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ual characteristics, has attracted increasing attention recently in many fields, such as education,
economics, and medicine. Current ODR methods usually require the primary outcome of interest
in samples for assessing treatment effects, namely the experimental sample. However, in many

Present Address
studies, treatments may have a long-term effect, and as such the primary outcome of interest can-

Department of Statistics, North Carolina State
University, Raleigh, NC 27695 not be observed in the experimental sample due to the limited duration of experiments, which
makes the estimation of ODR impossible. This paper is inspired to address this challenge by mak-
ing use of an auxiliary sample to facilitate the estimation of ODR in the experimental sample. We
propose an auGmented inverse propensity weighted Experimental and Auxiliary sample-based
decision Rule (GEAR) by maximizing the augmented inverse propensity weighted value estima-
tor over a class of decision rules using the experimental sample, with the primary outcome being
imputed based on the auxiliary sample. The asymptotic properties of the proposed GEAR estima-
tors and their associated value estimators are established. Simulation studies are conducted to

demonstrate its empirical validity with a real AIDS application.

KEYWORDS:
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1 | INTRODUCTION

Personalized optimal decision making, finding the optimal decision rule (ODR) based on individual characteristics to maximize the mean outcome
of interest, has attracted increasing attention recently in many fields. Examples include offering customized incentives to increase sales and level of
engagement in the area of economics (Turvey|2017), developing an individualized treatment rule for patients to optimize expected clinical outcomes
of interest in precision medicine (Chakraborty & Moodie|2013), and designing a personalized advertisement recommendation system to raise the
click rates in the area of marketing (Cho, Kim, & Kim|2002).

The general setup for finding the ODR contains three components in an experimental sample (from either randomized trials or observational
studies): the covariate information (X), the treatment information (A), and the outcome of interest (). However, current ODR methods cannot be
applied to cases where treatments have a long-term effect and the primary outcome of interest cannot be observed in the experimental sample. Take
the AIDS Clinical Trials Group Protocol 175 (ACTG 175) data (Hammer et al.|1996) as an example. The experiment randomly assigned HIV-infected
patients to competitive antiretroviral regimens, and recorded their CD4 count (cells/mm3) and CD8 count over time. A higher CD4 count usually
indicates a stronger immune system. However, due to the limitation of the follow-up, the clinical meaningful long-term outcome of interest for the
AIDS recovery may be missing for a proportion of patients. Similar problems are also considered in the evaluation of education programs, such as
the Student/Teacher Achievement Ratio (STAR) project (Chetty et al 2011} Word et al.|1990) that studied long-term impacts of early childhood

OAbbreviations: ACTG 175, AIDS Clinical Trials Group Protocol 175; AIPW, augmented inverse propensity weighted; Cl, confidence interval; GEAR, auG-
mented inverse propensity weighted Experimental and Auxiliary sample-based decision Rule; I.I.D., independent and identically distributed; ODR, optimal
decision rule
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education on the future income. Due to the heterogeneity in individual characteristics, one cannot find a unified best treatment for all subjects.
However, the effects of treatment on the long-term outcome of interest can not be evaluated using the experimental data solely. Hence, deriving an
ODR to maximize the expected long-term outcome based on baseline covariates obtained at an early stage is challenging.

This paper is inspired to address the challenge of developing ODR when the long-term outcome cannot be observed in the experimental sample.
Although the long-term outcome may not be observed in the experimental sample, we could instead obtain some intermediate outcomes (also
known as surrogacies or proximal outcomes, M) that are highly related to the long-term outcome after the treatment was given. For instance, the
CD4 and CD8 counts recorded after a treatment is assigned, have a strong correlation with the healthy of the immune system, and thus can be
viewed as intermediate outcomes. A natural question is whether an ODR to maximize the expected long-term outcome can be estimated based
on the experimental sample (that consists of {X, A, M}) only. The answer is generally no mainly for two reasons. First, it is common and usually
necessary to have multiple intermediate outcomes to characterize the effects of treatment on the long-term outcome. However, when there are
multiple intermediate outcomes, it is hard to determine which intermediate outcome or what combination of intermediate outcomes will lead to
the best ODR for the long-term outcome. Second, to derive the ODR that maximizes the expected long-term outcome of interest based on the
experimental sample, we need to know the relationship between the long-term outcome, intermediate outcomes and baseline covariates, which is
generally not practical.

In this work, we propose using an auxiliary data source, namely the auxiliary sample, to recover the missing long-term outcome of interest in the
experimental sample, based on the rich information of baseline covariates and intermediate outcomes. Auxiliary data, such as electronic medical
records or administrative records, are now widely accessible. These data usually contain rich information for covariates, intermediate outcomes,
and the long-term outcome of interest. However, since they are generally not collected for studying treatment effects, treatment information may
not be available in auxiliary data. In particular, in this work, we consider the situation that an auxiliary data consisting of {X, M, Y} is available,

where Y is the long-term outcome of interest. Note it is also impossible to derive ODR based on such auxiliary sample due to missing treatments.

1.1 | Related Works

Thereis ahuge literature on learning the ODR, including Q-learning (Qian & Murphy|2011; Watkins & Dayan|1992; |Y. Zhao, Kosorok, & Zeng 2009),
A-learning (Murphy|2003; |Robins, Hernan, & Brumback|2000; |Shi, Fan, Song, & Luj2018a), value search methods (Nie, Brunskill, & Wager|2020;
Wang, Zhou, Song, & Sherwood|2018; |B. Zhang, Tsiatis, Laber, & Davidian/2012/2013), outcome weighted learning (Y. Zhao, Zeng, Rush, & Kosorok
2012; |Y-Q. Zhao, Zeng, Laber, & Kosoroki2015; |Zhou, Mayer-Hamblett, Khan, & Kosoroki2017), targeted minimum loss-based estimator (van der|
Laan & Luedtke]2015), and decision list-based methods (Y. Zhang, Laber, Davidian, & Tsiatis'2018; |Y. Zhang, Laber, Tsiatis, & Davidian|2015). While
none of these methods could derive ODR from the experimental sample with unobserved long-term outcome of interest.

