crémer and McLean [9] is not directly com-

parable to this condition.
17 This follows from the revenue equivalence theorem and the negative result of [4], as

noted in Bergemann, Shi, and Välimäki [3]. So we need correlation of private signals for our
efficient implementation result when values are interdependent
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state, i.e., there exists ti that satisfies, for any ω−i and any ŝ
a∗i
i ,

E
[
ti(ŝ

a∗i
i , s̃

a∗−i

−i )|ω−i
]

= E

−∑
j 6=i

uj(f
∗
a∗(ŝ

a∗i
i , s̃

a∗−i

−i ), ω−i)

∣∣∣∣ω−i
 .

This is why our mechanism relies on expected externality rather than exact
externality.18

The condition for Proposition 1 is weaker than this. More generally,{
d′−i(·|s

a∗−i

−i ), s
a∗−i

−i ∈ S
a∗−i

−i

}
does not have to span R|Ω−i|. Notice that agent

i’s transfer does not need to replicate the expected externality state by state
exactly as long as it replicates the expected externality at the interim stage

conditional on i’s signal. This can be done more easily when the size of
∣∣∣SZi
i

∣∣∣
is relatively small and/or some of agent i’s signals are redundant (i.e. not in-
dependent), in which case MZi

i is large. Thus, the rank of MZi
i also matters

for efficient implementation.

The next proposition makes this observation formal by showing that effi-
cient implementation is possible for a generic choice of (q, p) under the cor-
responding conditions on the size of signal spaces. Note that the parameter
space of (q, p) is finite dimensional because the number of states and signals
is finite. Let S0

−i =
∏
j 6=i S

0
j be the space of free signals s0j , j 6= i.

Proposition 2 Fix (Ω,SZ , X, u, c). If
∣∣S0
−i
∣∣ ≥ min{|Ω−i| ,

∣∣∣SZi
i

∣∣∣} for each

i, then efficient implementation is possible for mechanism design problem
(Ω,SZ , q, p,X, u, c) for an open and dense set of (q, p).

Proof: We can restrict our attention to the case where q has full support for
this genericity result.

First, consider the case where
∣∣S0
−i
∣∣ is larger than or equal to |Ω−i|. Con-

sider a set of (q, p) where
{
p0−i(·|ω−i), ω−i ∈ Ω−i

}
is linearly independent. In

this set,
{
p
a∗−i

−i (·|ω−i), ω−i ∈ Ω−i
}

is linearly independent whatever the effi-

cient action profile a∗−i is, hence Proposition 1 applies at least for player i. We
show that this set is open and dense.

Openness is trivial. To show that this set is dense, take any (q, p). Take p̂
such that

{
p̂0−i(·|ω−i), ω−i ∈ Ω−i

}
is linearly independent. Define p(t), t ∈ [0, 1]

by p(t)(·|ω) := tp̂(·|ω)+(1− t)p(·|ω) for each ω ∈ Ω. We have a one-parameter
family of conditionally independent distributions that connect p̂ and p. Then
it can be shown that

{
p(t)0−i(·|ω−i), ω−i ∈ Ω−i

}
is linearly independent for

almost all t (Fudenberg, Levine and Maskin [14]). Hence we can find p̃ ar-
bitrary close to p such that

{
p̃0−i(·|ω−i), ω−i ∈ Ω−i

}
is linearly independent.

This proves denseness.

18 In d’Aspremont and Gérard-Varet [10], an externality mechanism provides incentives
for efficient implementation by internalizing the externality; an expected externality mech-
anism delivers budget balance in addition. On the other hand, we need to use an expected
externality mechanism even to internalize the externality.
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Next consider the case where
∣∣S0
−i
∣∣ < |Ω−i| but

∣∣S0
−i
∣∣ ≥ ∣∣∣SZi

i

∣∣∣. Under this

assumption, we can show in a similar way that the rank of
{
d−i(·|s0−i), s0−i ∈ S0

−i
}

is
∣∣S0
−i
∣∣ and the rank of MZi

i is at least max
{
|Ω−i| −

∣∣∣SZi
i

∣∣∣ , 0} for an open

dense set of (q, p). Since
∣∣∣SZi
i

∣∣∣ ≤ ∣∣S0
−i
∣∣ < |Ω−i| by assumption, we have∣∣S0

−i
∣∣ + |Ω−i| −

∣∣∣SZi
i

∣∣∣ ≥ |Ω−i|. Then generically there are |Ω−i| independent

vectors among
{
d−i(·|s0−i), s0−i ∈ S0

−i
}

and MZi
i . Hence generically there are

|Ω−i| independent vectors among
{
d−i(·|s

a∗−i

−i ), s
a∗−i

−i ∈ S
a∗−i

−i

}
and MZi

i what-

ever the efficient action profile a∗ is, thus Proposition 1 applies for player i. ut

4.2 Semi-Robust Lotteries

Next we turn to a complementary sufficient condition under which efficient im-
plementation is obtained. Our second sufficient condition allows us to enforce
any action and any allocation independent of the shape of utility functions. In
that sense the analysis is very different from that of Section 4.1.

