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ABSTRACT OF THE DISSERTATION

On the representation and boundary behavior of certain classes of holomorphic
functions in several variables

by

Ryan Keddie Tully-Doyle

Doctor of Philosophy in Mathematics

University of California, San Diego, 2015

Professor Jim Agler, Chair

This dissertation concerns the investigation of function theoretic properties of

certain classes of holomorphic functions in two or more variables by means of operator

theoretic methods. Of primary concern will be the Schur class, the class of holomorphic

functions from the complex polydisk into the complex unit disk, and the Pick class, the

class of holomorphic functions from the complex poly-upperhalfplane into the complex

upperhalfplane.

In more than two variables, our results will concern certain large subclasses

of these functions that satisfy an operator-theoretic condition analogous to a classical

x



inequality of functions of one variable due to von Neumann [vN51]. These subclasses

are typically referred to as the Schur-Agler subclass of the Schur functions (introduced in

[Agl90]), and the Löwner subclass of the Pick functions (introduced in [AMY12b]). (In

one or two variables, these subclasses coincide with the whole class.) These functions

are amenable to investigation by means of an operator-theoretic construct called a Hilbert

space model, introduced in [Agl90], which relates operator theoretic properties with

function theoretic behavior. Hilbert space models are associated with and closely related

to the notion of a transfer function realization from engineering and control theory

[Hel87].

In Chapter 2, we describe a generalization of Hilbert space models for Schur

functions on the bidisk that is well-suited to the investigation of boundary behavior of

a function at a class of singular points for the function on the 2-torus. We prove that

generalized models with certain regularity properties exist at these singularities. We then

solve two function theoretic problems. First, we characterize the directional derivatives of

a function in the Schur class at a singular point on the torus where a Carathéodory condi-

tion holds (following the generalization of the Julia-Carathédory theorem in [AMY12a]).

Second, we develop a representation theorem for functions in the two-variable Pick

class analogous to the Nevanlinna representation theorem characterizing the Cauchy

transforms of positive measures on the real line.

In Chapter 3, we investigate more closely the structure of the generalized Hilbert

space model. We characterize the directional derivatives in terms of a rational function

depending on the structure of a positive contraction associated with a generalized model

of a given Schur function. We describe classes of generalized models corresponding to

different classes of singular points in the boundary for a Schur function in two variables.

In Chapter 4, we generalize to several variables the Nevanlinna representation

first investigated in Chapter 2. We show that for the Löwner class, there are representation

xi



formulae in terms of densely-defined self-adjoint operators on a Hilbert space that classify

completely the Löwner class. We identify four types of such representations, and we

obtain function-theoretic conditions that are necessary and sufficient for a given function

to possess a representation of each of the four types.

xii



Chapter 1

Introduction

1.1 Background

In the early 20th century, mathematicians such as K. Kraus, R. Nevanlinna, C.

Carathéodory, G. Pick, and G. Herglotz for example, investigated classes of holomorphic

functions by means of a set of tools that exploited the connection between function theory

and integral representations (see e.g. [Kra36, Nev22, Car29, Pic16, Her11]). The ability

to cast function theoretic questions in the language of measure theory provided deep

insights into the nature of a number of important classes of functions in one variable,

as well as opening the door to investigating functions on matrices. The modern history

of this approach, in terms of operators, goes back to von Neumann, Korányi, Sz.-Nagy,

and Sarason (e.g. [vN51, Sar67, Kor61, Sar67]). Operator theoretic methods led to

extensions of classical results to several variables, as, for example, in the work of Taylor,

Putinar, Agler, Douglas, Paulsen, and Curto (e.g. [Tay70b, Tay70a, Put83, Agl90]).

In a preprint from the late 1980s and a paper of 1990, J. Agler introduced a

methodology of operator theoretic representation of holomorphic functions that proved

well-suited to the generalization of classical one variable theorems from complex analysis

1
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[Agl, Agl90]. Exploiting analogues of classical integral representations, of which there

are myriad examples for classical families of holomorphic functions, Agler’s method

involves the representation of functions in terms of operators on Hilbert spaces, essentially

using the transfer function realization of control theory to build operator theoretic models

that contain geometric encodings of function theoretic data.

This dissertation will use Hilbert space methods to refine an operator theoretic

model for functions that take the several variable analogue of the unit disk into itself.

With these tools, we will investigate function theoretic properties, in particular differential

structure at the distinguished boundary. We will also generalize a classical one variable

integral representation due to Nevanlinna to several variables and use it to establish

function theoretically determined classes of functions that take the several variable

analogue of the upper half-plane into itself.

1.2 The classical Julia-Carathéodory theorem

The Schur class is the set of analytic functions ϕ that map the complex unit disk

D into itself. Say that a Schur function ϕ satisfies the Carathédory condition at a point τ

in the unit circle T if

liminf
λ→τ

1−|ϕ(λ)|
1−|λ|

< ∞. (1.2.1)

A classical theorem of Julia and Carathédory [Jul20, Car29] relates this regularity condi-

tion at a boundary point τ in the circle to function theoretic properties of ϕ at τ.

For a set S ⊂ D and τ ∈ D−, say that S approaches τ nontangentially if τ ∈ S−

and there exists a constant c > 0 so that for all λ ∈ S,

|τ−λ| ≤ c(1−|λ|).
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A sequence {λn} tends to τ nontangentially if the set {λn : n≥ 1} approaches τ nontan-

gentially.

Theorem 1.2.1 (Julia, Carathéodory). Let ϕ : D→ D be holomorphic and nonconstant.

Let τ ∈ T. The following are equivalent.

1. There exists a sequence {λn} ⊂ D tending to τ such that

1−|ϕ(λn)|
1−|λn|

(1.2.2)

is bounded.

2. for every sequence {λn} tending to τ nontangentially, the quotient (1.2.2) is

bounded.

3. the nontangential limit

ω := lim
λ

nt→τ

ϕ(λ)

and the angular derivative

ϕ
′(τ) := lim

λ
nt→τ

ϕ(λ)−ω

λ− τ

exist.

4. There exist ω ∈ T and η ∈ C such that ϕ(λ)→ ω and ϕ′(λ)→ η as λ
nt→ τ.

1.3 Carapoints

C. Carathéodory in [Car29] proved that if a function ϕ in the one-variable Schur

class satisfies

liminf
λ→τ

1−|ϕ(λ)|
1−|λ|

< ∞ (1.3.1)
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for some τ ∈ T then not only does ϕ have a nontangential limit at τ, but it also has an

angular derivative ϕ′(τ) at τ, and ϕ′(λ)→ ϕ′(τ) as λ tends nontangentially to τ in D.

Here nontangential limits are defined as follows. For any domain U and for τ in the

topological boundary ∂U of U we say that a set S⊂U approaches τ nontangentially if

τ ∈ S−, the closure of S, and

{
‖λ− τ‖

dist(λ,∂U)
: λ ∈ S

}
is bounded.

We say that a function ϕ on U has nontangential limit ` at τ, in symbols

lim
λ

nt→τ

ϕ(λ) = `,

if

lim
λ→τ

λ∈S

ϕ(λ) = `

for every set S⊂U that approaches τ nontangentially.

Carathéodory’s result has been generalized by several authors, notably by K.

Włodarczyk [Wlo87], W. Rudin [Rud80], F. Jafari [Jaf93], M. Abate [Aba98] and two

of us with J. E. McCarthy [AMY12a]. Carathéodory’s condition (1.3.1) generalizes

naturally to holomorphic maps ϕ : U → V for any pair of bounded domains U,V in

complex Euclidean spaces of finite dimensions.

Definition 1.3.1. For any τ in ∂U we say that ϕ satisfies the Carathéodory condition at τ,

or that τ is a carapoint for ϕ, if

liminf
λ→τ

λ∈U

dist(ϕ(λ),∂V )

dist(λ,∂U)
< ∞. (1.3.2)
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In particular, when U = Dd,V = D and ϕ ∈ Sd , τ is a carapoint for ϕ if

liminf
λ→τ

1−|ϕ(λ)|
1−‖λ‖∞

< ∞.

Likewise, if ϕ is a contractive operator-valued analytic function on Dd , τ ∈ Td is a

carapoint for ϕ if

liminf
λ→τ

1−‖ϕ(λ)‖
1−‖λ‖∞

< ∞.

Of course any point in Td at which ϕ is analytic is a carapoint for ϕ, but we are

concerned here with singular carapoints. We say that an analytic function ϕ on a domain

U is singular at a point τ ∈ ∂U if there is no neighborhood W of τ such that ϕ extends to

an analytic function on U ∪W .

Not all the conclusions of Carathéodory’s Theorem hold even for S2. However

it is true for all the cases considered in this dissertation that if τ ∈ ∂U is a carapoint for

ϕ : U →V then ϕ has a nontangential limit at τ [Wlo87]. This limit will be denoted by

ϕ(τ); it is obvious that ϕ(τ) ∈ ∂V .

1.4 Models and realizations

A primary tool that can be used to study the boundary behavior of functions in S2

is the notion of a Hilbert space model.

Definition 1.4.1. Let ϕ ∈ S2. A pair (M ,u) is a model for ϕ if M = M1⊕M2 is an

orthogonally decomposed separable Hilbert space and u : D2→M is an analytic map

such that

1−ϕ(µ)ϕ(λ) =
〈
(1−µ∗λ)uλ,uµ

〉
(1.4.1)
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holds for every λ,µ ∈ D2, where uλ = u(λ) and λ is the operator

λ = λ
1PM1

+λ
2PM2

.

Every function in S2 has a model [Agl90, AM02]. A lurking isometry argument

on the model equation (1.4.1) gives rise to the following related operator theoretic

construct.

Theorem 1.4.2. If (M ,u) is a model of ϕ ∈ S2, then there exist a ∈ C, vectors β,γ ∈M ,

and a linear operator D : M →M such that the operator

 a 1⊗β

γ⊗1 D


is a contraction on C⊕M , and, for all λ ∈ D2,

(1−Dλ)uλ = γ,

ϕ(λ) = a+ 〈λuλ,β〉 .

In this case, we can write

ϕ(λ) = a+
〈
λ(1−Dλ)−1

γ,β
〉
.

The 4-tuple (a,β,γ,D) is called a realization of a model of ϕ.
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1.5 Connections between operator- and function-theoretic

properties

Hilbert space models and realizations have great utility in the analysis of boundary

behavior of functions in the Schur class because they encode function theoretic data

in the geometrical structure of the model. Two particularly important characteristics

of models are boundedness and continuity of the model function uλ, captured in the

followed definition.

Definition 1.5.1. For a given function ϕ ∈ S2, a point τ ∈ Dd is a B-point of the model

if u is bounded on every subset of Dd that approaches τ nontangentially. The point τ is

a C-point of the model if, for every subset S of Dd that approaches τ nontangentially, u

extends continuously so S∪{τ} (with respect to the norm topology on M ).

In practice, one merely needs to check a single set of nontangential approach

[AMY12a].

For a function ϕ ∈ S2, a B-point for a model of ϕ corresponds to a carapoint for

the function ϕ.

Theorem 1.5.2 (Agler, McCarthy, Young). Let ϕ ∈ S2, τ ∈ T2, and {λn} a sequence in

D2 that approaches τ nontangentially. The following are equivalent:

1. τ is a carapoint for ϕ;

2. there exists a model (M ,u) of ϕ such that τ is a B-point;

3. for every model (M ,u) of ϕ, τ is a B-point.

While the classical Theorem 1.2.1 does not hold in two variables, (noted in

Lemma 3.3.1 below), in [AMY12a], Agler, McCarthy, and Young used Hilbert space

model techniques to prove a two part generalization of Theorem 1.2.1 in terms of the
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properties of a model at a boundary point. The following theorems are a simplified,

qualitative version of those results.

Theorem 1.5.3 (Agler, McCarthy, Young). If τ is a B-point for a model (M ,u) of ϕ,

then the nontangential limit of ϕ at τ given by

ϕ(τ) := lim
λ

nt→τ

ϕ(λ)

exists.

Theorem 1.5.4 (Agler, McCarthy, Young). τ is a C-point for ϕ if and only if ϕ is

nontangentially differentiable at τ.

In short, a function ϕ ∈ S2 has a nontangential limit at τ when the model function

is bounded there, and ϕ is differentiable at τ when the model function is continuous there.

More can be said about the differential structure of functions at carapoints (the subject of

[AMY12a]), which will be discussed in the following sections.



Chapter 2

Boundary behavior of Schur functions

in two variables

2.1 Introduction

In this chapter, we solve two problems about analytic functions of two variables

using a variant of the notion of a Hilbert space model of a function. One problem concerns

the generalization to two variables of a classical representation theorem of Nevanlinna,

while the other is quite unlike any question that arises for functions of a single variable.

Both relate to behavior of functions at boundary points of their domains.

The first problem is: what directional derivatives are possible for a function in the

two-variable Schur class S2 at a singular point on the 2-torus T2? To clarify this question

let us consider the rational function

ϕ(λ) =
1
2λ1 +

1
2λ2−λ1λ2

1− 1
2λ1− 1

2λ2
, λ ∈ D2, (2.1.1)

where D denotes the open unit disc. This function belongs to S2 (that is, it is analytic

and bounded by 1 in modulus on D2). It has a singularity at the point χ = (1,1) ∈ T2,

9
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in that ϕ does not extend analytically (or even continuously) to χ. Nevertheless ϕ has

nontangential limit 1 at χ, and so we may define ϕ(χ) to be 1. Despite the fact that ϕ

is discontinuous at χ, the directional derivative D−δϕ(χ) exists for every direction −δ

pointing into the bidisc at χ, and

D−δϕ(χ) =− 2δ1δ2

δ1 +δ2

= ϕ(χ)δ2h(δ2/δ1) (2.1.2)

where h(z) =−2/(1+ z).