Our considered estimation of the ODR naturally falls in the framework of semi-supervised learning. A large number of semi-supervised learn-
ing methods have been proposed for the regression or classification problems (Chakrabortty, Cali, et al.[2018; |Chapelle, Scholkopf, & Zien|2009;
Chen, Hong, Tarozzi, et al.[2008; |Zhu|2005). Recently, Athey, Chetty, Imbens, and Kang|(2019) studied the estimation of the average treatment
effect under the framework of combining the experimental data with the auxiliary data. They proposed to use the surrogate index and clarified the
comparability and surrogacy assumptions, which allowed them to impute the missing outcomes in the experimental data based on the regression
model learned from the auxiliary data using baseline covariates and intermediate outcomes. However, as far as we know, no work has been done
for estimating the ODR in such a semi-supervised setting.

1.2 | Contributions

Our work contributes to the following folds. First, to the best of our knowledge, this is the first work on estimating the heterogeneous treatment
effect and developing the optimal decision making for the long-term outcome that cannot be observed in an experiment, by leveraging the idea
from semi-supervised learning and extending the framework of/Athey et al.[(2019). Methodologically, we propose an auGmented inverse propensity
weighted Experimental and Auxiliary sample-based decision Rule, named GEAR. This rule maximizes the augmented inverse propensity weighted
(AIPW) estimator of the value function over a class of interested decision rules using the experimental sample, with the primary outcome being
imputed based on the auxiliary sample. Theoretically, we show that the AIPW estimator under the proposed GEAR is consistent and derive its
corresponding asymptotic distribution under certain conditions. A confidence interval (Cl) for the estimated value is provided.

The rest of this paper is organized as follows. We introduce the statistical framework for estimating the optimal treatment decision rule using the
experimental sample and the auxiliary sample, and associated assumptions in Section[2] In Section[3] we propose our GEAR method and establish
consistency and asymptotic distributions of the estimated value functions under the proposed GEAR. Extensive simulations and sensitivity studies
are conducted to demonstrate the empirical validity of the proposed method in Section[4] followed by an application to ACTG 175 data in Section

We conclude our paper with a discussion in Section[é] The technical proofs are given in the supplementary article.
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2 | STATISTICAL FRAMEWORK

2.1 | Experimental Sample and Auxiliary Sample

Suppose there is an experimental sample of interest E. Let Xg denote r-dimensional individual’s baseline covariates with the support Xg € R', and
Ag € {0, 1} denote the treatment an individual receives. The long-term outcome of interest Yg with support Yg € R cannot be observed, instead
we only obtain the s-dimensional intermediate outcomes Mg with support Mg € R after a treatment Ag is assigned. Denote Ng as the sample size
for the experimental sample, which consists of {E; = (Xg,i, Ag,i, Mg,i),i = 1,...,Ng} independent and identically distributed (I.1.D.) across i.

To recover the missing long-term outcome of interest in the experimental sample, we include an auxiliary sample, U, which contains the individ-
ual’s baseline covariates X, intermediate outcomes My, and the observed long-term outcome of interest Y, with support Xy, My, Yy respectively.
However, treatment information is not available in the auxiliary sample. Let Ny denote the sample size for the I.I.D. auxiliary sample that includes
{Ui = Xu,i;Mu,i, Yu,i),i=1,...,Ny}.

We use R = {E, U} to indicate the missingness and identification of each sample, where R = E implies the experimental sample with miss-
ing long-term primary outcome and R = U means the auxiliary sample with missing treatment information. Thus, these two samples can also be

rewritten as one joint sample {(X;, R, Ailr,—g, M;, Yillr,—u),i = 1,...,Ng 4+ Ny}, where I(-) is an indicator function.

2.2 | Assumptions

In this subsection, we make five key assumptions in order to introduce the ODR. For the experimental sample, define the potential outcomes Y (0)
and Y{ (1) as the long-term outcome that would be observed after an individual receiving treatment O or 1, respectively. Let the propensity score as
the conditional probability of receiving treatment 1 in the experimental sample, i.e. 7(x) = Pre(Ag; = 1|Xg,; = x). As standard in causal inference
by|Rubin|(1978), we assume:

(A1). Stable Unit Treatment Value Assumption (SUTVA): YE = AEYE(1) + (1 — Ag)YE(0).

(A2). No Unmeasured Confounders Assumption: {Y£(0), Y£(1)} L Ag | Xg.

(A3).0 < m(x) < 1forallx € Xg.

To impute the missing long-term outcome in the experimental sample with the assistance of the auxiliary sample, we introduce the following two
assumptions, the comparability assumption and the surrogacy assumption.

First, the comparability assumption states that the population distribution of the long-term outcome of interest Y is independent of whether
belonging to the experimental sample or the auxiliary sample, given the information of population baseline covariates X and population intermedi-
ate outcomes M as follows.

(A4). Comparability Assumption: Y L R | X, M.

Here, (A4) is also known as ‘conditional independence assumption’ made in |Chen et al|(2008), and has an equivalent expression as Yg |
{Mg, Xg} ~ Yy | {My, Xy} proposed in/Athey et al.{(2019). When (A4) holds, we have a direct conclusion of the equality of the conditional mean
outcome given baseline covariates and intermediate outcomes in each sample, stated in the following corollary.

Corollary 2.1. (Equal Conditional Mean) Under (A4),
E[Yg|Me = m, Xg = x] = E[Yy|My = m, Xy = x]. (1
Remark 1. Itisshownin Sectionthat (A4) can be relaxed to Equation (1) for deriving the proposed method.

We further define the missing at random (MAR) assumption in the joint sample as: {Y, A} L R | X, M; and give the following corollary to show
the relationship between (A4) and the MAR assumption.

Corollary 2.2. (MAR Assumption)
{Y,A} LR|X,M — Y LR|X, M.