Following Crémer and McLean, it is useful to view transfers as a lottery by
which an agent, based on his information, bets on the announcements of other
agents. A set of lotteries is semi-robust for agent i given a if agent i cannot
make a better choice by acquiring more information than ai. More precisely,
ti : Sa → R is semi-robust given a for agent i if∑
s
a−i
−i

ti(s
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i , s

Zi\ai
i ) <

∑
s
a−i
−i

ti(ŝ
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i , s

Zi\ai
i )

(7)

for any saii , ŝ
ai
i 6= saii ∈ Saii and any s

Zi\ai
i ∈ S

Zi\ai
i . Thus, if agent i

takes action ai and observes saii ∈ S
ai
i , then it is optimal for him to choose

ti(s
ai
i , ·) from the set of lotteries {ti(ŝaii , ·) : ŝaii ∈ S

ai
i }. Furthermore, this op-

timal choice of lottery would not change even if agent i acquires more infor-
mation.

By using semi-robust lotteries for Bayesian implementation, we can dis-
courage agents from acquiring more information or from acquiring less infor-
mation than the target level. It does not pay for an agent to acquire more
information as it provides no gain in the mechanism and the cost of additional
information is not reimbursed. It does not pay to acquire less information be-
cause then the agent would be likely to make a wrong choice of semi-robust
lottery.

Proposition 3 Consider an information structure (Ω,SZ , q, p) and an information-
acquisition decision a = (a1, a2, . . . , an). Suppose that for each agent i there
exist semi-robust lotteries given a. Then for any mechanism design problem on
this information structure and any social choice function f , the social choice
rule (a, f) can be implemented.
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Proof: Let t′i be semi-robust lotteries for agent i given a. We show that if,
for some large λ > 0, monetary transfers ti = λt′i are used then it is Bayesian
incentive compatible for agent i to acquire information ai and truthfully report
his signal when f is implemented.

Participation Constraints: We can assume without loss of generality that
ti is non-positive and that agent i’s expected surplus under truthful partici-
pation is non-negative. Hence agent i would accept the mechanism (a, f, t).

Deviation to acquire more information: Suppose that ai is a strict
subset of Zi = {−0, . . . ,Ki} and agent i chooses information acquisition Zi
and observes sZi

i = (saii , s
Zi\ai
i ). As ti is semi-robust given a, the expected

amount of transfer from agent i increases strictly by announcing any ŝaii 6=
saii , whatever agent i’s additional information s

Zi\ai
i may be. Agent i may

gain some payoff by announcing ŝaii instead of saii through changing the final
allocation f(sa). But because the number of signals is finite we can choose λ
large enough so that this effect is outweighed by the expected loss in transfers.
The same reasoning applies to any deviation to a superset of ai. Hence, agent i
does not gain anything by acquiring more information. In fact agent i is worse
off as he is not reimbursed for the cost of acquiring additional information.

Deviation to acquire less or different information Suppose that
agent i chooses action âi ∈ Ai such that ai\âi 6= ∅. Then agent i cannot
announce s̃aii with probability 1 because of the full-support assumption. Con-
sequently, the expected transfer from agent i would be strictly higher than the
expected transfer under the equilibrium action ai. To see this, observe that
for any saii ∈ S

ai
i announced by agent i given action âi and signal realization

s̃âii = sâii ,

E

[
ti(s

ai
i , s̃

a−i

−i )

∣∣∣∣s̃âii = sâii

]
= E

[
E

[
ti(s

ai
i , s̃

a−i

−i )

∣∣∣∣s̃âii , s̃Zi\âi
i

]∣∣∣∣s̃âii = sâii

]
= E

[
E

[
ti(s

ai
i , s̃

a−i

−i )

∣∣∣∣s̃aii , s̃Zi\ai
i

]∣∣∣∣s̃âii = sâii

]
> E

[
E

[
ti(s̃

ai
i , s̃

a−i

−i )

∣∣∣∣s̃aii , s̃Zi\ai
i

]∣∣∣∣s̃âii = sâii

]

where the inequality follows from (7) and Pr[s̃aii 6= saii |s̃
âi
i = sâii ] > 0.

Using this, we can show that it is not profitable for agent i to acquire any
âi 6= ai. Let saii (sâii ) be any reporting strategy by agent i after deviating to
âi. Taking the expectation of the above expression with respect to i’s signal
given âi, we obtain

E

[
E

[
ti(s

ai
i (s̃âii ), s̃

a−i

−i )

∣∣∣∣s̃âii ]] > E

[
E

[
ti(s̃

ai
i , s̃

a−i

−i )

∣∣∣∣s̃aii , s̃Zi\ai
i

]]
= E

[
E

[
ti(s̃

ai
i , s̃

a−i

−i )

∣∣∣∣s̃aii ]]
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Hence, agent i loses money from the semi-robust lottery in expectation by
choosing âi rather than ai. Once again, we can choose λ large enough so that
this expected loss outweighs any gains in the mechanism or in the cost of
information acquisition. Therefore this deviation is not profitable either. ut
Corollary 2 (Efficient Implementation.) Consider a mechanism design
problem (Ω,SZ , q, p,X, u, c). If for each agent i there exist semi-robust lotteries
given an efficient level of information acquisition a∗, then (a∗, f∗a∗) can be
implemented.