Remarkably enough, a similar statement holds in great generality [AMY12a,

Theorem 2.10]. If ϕ ∈ S2 has a singularity at χ and ϕ satisfies a weak regularity condition

at χ (the Carathéodory condition, explained in Section 1.3) then D−δϕ(χ) exists for all

relevant directions δ, and furthermore there exists an analytic function h on the upper

halfplane

Π = {z : Im z > 0}

such that both h(z) and −zh(z) have non-negative imaginary part and the directional

derivative D−δϕ(χ) is given by equation (2.1.2). We call h the slope function for ϕ at χ.

The problem, then, is to find necessary and sufficient conditions for a function h on Π

to be the slope function of some member of S2. It transpires that the stated necessary

conditions on h are also sufficient for h to be a slope function (Theorem 2.5.2 below).

The second problem is to generalize to two variables a theorem of Nevanlinna

which plays an important role in one proof of the spectral theorem for self-adjoint

operators. Nevanlinna’s theorem gives an integral representation formula for the functions

in the Pick class P that satisfy a growth condition on the imaginary axis; it states that

such functions are the Cauchy transforms of the finite positive measures on the real line

R. Nevanlinna’s growth condition can be regarded as a regularity condition at the point
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∞ on the boundary of Π. We obtain an analogous representation for functions in the

two-variable Pick class that satisfy a suitable regularity condition at ∞, but rather than an

integral formula we get an expression involving the two-variable resolvent of a densely

defined self-adjoint operator on a Hilbert space (Theorem 2.6.3).

To solve these two problems we modify the notion of model so as to focus on the

behavior of a function ϕ ∈ S2 near a boundary point at which ϕ satisfies Carathéodory’s

condition (see Definition 1.3.2 below).

2.2 Generalized models of Schur-class functions

In the definition of a model of a function ϕ : Dd→C (see Definition 1.4.1 above),

the function λ = λ1PM1
+λ2PM2

is linear in the coordinates of the point λ = (λ1,λ2).

One consequence is that any singular behavior of ϕ at a boundary point must be reflected

in singular behavior of u near that point. A simple relaxation of the definition of model

to allow an inner function I(·) in place of λ enables us to concentrate information about

singular behavior in I(.) instead of u, and this proves helpful for the two problems we

study here.

Definition 2.2.1. Let ϕ : Dd→C be analytic. The triple (M ,u, I) is a generalized model

of ϕ if

1. M is a separable Hilbert space,

2. u : Dd →M is analytic, and

3. I is a contractive analytic L(M )-valued function on Dd

such that the equation

1−ϕ(µ)ϕ(λ) =
〈
(1− I(µ)∗I(λ))uλ,uµ

〉
(2.2.1)
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holds for all λ,µ ∈ Dd .

The generalized model (M ,u, I) is inner if I(.) is inner.

Clearly, in the case that I(λ) = λ1P1+ · · ·+λdPd , we recapture the original notion

of model as in Definition 1.4.1.

A well-known lurking isometry argument proceeds from a model (M ,u) of a

function ϕ ∈ Sd to a realization of ϕ [Agl90]. The identical argument applied to a

generalized model (M ,u, I) produces a generalized notion of realization (compare with

Theorem 1.4.2).

Theorem 2.2.2. If (L ,u, I) is a generalized model of ϕ ∈ Sd then there exist a Hilbert

space M containing L , a scalar a ∈C, vectors β,γ ∈M and a linear operator D : M →

M such that the operator

L =

 a 1⊗β

γ⊗1 D

 (2.2.2)

is unitary on C⊕M and, for all λ ∈ Dd ,

L

 1

I(λ)uλ

=

ϕ(λ)

uλ

 , (2.2.3)

and consequently, for all λ ∈ Dd ,

ϕ(λ) = a+
〈
I(λ)(1−DI(λ))−1

γ,β
〉
. (2.2.4)

Proof. By equation (2.2.1), for all λ,µ ∈ Dd ,

1+
〈
I(λ)uλ, I(µ)uµ

〉
= ϕ(µ)ϕ(λ)+

〈
uλ,uµ

〉
.

We may interpret this equation as an equality between the gramians of two families of
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vectors in C⊕L . Accordingly we may define an isometric operator

L0 : span


 1

I(λ)uλ

 : λ ∈ Dd

→ span


ϕ(λ)

uλ

 : λ ∈ Dd


by equation (2.2.3). If necessary we may enlarge C⊕L to a space C⊕M in which the

domain and range of L0 have equal codimension, and then we may extend L0 to a unitary

operator L on C⊕M .

The ordered 4-tuple (a,β,γ,D), as in equation (2.2.2), will be called a realization

of the (generalized) model (L ,u, I) of ϕ if L is a contraction and equation (2.2.3) holds.

It will be called a unitary realization if in addition L is unitary on C⊕L .

Realizations provide an effective tool for the study of boundary behavior. Here is

a preliminary observation.

Lemma 2.2.3. Suppose that ϕ ∈ Sd has a model (M ,u) with realization (a,β,γ,D). Let

τ ∈ Td be a carapoint for ϕ and let N = ker(1−Dτ). Then

γ ∈ ran(1−Dτ)⊂N ⊥ and τ
∗
β ∈N ⊥. (2.2.5)

Proof. First we show that τ∗β ∈N ⊥. Let L be given by equation (2.2.2). Choose any

x ∈N . Then x = Dτx and so

L

 0

τx

=

 a 1⊗β

γ⊗1 D


 0

τx

=

〈τx,β〉

Dτx

=

〈x,τ∗β〉
x

 .
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Since L is a contraction and τ is an isometry,

∥∥∥∥∥∥∥
〈x,τ∗β〉

x


∥∥∥∥∥∥∥=

∥∥∥∥∥∥∥L

 0

τx


∥∥∥∥∥∥∥≤ ‖τx‖= ‖x‖ ,

and so 〈x,τ∗β〉= 0. Since x ∈N is arbitrary, τ∗β ∈N ⊥.

Proposition 5.17 of [AMY12a] asserts that τ is a carapoint for ϕ if and only if

γ ∈ ran(1−Dτ). Now since Dτ is a contraction, every eigenvector of Dτ corresponding

to an eigenvalue λ of unit modulus is also an eigenvector of (Dτ)∗ with eigenvalue λ̄.

Hence ker(1−Dτ) = ker(1− τ∗D∗), and we have

γ ∈ ran(1−Dτ)⊂ ker(1− τ
∗D∗)⊥ = ker(1−Dτ)⊥ = N ⊥.

We are interested in the behavior of models at carapoints of ϕ ∈ Sd . Here are two

relevant notions.

Definition 2.2.4. Let (M ,u, I) be a generalized model of a function ϕ ∈ Sd . A point

τ ∈ ∂Dd is a B-point of the model if u is bounded on every subset of Dd that approaches

τ nontangentially. The point τ is a C-point of the model if, for every subset S of Dd that

approaches τ nontangentially, u extends continuously to S∪{τ} (with respect to the norm

topology of M ).

As is well known, not all functions in Sd have models when d ≥ 3. For the rest of

the paper we restrict attention to the case d = 2; in this case it is true that every function

in the Schur class has a model [Agl90].

Our next task is to show that if a function ϕ ∈ S2 has a singularity at a B-point τ,

then we can construct a generalized model of ϕ in which the singularity of ϕ is encoded
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in an I(λ) that is singular at τ, in such a way that the model has a C-point at τ. The device

that leads to this conclusion is to write vectors in and operators on M in terms of the

orthogonal decomposition M = N ⊕N ⊥ where N = ker(1−Dτ) and D comes from a

realization of (M ,u). The following observation is straightforward.

Lemma 2.2.5. Let N be a subspace of M and let P1 be a Hermitian projection on M .

With respect to the decomposition N ⊕N ⊥ the operator P1 has operator matrix

P1 =

X B

B∗ Y

 (2.2.6)

for some operators X ,Y,B, where

1. 0≤ X ,Y ≤ 1

2. BB∗ = X(1−X), B∗B = Y (1−Y )

3. BY = (1−X)B, B(1−Y ) = XB

4. B∗X = (1−Y )B∗, B∗(1−X) = Y B∗.

We now construct a generalized model corresponding to a carapoint of ϕ ∈ S2.

Theorem 2.2.6. Let τ ∈ T2 be a carapoint for ϕ ∈ S2. There exists an inner generalized

model (M ,u, I) of ϕ such that

1. τ is a C-point for (M ,u, I),

2. I is analytic at every point λ ∈ T2 such that λ1 6= τ1 and λ2 6= τ2, and

3. τ is a carapoint for I and I(τ) = 1M .
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Furthermore, we may express I in the form

I(λ) =
τ̄1λ1Y + τ̄2λ2(1−Y )− τ̄1τ̄2λ1λ2

1− τ̄1λ1(1−Y )− τ̄2λ2Y
(2.2.7)

for some positive contraction Y on M .

Proof. Choose any model (L ,v) of ϕ and any realization (a,β0,γ,D) of (L ,v). By

definition, L comes with an orthogonal decomposition L = L1⊕L2: let P1 be the

orthogonal projection on L1. Since τ is a carapoint for ϕ we may apply Lemma 2.2.3 to

deduce that γ ∈ ran(1−Dτ) and τ∗β0,γ ∈ ker(1−Dτ)⊥.

Consider first the case that ker(1−Dτ) = {0}. This relation implies that there

is a unique vector vτ ∈ L such that (1−Dτ)vτ = γ. Let (λn) be any sequence in D2 that

converges nontangentially to τ. We claim that vλn → vτ. Suppose not: then since (vλn) is

bounded, by [AMY12a, Corollary 5.7], we can assume on passing to a subsequence that

(vλn) tends weakly to a limit x ∈ L different from vτ. By [AMY12a, Proposition 5.8] it

follows that vλn → x in norm. Take limits in the equation

(1−Dλn)vλn = γ

to deduce that (1−Dτ)x = γ. Since x 6= vτ, this contradicts the fact that (1−Dτ)−1γ =

{vτ}. Hence vλn → vτ. In other words v extends continuously to S∪{τ} for any set S

in D2 that tends nontangentially to τ, which is to say that τ is a C-point for the model

(L ,v). The conclusion of the theorem therefore holds if we simpy take M = L , u = v

and I(λ) = λ1P1 +λ2P2.

Now consider the case that ker(1−Dτ) 6= {0}. Let N = ker(1−Dτ). With
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respect to the decomposition L = N ⊕N ⊥ we may write

Dτ =

1 0

0 Q

 (2.2.8)

and vλ =

wλ

uλ

. Note that ker(1−Q) = {0}.

Let us express λ, acting as an operator on L by

λ = λ1P1⊕λ2(1−P1),

as an operator matrix with respect to the decomposition L = N ⊕N ⊥, as in Lemma

2.2.5:

λ = λ1P1 +λ2(1−P1) =

λ1X +λ2(1−X) (λ1−λ2)B

(λ1−λ2)B∗ λ1Y +λ2(1−Y )

 (2.2.9)

where X , Y are the compressions of P1 to N ,N ⊥ respectively, so that 0 ≤ X ,Y ≤ 1.

Thus

1−Dλ = 1−Dττ
∗
λ =

1− (λ′1X +λ′2(1−X)) −(λ′1−λ′2)B

−(λ′1−λ′2)QB∗ 1−Q(λ′1Y +λ′2(1−Y ))


where λ′1 = τ̄1λ1, λ′2 = τ̄2λ2. Since (1−Dλ)vλ = γ,

0

γ

= (1−Dλ)vλ =

1− (λ′1X +λ′2(1−X)) −(λ′1−λ′2)B

−(λ′1−λ′2)QB∗ 1−Q(λ′1Y +λ′2(1−Y ))


wλ

uλ

 ,
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from which we have the equations

(1−λ
′
1X−λ

′
2(1−X))wλ− (λ′1−λ

′
2)Buλ = 0 (2.2.10)

−(λ′1−λ
′
2)QB∗wλ +(1−Q(λ′1Y +λ

′
2(1−Y )))uλ = γ. (2.2.11)

By Lemma 2.2.5 and equation (2.2.10) we have

0 = B∗
(
(1−λ

′
1X−λ

′
2(1−X))wλ− (λ′1−λ

′
2)Buλ

)
= (B∗−λ

′
1B∗X−λ

′
2B∗(1−X))wλ− (λ′1−λ

′
2)B
∗Buλ

= (B∗−λ
′
1(1−Y )B∗−λ

′
2Y B∗)wλ− (λ′1−λ

′
2)Y (1−Y )uλ

= (1−λ
′
1(1−Y )−λ

′
2Y )B∗wλ− (λ′1−λ

′
2)Y (1−Y )uλ. (2.2.12)

Since 0≤ Y ≤ 1 it is clear from the spectral mapping theorem that

1 /∈ σ(λ′1(1−Y )+λ
′
2Y )

for all λ ∈ D2, and thus equation (2.2.12) tells us that

B∗wλ =
(λ′1−λ′2)Y (1−Y )

1−λ′1(1−Y )−λ′2Y
uλ. (2.2.13)

Substituting the relation (2.2.13) into (2.2.11) we obtain

γ =−(λ′1−λ
′
2)QB∗wλ +(1−Q(λ′1Y +λ

′
2(1−Y ))uλ

=−(λ′1−λ
′
2)Q

(λ′1−λ′2)Y (1−Y )
1−λ′1(1−Y )−λ′2Y

uλ +(1−Q(λ′1Y +λ
′
2(1−Y ))uλ

=

[
1−Q

(
(λ′1−λ′2)

2Y (1−Y )
1−λ′1(1−Y )−λ′2Y

+λ
′
1Y +λ

′
2(1−Y )

)]
uλ

= (1−QI(λ))uλ (2.2.14)
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where

I(λ) =
λ′1Y +λ′2(1−Y )−λ′1λ′2

1−λ′1(1−Y )−λ′2Y
(2.2.15)

=
τ̄1λ1Y + τ̄2λ2(1−Y )− τ̄1τ̄2λ1λ2

1− τ̄1λ1(1−Y )− τ̄2λ2Y
∈ L(M ),

which agrees with equation (2.2.7).