Remark 2. Corollary[2.2]is a direct result of joint independence implying marginal independence. Though (A4) is untestable due to the missing long-
term outcome in the experimental sample, one can believe (A4) holds if there exists strong evidence about the reasonability of the MAR assumption

in the joint sample.

Second, the surrogacy assumption states that the long-term outcome of interest in the experimental sample is independent of the treatment
conditional on a set of baseline covariates and intermediate outcomes as below.
(A5). Surrogacy Assumption: Yg L Ag | Xg, Mg.
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Remark 3. The above assumption is first proposed in|Athey et al.| (2019). The validation of the surrogacy assumption relies on the ‘richness’ of
intermediate outcomes that are highly related to the long-term outcome of interest. Similarly, it is infeasible to check the surrogacy assumption due
to the missing long-term outcome in the experimental sample.

We illustrate the statistical framework of the joint sample under above assumptions by a direct acyclic graph in Figure[T] Graphically, A and Y
have no common parents except for X, encoding (A2); R and Y have two common parents, X and M, encoding (A4); when fixing X and M, A and Y are
independent, encoding (A5).

2.3 | Value Function and Optimal Decision Rule

A decision rule is a deterministic function d(-) that maps Xg to {0, 1}. Define the potential outcome of interest under d(-) as Y£(d) = YE£(0){1 —
d(Xg)} + YE(1)d(Xg), which would be observed if a randomly chosen individual from the experimental sample had received a treatment according
tod(-), where we suppress the dependence of Y[ (d) on Xg. We then define the value function under d(-) as the expectation of the potential outcome

of interest over the experimental sample as
V(d) = E{Yg(d)} = E[Yg(0){1 — d(Xg)} + Yg(1)d(Xg)].

As a result, we have the optimal treatment decision rule (ODR) of interest defined to maximize the value function over the experimental sample
among a class of decision rules of interest as d°*(-) = argming.) V(d). Suppose the decision rule d(-) relies on a model parameter 3, denoted as
d(+) = d(-; B). We use a shorthand to write V(d) as V(3), and define §p = arg ming V(8). Thus, the value function under the true ODR d(:; fo) is
defined as V(Bo).

3 | PROPOSED METHOD

In this section, we detail the proposed method by constructing the AIPW value estimator for the long-term outcome based on two samples. Imple-
mentation details are provided to find the ODR. The consistency and asymptotical distribution of the value estimator under our proposed GEAR
are presented, followed by its confidence interval. We also provide the inverse propensity-score weighted value estimator and its related theories

in Appendix[A] All the proofs are provided in the supplementary article.

3.1 | AIPW Estimator for Long-Term Outcome

To overcome the difficulty of estimating the value function due to the missing long-term outcome of interest in the experimental sample, one
intuitive way is to impute the missing outcome Yg with its conditional mean outcome given baseline covariates and intermediate outcomes (total
common information available in both samples).

Denote pg(m,x) = E[Yg|Mg = m, Xg = x],and py(m, x) = E[Yy|My = m, Xy = x]. Under CoroIIary we have pg(m,x) = py(m,x). Here,
pne(m, x) is inestimable because of the missing long-term outcome. We instead use py (Mg, Xg) to impute the missing Yg and give the following

lemma as a middle step to construct the AIPW value estimator for the long-term outcome.

Lemma 1. Under (A1)-(A5), givend(-; 8), we have

I{Ae = d(Xg; 8) }uy (Mg, Xg)
Aem(Xg) + (1 — Ap){1 —7(Xg)} |

Next, we propose the AIPW estimator of the value function for the long-term outcome in the experimental sample. To address the difficulty

V(B)=E

of forming the augmented term when the long-term outcome of interest cannot be observed, we show that augmenting on the missing long-term

outcome is equivalent to augmenting on the imputed conditional mean outcome of interest 1y (Mg, Xg), by the following lemma.
Lemma 2. Under (A1)-(A5), givend(-; 8), we have
Evgixe {YelAE = d(Xg; 8), Xe} = Emg xe {10 (Mg, Xg)|Ae = d(Xg; 8), X},
where E5 g means taking expectation with respect to the conditional distribution of A given B.
According to Lemmaand Lemma given a decision rule d(+; 3), the value function V() can be consistently estimated through

Ng

* 1 , KAg; = d(Xg,;; B) Huu(Me i, Xei) — vt
Voare(9) N Z 5 Agim(Xe) + (1 — Ag {1l —n(Xe)} |

i=1
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where v; = E{uy (Mg, Xg,i)|Ag,i = d(Xg,i; 8), Xg,i} presents the augmented term. Here, the propensity score 7 can be estimated in the experi-
mental sample, denoted as 7, and the conditional mean py can be estimated in the auxiliary sample, denoted as fiy. Then, by replacing the implicit
functionsin V , 5 (8), itis straightforward to give the AIPW estimator of the value function V() as
N ~ ~
- I{Ae,i = d(Xg,i; B) HEu(Me,i, Xe,i) — B}

—~ 1 ~ =
Var(®) =3 P e e + (1~ Al - 70} |

where v, = IE{ﬁU(ME,i, Xg,)|Ag,i = d(Xg,i; 8), Xg,i} is the estimator for v;. We define EG = arg maxﬂvmp(ﬁ), and then propose the GEAR as
d(X; BG) with the corresponding estimated value function as \7A|p (EG).