Remark 2
(i) Proposition 1 and Proposition 3 are complementary. Correlated informa-

tion is necessary for the existence of a semi-robust lottery, hence Propo-
sition 3 does not apply to the case with private value and independent
information. However, Proposition 1 guarantees efficient implementation
for that case. On the other hand, there is a situation to which Proposi-
tion 3 is applicable, but Proposition 1 is not. For example, take Example 2
and suppose that s̃i,1, i = α, β is not available. So only additional informa-
tion that is available is the signal that reveals V . Then the assumption for
Proposition 1 is violated given efficient information acquisition.19 However,
it is easy to verify that there exists a semi-robust lottery given efficient in-
formation acquisition in this example because i’s additional signal about
V is not informative about s̃j,0.

(ii) It is easy to show that there does not exist a semi-robust lottery given
efficient information acquisition in Example 1. The assumption for Propo-
sition 1 is not satisfied in Example 1, either.20 However efficient implemen-
tation is trivially possible in this example. So those sufficient conditions
for efficient implementation in Proposition 1 and Proposition 3 are not
necessary.

(iii) We can directly check that there is no semi-robust lottery given efficient
information acquisition in Example 2. For a semi-robust lottery, an agent
must strictly prefers to announce ωα (resp. ωβ) when he believes that the
true state is more likely to be ωα (resp. ωβ). In addition, he must strictly
prefer to announce ωα even when si,0 = ωα and si,1 = ωβ , i.e. he is sure
that the state is ωβ . This is clearly inconsistent.

(iv) Consider a standard mechanism design problem without information acqui-
sition. In this environment, Condition B of d’Aspremont and Gérard-Varet
[11] is necessary and sufficient for budget-balanced implementation of every
social choice function:

Condition B: ∃t : S → Rn s.t.
∑
i∈N

ti(s) = 0, ∀s∑
s−i

ti(si, s−i)hi(s−i|si) <
∑
s−i

ti(ŝi, s−i)hi(s−i|si), ∀si, ŝi 6= si.

19 Note that |SZi
i | = |Ω| = 4 > 2 = |S

a∗−i
−i |.

20 |SZi
i | = 6 > |Ω| = 3 > |S

a∗−i
−i | = 2 in this example.
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It is well known that the second condition is necessary and sufficient for im-
plementation of every social choice function without budget balance. This
second condition implies that ti is a semi-robust lottery for agent i in an
environment without information acquisition and is equivalent to assuming
that all conditional distributions are distinct, i.e. hi(·|si) 6= hi(·|ŝi) for any
si, ŝi 6= si (see Aoyagi [1]).
The inequality in condition B is similar to our condition (7), but not di-
rectly applicable to our setting with information acquisition. Introduce
information acquisition and suppose that a = (ai, a−i) is chosen, with
ai ⊆ Zi. Then the corresponding condition is that h

a−i

i (·|saii ) are different
for different saii . If that is the case, then we can find a transfer ti that
satisfies∑

s
a−i
−i

ti(s
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i ) <

∑
s
a−i
−i

ti(ŝ
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i ).

But this inequality is not enough for efficient implementation with infor-

mation acquisition because agent i’s belief conditional on (saii , s
Zi\ai
i ) can

be close to h
a−i

i (·|ŝaii ) for some ŝaii 6= saii rather than h
a−i

i (·|saii ) for some

s
Zi\ai
i . Then agent i may benefit from acquiring information and report-

ing ŝaii instead of saii given additional information.21 Thus we need to
strengthen this condition to (7) to guarantee efficient implementation with
information acquisition.

(v) In Bikhchandani [6], payment schemes called partially-robust lotteries were
used for efficient implementation. A semi-robust lottery is a partially-
robust lottery but not vice versa. A more restrictive payment scheme is
needed in this paper in part because, unlike in [6], the information oppor-
tunities available to an agent cannot be ranked by informativeness.

In our setting with information acquisition, it may not be immediately
clear whether there exist semi-robust lotteries for each agent. Below we pro-
vide a sufficient condition for the existence of semi-robust lotteries and, by
Proposition 3, for efficient implementation.

Fix a ∈ A. Let Ŝaii be any subset of Saii . We say that saii ∈ Ŝaii can

be separated from Ŝaii given a if h
a−i

i (·|saii ) can be represented by a convex

combination of h
a−i

i

(
·|ŝaii , s

Zi\ai
i

)
, ŝaii ∈ Ŝ

ai
i , s

Zi\ai
i ∈ SZi\ai

i only by placing

zero weight on h
a−i

i

(
·|ŝaii , s

Zi\ai
i

)
for any ŝaii 6= saii and s

Zi\ai
i .