Let M = N ⊥: we claim that (M ,u, I) is an inner generalized model of ϕ having

the properties described in Theorem 2.2.6.

Firstly, it is clear from the formula (2.2.15) that I is analytic on D2 and at every

point λ ∈ T2 such that 1 /∈ σ(λ′1(1−Y )+λ′2Y ). By the spectral mapping theorem and

the fact that 0 ≤ Y ≤ 1, the spectrum of λ′1(1−Y )+ λ′2Y is contained in the convex

hull of the points λ′1, λ′2. Hence σ(λ′1(1−Y )+λ′2Y ) contains the point 1 if and only if

either λ′1 = 1 and 0 ∈ σ(Y ) or λ′2 = 1 and 1 ∈ σ(Y ). Thus I is analytic at points λ ∈ T2

for which λ′1 6= 1, λ′2 6= 1, that is, such that λ1 6= τ1, λ2 6= τ2. The function I therefore

satisfies condition (2) of the theorem.

We must show that I is an inner function. Indeed, if d(λ) denotes the denominator

of I(λ) in equation (2.2.15), we find that, for all λ∈ ∆2 such that 1 /∈ σ(λ′1(1−Y )+λ′2Y ),

d(λ)∗(1−I(λ)∗I(λ))d(λ) =

|1−λ
′
1|2(1−|λ′2|2)+2{Re (λ′1−λ

′
2)−|λ′1|2 + |λ′2|2 +Re (λ′1λ′2(λ

′
1−λ

′
2))}Y.

Hence I(λ)∗I(λ) = 1M for all λ∈T2 such that λ1 6= τ1, λ2 6= τ2, and therefore for almost

all λ ∈ T2 with respect to 2-dimensional Lebesgue measure on T2. Since I(λ) is clearly

a normal operator for all such λ, it follows that I is an inner L(M )-valued function.

Next we prove the model relation (2.2.1) for (M ,u, I). Let us calculate τ∗λvλ
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using equation (2.2.9):

τ
∗
λvλ = τ

∗
λ

wλ

uλ

=

 (λ′1X +λ′2(1−X))wλ +(λ′1−λ′2)Buλ

(λ′1−λ′2)B
∗wλ +(λ′1Y +λ′2(1−Y ))uλ


N ⊕N ⊥

. (2.2.16)

By equations (2.2.13) and (2.2.16),

PN ⊥τ
∗
λvλ =

(
(λ′1−λ′2)

2Y (1−Y )
1− (λ′1(1−Y )+λ′2Y )

+λ
′
1Y +λ

′
2(1−Y )

)
uλ

= I(λ)uλ.

By equation (2.2.10),

(λ′1X +λ
′
2(1−X))wλ = wλ− (λ′1−λ

′
2)Buλ,

which, in combination with equation (2.2.16), yields the relation

PN τ
∗
λvλ = (λ′1X +λ

′
2(1−X))wλ +(λ′1−λ

′
2)Buλ = wλ

and therefore

τ
∗
λvλ =

 wλ

I(λ)uλ


N ⊕N ⊥

.
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Hence

1−ϕ(µ)ϕ(λ) =
〈
(1−µ∗λ)vλ,vµ

〉
L

=
〈
vλ,vµ

〉
L −

〈
λvλ,µvµ

〉
L

=
〈
wλ,wµ

〉
N +

〈
uλ,uµ

〉
N ⊥−

〈
τ
∗
λvλ,τ

∗µvµ
〉

L

=
〈
wλ,wµ

〉
N +

〈
uλ,uµ

〉
N ⊥− (

〈
wλ,wµ

〉
N +

〈
I(λ)uλ, I(µ)uµ

〉
N ⊥)

=
〈
(1− I(µ)∗I(λ))uλ,uµ

〉
M .

Thus (M ,u, I) is an inner generalized model of ϕ.

We show next that τ is a C-point for (M ,u, I). To establish this we must produce a

vector uτ ∈M such that uλn → uτ as n→∞ for every sequence (λn) in D2 that converges

nontangentially to τ.

As we observed above, τ is a B-point for the model (L ,v) and γ∈ ran(1−Dτ). Let

uτ be the unique element of smallest norm in the nonempty closed convex set (1−Dτ)−1γ.

Then uτ ∈ ker(1−Dτ)⊥ = N ⊥, and every element of (1−Dτ)−1γ has the form e⊕uτ

for some e ∈N .

Let Xτ be the nontangential cluster set of v at τ in the model (L ,v); that is, Xτ

comprises the limits in L of all convergent sequences (vλn) for all sequences (λn) in

D2 that converge nontangentially to τ. Recall that, by [AMY12a, Proposition 5.8], a

sequence (vλn) converges in norm if and only if it converges weakly in L . If x ∈ Xτ is

the limit of uλn for some sequence (λn) that converges nontangentially to τ then, since

(1−Dλn)vλn = γ, on letting n→ ∞ we find that (1−Dτ)x = γ. Thus

Xτ ⊂ (1−Dτ)−1
γ⊂


 e

uτ

 : e ∈N

 .
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We claim that uλn → uτ as n→ ∞ for every sequence (λn) in D2 that converges

nontangentially to τ. For suppose that uλn does not converge to uτ. Since vλn , and hence

also uλn , is bounded, on passing to a subsequence we may suppose that uλn → ξ for

some vector ξ 6= uτ, and by passing to a further subsequence, we may suppose that vλn

converges to some vector x ∈ Xτ. But then

vλn =

wλn

uλn

→ x ∈


 e

uτ

 : e ∈N

 ,

and hence uλn → uτ, which is a contradiction. We have shown that uλn → uτ for every

sequence (λn) in D2 that converges to τ nontengentially; hence τ is a C-point for the

generalized model (M ,u, I).

To see that τ is a carapoint for I, observe that if λ = rτ, where 0 < r < 1, then

λ′ = (r,r), and so by equation (2.2.15),

I(rτ) = 1− (1− r)2

1− r
= r.

Hence

liminf
λ→τ

1−‖I(λ)‖
1−‖λ‖∞

≤ liminf
r→1

1−‖I(rτ)‖
1− r

= 1.

Thus τ is a carapoint for I.

To complete the proof of condition (3) of Theorem 2.2.6 we must show that

I(τ) = 1M , which by definition means that I(λ)→ 1N ⊥ as λ
nt→ τ. Observe that

I(λ)−1 =−
(λ′1−1)(λ′2−1)

1−λ′1(1−Y )−λ′2Y
=−τ̄1τ̄2

(λ1− τ1)(λ2− τ2)

1− τ̄1λ1(1−Y )− τ̄2λ2Y
. (2.2.17)

Since the spectrum of the normal operator Z = λ′1(1−Y )+λ′2Y is contained in the convex
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hull of the points λ′1,λ
′
2,

dist(1,σ(Z))≥ dist(T,σ(Z))≥ dist(T,conv{λ′1,λ′2}) = dist((λ′1,λ
′
2),∂D2)

= dist(λ,∂D2).

It follows that ∥∥(1−λ
′
1(1−Y )−λ

′
2Y )−1∥∥≤ 1

dist(λ,∂D2)

and therefore

‖I(λ)−1‖ ≤ |λ1− τ1| |λ2− τ2|
dist(λ,∂D2)

.

If λ approaches τ in a set S on which

‖λ− τ‖
dist(λ,∂D2)

≤ c < ∞,

then, by the inequality of the means,

‖I(λ)−1‖ ≤ 1
2c‖λ− τ‖

for λ ∈ S. Thus I(λ)→ 1 as λ
nt→ τ.

A consequence of Theorem 2.2.6 is that ϕ has a generalized realization, as in

Theorem 2.2.2. The preceding proof yields slightly more.

Corollary 2.2.7. If τ ∈ T2 is a carapoint for ϕ ∈ S2 then ϕ has a generalized realization

ϕ(λ) = a+
〈
I(λ)(1−QI(λ))−1

γ,β
〉

M

for some β,γ ∈M and some contraction Q on M satisfying ker(1−Q) = {0}, where I is

the inner function given by equation (2.2.7), having the properties described in Theorem
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2.2.6.

Proof. In the proof of Theorem 2.2.6 it is clear from the definition (2.2.8) of Q that Q is

a contraction and that ker(1−Q) = {0}. From equation (2.2.14) we have

γ+QI(λ)uλ = uλ,

and from the realization (a,β0,γ,D) of the model (L ,v),

ϕ(λ) = a+ 〈λvλ,β0〉 .

Note that, since τ∗β0 ∈N ⊥,

ϕ(λ) = a+ 〈λvλ,β0〉L = a+ 〈τ∗λvλ,τ
∗
β0〉L = a+

〈
PN ⊥τ

∗
λvλ,τ

∗
β0

〉
N ⊥

= a+ 〈I(λ)uλ,τ
∗
β0〉M .

Let β = τ∗β0 ∈M . We then have

 a 1⊗β

γ⊗1 Q


 1

I(λ)uλ

=

a+ 〈I(λ)uλ,β〉

γ+QI(λ)uλ

=

ϕ(λ)

uλ

 ,

and so (a,β,γ,Q) is a generalized realization of the generalized model (M ,u, I) of ϕ.

We shall call the model (M ,u, I) constructed in the foregoing proof of Theorem

2.2.6 the desingularization of the model (L ,v) at τ. The construction depends on the

choice of a realization of the model (L ,v), and so where appropriate we should more

precisely speak of the desingularization relative to a particular realization. Of course

the singularity of ϕ at τ, if there is one, does not disappear; it is shifted into the inner

function I, where it becomes accessible to analysis by virtue of the formula (2.2.7) for I.
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Example 2.2.8. The inner function I(.) given by equation (2.2.7) is not in general

analytic on T2 \{τ}.

Let Y be the operation of multiplication by the independent variable t on L2(0,1)

with Lebesgue measure: then 0≤ Y ≤ 1. Let τ = (1,1). Suppose that I is analytic at the

point (1,−1): then the scalar function

f (λ) = 〈I(λ)1,1〉

is analytic at (1,−1), where 1 denotes the constant function equal to 1. We have, for

λ ∈ D2,

f (λ) =
∫ 1

0

tλ1 +(1− t)λ2−λ1λ2

1− (1− t)λ1− tλ2
dt

=
∫ 1

0
1− (1−λ1)(1−λ2)

(λ1−λ2)t +1−λ1
dt

= 1− (1−λ1)(1−λ2)

λ1−λ2
[log((λ1−λ2)t +1−λ1)]

1
0

= 1− (1−λ1)(1−λ2)

λ1−λ2
[log(1−λ2)− log(1−λ1)].

Here we may take any branch of log that is analytic in {z : Re z > 0}. Since f is

analytic in a neighborhood of (1,−1), we may let λ2→−1 and deduce that, for some

neighborhood U of 1 and for λ1 ∈U ∩D,

f (λ1,−1) = 1+2
1−λ1

1+λ1
[log2− log(1−λ1)].

It is then clear that f (.,−1) is not analytic at 1, contrary to assumption. Thus I(.) is not

analytic at (1,−1), even though (1,−1) 6= τ.
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2.3 Directional derivatives and slope functions

In this section we study the directional derivatives of a function ϕ ∈ S2 at a

carapoint on the boundary. One of the main results of [AMY12a], namely Theorem 7.14,

asserts the following1.

Theorem 2.3.1. Let τ ∈ T2 be a carapoint for ϕ ∈ S . There exists a function h in the

Pick class, analytic and real-valued on (0,∞), such that the function z 7→ −zh(z) also

belongs to the Pick class,

h(1) =− liminf
λ→τ

1−|ϕ(λ)|
1−‖λ‖

∞

(2.3.1)

and, for all δ ∈H,

D−δϕ(τ) = ϕ(τ)τ2δ2h
(

τ2δ2

τ1δ1

)
. (2.3.2)

With the aid of generalized models we shall present an alternative, more algebraic,

proof of this result. At the same time we obtain further information about directional

derivatives at carapoints. We need a simple preliminary observation.

Lemma 2.3.2. If H is a Hilbert space and Y is a positive contraction on H , then

H(z) =− 1
1−Y + zY

is a well-defined L(H )-valued analytic function on C\ (−∞,0]. Furthermore, ImH(z)

and − ImzH(z) are both positive operators for all z ∈ Π, and H(z) is Hermitian for

z ∈ (0,∞).