3.2 | Implementation Details

3.2.1 | Class of Decision Rules

The GEAR can be searched within a pre-specified class of decision rules. Popular classes include generalized linear rules, fixed depth decision trees,
threshold rules, and so on (Athey & Wager|2017; |Rai|2018; |B. Zhang et al.[2012). In this paper, we focus on the class of generalized linear rules.
Specifically, suppose the decision rule takes a form as d(Xg; 8) = I{g(Xg) T 8 > 0}, where g(-) is an unknown function. We use ¢x (-) to denote
a set of basis functions of Xg with length v, which are “rich” enough to approximate the underlying function g(-). Thus, the GEAR is found within a
class of I{px (Xg) T 8 > 0}. For notational simplicity, we include 1in ¢x(-) so that 3 € R¥*1. With subject to ||3||» = 1 for identifiability purpose,
the maximizer for \7A|p (88) can be solved using any global optimization algorithm. In our implementation, we apply the heuristic algorithm to search
for the GEAR. The architecture of the proposed GEAR is illustrated in Figure[2]

3.2.2 | Estimation Models

The conditional mean of the long-term outcome ry (m, x) can be estimated through any parametric or nonparametric model. In practice, we assume
wy(m, x) can be determined by a flexible basis function of baseline covariates and intermediate outcomes, to fully capture the underlying true
model. Similarly, one can use a flexible basis function of baseline covariates and the treatment to model the augmented term as well as the propensity
score function. Note that any machine learning tools such as Random Forest or Deep Learning can be applied to model terms in the proposed AIPW
estimator. Our theoretical results still hold under these nonparametric models as long as the regressors have desired convergence rates (see results
established in|Farrell, Liang, and Misra|(2018); [Wager and Athey|(2018)).

3.2.3 | Estimation of the Augmented Term

To estimate the augmented term v;, we need three steps as follows.
Step 1. First, we model ny(m, x) through the auxiliary sample {Xy, My, Yy} as fiy (m, x).

Step 2. Second, we plug {Mg, Xg} of the experimental sample into iy (m, x) and get fiy (Mg, Xg) as the conditional mean outcome of interest to
impute the missing Yg.

Step 3. At last, we fit fiy (Mg, Xg) on {Ag, Xg} in the experimental sample, and get ;.

3.3 | Theoretical Properties

We next show the consistency and asymptotic normality of our proposed AIPW estimator. Its asymptotic variance can be decomposed into two
parts, corresponding to the estimation variances from two independent samples. As mentioned in Section[3.2] our AIPW estimator can handle
various machine learning or parametric estimators as long as regressors have desired convergence rates. To derive an explicit variance form, we
next focus on parametric models.

We posit parametric models for 7(x) = w(x;v) and py(m,x) = py(m,x; A) with true model parameters v and A. Let ¢x(X) and ¢ (M) to
represent appropriate basis functions for X and M, respectively. Without loss of generality, we posit basis model for the augmented term such that
E{uu(m,x; A\)|A = 0,X = x} = éx(x) T 0o, and E{puy (m, x; M)|A = 1, X = x} = éx(x) T 61 with true model parameters 6 and 6.

3.4 | Technical Conditions

The following conditions are needed to derive our theoretical results:

(A6). Suppose the density of covariates fx (x) is bounded away from O and co and is twice continuously differentiable with bounded derivatives.
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(A7). Both 7(x;v) and py (m, x; X) are smooth bounded functions, with their first derivatives exist and bounded.
(A8). Model for py(m, x; M) is correctly specified.

(A9). Denote t = /Ng/Ny and assume 0 < t < +-oco.

(A10). The true value function V() is twice continuously differentiable at a neighborhood of 3.

(A11). Either the model of the propensity score or the model of the augmented term is correctly specified.

Here, (A6) and (A10) are commonly imposed to establish the inference for value search methods (Wang et al.j2018; |B. Zhang et al.[2012). (A7)
is assumed for desired convergence rates of 7 and fiy. To apply machine learning tools, similar assumption is required (see more details in|Farrell
et al.|(2018); \Wager and Athey|(2018)). From (A8), we can replace the missing long-term outcome with its imputation, and thus the consistency
holds. Evaluations are provided in Section[4.2]to examine the proposed method when (A8) is violated. (A9) states that the sizes of two samples are
comparable, which prevents the asymptotic variance from blowing up when combining two samples in semi-supervised learning (Chakrabortty et
al.j2018; |Chen et al.[2008). (A11) is included to establish the doubly robustness of the value estimator, which is commonly used in the literature of
doubly robust estimator (Dudik, Langford, & Liil2011; |B. Zhang et al..2012/2013).

3.5 | Theoretical Results
The following theorem gives the consistency of our AIPW estimator of the value function to the true value function.
Theorem 3.1. (Consistency) Under (A1)-(A9) and (A11),

Vap(B8) = V(B) +op(1), V8.

Remark 4. When the model for py(m,x) is correctly specified, our AIPW estimator is doubly robust given either the model of the propensity
score or the model of the augmented term is correct. To prove the theorem, we establish the theoretical results with their proofs for the inverse

propensity-score weighted estimator as a middle step. See more details in Appendix[A]
To establish the asymptotic normality of \7A|p (BG), we first show the estimator BG has a cubic rate towards the true 3.
Lemma 3. Under (A1)-(A11), we have
N/ |15° — ol = O, (1), (2)
where || - ||2 is the L, norm, and O, (1) means the random variable is stochastically bounded.
Based on Lemma we next give the asymptotic normality of \/NT;{\A/A”: (BG) — V(ﬂo)} in the following theorem.
Theorem 3.2. (Asymptotic Distribution) Under (A1)-(A11),
VNE{Vap(B%) — V(Bo)} 25 N0, 03p), (3)

where 02, = tod + 02,07 = E[{{i(u)}Z], and o2 = IE[{ng)}Q]. Here, §i<E) and gi(u) are the L1.D. terms in the experimental sample and auxiliary

sample, respectively.

Remark 5. From Theorem|[3.2] the asymptotic variance of the AIPW estimator has an additive form that consists of the estimation error from each
sample. Proportion of these two estimation variances is controlled by the sample ratio. In reality, Ny is usually larger than Ng. When Ny /Ng — oo,
we have t — 0, and thus the estimation error from auxiliary sample can be ignored. Our result under this special case is supported by|Chakrabortty
et al.(2018) where they considered Ny /Ng — oo for a regression problem.