Suppose that, given a, we can order Saii as si(1), si(2), ... in such a way that
we can sequentially separate them one by one after eliminating the preceding
elements, i.e., si(1) is separated from Saii , si(2) is separated from Saii \ {si(1)}

21 This suggests that information acquisition does not introduce any additional constraint
when implementing the most informative action ai = Zi. This is in fact the case. If

hi(·|sZi
i ) 6= hi(·|ŝZi

i ) for any s
Zi
i , ŝ

Zi
i 6= s

Zi
i ∈ S

Zi
i for every i, then there exist semi-

robust lotteries given a = (Z1, . . . , Zn) for every i. Hence, any efficient allocation (in fact
any allocation) given ai = Zi is implementable in this case.
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and so on. Then, as shown next, there exist semi-robust lotteries for agent i
given a.

Proposition 4 Suppose that, given action profile a ∈ A, Saii can be or-
dered as si(1), . . . , si(R), where R = |Saii |, so that si(r) is separated from
{si(r + 1), . . . , si(R)} for each r = 1, 2, . . . , R−1. Then there exist semi-robust
lotteries for agent i given a.

The proof of Proposition 4 is in the appendix.
If there is no information acquisition, then our sequential separability con-

dition is weaker than Crémer and McLean [9]’s necessary and sufficient con-
dition for full surplus extraction. In our terminology, Crémer and McLean’s
condition -- that the belief of any type of an agent should not be a convex
combination of other types of that agent -- is equivalent to saying that every
saii ∈ S

ai
i can be separated from Saii simultaneously. On the other hand, we

only require that agent i’s signals can be separated sequentially in some order.

5 Full Surplus Extraction

Full surplus extraction occurs in a mechanism design problem if it is Bayesian
incentive compatible and interim individually rational for agents to acquire the
ex ante efficient information level and truthfully report their signals while the
mechanism designer implements the ex post efficient rule and collects transfers
such that each agent’s interim expected utility is always zero. We need to
strengthen the definition of semi-robust lotteries of Section 4 to obtain full
surplus extraction.

A function πi : Sa → R is a robust lottery given (ai, a−i) for agent i if∑
s
a−i
−i

πi(s
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i , s

Zi\ai
i ) = 0, ∀saii ∈ S

ai
i (8)

∑
s
a−i
−i

πi(ŝ
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i , s

Zi\ai
i ) > 0, ∀ŝaii ∈ S

ai
i , ŝ

ai
i 6= saii . (9)

If the left-hand side of (7) equals zero, then the semi-robust lotteries ti are
robust.

A comparison of robust lotteries with Crémer-McLean full surplus extrac-
tion lotteries (see (4) for a definition) is useful. A robust lottery given a is
a Crémer-McLean lottery when agents are costlessly endowed with informa-
tion level a and cannot acquire additional information. If ai = Zi in (8) and
(9), then a Crémer-McLean lottery for agent i at information acquisition level
(Zi, a−i) is a robust lottery given (Zi, a−i) for agent i. If, instead, ai ( Zi then
a Crémer-McLean lottery at (ai, a−i) need not be robust for agent i. As Ex-
ample 1 shows, a robust lottery may not exist even though for generic beliefs
the sets of Crémer-McLean lotteries at (âi, a−i) are non-empty for all âi such
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that ai ⊆ âi. A sufficient condition for existence of robust lotteries is provided
in Proposition 6 for any social choice rule (a, f).

Next, we show that the existence of robust lotteries is sufficient for full
surplus extraction.

Proposition 5 Consider an information structure (Ω,SZ , q, p) and an infor-
mation acquisition decision a = (a1, a2, . . . , an). Suppose that for each agent i
there exist robust lotteries given a. Then for any mechanism design problem on
this information structure and any social choice function f , the social choice
rule (a, f) can be implemented such that each agent’s interim expected surplus
is zero.

Proof: Let f be a social choice function for a mechanism design problem on
this information structure. Let πi be a robust lottery for agent i given a. Define

ti(s
a) = λπi(s

a) + gi(s
a), ∀sa ∈ Sa,

where λ > 0 and

gi(s
ai
i , s

a−i

−i ) = Vi(fi(s
ai
i , s

a−i

−i ), (saii , s
a−i

−i ))− ci(ai).

It is straightforward to check that the mechanism (a, f, t) satisfies (3) with the
left-hand side equal to ci(ai).