Proof. For any z ∈ C, the spectrum σ(1−Y + zY ) is contained in the convex hull of the

points 1, z, by the spectral mapping theorem, and therefore (1−Y + zY )−1 is an analytic
1Actually the theorem is slightly more general in that it treats carapoints of ϕ in the topological

boundary of D2.
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function of z on the set C \ (−∞,0]; it clearly takes Hermitian values on the interval

(0,∞).

For any z ∈Π we have

Im (1−Y + zY ) = (Im z)Y ≥ 0,

and since − Im T−1 is congruent to Im T for any invertible operator T , it follows that

Im H(z) =− Im (1−Y + zY )−1 ≥ 0.

Similarly

− Im (zH(z)) =− Im
1−Y + zY

z
=− Im

1−Y
z

= (1−Y ) Im
(
−1

z

)
≥ 0.

Proof of Theorem 2.3.1. Let (a,β,γ,D) be a realization of ϕ, associated with a model

(L ,v), and let (M,u, I) be the desingularization of this realization at τ. By Theorem 2.2.6,

τ is a C-point of (M,u, I), and so there exists uτ ∈M such that

lim
λ

nt→τ

uλ = uτ

and, for all λ,µ ∈ D2,

1−ϕ(µ)ϕ(λ) =
〈
(1− I∗(µ)I(λ))uλ,uµ

〉
. (2.3.3)

Take limits in the last equation as µ nt→ τ to obtain

1−ϕ(τ)ϕ(λ) = 〈(1− I(λ))uλ,uτ〉 .
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On multiplying through by −ϕ(τ) we deduce that

ϕ(λ)−ϕ(τ) = ϕ(τ)〈(I(λ)−1)uλ,uτ〉

= ϕ(τ)〈(I(λ)−1)uτ,uτ〉+ϕ(τ)〈(I(λ)−1)(uλ−uτ),uτ〉 . (2.3.4)

Let δ ∈ H(τ), so that λt
def
= τ− tδ ∈ D2 for small enough t > 0. Then, from

equation (2.2.17),

I(λt)−1 = I(τ− tδ)−1 =−τ̄1τ̄2
t2δ1δ2

1− τ̄1(λt)1(1−Y )− τ̄2(λt)2Y

=−τ̄1τ̄2
tδ1δ2

τ̄1δ1(1−Y )+ τ̄2δ2Y
. (2.3.5)

In combination with equation (2.3.4) this relation yields

ϕ(λt)−ϕ(τ)

t
=−ϕ(τ)

〈
δ1δ2

τ2δ1(1−Y )+ τ1δ2Y
uτ,uτ

〉
−ϕ(τ)

〈
δ1δ2

τ2δ1(1−Y )+ τ1δ2Y
(uλt −uτ),uτ

〉
,

and on letting t→ 0+ we conclude that

D−δϕ(τ) =−ϕ(τ)

〈
δ1δ2

τ2δ1(1−Y )+ τ1δ2Y
uτ,uτ

〉
= ϕ(τ)τ̄2δ2h

(
τ̄2δ2

τ̄1δ1

)

where, for any z ∈Π,

h(z) =−
〈

1
1−Y + zY

uτ,uτ

〉
= 〈H(z)uτ,uτ〉 ; (2.3.6)

here H(z) is as defined in Lemma 2.3.2. It is then immediate from Lemma 2.3.2 that h

and−zh(z) belong to the Pick class and that h is analytic on C\(−∞,0] and is real-valued
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on (0,∞).

It remains to prove equation (2.3.1). From the definition (2.3.6) we have

h(1) =−‖uτ‖2 , (2.3.7)

while from the model equation (2.3.3), for any λ ∈ D2,

1−|ϕ(λ)|2 = ‖uλ‖2−‖I(λ)uλ‖2 .

Let λt = τ− tτ for t > 0. By equation (2.3.5) we have

I(λt)−1 =−t,

and so, for small enough t > 0,

1−|ϕ(λt)|2 =
∥∥uλt

∥∥2−
∥∥(1− t)uλt

∥∥2
= (2t− t2)

∥∥uλt

∥∥2
.

We also have

‖λt‖∞
= ‖τ− tτ‖

∞
= (1− t)‖τ‖

∞
= 1− t,

and so 1−‖λt‖2
∞
= 2t− t2 > 0 for small t. Hence

1−|ϕ(λt)|2

1−‖λt‖2
∞

=
∥∥uλt

∥∥2

and therefore

lim
t→0+

1−|ϕ(λt)|
1−‖λt‖∞

= lim
t→0+

1−|ϕ(λt)|2

1−‖λt‖2
∞

= lim
t→0+

∥∥uλt

∥∥2
= ‖uτ‖2 .
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Hence, by equation (2.3.7),

h(1) =− lim
t→0+

1−|ϕ(λt)|
1−‖λt‖∞

.

However, it is known that, for any carapoint τ of ϕ,

lim
t→0+

1−|ϕ(λt)|
1−‖λt‖∞

= liminf
λ→τ

1−|ϕ(λ)|
1−‖λ‖

∞

,

(see for example [Jaf93] or [AMY12a, Corollary 4.14]). Equation (2.3.1) follows.

We shall call the function h described in Theorem 2.3.1 the slope function of ϕ at

the point τ. Thus h is the slope function of ϕ at a carapoint τ ∈ T2 if, for all δ ∈H(τ),

D−δϕ(τ) = ϕ(τ)τ2δ2h
(

τ2δ2

τ1δ1

)
. (2.3.8)

The foregoing proof shows that slope functions have the following representation.

Proposition 2.3.3. Let τ∈T2 be a carapoint for a function ϕ∈ S2. There exists a Hilbert

space M , a vector uτ ∈M and a positive contractive operator Y on M such that, for all

z ∈Π,

h(z) =−
〈

1
1−Y + zY

uτ,uτ

〉
. (2.3.9)

2.4 Integral representations of slope functions

Theorem 2.3.1 tells us that the directional derivative of a function ϕ ∈ S2 at a

carapoint is encoded in a slope function h belonging to the Pick class P such that −zh is

also in P . In this section we derive a representation of functions h with this property. To

obtain such a description we shall need the following well-known theorem of Nevanlinna

[Nev22], or see [Don74, Section II.2, Theorem I].
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Theorem 2.4.1. For every holomorphic function F on Π such that ImF(z) ≥ 0 there

exist c ∈ R, d ≥ 0 and a finite non-negative Borel measure µ on R such that

F(z) = c+dz+
1
π

∫
∞

−∞

1+ tz
t− z

dµ(t), (2.4.1)

for all z ∈Π. Moreover, the c,d and µ in the representation (2.4.1) are uniquely deter-

mined, subject to c ∈ R, d ≥ 0, µ≥ 0 and µ(R)< ∞.

Conversely, any function F of the form (2.4.1) is in the Pick class.

We shall also need another classical theorem – the Stieltjes Inversion Formula

[Don74, Section II.2, Lemma I].

Theorem 2.4.2. Let V be a nonnegative harmonic function on Π, and suppose that V is

the Poisson integral of a positive measure µ on R:

V (x+ iy) = cy+
y
π

∫
∞

−∞

dµ(t)
(t− x)2 + y2 (2.4.2)

for some c≥ 0 and all y > 0, where

∫
∞

−∞

dµ(t)
1+ t2 < ∞. (2.4.3)

Then

lim
y→0+

∫ b

a
V (x+ iy) dx = µ((a,b))+ 1

2µ({a})+ 1
2µ({b}) (2.4.4)

whenever −∞ < a < b < ∞.

We can now identify the class of h ∈ P such that −zh ∈ P .

Theorem 2.4.3. The following are equivalent for any analytic function h on Π.

(i) h,−zh ∈ P ;
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(ii) h ∈ P and the Nevanlinna representation of h has the form

h(z) = c+dz+
1
π

∫ 1+ tz
t− z

dµ(t)

where

(a) d = 0,

(b) µ((0,∞)) = 0 and

(c) c≤ 1
π

∫
t dµ(t);

(iii) there exists a positive Borel measure ν on [0,1] such that

h(z) =−
∫ 1

1− s+ sz
dν(s).

Proof. (i)⇒(ii) Let h and −zh be in the Pick class. Then there exist unique c,c′ ∈

R,d,d′ ≥ 0, and finite positive Borel measures µ, ν on R such that

h(z) = c+dz+
1
π

∫ 1+ tz
t− z

dµ(t) (2.4.5)

and

−zh(z) = c′+d′z+
1
π

∫ 1+ tz
t− z

dν(t). (2.4.6)

If z = x+ iy, where x,y ∈ R, then

Im
1+ tz
t− z

= Im
(

1+ t2

t− z
− t
)
= (1+ t2) Im

1
t− z

= (1+ t2)
y

(t− x)2 + y2 .
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Hence

Imh(z) = dy+
y
π

∫ 1
(t− x)2 + y2 (1+ t2)dµ(t),

Im(−zh(z)) = d′y+
y
π

∫ 1
(t− x)2 + y2 (1+ t2)dν(t).

Since Imh is nonnegative and harmonic, Theorem 2.4.2 implies that

lim
y→0+

∫ b

a
Imh(x+ iy)dx = µ((a,b))+

µ({a})+µ({b})
2

(2.4.7)

and

lim
y→0+

∫ b

a
Im(−zh(z))dx = ν((a,b))+

ν({a})+ν({b})
2

. (2.4.8)

Note that

Im(−zh) =− Im((x+ iy)h) =−x Imh− yReh, (2.4.9)

and so

lim
y→0+

∫ b

a
Im(−zh(z)) dx =− lim

y→0+

∫ b

a
x Imh(x+ iy) dx− lim

y→0+
y
∫ b

a
Reh(x+ iy) dx.

(2.4.10)

Now let

Ay =
∫ b

a
x Imh(x+ iy) dx

and

By = y
∫ b

a
Reh(x+ iy) dx,

so that

lim
y→0+

∫ b

a
Im(−zh(z)) dx =− lim

y→0+
Ay− lim

y→0+
By. (2.4.11)



34

Lemma 2.4.4. For any a,b ∈ R such that a < b,

lim
y→0+

By = lim
y→0+

y
∫ b

a
Reh(z) dx = 0.

Proof. In view of the representation (2.4.5) of h we have

By = y
∫ b

a
Re

∫ 1+ t(x+ iy)
t− x− iy

dµ(t) dx

= y
∫ b

a
Re

∫
(1+ t(x+ iy))(t− x+ iy)

(t− x)2 + y2 dµ(t) dx

= y
∫ b

a

∫
(1+ tx)(t− x)− ty2

(t− x)2 + y2 dµ(t) dx

= y
∫ b

a

∫
(t− x)(1+(t− x)x+ x2)− (t− x)y2− xy2

(t− x)2 + y2 dµ(t) dx

= y
∫ b

a

∫
xC2 +(1+ x2− y2)C1− xy2C0 dµ(t) dx (2.4.12)

where

C2 =
(t− x)2

(t− x)2 + y2 , C1 =
t− x

(t− x)2 + y2 and C0 =
1

(t− x)2 + y2 .

For all t,x in R and y > 0 we have C2 ≤ 1 and C0 ≤ 1/y2, and so

∣∣xC2− xy2C0
∣∣≤ 2|x|. (2.4.13)

Choose N ≥ 1+max{|a| , |b|} such that µ({N,−N}) = 0. Then

∫ b

a

∫
|xC2− xy2C0| dµ(t) dx≤

∫ b

a

∫
2|x| dµ(t) dx

≤ µ(R)
∫ N

−N
2|x|dx

= 2N2µ(R). (2.4.14)
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It is then immediate that

lim
y→0+

y
∫ b

a

∫
|xC2− xy2C0| dµ(t) dx = 0. (2.4.15)

For |t| ≥ N, a≤ x≤ b we have |t− x| ≥ 1, hence |C1| ≤ 1 and so

∫ b

a

∫
|t|≥N
|(1+ x2 + y2)C1| dµ(t) dx≤

∫ b

a

∫
1+ x2 + y2 dµ(t) dx

≤ µ(R)(1+N2 + y2)(b−a). (2.4.16)

On the other hand, when |t| ≤ N and a≤ x≤ b,

|(1+ x2 + y2)C1| ≤ (1+N2 + y2)
|t− x|

(t− x)2 + y2 .

On making the change of variable s = |t−x| and observing that 0≤ s≤ 2N when |t| ≤ N

and a≤ x≤ b, we find that

∫ b

a
|(1+ x2 + y2)C1| dx≤ 2(1+N2 + y2)

∫ 2N

0

s ds
s2 + y2

= (1+N2 + y2)
(
log(4N2 + y2)−2logy

)
,

and therefore

∫
|t|≤N

dµ(t)
∫ b

a
|(1+x2+y2)C1| dx≤ µ(R)(1+N2+y2)

(
log(4N2 + y2)−2logy

)
< ∞.

(2.4.17)

It follows from the Fubini-Tonelli theorem that the order of integration can be reversed,

and on combining the estimates (2.4.16) and (2.4.17) we find that

∫ b

a

∫
|(1+ x2 + y2)C1| dµ(t) dx≤ µ(R)(1+N2 + y2)

[
b−a+ log(4N2 + y2)−2logy

]
,
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from which it is clear that

lim
y→0+

y
∫ b

a

∫
|(1+ x2 + y2)C1| dµ(t) dx = 0.