3.6 | Variance Estimation and Confidence Interval

Next, we give explicit form of gi(E) and §i(u) from the proof of Theoremto estimate oap. Denote 7(x;y) = dn(x;v)/0y and fiy(m,x; A) =
Opy(m,x; X)/OX. Let

) dx(Xu,) | . T

H; = lim (X i)™ (Xei; ,Hy=  lim — ’ Mu.i, Xuis A)
1 NE—>+ooNE § ox (Xe, )7 (Xe,i;v) |, Ha N oy 2= ¢M(|V|Ui) £u(My i, Xu,is A)

H3 = lim E (1 —Ae)ox(Xe,)px(Xe) T, Ha = lim E Ak idx (Xe)ox(Xe,) T

Ng —+oc0 N
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Ng . Ng
. 1 ri(1 —2Ag )7 (Xe i; v) U (Mg i, XE i; A) . 1 i .
G = lim — : : BB Go= lim — S D s (Me i, Xeis M),
! NELIEIrooNEE si2 2 NgiglooNggsi'uU( Ei Ei )
Ng . Ng
. 1 riqi(1 — 2Ag )7 (Xei; ) ) 1 ri
G = lim —S — ; B Go= lim S 1= Do (Xe {1 = d(Xei; Bo)),
3 NE—I{I‘}-OONE; .. ,Ga NE—I>H<|1—OONE§|: Si]¢x( e (X,i; Bo)}
1 Ne ri
Gs = lim — [177'] Xe )d(Xe.i; Bo),
5 NEir{lrooNEZ . éx (Xe,i)d(Xg,i; Bo)

i=1
wherer, = I{Ag; = d(Xg,i; B0) }si = Ae,im(Xe,i;7) + (1 — Ag){1 — 7(Xg,i;7)} and g = éx(Xe,i) T 6o + éx(Xe,i) T (61 — 60)d(XE,i; Bo)-
Then, the L.1.D. term in the experimental sample is

£® = ri{pu (Mg i, Xgi; A) — v}
&) =
si

+ 17 = V(Bo) + (G] + G3 )H; ox(Xe,){Aei — 7(Xg,i;7)}

+ Gy Hy M ox (Xe,)Ag,i{1u(ME,i, Xe i3 A) — dx(Xe,i) 01} + G H3 ' ox (Xe,) (1 — Agi) {10 (ME,i, Xe i3 A) — ox(Xe,i) T 6o},
for v* = E{puy(ME i, Xgi; A)|Ag,i = d(Xg,i; Bo), Xg,i }- And the LLD. term in the auxiliary sample corresponds to

éx(Xu,i)

V) — Tyt
¢V =GIH
2 oMMy i)

{Yu,i — pu(Muy i, Xy,i; M)}

By plugging the estimations into the pre-specified models, we could obtain the estimated E(E) and a(u). Then the variance a% and ‘76 can be
. . IR — Ng (2 (E) N - Ny ;£ (V)
consistently estimated by 52 = N; ' SO0 {& Y2 and 63 = Ny ' S, {&

TAP = ,/taﬁ+&§, (4)

based on Theorem[3.2] Therefore, a two-sided 1 — & confidence interval (Cl) for V(8;) under the GEAR is

12, respectively. Thus, we can estimate oap through

[VAIP(EG) - 2(1/2%, Vair(B°) + 20/2%]7 (5)

where z,, /, denotes the upper a/2—th quantile of a standard normal distribution.

4 | SIMULATION STUDIES

In this section, we evaluate the proposed method when the model of the conditional mean of the long-term outcome is correctly specified and
misspecified in Section[4.3]and Section[4.2] respectively. Additional sensitivity studies of the assumption violation are provided in Section[4.3]

4.1 | Evaluation under Correctly Specified Model

Simulated data, including baseline covariates X = [X(1),X® ... X)]T the treatment A, intermediate outcomes M = [M(1) M@ ... ME]T,
and the long-term outcome Y, are generated from the following model:

XD x@ ... X0 yniform[~1,1], A X Bernoulli(0.5),

M = HM(X) + ACMX) + M, Y = HY(X) + CV(X,M) + €,
where eM and " are random errors following N(0, 0.5). Here, A in the auxiliary sample is used only for generating intermediate outcomes such that
the comparability assumption is satisfied. Note that Y is generated for the auxiliary sample only. Given X and M, we can see Y is independent of A,

which indicates the surrogacy assumption.
Setr = 4ands = 2. We consider following two scenarios with different HM(.), CM(-), HY (), and CY (-).

112X B3) 4 ginfX®
HM (X) = {XW}2XE) + sin{X(*} ’
{x(l)}3 _ {x(2) —_X® 12
S2: 244xX1) — x(©@)
e = | I,
4{x(4) _ x(3)}

HY(X) = =14+ X®@ £ X® cY(X,M) = MO 4 M®),

HM(X) =

)

X3) Mx 4{)((1) _ x(2)}
X (1) T a{x@® —x®3}|’
HY(X) = =14+ X®@ £ X® cY(X,M) = MO 4 M®).

S1:

Under Scenario 1 and 2, we have the parameter of the true ODR as 3y = [0,0.5, —0.5, —0.5,0.5] T with subject to ||8o||2 = 1, which can be
easily solved based on the function CM(-) that describes the treatment-covariates interaction. The true value V() can be calculated by Monte
Carlo approximations, as listed in Table We consider Ny = 400 for the auxiliary sample and allow Ng chosen from the set {200, 400, 800} in the

experimental sample.
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To apply the GEAR, we model the conditional mean outcome py(m, x) and the augmented term v; in the auxiliary data via a linear regression.
Here, the model of py(m, x) is correctly specified by noting that Y is linear in {X, M} under Scenario 1 and 2. The GEAR is searched within a class
of d(Xg; B) = ]I(XEB > 0) subjecting to ||8]|2 = 1, through Genetic Algorithm provided in R package rgenound, where we set ‘optim.method’ =
‘Nelder-Mead', ‘pop.size’ = 3000, ‘domain’=[-10,10], and ‘starting.values’ as a zero vector. Results are summarized in TabIe including the estimated
value under the estimated rule \A/A|p(§G) and its standard error SE{\7A|p}, the estimated standard deviation E{cajp} by Equation , the value
under the estimated rule V(BG) by plugging the GEAR into the true model, the empirical coverage probabilities (CP) for 95% CI constructed by
Equation , the rate of the correct decision (RCD) made by the GEAR, and the L5 loss of 3¢ (] \EG — Bol|2), aggregated over 500 simulations.