By choosing λ sufficiently large we can ensure that for all saii ∈ S
ai
i and

ŝaii 6= saii ,

E[Vi(f(saii , s̃
a−i

−i ), (saii , s̃
a−i

−i ))− ti(saii , s̃
a−i

−i )|s̃aii = saii ]

= E[Vi(f(saii , s̃
a−i

−i ), (saii , s̃
a−i

−i ))− gi(saii , s̃
a−i

−i )|s̃aii = saii ]− λ
∑
s
a−i
−i

πi(s
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i )

= E[Vi(f(saii , s̃
a−i

−i ), (saii , s̃
a−i

−i ))− gi(saii , s̃
a−i

−i )|s̃aii = saii ]

> E[Vi(f(ŝaii , s̃
a−i

−i ), (saii , s̃
a−i

−i ))− gi(ŝaii , s̃
a−i

−i )|s̃aii = saii ]− λ
∑
s
ai
−i

πi(ŝ
ai
i , s

a−i

−i )h
a−i

i (s
a−i

−i |s
ai
i )

= E[Vi(f(ŝaii , s̃
a−i

−i ), (saii , s̃
a−i

−i ))− ti(ŝaii , s̃
a−i

−i )|s̃aii = saii ],

where the second equality follows from (8) and the inequality from (9). Thus,
if agent i chooses information level ai, he has no incentive to lie or opt out
after any realization of his signal.

Suppose, instead, that agent i chooses information level âi ⊃ ai. The use of
robust lotteries ensures that, conditional on selection of âi ⊃ ai, the optimal

strategy is to truthfully announce saii when sâii = (saii , s
âi\ai
i ) is observed;

announcing ŝaii 6= saii results in a large negative expected payoff. Without
taking into account the cost of information acquisition, agent i’s expected
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payoff after observing s̃âii = (s̃aii , s̃
âi\ai
i ) would be the same as after observing

s̃aii :

E

[
E

[
Vi(f(s̃aii , s̃

a−i

−i ), (s̃aii , s̃
âi\ai
i ), s̃

a−i

−i )− ti(s̃aii , s̃
a−i

−i )

∣∣∣∣s̃aii , s̃âi\aii

]]
= E

[
E

[
Vi(f(s̃aii , s̃

a−i

−i ), s̃aii , s̃
a−i

−i )− ti(s̃aii , s̃
a−i

−i )

∣∣∣∣s̃aii ]]
where the equality follows from (1) and (8). Agent i would lose ci(âi)−ci(ai) >
0 by deviating to âi ⊃ ai, making this deviation unprofitable.

Finally, suppose that agent i chooses information level âi such that ai\âi 6=
∅. Then, an argument similar to that in the last paragraph of the proof of
Proposition 3 implies that if agent i announces any saii ∈ S

ai
i , then given any

s̃âii = sâii ,

E

[
πi(s

ai
i , s̃

a−i

−i )

∣∣∣∣s̃âii = sâii

]
= E

[
E

[
πi(s

ai
i , s̃

a−i

−i )

∣∣∣∣s̃âii , s̃Zi\âi
i

]∣∣∣∣s̃âii = sâii

]
= E

[
E

[
πi(s

ai
i , s̃

a−i

−i )

∣∣∣∣s̃aii , s̃Zi\ai
i

]∣∣∣∣s̃âii = sâii

]
> E

[[
πi(s̃

ai
i , s̃

a−i

−i )

∣∣∣∣s̃aii , s̃Zi\ai
i

]∣∣∣∣s̃âii = sâii

]
= 0

where the inequality follows from (9) and Pr[s̃aii 6= saii |s̃
âi
i = sâii ] > 0. Hence it

is not profitable to deviate from the prescribed level of information acquisition
as shown in the proof of Proposition 3

By choosing λ > 0 sufficiently large one can ensure that after choosing âi,
agent i is better off not participating, thus yielding a payoff of −ci(âi), rather
than participate and lie about observing some saii which yields a payoff smaller
than −ci(âi). Hence, it is not profitable to choose âi rather than ai. ut

Recall that a∗ is the ex ante efficient information acquisition level and f∗a∗
is the ex post efficient rule associated with a mechanism design problem. The
following is immediate.

Corollary 3 (Full surplus extraction.) Consider a mechanism design
problem (Ω,SZ , q, p,X, u, c). If for each agent i there exist robust lotteries
given an efficient level of information acquisition a∗, then there exists a mech-
anism (a∗, f∗a∗ , t

∗) that is incentive compatible, interim individually rational,
and satisfies

t∗i (s
a∗i
i , s

a∗−i

−i ) = Vi(f
∗
a∗(s

a∗i
i , s

a∗−i

−i ), (s
a∗i
i , s

a∗−i

−i ))− ci(a∗i ).

We end this section with a characterization result for robust lotteries. The
necessary and sufficient condition in Proposition A is stronger than the suffi-
cient condition of Proposition 4.
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Proposition A (Bikhchandani [6]). Robust lotteries given (ai, a−i) exist
for agent i iff for each saii ∈ S

ai
i , the set of linear combinations of beliefs over

S
a−i

−i , h
a−i

i (·|saii , s
Zi\ai
i ), s

Zi\ai
i ∈ S

Zi\ai
i , does not intersect with the convex

hull of beliefs h
a−i

i (·|ŝZi
i ), ∀ŝZi

i = (ŝaii , ŝ
Zi\ai
i ) ∈ SZi

i such that ŝaii 6= saii .
This leads to a sufficient condition for generic full surplus extraction in

terms of the cardinality of the sets of signals and states of nature.