On combining this statement with (2.4.15) we conclude that

lim
y→0+

y
∫ b

a

∫
|xC2 +(1+ x2 + y2)C1− xy2C0| dµ(t) dx = 0

and hence, by equation (2.4.12), that By→ 0 as y→ 0+.

Since Im h≥ 0 we have

a
∫ b

a
Imh(x+ iy) dx≤ Ay ≤ b

∫ b

a
Imh(x+ iy)dx.

Combining this inequality with (2.4.7) we find that

a
(

µ(a,b)+
µ({a})+µ({b})

2

)
≤ lim

y→0+
Ay ≤ b

(
µ(a,b)+

µ({a})+µ({b})
2

)

and so, in view of equation (2.4.8), for all a < b,

−b
(

µ(a,b)+
µ({a})+µ({b})

2

)
≤ ν((a,b))+

ν({a})+ν({b})
2

(2.4.18)

≤−a
(

µ(a,b)+
µ({a})+µ({b})

2

)
. (2.4.19)

As this inequality holds for all a < b ∈ R, we can let a = 0 and b > 0. Then

ν((0,b))+
ν({0})+ν({b})

2
≤ 0.

But as ν is a positive measure, this implies that ν((0,∞)) = 0 and ν({0}) = 0, i.e.
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ν([0,∞)) = 0.

Now let 0 < a < b. Then

a
(

µ(a,b)+
µ({a})+µ({b})

2

)
≤
(

ν(a,b)+
ν({a})+ν({b})

2

)
= 0.

But µ ≥ 0, and so µ((a,b)) = 0. It follows that µ((0,∞)) = 0, which is to say that

condition (b) holds.

Fact 1. For t < 0,ν({t}) =−tµ({t}).

Since µ,ν are finite and positive, they can only have at most countably many

point masses, and so we may choose a sequence of intervals (an,bn)⊂ (−∞,0) such that

µ({an}) = µ({bn}) = ν({an}) = ν({bn}) = 0, t ∈ (an,bn) for all n and
⋂
(an,bn) = {t}.

Inequality (2.4.18) implies that

−bnµ((an,bn))≤ ν((an,bn))≤−anµ((an,bn)),

and in the limit we obtain

−tµ({t}) = ν({t})≤−tµ({t}).

If σ is a finite positive measure on (−∞,0), we shall call a finite partition P =

{x1, . . . ,xn}, where x1 < x2 < ... < xn < 0, special for σ if σ(P) = 0.

Fact 2. If f is continuous on (−∞,0) with compact support and ε > 0, there exists a

partition P that is special for σ such that

∣∣∣∣∫ f dσ−S( f ,P)
∣∣∣∣< ε,

where S( f ,P) denotes the Riemann sum of f over P.
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Lemma 2.4.5. If f is a continuous function of compact support on (−∞,0) then

∫
f dµ =

∫
f (t) tdν(t).

Equations (2.4.5) and (2.4.6) give us two different expressions for −zh(z):

−z
(

c+dz+
1
π

∫ 1+ tz
t− z

dµ(t)
)
= c′+d′z+

1
π

∫ 1+ tz
t− z

dν(t).

Hence, by Lemma 2.4.5,

−z
(

c+dz+
1
π

∫ 1+ tz
t− z

dµ(t)
)
= c′+d′z+

1
π

∫ 1+ tz
t− z

(−tdµ(t)).

We may rearrange this equation, in order to compare polynomials, obtaining

c′+(d′+ c)z+dz2 =
1
π

∫ 1+ tz
t− z

(t− z) dµ(t)

=
1
π

∫
(1+ tz) dµ(t)

=
1
π

∫
dµ(t)+

(
1
π

∫
tdµ(t)

)
z.

We immediately see that

c′ =
1
π

∫
dµ, d′+ c =

1
π

∫
t dµ(t) and d = 0.

The last of these statements is condition (a) in (ii). Since d′ > 0 the second statement

tells us that

c≤ d′+ c =
∫

t dµ(t),

which is condition (c). This concludes the proof that (i)⇒(ii).

(ii)⇒(iii) Suppose that h ∈ P has a Nevanlinna representation that satisfies condi-
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tions (a)-(c) of (ii). Then, for z ∈Π,

h(z) = c+
1
π

∫ 1+ tz
t− z

dµ(t)

= c+
1
π

∫ (1+ t2

t− z
− t
)

dµ(t)

= c− 1
π

∫
t dµ(t)+

1
π

∫ 1− t
t− z

1+ t2

1− t
dµ(t). (2.4.20)

Since the indefinite integral of 1+t2

1−t dµ(t) is a finite positive measure on (−∞,0],

we may define a finite positive Borel measure ν on [0,1] by

ν({0}) = 1
π

∫
t dµ(t)− c, (2.4.21)

ν(E) =
1
π

∫
Ẽ

1+ t2

1− t
dµ(t) (2.4.22)

for any Borel set E ⊂ (0,1], where Ẽ def
= {1−1/s : s ∈ E}.

With this definition, if ψ is a continuous bounded function on (−∞,0],

1
π

∫
ψ(t)

1+ t2

1− t
dµ(t) =

∫
(0,1]

ψ

(
1− 1

s

)
dν(s).

From equations (2.4.20) and (2.4.22),

h(z) = c− 1
π

∫
t dµ(t)+

1
π

∫ (1− t
t− z

)
1+ t2

1− t
dµ(t)

=−ν({0})+
∫
(0,1]

1− (1− 1
s )

1− 1
s − z

dν(s)

=−ν({0})+
∫
(0,1]

1
s−1− sz

dν(s)

=−
[

ν({0})+
∫
(0,1]

1
1− s+ sz

dν(s)
]

=−
∫
[0,1]

1
1− s+ sz

dν(s),
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which completes the proof that (ii)⇒(iii).

(iii)⇒(i) Suppose that ν is a positive finite Borel measure on [0,1] and

h(z) =−
∫ 1

1− s+ sz
dν(s)

for all z ∈ Π. Let Y be the operator of multiplication by the independent variable s on

L2(ν). Evidently Y is a positive contraction, and hence, by Lemma 2.3.2, for any z ∈Π,

the operators

− Im (1−Y +Y z)−1 and Im
(
z(1−Y +Y z)−1)

on L2(ν) are positive definite. Since

Im h(z) =− Im
∫ 1

1− s+ sz
dν(s) =

〈
− Im

1
1−Y +Y z

1,1
〉

L2(ν)

≥ 0

and likewise

Im (−zh(z)) = Im
∫ z

1− s+ sz
dν(s) =

〈
Im

z
1−Y +Y z

1,1
〉

L2(ν)

≥ 0,

it follows that (i) holds.

The proof shows that if h and −zh belong to P then h is analytic on (0,∞).

2.5 Functions with prescribed slope function

In this section we prove a converse to Theorem 2.3.1: we construct, for any

function h ∈ P such that −zh ∈ P , a function ϕ ∈ S2 with slope function h at a carapoint.

We shall need the following simple observation about the Cayley transform (an
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aplication of the quotient rule). The two-variable Herglotz class is defined to be the set

of analytic functions on D2 with non-negative real part.

Lemma 2.5.1. If f is a function in the two-variable Herglotz class then the function ϕ

on D2 given by

ϕ =
1− f
1+ f

belongs to S2. Furthermore, if τ ∈ T2 is such that the radial limit

f (τ) def
= lim

r→1−
f (rτ)

exists and is not −1 and if the directional derivative D−δ f (τ) exists for some direction δ,

then so does D−δϕ(τ), and

D−δϕ(τ) =
−2D−δ f (τ)
(1+ f (τ))2 . (2.5.1)

Recall that χ denotes the point (1,1).

Theorem 2.5.2. If h ∈ P and −zh ∈ P then there exists ϕ ∈ S2 such that χ is a carapoint

for ϕ, ϕ(χ) = 1 and h is the slope function for ϕ at χ.

Proof. By Theorem 2.3.1 there exists a positive Borel measure ν on [0,1] such that

h(z) =−
∫ 1

1− s+ sz
dν(s).

Define a family of functions fs on D2 for s ∈ [0,1] by

fs(λ) =

(
s
1+λ1

1−λ1
+(1− s)

1+λ2

1−λ2

)−1

.

For any λ ∈ D2 the denominator on the right hand side is a convex combination of two
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points in H, hence belongs to H. Thus fs lies in the two-variable Herglotz class for

0≤ s≤ 1. Moreover, for 0 < r < 1 and every s ∈ [0,1],

fs(rχ) =
1− r
1+ r

(2.5.2)

and hence the radial limit

fs(χ)
def
= lim

r→1−
fs(rχ) = lim

r→1−

1− r
1+ r

exists and is zero. We compute D−δ fs(χ).

fs(χ− tδ)− f (χ)
t

=
1
t

(
s

1+1− tδ1

1− (1− tδ1)
+(1− s)

1+1− tδ2

1− (1− tδ2)

)−1

=

(
s

2
δ1

+(1− s)
2
δ2
− t
)−1

=
1
2

δ1δ2

(1− s)δ1 + sδ2− 1
2tδ1δ2

. (2.5.3)

On letting t→ 0 we obtain

D−δ fs(χ) =
1
2

δ1δ2

(1− s)δ1 + sδ2
. (2.5.4)

Define a function f on D2 by

f (λ) =
∫

fs(λ) dν(s).

Since Re fs(λ)> 0 for every s ∈ [0,1], it is clear that f lies in the two-variable Herglotz

class. Furthermore, in view of equation (2.5.2), for 0 < r < 1,

f (rχ) =
1− r
1+ r

ν[0,1] (2.5.5)
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and f has radial limit 0 at χ:

f (χ) def
= lim

r→1−

∫
fs(rχ) dν(s) = lim

r→1−

∫ 1− r
1+ r

dν(s) = lim
r→1−

ν[0,1]
1− r
1+ r

= 0. (2.5.6)

Let us calculate the directional derivative of f at χ in the direction −δ where δ ∈H×H.

Equation (2.5.4) suggests that

D−δ f (χ) =
1
2

∫
δ1δ2

(1− s)δ1 + sδ2
dν(s). (2.5.7)

We must verify that this is correct. By equation (2.5.3), we have, for small t > 0,

f (χ− tδ)− f (χ)
t

− 1
2

∫
δ1δ2

(1− s)δ1 + sδ2
dν(s)

=
1
2

∫
δ1δ2

(1− s)δ1 + sδ2− 1
2tδ1δ2

− δ1δ2

(1− s)δ1 + sδ2
dν(s)

=
δ1δ2

2

∫ 1
2tδ1δ2 dν(s)(

(1− s)δ1 + sδ2− 1
2tδ1δ2

)
((1− s)δ1 + sδ2)

. (2.5.8)

Since δ1,δ2 ∈ H, the distance K from 0 to the convex hull of {δ1,δ2} is positive. For

sufficiently small t > 0 we have, for all s ∈ [0,1],

|(1− s)δ1 + sδ2− 1
2tδ1δ2| ≥ 1

2K,

and for such t the denominator of the integrand in equation (2.5.8) is at least 1
2K2. It

follows that, for small enough t,

∣∣∣∣ f (χ− tδ)− f (χ)
t

− 1
2

∫
δ1δ2

(1− s)δ1 + sδ2
dν(s)

∣∣∣∣≤ |δ1δ2|2ν[0,1]
2K2 t,

and hence equation (2.5.7) is correct.
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Let ϕ be defined by

ϕ =
1− f
1+ f

.

We claim that χ is a carapoint for ϕ. For any λ ∈ D2,

1−|ϕ(λ)|2

1−‖λ‖2
∞

=
4Re f (λ)

(1−‖λ‖2
∞)|1+ f (λ)|2

and so, by equation (2.5.5),

1−|ϕ(rχ)|2

1−‖rχ‖2
∞

=
4ν[0,1]

(1+ r+(1− r)ν[0,1])2

→ ν[0,1] as r→ 1− .

Hence

liminf
λ→χ

1−|ϕ(λ)|2

1−‖λ‖2
∞

≤ ν[0,1]< ∞

and χ is a carapoint for ϕ.

In view of equation (2.5.6) it is clear that ϕ has radial limit 1 at χ, that is to say,

ϕ(χ) = 1. By Lemma 2.5.1, ϕ lies in S2 and has directional derivative at χ given by

D−δϕ(χ) =
−2D−δ f (χ)
(1+ f (χ))2

= (−2)
1
2

∫
δ1δ2

(1− s)δ1 + sδ2
dν(s)

=−δ2h
(

δ2

δ1

)
=−ϕ(χ)δ2h

(
δ2

δ1

)
.

Thus h is the slope function for ϕ ∈ S2 at the point χ.

By a simple change of variable we obtain the following.
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Corollary 2.5.3. Let ω ∈ T, let τ ∈ T2 and let h, −zh(z) ∈ P . There exists a function

ϕ ∈ S2 having a carapoint at τ such that ϕ(τ) = ω and h is the slope function of ϕ at τ.

2.6 Nevanlinna representations in two variables

The following refinement of Theorem 2.4.1, also due to Nevanlinna, is the main

tool in one of the standard proofs of the Spectral Theorem for unbounded self-adjoint

operators [Lax02].

Proposition 2.6.1. Let h ∈ P . If

lim
y→∞

y Imh(iy)< ∞ (2.6.1)

then there exists a finite positive measure µ on R such that, for all z ∈Π,

h(z) =
∫ dµ(t)

t− z
. (2.6.2)

For a proof see [Lax02].