From Table[T] it is clear that both the estimated GEAR and its estimated value approach to the true as the sample size Ng increases in all scenarios.
Specifically, our proposed GEAR method achieves V(35) = 0.86 in Scenario 1 (V(8y) = 0.87) and V(B%) = 0.19in Scenario 2 (V(8y) = 0.20) when

Ng = 800. Notice that the ¢, loss of BG decays at arate that is approximately proportional to NE1/3

,which verifies our theoretical findings in Lemma
[3] Moreover, the average rate of the correct decision made by the GEAR increases with Ng increasing. In addition, there are two findings that help
to verify Theorem[3.2] First, the estimated standard deviation of value function is close to the standard error of the estimated value function, and
gets smaller as the sample size Ng increases. Second, the empirical coverage probabilities of the proposed 95% Cl approach to the nominal level in

all settings. Note that there is no strictly increasing trend of the empirical coverage probabilities due to the fixed sample size Ny = 400.

4.2 | Evaluation under Model Misspecification

We consider more general settings to examine the proposed method when the model of 1y (m, x) is misspecified. The data is generated from the

{ HM (x) = {xm] M) — [4{x<1) _ x<2)}} ’

same model in Section[4.T]We fix

X(1) 4{)((4) _ x(3)}
and set following three scenarios with different HY (-) and CY (-).
HY(X) = {X® 4+ x@)}{x1)}2
S3: +sin{X®} — {X® _x*®}2 sS4
X, M) =MD L M@,

HY(X) = (X} + {X@32 4+ X, [ HY(X) =X - {X®}2,
Y (X, M) = MO £ XHBMEP), CY(X,M) = 0.25{M®) — x(3)}2 1 M®).

Under Scenario 3, we have the true ODR s still linear while the true ODRs for Scenario 4 and 5 are non-linear due to their CY (-) involving covariates-
surrogacy interaction. Tablelists the true value V(8y) for each scenario.

We apply the proposed GEAR with the tensor-product B-splines for Scenario 3-5, respectively. Specifically, we first model py(m, x) with the
tensor-product B-splines of { Xy, My } in the auxiliary sample. The degree and knots for the B-splines are selected based on five-fold cross validation
to minimize the least square error of the linear regression. Then, we search the GEAR within the class of I{¢x(Xg) " 3 > 0}, where ¢x(-) is the
polynomial basis with degree=2. Here, the augmented term is fitted by a linear regression of ziy (Mg, Xg) on {Ag, ¢x(Xg)}. We name the above
procedure as ‘GEAR-Bspline’. For comparison, we also apply the linear procedure described in Section}4.1]as ‘GEAR-linear’ without taking any basis.
One may note both procedures model 1y (m, x) incorrectly. Reported in Tableare the empirical results under GEAR-Bspline and GEAR-linear
aggregated over 500 simulations.

It can be seen from Table[2]that the GEAR-Bspline procedure performs reasonably better than the linear procedure under non-linear decision
rules. Specifically, in Scenario 3 with only the baseline function HY (-) non-linear in X, GEAR-linear performs comparable to GEAR-Bspline, as the
linear model can well approximate the non-linear baseline function. In Scenario 4 and 5 with more complex non-linear function CY (-), GEAR-Bspline
outperforms GEAR-linear in terms of smaller bias and higher empirical coverage probabilities of the 95% CI. For example, GEAR-Bspline achieves
V(BG) = 2.43in Scenario 4 (V(By) = 2.59) with coverage probability 92.0% and V(BG) = 2.77 in Scenario 5 (V(8p) = 3.03) with coverage
probability 92.4% when Ng = Ny, while GEAR-linear can hardly maintain an empirical coverage probability over one third in Scenario 5 due to the
severe model misspecification. Note that because of the interaction between X and M in CY(-), the model assumption is still mildly violated even

applying the GEAR-Bspline method. Thus, the empirical coverage probabilities of the 95% Cl decreases as the sample size Ng increases.

4.3 | Sensitivity Studies

In this section, we investigate the finite sample performance of the proposed GEAR when the surrogacy assumption is violated in different extent,
i.e. part of the information related to the long-term outcome cannot be collected or captured through intermediate outcomes. We consider the
following Scenario 6 withr = 2ands = 2.
0 —0.5+0.4X(1) — 0.6X2
e = |
X(1)

JHY(X) = X@) V(X M) = MO - M),
0.5+ 0.6X() — 0.4X(® ) (X, M)

S6:{HM(X):
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where the true parameter of the ODR is By = [0,1/v/2,—1/+/2]T with the true value 0.333. We use the following Mf,lz as one contaminated
intermediate outcome we collected instead of the original M%) as M,(,iz =M@ 4 A1 — 1){=0.5 + 0.4X(D}, where the parameter | chosen from
{0,0.2,0.4,0.6,0.8, 1} reflects the uncollected information related to the long-term outcome. When | = 1, we have the information of intermediate
outcomes is fully collected. However, under | € {0,0.2,0.4, 0.6, 0.8}, the surrogacy assumption cannot hold anymore, since the long-term outcome
is still dependent on the treatment given the information of M and X.