Proposition 6 Fix (Ω,SZ , X, u, c). If
∣∣∣SZi
i

∣∣∣ ≤ min{|Ω−i| ,
∣∣S0
−i
∣∣} for each i,

then full surplus extraction is possible for mechanism design problem (Ω,SZ , q, p,X, u, c)
for an open and dense set of (q, p).

Proof: Proposition A implies that full surplus extraction is possible given
(ai, a−i) if h

a−i

i (·|sZi
i ), sZi

i ∈ S
Zi
i are linearly independent. This is satisfied if

h0i (·|sZi
i ), sZi

i ∈ S
Zi
i are linearly independent. As in the proof of Proposition 2,

we can show that this is the case for a generic choice of (q, p) if
∣∣∣SZi
i

∣∣∣ ≤
min{|Ω−i| ,

∣∣S0
−i
∣∣} for each i. ut

In Example 1, the necessary and sufficient condition of Proposition A is
not satisfied. After agent α acquires perfect information about ω̃, his beliefs
over s̃β,0 are the same whether s̃α,0 = ` or h.

If, instead of assuming that agents’ signals are distributed independently

conditional of ω, we assume that (w̃, s̃Zi
i , s̃

Z−i

−i ) are jointly distributed, then

the hypothesis of Proposition 6 can be weakened to
∣∣∣SZi
i

∣∣∣ ≤ ∣∣S0
−i
∣∣.

6 Discussion

This paper examines when efficient implementation and full surplus extrac-
tion are Bayesian incentive compatible in a setting with covert information
acquisition by agents. What makes this problem nontrivial is that we need to
implement both efficient allocation and efficient information acquisition. We
illustrate by an example that correlation of agents’ private signals does not
guarantee even efficient implementation.

It is interesting to compare sufficient conditions for efficient implementation
and for full surplus extraction. First, as already noted, the sufficient conditions
for (the existence of) semi-robust lotteries in Proposition 4 are weaker than
the necessary and sufficient conditions for robust lotteries in Proposition A.
Second, Proposition 2 shows that the sufficient condition for efficient imple-
mentation in Proposition 1 is generically satisfied if

|S0
−i| ≥ min{|Ω−i|, |SZi

i |} (10)

Proposition 6 establishes that a generic sufficient condition for existence of
robust lotteries is

|SZi
i | ≤ min{|Ω−i|, |S0

−i|} (11)
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If (11) is satisfied then so is (10). It follows from (11) that min{|Ω−i|, |SZi
i |} is

less than or equal to min{|Ω−i|, |S0
−i|}, which is less than or equal to |S0

−i|. Not
surprisingly, the sufficient conditions for efficient implementation are weaker
than those for full surplus extraction.

We have not pursued the tightness of these conditions. Identifying nec-
essary and sufficient conditions for efficient implementation and full surplus
extraction are left for future research.

We can obtain similar results under much weaker assumptions on the
information structure if we relax exact efficiency/FSE to approximate effi-
ciency/FSE and allow the mechanism to implement random action profiles.
Each agent’s incentive constraints and interim individually rational constraints
are more easily satisfied when the other agents’ signals are more informative,
i.e., the other agents acquire more information. For exact efficiency, the level
of information acquisition must be at the efficient level. For approximate ef-
ficiency, however, we can dispense with this upper bound of information by
letting agents acquire the maximum amount of information with small prob-
ability. In this way, we can exploit the maximum amount of information with
very little reduction in efficiency.22

We noted in Remark 1(v) that Proposition 1 extends to sequential infor-
mation within agents. One can also have sequential information acquisition
across agents, where agents observe their signals sequentially and report them
to the mechanism designer who makes information-acquisition decisions across
agents using realizations of all the signals that have been previously observed
by the agents.23 It would be interesting to examine sequential information
acquisition across agents in this model.

22 A similar exercise is done in Obara [23] and Rahman and Obara [25]. Some results in
Fudenberg, Levine and Maskin [14] and Kandori [19] are based on a similar idea.
23 Gershkov and Szentes [15] characterize the optimal voting mechanism with sequential

information acquisition without monetary transfer when agents have identical preferences.
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7 Appendix: Omitted proofs

Proof of Corollary 1: We show that the condition for the corollary implies
the condition for Proposition 1. This condition means that the matrix DiP−i

has rank
∣∣∣SZi
i

∣∣∣ (i.e. full row rank), where Di and P−i are as defined in the

proof of Proposition 1. Then we can obtain a full column rank matrix P ′−i

by selecting independent
∣∣∣SZi
i

∣∣∣ rows from P−i such that DiP
′
−i is a regular

matrix. Now we show that MZi and the columns of P ′−i forms a basis of R|Ω−i|.