In this section we shall generalize Proposition 2.6.1 to two variables. We need an

analog for the Cauchy transform formula (2.6.2). The closest one we can find involves

the two-variable resolvent of a self-adjoint operator B on a Hilbert space M , to wit

h(z1,z2) = b−
〈
(B+ z1Y + z2(1−Y ))−1

α,α
〉

for some b ∈ R, α ∈M and some positive contraction Y on M . In an earlier paper

[AMY12b, Theorem 6.9] we obtained a somewhat similar result, but with the unsatisfac-

tory feature that the representation obtained was not of h itself but rather of a “twist” of

h. The use of generalized models enables us to remedy this defect.
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The growth condition (2.6.1) is expressible in terms of carapoints of the Schur-

class function ϕ associated with h by the definition

ϕ(λ) =
h(z)− i
h(z)+ i

where z = i
1+λ

1−λ
. (2.6.3)

Let us establish the corresponding assertion for functions of two variables. We denote by

P2 the two-variable Pick class, that is the set of analytic functions on Π2 with non-negative

imaginary part and we recall that χ denotes (1,1).

Proposition 2.6.2. Let h ∈ P2 and let ϕ ∈ S2 be defined by

ϕ(λ) =
h(z)− i
h(z)+ i

where z j = i
1+λ j

1−λ j
, j = 1,2, (2.6.4)

for λ ∈Π2. The following conditions are equivalent.

1. liminfy→∞ y Im h(iyχ)< ∞;

2. limy→∞ y Im h(iyχ) exists and is finite;

3. χ is a carapoint for ϕ and ϕ(χ) 6= 1;

4. (0,0) is a carapoint for the function H ∈ P2 given by H(z) = h(−1/z1,−1/z2).

Proof. (2)⇒(1) is trivial.

(1)⇒(3) Suppose (1) holds and let β be the limit inferior in (1). There is a

sequence (yn) in R+ such that yn→ ∞ and

lim
n→∞

yn Im h(iynχ) = β.

Let

rn =
iyn− i
iyn + i

=
yn−1
yn +1

.
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Then yn =
1+rn
1−rn

and rn→ 1− as n→ ∞. From the relation

1−|ϕ(λ)|2 = 4Im h(z)
|h(z)+ i|2

we have

1−|ϕ(rnχ)|2 = 4Im h(iynχ)

|h(iynχ)+ i|2
.

Since |h(z)+ i| ≥ 1 for all z ∈Π2,

1−|ϕ(rnχ)|2 ≤ 4Im h(iynχ).

Similarly

1−‖rnχ‖2
∞ = 1− r2

n =
4Im iyn

|iyn + i|2

=
4yn

(1+ yn)2 .

Hence

1−|ϕ(rnχ)|2

1−‖rnχ‖2
∞

≤ 4Im h(iynχ)
(1+ yn)

2

4yn

→ β as n→ ∞.

Consequently

liminf
λ→χ

1−|ϕ(λ)|2

1−‖λ‖2
∞

≤ β < ∞,

and so χ is a carapoint for ϕ.

By the Carathéodory-Julia theorem for the bidisc [Jaf93, AMY12a],

α
def
= liminf

λ→χ

1−|ϕ(λ)|2

1−‖λ‖2
∞

= lim
r→1−

1−|ϕ(rχ)|2

1− r2 > 0 (2.6.5)
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and β 6= 0 since α≤ β. Now for any r ∈ (0,1), y = 1+r
1−r , a simple calculation shows that

y Im h(iyχ) =
1+ r
1− r

1−|ϕ(rχ)|2

|1−ϕ(rχ)|2

=
(1+ r)2

|1−ϕ(rχ)|2
1−|ϕ(rχ)|2

1− r2 . (2.6.6)

On putting r = rn and letting n→ ∞ we find that

lim
n→∞
|1−ϕ(rnχ)|2 = 4α

β
6= 0.

Thus ϕ(χ) 6= 1. Hence (1)⇒(3).

(3)⇒(2) Suppose (3). Then the quantity α defined by equation (2.6.5) satisfies

0 < α < ∞. On letting y→ ∞ (and hence r→ 1−) in equation (2.6.6) we obtain

lim
y→∞

y Im h(iyχ) =
4α

|1−ϕ(χ)|2
,

and so (2) holds.

(2)⇔(4) According to Defintion 1.3.1, the point (0,0) is a carapoint for H ∈ P2 if

liminf
z→(0,0)

Im H(z)
min{Im z1, Im z2}

< ∞,

and by the two-variable Carathéodory-Julia theorem [Jaf93, AMY12a], this is so if and

only if

liminf
η→0

Im H(iηχ)

η
= liminf

η→0

Im h(iχ/η)

η
< ∞.

On setting y = 1/η we deduce that (2)⇔(4).

We shall say that ∞ is a carapoint for h ∈ P2 with finite value if the equivalent
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conditions of Proposition 2.6.2 hold. We define the value h(∞) in this case by

h(∞) = lim
y→∞

h(iyχ) = H(0,0) = i
1+ϕ(χ)

1−ϕ(χ)

where H, ϕ are as in Proposition 2.6.2. There is also a notion of carapoint of h with

infinite value: see [ATDY, Section 7].

Here is our generalization of the Nevanlinna representation (2.6.2) to the two-

variable Pick class.

Theorem 2.6.3. The following statements are equivalent for a function h : Π2→ C.

1. h is in the Pick class P2, ∞ is a carapoint for h with finite value;

2. there exist a scalar b ∈ R, a Hilbert space M , a vector α ∈M , a positive contrac-

tion Y on M and a densely defined self-adjoint operator B on M such that, for all

z ∈Π2,

h(z) = b−
〈
(B+ z1Y + z2(1−Y ))−1

α,α
〉
. (2.6.7)

Proof. We begin by observing that the inverse in equation (2.6.7) exists for any z ∈Π2.

Write z1 = x1 + iy1, z2 = x2 + iy2, with x1,x2 ∈ R and y1,y2 > 0 and let T = B+ z1Y +

z2(1−Y ). We have, for any u ∈M ,

Im 〈Tu,u〉= y1 〈Yu,u〉+ y2 〈(1−Y )u,u〉

≥min{y1,y2}‖u‖2,

and therefore

‖Tu‖‖u‖ ≥ |〈Tu,u〉 | ≥ Im 〈Tu,u〉 ≥min{y1,y2} ‖u‖2.

Thus the operator T has the positive lower bound min{y1,y2}, and so has a left inverse.
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A similar argument with z j replaced by its complex conjugate shows that T ∗ also has

a left inverse. Hence B+ z1Y + z2(1−Y ) is invertible for all z ∈ Π2, and clearly the

two-variable resolvent (B+ z1Y + z2(1−Y ))−1 is analytic on Π2.

(2)⇒(1) Suppose that a representation of the form (2.6.7) holds for h. Then h is

analytic on Π2. For any invertible operator T , Im (T−1) is congruent to − Im T , and so

Im (B+ z1Y + z2(1−Y ))−1 is congruent to − (Im z1)Y − (Im z2)(1−Y ).

Since the last operator is negative, it follows that Im h(z) ≥ 0 for all z ∈ Π2, and so

h ∈ P2.

To see that ∞ is a carapoint for h note that

y Im h(iyχ) =−y Im
〈
(B+ iy)−1

α,α
〉
.

Now

Im (B+ iy)−1 =−y(B+ iy)−1(B− iy)−1.

Let the spectral representation of B be

B =
∫

t dE(t).

Then

y Im h(iyχ) = y2 〈(B+ iy)−1(B− iy)−1
α,α

〉
= y2

∫ 1
(t + iy)(t− iy)

〈dE(t)α,α〉

=
∫ y2

t2 + y2 〈dE(t)α,α〉

→
∫
〈dE(t)α,α〉= ‖α‖2 as y→ ∞
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by the Dominated Convergence Theorem. Hence ∞ is a carapoint for h with finite value.

(1)⇒(2) Suppose that (1) holds and let ϕ ∈ S2 be the Schur-class function associ-

ated with h by equations (2.6.4). By Proposition 2.6.2, χ = (1,1) is a carapoint for ϕ and

ϕ(χ) 6= 1.

By Theorem 2.2.6 there exists a generalized model (M ,u, I) of ϕ having χ as a C-

point and an accompanying unitary realization (a,β,γ,Q) of (M ,u, I) with ker(1−Q) =

{0}. Moreover I is expressible by the formula (2.2.7) (with τ1 = τ2 = 1) for some positive

contraction Y on M . Thus

L =

 a 1⊗β

γ⊗1 Q


is unitary on C⊕M and

L

 1

I(λ)uλ

=

ϕ(λ)

uλ

 . (2.6.8)

We wish to define the Cayley transform J of L:

J = i
1+L
1−L

.

Of course 1−L may not be invertible, and so we define J as an operator from ran(1−L)

to ran(1+L) by

J(1−L)x = i(1+L)x. (2.6.9)

This equation does define J as an operator, in view of the following observation.

Proposition 2.6.4. If χ is a B-point for ϕ such that ϕ(χ) 6= 1 and (a,β,γ,Q) is a realiza-

tion of a generalized model of ϕ such that ker(1−Q) = {0}, then ker(1−L) = {0}.

Proof. Let x ∈ ker(1− L) ⊂ C⊕M and suppose x 6= 0. Since ker(1−Q) = {0}, it
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cannot be that x ∈M , and so we can suppose that x =

 1

x0

 for some x0 ∈M . Then

 a 1⊗β

γ⊗1 Q


 1

x0

=

 1

x0

 ,

which implies that

a+ 〈x0,b〉= 1 (2.6.10)

γ+Qx0 = x0,

and hence

(1−Q)x0 = γ. (2.6.11)

By equation (2.6.8),

uλ = γ+QI(λ)uλ. (2.6.12)

Since χ is a C-point of the generalized model (M ,u, I), there is a vector uχ ∈M such

that uλ→ uχ as λ
nt→ χ. On taking nontangential limits in equation (2.6.12) we obtain

uχ = γ+Quχ,

and so

(1−Q)uχ = γ. (2.6.13)

On comparing this relation with equation (2.6.11) and using the fact that ker(1−Q)= {0}

we deduce that x0 = uχ. Again by equation (2.6.8),

ϕ(λ) = a+ 〈I(λ)uλ,β〉 .
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Let λ
nt→ χ: then I(λ)→ 1 and so

ϕ(χ) = a+
〈
uχ,β

〉
= a+ 〈x0,β〉 .

In view of equation (2.6.10) we have ϕ(χ) = 1, contrary to hypothesis. Thus ker(1−L) =

{0}.

We have shown that J : ran(1−L)→ C⊕M is well defined by equation (2.6.9).

Moreover ran(1−L) is dense in C⊕M , since

ran(1−L)⊥ = ker(1−L∗) = ker(1−L) = {0}.

Thus J is a densely defined operator on C⊕M , and since L is unitary, J is self-adjoint.

The next step is to derive a matricial representation of J on C⊕M . By the

definition (2.6.9) of J and equation (2.6.8),

J(1−L)

 1

I(λ)uλ

= i(1+L)

 1

I(λ)uλ


and therefore

J

 1−ϕ(λ)

(I(λ)−1)uλ

= i

 1+ϕ(λ)

(I(λ)+1)uλ

 .

Divide through by 1−ϕ(λ) to get

J

 1
I(λ)−1
1−ϕ(λ)

uλ

=

 i
1+ϕ(λ)

1−ϕ(λ)

i
I(λ)+1
1−ϕ(λ)

uλ

 . (2.6.14)
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Define v : Π2→M by

vz =−
I(λ)−1
1−ϕ(λ)

uλ. (2.6.15)

Recall that (compare equation (2.2.17))

I(λ)−1 =− (λ1−1)(λ2−1)
1−λ1(1−Y )−λ2Y

,

and hence I(λ)−1 is invertible for λ ∈ D2. We have

i
I(λ)+1
1−ϕ(λ)

uλ = i
I(λ)+1
I(λ)−1

[
I(λ)−1
1−ϕ(λ)

uλ

]
= i

1+ I(λ)
1− I(λ)

vz.

A straightforward calculation now yields the appealing formula

i
1+ I(λ)
1− I(λ)

= z1Y + z2(1−Y ).

Thus equation (2.6.14) becomes

J

 1

−vz

=

 h(z)

(z1Y + z2(1−Y ))vz

 . (2.6.16)

We wish to write J as an operator matrix

J =

 b 1⊗α

α⊗1 B

 (2.6.17)

on C⊕M , but in order for this to make sense we require that

1

0

 be in the domain of
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J, which is ran(1−L). We must show that there exists a vector

c

x

 such that

 1−a −1⊗β

−γ⊗1 1−Q


c

x

=

1

0

 ,

which is to say that there exist c ∈ C and x ∈M such that

c(1−a)−〈x,β〉= 1, (2.6.18)

−cγ+(1−Q)x = 0.

Since ϕ(χ) 6= 1 we may choose

c =
1

1−ϕ(χ)
, x = cuχ,

and by virtue of equation (2.6.13), c, x then satisfy equations (2.6.18). Accordingly

equation (2.6.17) is a bona fide matricial representation of J on C⊕M for some b ∈ R,

some α ∈M and some operator B on M . One can show that in fact B is a densely

defined self-adjoint operator on M ; the details can be found in, for example, [AMY12b,

Lemma 6.24].

Equation (2.6.16) now becomes

 b 1⊗α

α⊗1 B


 1

−vz

= J

 1

−vz

=

 h(z)

(z1Y + z2(1−Y ))vz


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and so

h(z) = b−〈vz,α〉 ,

(z1Y + z2(1−Y ))vz = α−Bvz.