Following the same estimation procedure as described in Section we summarize the simulation results over 500 replications in Table[3]for
| = {0,0.4,0.8}. Figureand Figureshow how the bias of V(EG) towards the true value and the average rate of the correct decision made by
the GEAR change as the parameter | (that indicates the uncollected information of intermediate outcomes) changes, respectively. Based on the
results, our proposed method still has a reasonable performance when the surrogacy assumption is mildly violated. Specifically, the proposed GEAR
achieves V(BG) = 0.314in Scenario 6 (V(By) = 0.333) with an empirical coverage probability as 90.8% under | = 0.8 and Ng = 800. In addition, it is
clear that including more intermediate outcomes that are highly correlated to the long-term outcome, could help to explain the treatment effect on
the long-term outcome according to Figure[3Jand Figure[d] Similarly, to conduct sensitivity analysis when the comparability assumption is violated,
we consider the settings in Scenarios 1 and 2 but with CY (X, M) = M 4 0.8M® for the auxiliary sample. The results are summarized in Table

5 | REAL DATA ANALYSIS

In this section, we illustrate our proposed method by application to the AIDS Clinical Trials Group Protocol 175 (ACTG 175) data. There are 1046
HIV-infected subjects enrolled in ACTG 175, who were randomized to two competitive antiretroviral regimens in equal proportions (Hammer et al.
1996): zidovudine (ZDV) + zalcitabine (ddC), and ZDV+didanosine (ddl). Denote ‘ZDV+ddC’ as treatment O, versus ‘ZDV+dd|’ as treatment 1. Here,
since the long-term AIDS recovery is not recorded in the dataset, we use the mean CD4 count (cells/mm3) at 96 + 5 weeks as the long-term outcome
of interest (Y). A higher CD4 count usually indicates a stronger immune system. However, about one-third of the patients who received treatment O
or 1 have a missing long-term outcome, which forms the experimental sample of interest. Due to the limited availability of AIDS electronic medical
records data, in this paper we use the rest complete dataset in ACTG 175 as the auxiliary sample by ignoring its treatment information to just
demonstrate our method.

To be specific, in the experimental sample (Ng = 376), 187 patients were assigned to treatment O and 189 patients to treatment 1. The propen-
sity score function is estimated through a logistic regression in the experimental sample. The auxiliary sample consists of Ny = 670 subjects with
observed long-term outcome. We consider r = 12 baseline covariates used in (Tsiatis, Davidian, Zhang, & Lu[2008): 1) four continuous variables: age
(years), weight (kg), CD4 count (cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline; 2) eight categorical variables: hemophilia, homosex-
ual activity, history of intravenous drug use, Karnofsky score (scale of 0-100), race (O=white, 1=non-white), gender (O=female), antiretroviral history
(O=naive, 1=experienced), and symptomatic status (O=asymptomatic). Intermediate outcomes contain CD4 count at 20 + 5 weeks and CD8 count
at 20 + 5 weeks. It can be shown in the auxiliary data that intermediate outcomes are highly related to the long-term outcome via alinear regression
of Yy on {Xy, My }. We apply our proposed ‘GEAR-linear’ and ‘GEAR-Bspline’ described in Sectionto the ACTG 175 data, respectively. Here, to
avoid the curse of high dimensionality, we only take the polynomial basis on the continuous variables with degree as 2. Reported in Table[5]are the
estimated mean outcome for each treatment as \7A|p (0)and \7A|p(1), the estimated value \7A|p(§G) with its estimated standard deviation Gap, the
95% Cl for the estimated value, and the number of assignments for each treatment.

It is clear that the proposed GEAR estimation procedure with the B-spline performs reasonably better than the linear procedure. Next, we focus
on the results obtained from the GEAR-Bspline method in the experimental sample of interest. Our proposed GEAR-Bspline method achieves a
value of 344.2 with a smaller standard deviation as 9.9 comparing to GEAR-linear (10.1) in the experimental sample. The GEAR with B-spline assigns
187 patients to ‘ZDV+dd!’ and 189 patients to ‘ZDV+ddC’, which is consistent with the competitive nature of these two treatments.

6 | DISCUSSION

In this paper, we proposed a new personalized optimal decision policy when the long-term outcome of interest cannot be observed. Theoretically,
we gave the cubic convergence rate of our proposed GEAR, and derived the consistency and asymptotical distributions of the value function under
the GEAR. Empirically, we validated our method, and examined the sensitivity of our proposed GEAR when the model is misspecified or when
assumptions are violated. There are several other possible extensions we may consider in future work. First, we only consider two treatment options
in this paper, while in applications it is common to have more than two options for decision making. Thus, a more general method with multiple
treatments or even continuous decision marking is desirable. Second, we can extend our work to dynamic decision making, where the ultimate

outcome of interest cannot be observed in the experimental sample but can be found in some auxiliary dataset.
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FIGURE 1 A direct acyclic graph illustrating assumptions (A2), (A4), and (A5) in the joint sample. White nodes represent observed variables, and

grey nodes are variables with missing values.
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FIGURE 2 The architecture of the GEAR.
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TABLE 1 Empirical results under the GEAR for Scenario 1 and 2.

Scenario 1 ‘ Scenario 2
Ng = 200 400 800 ‘ 200 400 800
V(5o) 0.87 | 0.20

Vap(B® 089 089 088 \ 024 024 022

SE{Vap} 002 001 001|002 001 001

E{Gap} 002 001 001 \ 002 001 001

V(B%) 085 086 086 ‘ 0.18 0.18 0.19

CP (%) 94.6 948 948 ‘ 95.0 944 948

RCD(%) 959 966 973|950 958 967

IS~ Boll. 042 009 007 | 0.14 011 009

TABLE 2 Empirical results under the GEAR for Scenario 3-5.

GEAR-Linear ‘ GEAR-Bspline
Ng = 200 400 800 ‘ 200 400 800
s3 V() = 120 |

Vap(B®) 125 122 122 \ 126 123 122

SE{Vap} 002 001 001 \ 002 001 001

E{ap} 002 001 001 ] 002 001 001

V(B°) 118 119 119 | 116 118 118

CP (%) 952 960 926 | 940 954 944

S4 V(go) = 259 |

Vap(B®) 237 234 234 \ 255 251 249

SE{Vap} 002 001 001|002 001 001

E{Gap} 002 001 001 \ 002 001 001

V(BS) 232 232 233|241 243 244

CP (%) 77.6 662 552 ‘ 94.6 920 90.0

S5 V() = 303 |

Vap(B®) 244 240 240 \ 300 297 293

SE{Vap} 002 001 001 \ 002 001 001

E{ap} 002 001 001 ] 002 001 001

V(B°) 230 232 232|272 277 279

CP (%) 31.6 174 118 ‘ 960 924 878
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TABLE 3 Empirical results under the GEAR for Scenario 6 when | = {0, 0.4, 0.8}. Note the true value is 0.333.