Suppose not. Note that the number of columns for P ′−i is exactly
∣∣∣SZi
i

∣∣∣ and the

number of vectors in MZi must be at least |Ω−i| −
∣∣∣SZi
i

∣∣∣. Then those vectors

cannot be independent, hence there must exist a nonzero vector x ∈ R|S
a−i
−i |

such that P ′−ix is in the null space of Di, which implies DiP
′
−ix = 0. This is

a contradiction to DiP
′
−i being regular. ut

To prove Proposition 4, we first prove a lemma. In the following, we fix an
action profile a ∈ A and denote h

a−i

i by hi to simplify the exposition.
Consider the following condition on the information structure.

Condition 1: If λ : Saii × S
ai
i × S

Zi\ai
i → R+ satisfies∑

s
Zi\ai
i

∑
ŝ
ai
i

λ
(
ŝaii , s

ai
i , s

Zi\ai
i

)
hi

(
·|saii , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
ŝaii , s

ai
i , s

Zi\ai
i

)
hi

(
·|ŝaii , s

Zi\ai
i

)
(12)

and ∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
ŝaii , s

ai
i , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
saii , ŝ

ai
i , s

Zi\ai
i

)
= 1 (13)

for any saii , then λ
(
saii , ŝ

ai
i , s

Zi\ai
i

)
must be 0 for any saii , ŝ

ai
i 6= saii and s

Zi\ai
i .

The following lemma shows that this condition is equivalent to the existence
of a semi-robust lottery for every saii ∈ S

ai
i .

Lemma 1 Condition 1 is satisfied if and only if there exist semi-robust lot-
teries given a, i.e., there exists ti : Saii × S

a−i

−i → R that satisfies∑
s
a−i
−i

ti(s
ai
i , s

a−i

−i )hi(s
a−i

−i |s
ai
i , s

Zi\ai
i ) <

∑
s
a−i
−i

ti(ŝ
ai
i , s

a−i

−i )hi(s
a−i

−i |s
ai
i , s

Zi\ai
i )

for any saii , ŝ
ai
i 6= saii ∈ S

ai
i and for any s

Zi\ai
i ∈ SZi\ai

i .

Proof: There exists such ti : Saii × S
a−i

−i → R if and only if the LP below has
a feasible solution:

min
t

0
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s.t.∑
s
a−i
−i

t(ŝaii , s
a−i

−i )hi(s
a−i

−i |s
ai
i , s

Zi\ai
i )−

∑
s
a−i
−i

t(saii , s
a−i

−i )hi(s
a−i

−i |s
ai
i , s

Zi\ai
i ) ≥ 1, ∀sZi\ai

i , ∀saii , ∀ŝ
ai
i 6= saii

Its dual is

max
λ≥0

∑
s
ai
i

∑
ŝ
ai
i 6=s

ai
i

∑
s
Zi\ai
i

λ(ŝaii , s
ai
i , s

Zi\ai
i )

s.t.∑
s
Zi\ai
i

∑
ŝ
ai
i 6=s

ai
i

λ
(
ŝaii , s

ai
i , s

Zi\ai
i

)
hi

(
s
a−i

−i |s
ai
i , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i 6=s

ai
i

λ
(
saii , ŝ

ai
i , s

Zi\ai
i

)
hi

(
s
a−i

−i |ŝ
ai
i , s

Zi\ai
i

)
,

∀saii , ∀s
a−i

−i (14)

The LP has a feasible solution iff every feasible solution to the dual satisfies

λ(ŝaii , s
ai
i , s

Zi\ai
i ) = 0 for all saii , for all ŝaii 6= saii , for all s

Zi\ai
i . Summing (14)

over s
a−i

−i we have

ν(saii ) ≡
∑
s
Zi\ai
i

∑
ŝ
ai
i 6=s

ai
i

λ
(
ŝaii , s

ai
i , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i 6=s

ai
i

λ
(
saii , ŝ

ai
i , s

Zi\ai
i

)
≥ 0, ∀saii

Let B be any large enough number so that B > ν(saii ) for all saii and select

any λ
(
saii , s

ai
i , s

Zi\ai
i

)
≥ 0 for each saii so that

∑
s
Zi\ai
i

λ
(
saii , s

ai
i , s

Zi\ai
i

)
= B − ν(saii ) > 0.