Thus

vz = (B+ z1Y + z2(1−Y ))−1
α,

and finally

h(z) = b−
〈
(B+ z1Y + z2(1−Y ))−1

α,α
〉
.

Therefore (1)⇒(2).

Some generalizations of Nevanlinna’s representation theorems to several variables

can be found in [ATDY].

Chapter 2 contains material as it appears in Indagationes Mathematicae, 2012.

The dissertation author was a co-author with J. Agler and N.J. Young on this paper.



Chapter 3

Geometry of generalized models

3.1 Introduction

Generalized models provide a method for investigating local behavior of Schur

functions at the boundary. Though we lose the global data of the standard model, we

gain access to refined information about the differential structure of the function at a

large class of singular boundary points. In this chapter, we seek to further develop our

investigation of the way in which the differential structure of a function is encoded into

the objects of a generalized model. In particular, we will show that the structure of the

positive contraction Y associated with a generalized model at a carapoint determines the

behavior of the directional derivative of ϕ. We classify the types of behavior possible in

terms of the geometry of certain invariant spaces for Y , and prove a local version of Agler,

McCarthy, and Young’s generalization of the Julia-Carathéodory Theorem in terms of

the spectral structure of Y .

While the operator λ in (1.4.1) has the virtue of simplicity, the function uλ can

exhibit quite complicated behavior. This behavior can become an issue when trying to

model a function with even a mild boundary singularity. In this case, the model (M ,u)

57
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encodes the singularity into the structure of the modeling Hilbert space itself. This gives

rise to ambiguity in the nature of the regularity of the function ϕ at the point.

Note 3.1.1. Let ϕ be a function in S2 with a carapoint at τ, and let (α,β,γ,D) be a

realization for ϕ. If ker(1−Dτ) = {0}, then the model has a C-point at τ and therefore

by Theorem 1.5.4, ϕ is nontangentially differentiable there. On the other hand, if

ker(1−Dτ) 6= {0}, the situation is ambiguous.

Recall that the generalized model function IY has the formula

IY (λ) =
τ

1
λ1Y + τ

2
λ2(1−Y )− τ

1
τ

2
λ1λ2

1− τ
1
λ1(1−Y )− τ

2
λ2Y

(3.1.1)

This function has a well-behaved singularity on the boundary that can be used to model

singular behavior in Schur functions. Moving the singular behavior of the model from the

Hilbert space into I reduces the size of the modeling space and regularizes the behavior

of the modeling function uλ. We will use this regularity in u to refine our understanding

of the differential structure of ϕ at a singular boundary carapoint.

3.2 Generalized models and directional derivatives

3.2.1 Directional derivatives

In Chapter 2, generalized models were used to investigate the differentiable

structure of Schur functions at boundary points. The connection between directional

derivatives at carapoints and generalized models will be the main subject of this chapter.

Note 3.2.1. Unless otherwise indicated, the calculations and theorems proved in this

chapter are proved at the boundary point χ = (1,1) ∈ T2. There is nothing special about

the point χ, other than ease of exposition. Under the change of variables λ→ τλ, the

arguments hold for any carapoint τ in T2.
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Recall that at a carapoint, the generalized model function uλ extends continuously

to the boundary on nontangential sets, and thus has a nontangential limit uχ as λ→ χ. We

begin by characterizing the directional derivative of a function ϕ in terms of the positive

contraction Y .

Lemma 3.2.2. If ϕ has a carapoint at χ and a generalized model (M ,v, I) as in Theorem

2.2.6, then the directional derivative of ϕ for δ pointing into the bidisc at χ is given by

the formula

Dδϕ(χ) =

〈
δ1δ2

δ1(1−Y )+δ2Y
vχ,vχ

〉
.

Proof. Let λt = χ+ tδ where δ = (δ1,δ2) ∈ C2 and Reδ1,Reδ2 < 0 (so that λt ∈ D2 for

small enough t > 0.)

Let ϕ have a generalized model such that

1−ϕ(λ)ϕµ =
〈
(1− IY (µ)∗I(λ))vλ,vµ

〉
. (3.2.1)

As χ is a carapoint, vλ is nontangentially continuous at χ. Then applying limits

to (3.2.1) as µ nt→ χ gives

1−ϕ(χ)ϕ(λ) =
〈
(1− I(χ)∗I(λ))vλ,vχ

〉
.

Multiplying through by −ϕ(χ) gives

ϕ(λ)−ϕ(χ) = φ(χ)
〈
(I(λ)−1)vλ,vχ

〉
= ϕ(χ)

〈
(I(λ)−1)vχ,vχ

〉
+ϕ(χ)

〈
(I(λ)−1)(vλ− vχ),vχ

〉
. (3.2.2)
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The difference I(λt)− I(χ) is given by

I(λt)− I(χ) =
[
(λ1

t )Y +λ2
t (1−Y )−λ1

t λ2
t

1−λ1
t (1−Y )+λ2

t Y
−1
]

=

[
(1+ tδ1)Y +(1+ tδ2)(1−Y )− (1+ tδ1)(1+ tδ2)

1− (1+ tδ1)(1−Y )− (1+ tδ2)Y
−1
]

=

[
tδ1Y + tδ2(1−Y )− tδ1− tδ2− t2δ1δ2 + tδ1(1−Y )+ tδ2Y

−tδ1(1−Y )− tδ2Y

]
=

tδ1δ2

δ1(1−Y )+δ2Y
, (3.2.3)

Upon dividing by t and applying the limit as t→ 0+, we get

DδI(χ) =
δ1δ2

δ1(1−Y )+δ2Y
. (3.2.4)

Combining with (3.2.2), we calculate a difference quotient.

ϕ(λt)−ϕ(χ)

t
= ϕ(χ)

1
t

〈
(I(λt)−1)vλt ,vχ

〉
= ϕ(χ)

〈
I(λt)− I(χ)

t
vχ,vχ

〉
+ϕ(χ)

〈
I(λt)− I(χ)

t
(vλt − vχ),vχ

〉
.

Finally, letting t→ 0+, we conclude

Dδϕ(χ) =

〈
δ1δ2

δ1(1−Y )+δ2Y
vχ,vχ

〉
. (3.2.5)
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3.3 Structure of rational model functions

By Theorem 2.2.6, any Schur function ϕ with a carapoint at χ has a continuous

generalized model at χ. We are interested in exploring the inverse problem: when given

a continuous generalized model for ϕ, what can we say about the differential structure of

ϕ at χ?

We begin with an example of a family of simple rational functions that possess a

single nondifferentiable carapoint.

Lemma 3.3.1. Let

ϕy(λ) =
λ1y+λ2(1− y)−λ1λ2

1−λ1(1− y)−λ2y
.

For all y ∈ (0,1), the function ϕy has a nondifferentiable carapoint at χ = (1,1).

Proof. By calculation in the proof of Lemma 3.2.2, the directional derivative of ϕy in

the direction δ is not linear, and so ϕy is not nontangentially differentiable at χ. (In fact,

the singularity that ϕy(λ) has at χ is complicated enough that it is impossible to extend

ϕy(λ) even continuously across the boundary at χ.) To see that ϕy has a carapoint at χ, it

is enough to check the Carathédory condition along the ray (r,r) has r→ 1. On this ray,

ϕy(r,r) = r.

Hence, if λ = (r,r) tends to χ,

liminf
λ→χ

1−
∣∣ϕy(λ)

∣∣
1−‖λ‖

∞

= liminf
r→1

1−|r|
1− r

= 1

Thus the Julia quotient for ϕy at χ is bounded, and so ϕy has a carapoint at χ.

Note that the function ϕy is the scalar case of the generalized model function IY
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in Theorem 2.2.6. Consider the following special case, where Y is a contractive diagonal

matrix.

Note 3.3.2. If Y is a diagonal matrix

Y =



y1 0 . . . 0

0 y2 . . . 0
...

... . . . ...

0 0 . . . yn


then IY (λ) has the form

IY (λ) =
n⊕

i=1

ϕyi(λ)Ei,

where

ϕy(λ) =
λ1y+λ2(1− y)−λ1λ2

1−λ1(1− y)−λ2y
,

and Ei is the projection onto the eigenspace corresponding to yi.

Thus, in the case where Y is a finite dimensional diagonal matrix, we get that

the function IY is a direct sum of the scalar-valued functions ϕy. We will show that this

statement holds for a general positive contraction Y in terms of a spectral integral of

scalar functions ϕy. Accordingly, we first develop some properties of the one parameter

family of scalar functions ϕy. By Lemma 3.3.1, such functions are the simplest degree

(1,1) rational functions that can be constructed with a singular point at χ. Every function

ϕy has an explicit model (a statement that appears without proof as Proposition 6.3 in

[AMY12a]).

Proposition 3.3.3. For a real number y, 0 < y < 1, let ϕy be the inner function on C2

given by

ϕy(λ) =
yλ1 +(1− y)λ2−λ1λ2

1− (1− y)λ1− yλ2 . (3.3.1)
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Then any model (M ,u) of ϕy has a B-point at χ = (1,1). Furthermore, (C2,uy) is a

model for ϕy, where uy,λ has the form

uy,λ =
1

1− (1− y)λ1− yλ2

 √
y(1−λ2)

√
1− y(1−λ1)

 . (3.3.2)

With respect to the orthonormal basis of C2 given by

e+ =

√1− y
√

y

 , e− =

 √
y

−
√

1− y

 ,

we can write the model as

uy,λ =

√
(1− y)y(λ1−λ2)

1− (1− y)λ1− yλ2 e++ e−. (3.3.3)

Then (0,e−,e−,e+⊗ e+) is a self-adjoint unitary realization for uy,λ.

Proof. A straightforward calculation shows that

1−ϕy(λ)
∗
ϕy(λ) =

〈
(1−µ∗λ)uy,λ,uy,µ

〉
.

To show that χ is a B-point for ϕt , we need to show that uy,λ is bounded as λ→ χ

nontangentially. Let S be a set in D2 that approaches χ nontangentially. Then there exists

a c > 0 so that for λ ∈ S,

‖χ−λ‖ ≤ c(1−‖λ‖).
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We will show that the coefficient of e+ in (3.3.3) is bounded on S. To do so, notice that

∣∣λ1−λ
2∣∣= ∣∣(1−λ

2)+(λ1−1)
∣∣

≤
∣∣1−λ

1∣∣+ ∣∣1−λ
2∣∣

≤ 2max{
∣∣1−λ

1∣∣ , ∣∣1−λ
2∣∣}

≤ 2cmin{(1−
∣∣λ1∣∣),(1− ∣∣λ2∣∣)}

≤ 2c[(1− y)(1−
∣∣λ1∣∣)+ y(1−

∣∣λ2∣∣)]
= 2c[(1− y)− (1− y)

∣∣λ1∣∣+ y− y
∣∣λ2∣∣]

= 2c[1− (1− y)
∣∣λ1∣∣− y

∣∣λ2∣∣]
≤ 2c

∣∣1− (1− y)λ1− yλ
2∣∣ .

Then uy,λ is bounded on the set S, as

∥∥uy,λ
∥∥= ∥∥∥∥∥

√
y(1− y)(λ1−λ2)

1− (1− y)λ1− yλ2 e++ e−

∥∥∥∥∥
≤ 2c

√
y(1− y)‖e+‖+‖e−‖

= 2c
√

y(1− y)+1 (3.3.4)

which depends only on y. Then uy,λ is bounded as λ→ χ nontangentially, and so by

Theorem 1.5.3, χ is a B-point for ϕy.

In particular, we note that this implies that the model ut,λ is not continuous at χ

as λ
nt→ χ, which gives the following simple observation.

Lemma 3.3.4. Let y ∈ (0,1) and let ϕy be a function in the family (3.3.1) with a

model (M ,uy,λ). Let S be a set approaching χ nontangentially. There exist sequences
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{λn},{µn} ⊂ S so that λn
nt→ χ,µn

nt→ χ and for any t ∈ (0,1),

∣∣∣ui
t,λn
−ui

t,µn

∣∣∣> 0 (3.3.5)

for at least one of i = 1 or i = 2.

Proof. The point χ is a B-point for the model that is not a C-point, and so uy,λ does not

extend continuously at χ. Thus there must exist distinct sequences that approach χ on

which uy,λ approaches different vectors.

Note 3.3.5. The scalar functions ϕ0 and ϕ1 are well behaved, as

ϕ1(λ) = λ
1, ϕ0(λ) = λ

2, (3.3.6)

respectively, and in these bounding cases, the singularity at χ disappears.

We now formalize the observation we made about the structure of IY for diagonal

Y and extend the observation to the case of general positive contractions.