=0 | | =0.4 | =08
Ne=200 400 800 | Ng=200 400 0 | Ne=200 400 800
Vair (3%) 0546 0494 0470 | 0505 0472 0434 | 0470 0434 0401
SE{Vaip) 0154 0113 0091 | 0156 0113 0086 | 0156 0118 0088
E{Gap} 0158 0118 0092 | 0160 0120 0093 | 0162 0121 0093
V(B 0265 0276 0284 | 0285 0296 0298 | 0293 0306 0314
CP (%) 738 728 694 | 824 818 818 | 866 866  90.8
RCD (%) 79.5 802 815 | 830 849 852 | 847 870 893
I35~ Boll. 0457 0413 0371 | 0388 0322 0306 | 0358 0288 0232

0.20-

Bias

0.10-

°
®
B

Probability of the correct decision
2
8
&

0.850-

0.800-

025 050
Parameter |

Parameter |

1.00

Size
NE=200
— NE=400
NE=800

Size
NE=200

— NE=400
NE=800

FIGURE 3 The trend of the bias of V(EG) under the GEAR over the parameter |.

FIGURE 4 The trend of the average rate of the correct decision made by the GEAR over the parameter .
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TABLE 4 Empirical results under the GEAR when (A4) is violated.

S1withCY = MM 4 0.8M®@) \ S2with €Y = M@ 4 0.8M®@

Ng =200 400 800 \ NE =200 400 800

V(8o) 0.87 | 0.20
Var(B9) 0.71 0.71 0.71 \ 0.19 0.19 0.18
SE{Vap} 0.02 001 001 \ 0.02 0.01 0.01
E{Gap} 0.02 0.01 0.01 \ 0.02 0.01 0.01
V(B) 068 068 068 | 014 015 015
CP (%) 88.2 818 62.8 \ 94.4 94.2 93.0
RCD (%) 94.5 95.2 95.5 \ 93.9 94.8 95.2

TABLE 5 Comparison results for ACTG 175 data.

Linear B-spline
Vaip(0) 327.8 325.7
Vap(1) 333.6 3284
Vap(B%)[SD] 351.4[10.1] 344.2(9.9]
95% Clfor Vap(B°)  (331.7,371.1)  (324.7,363.8)
Assign to ‘ZDV+ddC’ 145 189
Assign to ‘ZDV+ddl’ 231 187

How to cite this article: Cai H, Lu W, and Song R (2021), GEAR: On Optimal Decision Making with Auxiliary Data, Stat., 202 1;xx:x-X.

APPENDIX

A INVERSE PROPENSITY-SCORE WEIGHTED ESTIMATOR

In this appendix section, we provide the inverse propensity-score weighted (IPW) value estimator and its related theories as a middle step. All the

proofs are provided in the supplementary article.

A.1IPW Estimator for the Long-term Outcome

According to Lemmaand the law of large number, the value function V(3) can be consistently estimated by

I{Ag,; = d(Xgi; 8) }uu(ME i, Xg i)

Vn(/B) =

1

Ne & Aeim(Xe,) + (1 — Agi){1 — 7(Xe,)}

We posit parametric models for w(x) = 7 (x;y) and py(m, x) = py(m, x; A) with the true model parameter v and A, respectively. Then the above

Vi () can be rewritten as the model-based form,

Vi(B) =

H{Ag ;i = d(Xg,i; B) tuu (ME i, Xg i3 A)

>

Eiz1

Agim(Xg,i;7) + (1 — Ap){l — 7(Xg,i;7)}

where 7(x; v) can be estimated in the experimental sample, denoted as 7(x; ¥), and py(m, x; A) can be estimated in the auxiliary sample, denoted

as py(m,x; X). Then, by replacing the implicit functions in VX (3) with their parametric estimators, it is straightforward to give the following IPW
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estimator for the value function V(53),

\7(6) = L % HAe; = d(XE»ivﬁ)}MU(ME,i,XE,i;X)

' Al
Ne = Agim(Xei37) + (1 = Agi){l — 7(Xgi;79) } (A1)

Define E = arg max\7(,8) with subject to || 8||2 = 1 for identifiability purpose, with the corresponding estimated value function \A/(B).
B

A.2 Theoretical Results of the IPW Estimator

First, we establish some theoretical results for the IPW estimator as a middle step to prove the results for the AIPW estimator. Here, we use ¢x (X)
and ¢u (M) to represent appropriate basis functions for X and M, respectively. The following theorem gives the consistency result of our IPW

estimator for the value function to the true.
Theorem A.1. (Consistency) When (A1)-(A9) and (A11) hold, given V3, we have
V(8) = V(B) +0p(1).

Next, we establish the asymptotic normality of \/NE{V(B\) — V(Bo)} through the following lemma that states the estimator E has a cubic rate

towards the true 3g.
Lemma4. Under (A1)-(A11), we have
NE/3||8 — Boll2 = Op(1), (A2)
where || - ||2 is the L, norm.
We next show the asymptotic distribution of \A/(E) as follows.

Theorem A.2. (Asymptotic Distribution) When (A1)-(A11) are satisfied, we have

VNe{V(B) = V(Bo)} = N(O, foy), (A3)
where o7, = to3 + 02 ,and of) = E[{¢/}?and 02, = E[{£/""}?].
X .
Here, gi(U) = G, H;! jXEMU,I)) {Yu,i — pu(Muy i, Xy,i; )} is the L.LD. term in the auxiliary sample, and §i<E’|> = G/ HT hox (Xe ) {Ag; —
m(Mu;i

7(Xe,i;7)} + {AeimXei;v) + (1 — Ae){1 — 7(Xg,i;7)}} 1 Ag;i = d(Xgi; Bo) tru (Me i, Xgis A) — V(Bo) is the LLD. term in the experimental
sample.
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