Then we have∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
ŝaii , s

ai
i , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
saii , ŝ

ai
i , s

Zi\ai
i

)
= B > 0

Then (14) is equivalent to∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
ŝaii , s

ai
i , s

Zi\ai
i

)
hi

(
s
a−i

−i |s
ai
i , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
saii , ŝ

ai
i , s

Zi\ai
i

)
hi

(
s
a−i

−i |ŝ
ai
i , s

Zi\ai
i

)
,

∀saii , ∀s
a−i

−i

which is (12). Without loss of generality, let B = 1 and the lemma follows. ut

Proof of Proposition 4: We just need to show that the assumption on Saii
for Proposition 4 implies Condition 1. Suppose that Saii can be ordered as
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assumed and that λ ≥ 0 satisfies (12) and (13). Then the following equation
holds for si (1) ∈ Saii :∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
ŝaii , si (1) , s

Zi\ai
i

)
hi

(
·|si (1) , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
si (1) , ŝaii , s

Zi\ai
i

)
hi

(
·|ŝaii , s

Zi\ai
i

)
(15)

We can define g
(
saii (1) , s

Zi\ai
i

)
and η > 0 so that the following equation is

satisfied for every s
Zi\ai
i :

g
(
si (1) , s

Zi\ai
i

)
+
∑
ŝ
ai
i
λ
(
ŝaii , si (1) , s

Zi\ai
i

)
η

= Pr
(
s̃
Zi\ai
i = s

Zi\ai
i |si (1)

)
Add

∑
s
Zi\ai
i

g
(
si (1) , s

Zi\ai
i

)
hi

(
·|si (1) , s

Zi\ai
i

)
to both sides of (15) as fol-

lows:

∑
s
Zi\ai
i

∑
ŝ
ai
i

λ
(
ŝaii , si (1) , s

Zi\ai
i

)
+ g

(
si (1) , s

Zi\ai
i

)hi

(
·|si (1) , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i 6=si(1)

λ
(
si (1) , ŝaii , s

Zi\ai
i

)
hi

(
·|ŝaii , s

Zi\ai
i

)
+
∑
s
Zi\ai
i

{
λ
(
si (1) , si (1) , s

Zi\ai
i

)
+ g

(
si (1) , s

Zi\ai
i

)}
hi

(
·|si (1) , s

Zi\ai
i

)
.

Divide both sides by η. Then we obtain∑
s
Zi\ai
i

Pr
(
s̃
Zi\ai
i = s

Zi\ai
i |si (1)

)
hi

(
·|si (1) , s

Zi\ai
i

)
= hi (·|si (1))

=
1

η

∑
s
Zi\ai
i

∑
ŝ
ai
i 6=si(1)

λ
(
si (1) , ŝaii , s

Zi\ai
i

)
hi

(
·|ŝaii , s

Zi\ai
i

)
+

1

η

∑
s
Zi\ai
i

{
λ
(
si (1) , si (1) , s

Zi\ai
i

)
+ g

(
si (1) , s

Zi\ai
i

)}
hi

(
·|si (1) , s

Zi\ai
i

)

Since si (1) is separated from Saii by assumption, this implies λ
(
si (1) , ŝaii , s

Zi\ai
i

)
=

0 for any ŝaii 6= si (1) and s
Zi\ai
i .

Note that
∑
s
Zi\ai
i

λ
(
si (1) , si (1) , s

Zi\ai
i

)
= 1 by (13). This in turn implies

λ
(
ŝaii , si (1) , s

Zi\ai
i

)
= 0 for any ŝaii 6= si (1) and s

Zi\ai
i by (13) again.

The rest of the proof is by induction. Suppose that for every r = 1, 2, ...,m,

λ
(
si (r) , ŝaii , s

Zi\ai
i

)
= λ

(
ŝaii , si (r) , s

Zi\ai
i

)
= 0 for any ŝaii 6= si (r) and
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s
Zi\ai
i by (13). For si (m+ 1) , we get∑
s
Zi\ai
i

∑
ŝ
ai
i ∈S

ai
i \{si(1),...,si(m)}

λ
(
ŝaii , si (m+ 1) , s

Zi\ai
i

)
hi

(
·|si (m+ 1) , s

Zi\ai
i

)
=
∑
s
Zi\ai
i

∑
ŝ
ai
i ∈S

ai
i \{si(1),...,si(m)}

λ
(
si (m+ 1) , ŝaii , s

Zi\ai
i

)
hi

(
·|ŝaii , s

Zi\ai
i

)

As in the first step, define g
(
si (m+ 1) , s

Zi\ai
i

)
and η > 0 that satisfies

g
(
si (m+ 1) , s

Zi\ai
i

)
+
∑
ŝ
ai
i ∈S

ai
i \{si(1),...,si(m)} λ

(
ŝaii , si (m+ 1) , s

Zi\ai
i

)
η

= Pr
(
s̃
Zi\ai
i = s

Zi\ai
i |si (m+ 1)

)
.

Since si (m+ 1) is separated from Saii \ {si (1) , ..., si (m)} , by exactly the same

argument, we have λ
(
si (m+ 1) , ŝaii , s

Zi\ai
i

)
= 0 for any ŝaii ∈ S

ai
i \ {si (1) , ..., si (m) , si (m+ 1)}

and s
Zi\ai
i . Thus,

∑
s
Zi\ai
i

λ
(
si (m+ 1) , si (m+ 1) , s

Zi\ai
i

)
= 1 and λ

(
ŝaii , si (m+ 1) , s

Zi\ai
i

)
=

0 for any ŝaii 6= si (m+ 1) and s
Zi\ai
i by (13). This proves the proposition. ut
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