Lemma 3.3.6. Let ϕ ∈ S2 have a carapoint at χ, and let (M ,v, I) be a generalized model

so that χ is a C-point. There exists a projection-valued measure E such that

IY (λ) =
∫ 1

0
ϕy(λ)dE(t),

Proof. For the positive contraction Y , let E0 designate the projection onto kerY and let

E1 denote the projection onto ker(1−Y ), so that Y has the decomposition

Y =


1

0

Y0

 .
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The operator Y0 is a strictly positive strict contraction, so by the spectral theorem,

there exists a spectral measure E(t) so that for y ∈ (0,1),

Y0 =
∫
(0,1)

ydE(y),

so that

Y = 0E0 +1E1 +
∫
(0,1)

ydE(y). (3.3.7)

Then substituting (3.3.7) and (3.3.6) into formula 3.1.1,

IY (λ) =
λ1Y +λ2(1−Y )−λ1λ2

1−λ1(1−Y )−λ2Y

= λ
1E1 +λ

2E0 +
∫
(0,1)

ϕy(λ)dE(y) (3.3.8)

=
∫ 1

0
ϕy(λ)dE(y). (3.3.9)

With this observation, we are now prepared to examine the relationship between

the geometry of the model (M ,u, I) and the differentiability of ϕ. We begin by addressing

the trivial case in which ϕ ∈ S2 has a generalized model where the contraction Y in the

formula for I is in fact a projection.

Lemma 3.3.7. Suppose that ϕ ∈ S2 has a generalized model (M ,v, I) such that

1. vλ is continuous at χ, and

2. I(λ) is given by
λ1P+λ2(1−P)−λ1λ2

1−λ1(1−P)−λ2P

where P is a projection acting on M .

Then ϕ has a differentiable carapoint at χ.
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Proof. If P is a projection, then Y0 = 0, and the formula for I(λ) simplifies to

I(λ) = λ
1P+λ

2(1−P).

In this case, the generalized model is a standard model for ϕ with a C-point at χ, and so

ϕ has a differentiable carapoint at χ by Theorem 1.5.4.

We need the following geometrical Lemma about the behavior of the model

function at χ. Recall that if a model has a C-point at χ then the model function is

continuous on sets approaching χ nontangentially (Definition 1.5.1). In this case, a

sequence vλ as λ→ χ will have a nontangential limit at χ, which we denote lim
λ

nt→χ
vλ =

vχ.

Proposition 3.3.8. Let ϕ ∈ S2 have a carapoint at χ. Then for a generalized model

(M ,v, I) with a C-point at χ, ∥∥vχ

∥∥> 0.

Proof. On taking limits as µ→ λ, the model equation

1−ϕ(µ)ϕ(λ) =
〈
(1− I(µ)∗I(λ))vλ,vµ

〉
becomes

1−‖ϕ(λ)‖2 = ‖vλ‖2−‖I(λ)vλ‖2 . (3.3.10)

From (3.2.3),

I(λt)− I(χ) =
tδ1δ2

δ1(1−Y )+δ2Y
.

When λt = χ+ t(−χ), this becomes

I(λt)−1 =−t
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and so I(λt) = 1− t. Plugging into (3.3.10),

1−|ϕ(λt)|2 =
∥∥vλt

∥∥2−
∥∥(1− t)vλt

∥∥2
= (2t− t2)

∥∥vλt

∥∥2
. (3.3.11)

Additionally,

1−‖λt‖2
∞
= 1−‖(χ+ t(−χ)‖2

∞
= (2t− t2)‖χ‖2

∞
= (2t− t2). (3.3.12)

Combining 3.3.11 with 3.3.12 yields

∥∥vλt

∥∥2
=

1−|ϕ(λt)|2

1−‖λt‖2
∞

.

On application of limits, we get

∥∥vχ

∥∥2
= lim

t→0+

1−|ϕ(λt)|2

1−‖λt‖2
∞

= lim
t→0+

1−|ϕ(λt)|
1−‖λt‖∞

.

However, as χ is a carapoint of ϕ,

lim
t→0+

1−|ϕ(λt)|
1−‖λt‖∞

= liminf
λ

nt→χ

1−|ϕ(λ)|
1−‖λ‖

∞

.

(see, for example, [AMY12a] or [Jaf93]). Finally, so long as ϕ is not constant, as χ is a

carapoint for ϕ, by [AMY12a, Theorem 4.9],

liminf
λ

nt→χ

1−|ϕ(λ)|
1−‖λ‖

∞

= α > 0,

which gives
∥∥vχ

∥∥> 0 .

We are now prepared to state and prove the a converse of Theorem 2.2.6.
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Theorem 3.3.9. Let ϕ be a function in S2 and (M ,v, I) a model for ϕ with a C-point at

χ. Then χ is a carapoint for ϕ.

Proof. If Y is a projection, then by Lemma 3.3.7, the model (M ,v, I) is a standard model

with a C-point at χ and we are done.

Assume that Y is not a projection. By Lemma 3.3.6, there exists a spectral

measure E such that

IY (λ) = λ
1E1 +λ

2E0 +
∫

ϕy(λ)dE(y),

where the integral is present.

As (M ,v, I) is a model,

1−ϕ(µ)ϕ(λ) =
〈
(1− IY (µ)∗IY (λ))vλ,vµ

〉
. (3.3.13)

We will show that χ is a carapoint for φ by deriving a standard model for ϕ and then

proving that the model is bounded at χ, that is that χ is a B-point. First, we derive an

expression for 1− IY (µ)∗IY (λ):

1− IY (µ)∗I(λ) (3.3.14)

= 1−
(

µ1E1 +µ2E2 +
∫

ϕy(µ)dE(y)
)∗
× (3.3.15)(

λ
1E1 +λ

2E0 +
∫

ϕy(λ)dE(y)
)

= 1−
(

µ1
λ

1E1 +µ2
λ

2E0 +
∫

ϕy(µ)ϕy(λ)dE(y)
)

= (1−µ1
λ

1)E1 +(1−µ2
λ

2)E0 (3.3.16)

+
∫
(1−ϕy(µ)ϕy(λ))dE(y). (3.3.17)
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Each function ϕy can be modeled with (C2,uy,λ) as given in Proposition 3.3.3, so contin-

uing from (3.3.17), we get

(1−µ1
λ

1)E1 +(1−µ2
λ

2)E0 +
∫
(1−ϕy(µ)ϕy(λ))dE(y)

= (1−µ1
λ

1)E1 +(1−µ2
λ

2)E0 +
∫ 〈

(1−µ∗λ)uy,λ,uy,µ
〉

dE(y)

= (1−µ1
λ

1)E1 +(1−µ2
λ

2)E0

+
∫ 〈

(1−µ1λ
1)u1

y,λ,u
1
y,µ

〉
dE(y)

+
∫ 〈

(1−µ2λ
2)u2

y,λ,u
2
y,µ

〉
dE(y)

= (1−µ1λ
1)

(
E1 +

∫ 〈
u1

y,λ,u
1
y,µ

〉
dE(t)

)
+(1−µ2

λ
2)

(
E0 +

∫ 〈
u2

y,λ,u
2
y,µ

〉
dE(y)

)
. (3.3.18)

If we let

U1(λ) = 1E1 +0E0 +
∫

u1
y,λ dE(y),

U2(λ) = 0E1 +1E0 +
∫

u2
y,λ dE(y)

then we can substitute into (3.3.18) to get

1− I(µ)∗I(λ) = (1−µ1
λ

1)U1(µ)∗U1(λ)+(1−µ2
λ

2)U2(µ)∗U2(λ). (3.3.19)

Upon substitution of this expression into the generalized model equation (3.3.13), we get

1−ϕ(µ)ϕ(λ) =
〈
(1− I(µ)∗I(λ))vλ,vµ

〉
=
〈
((1−µ1

λ
1)U1(µ)∗U1(λ)+(1−µ2

λ
2)U2(µ)∗U2(λ))vλ,vµ

〉
= (1−µ1

λ
1)
〈
U1(λ)vλ,U1(µ)vµ

〉
+(1−µ2

λ
2)
〈
U2(λ)vλ,U2(µ)vµ

〉
.
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Then we have shown that (M ⊕M ,U) is a model for ϕ, where U is the function

U(λ) =

U1(λ)vλ

U2(λ)vλ

 . (3.3.20)

To show that χ is a B-point for ϕ, by Theorem 1.5.3 it is enough to show that U(λ) is

bounded as λ
nt→ χ. We will show that the component U1(λ)vλ is bounded on a set that

approaches χ nontangentially (that U2(λ)vλ is bounded follows similarly). First, U1(λ) is

a bounded operator. To see this, let S be a set that approaches χ nontangentially such that

for all λ ∈ S,

|τ−λ| ≤ c(1−|λ|).

Trivially, the operator 1E1 is bounded. By Proposition 3.3.3, for any y with

0 < y < 1, for all λ ∈ S, ∥∥uy,λ
∥∥≤ 2c

√
y(1− y)+1.

As the maximum of the function f (x) =
√

y(1− y) is 1/2, for all y ∈ (0,1),

∥∥uy,λ
∥∥≤ c+1.

Thus, the family {uy,λ} is uniformly bounded on S. Let u,v be arbitrary vectors in M .
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Since E is a spectral measure,

∣∣∣∣〈(∫ ui
y,λ dE(y)

)
u,v
〉∣∣∣∣= ∣∣∣∣∫ ui

y,λ dEu,v(y)
∣∣∣∣

≤
∫ ∣∣∣ui

y,λ

∣∣∣ d |Eu,v(y)|

≤
∫
(c+1)d |Eu,v(y)|

≤ (c+1)‖Eu,v(y)‖

≤ (c+1)‖u‖‖v‖ . (3.3.21)

Then U1(λ) is a bounded operator, and as the bound does not depend on the choice of

λ ∈ S, the family of operators {U1(λ)}λ∈S is uniformly bounded on S. To show that

U1(λ)vλ is bounded on S, recall that by hypothesis, the generalized model function vλ

has a C-point at χ. By (3.3.21), for all λ ∈ S,

∥∥U i(λ)vλ

∥∥≤ ∥∥U i(λ)
∥∥‖vλ‖ ≤

√
c+1‖vλ‖ . (3.3.22)

By Proposition 3.3.8, the estimate (3.3.22) is non-zero, and on any sequence λn
nt→ χ in S,

∥∥U i(λ)vλ

∥∥→√c+1
∥∥vχ

∥∥= (
√

c+1)α.

As each component of the model function U is bounded on S as λ→ χ, so too is

U , and so the model (M ⊕M ,U) has a B-point at χ, and thus ϕ has a carapoint there by

Theorem 1.5.3.

We are interested in refining the Theorem above into a statement about the nature

of the carapoint χ. In particular, we are interested in discovering a condition that will

detect the differentiable structure of ϕ at χ in terms of the model. It turns out that the

positive contraction Y encodes this information in its spectral structure.
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Theorem 3.3.10. Let ϕ be a function in S2 and (M ,v, I) a model for ϕ with a C-point at

χ. If Y is not a projection and

lim
λ

nt→χ

PkerY (1−Y )vλ = 0, (3.3.23)

then ϕ has a nondifferentiable carapoint at χ.

Proof. Denote by N the space

N = kerY (1−Y ).

Let (M ⊕M ,U) be the standard model given in (3.3.20). We will show that Uλ is not

continuous at χ.

We proceed by contradiction. Suppose that U(λ) is continuous on any set S that

approaches χ nontangentially. Then there exists a vector U(χ) so that

lim
λ

nt→χ

U(λ) =U(χ) =

U1(χ)

U2(χ)

 .

In particular, this will imply that

lim
λ→χ

U1(λ)vλ =

(
1E1 +0E0 +

∫
u1

y,λ dE(y)
)

vλ =U1(χ),

and

lim
λ→χ

U2(λ)vλ =

(
0E1 +1E0 +

∫
u2

y,λ dE(y)
)

vλ =U2(χ).

Since by assumption lim
λ

nt→χ
PN vλ = 0, these equations reduce to

∫
u1

y,λ dE(y)vλ =U1(χ),
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and ∫
u2

y,λ dE(y)vλ =U2(χ).

For the sake of notational simplicity, let Ai
λ
=

∫
ui

y,λdE(y) for i = 1,2. Then

Ai
λ
vλ = Ai

λ
vχ +Ai

λ
(vλ− vχ).

Since χ is a C-point for (M,v, I), the map vλ is continuous at χ and by assumption U(λ)

is continuous at χ, and so for any sequence λn
nt→ χ,

Ai
λn

vχ→Ui(χ).

By Lemma 3.3.4, for at least one of i = 1,2, there exist sequences λn and µn satisfying

(3.3.5). For these sequences, as n→ ∞,

Ai
λn

vχ−Ai
µn

vχ = (Ai
λn
−Ai

µn
)vχ→ 0.

Then

∥∥∥(Ai
λn
−Ai

µn
)vχ

∥∥∥2
=
〈
(Ai

λn
−Ai

µn
)vχ,(Ai

λn
−Ai

µn
)vχ

〉
=
〈
(Ai

λn
−Ai

µn
)(Ai

λn
−Ai

µn
)vχ,vχ

〉
=

〈∫ ∣∣∣ui
y,λn
−ui

y,µn

∣∣∣ dE(y)vχ,vχ

〉
=

∫ ∣∣∣ui
y,λn
−ui

y,µn

∣∣∣ dEvχ,vχ
(y).

Since the expression in the norm in the above calculation is composed of objects that are
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nontangentially continuous at χ, an application of limits implies that

lim
n→∞

∫ ∣∣∣ui
y,λn
−ui

y,µn

∣∣∣ dEvχ,vχ
(y) = lim

n→∞

∥∥∥(Ai
λn
−Ai

µn
)vχ

∥∥∥2
= 0.

As
∥∥vχ

∥∥> 0,Evχ,vχ
is a finite, positive measure supported on σ(Y ), for y ∈ σ(Y ),

lim
n→∞

∣∣∣ui
y,λn
−ui

y,µn

∣∣∣= 0.

But this contradicts the conclusion of Lemma 3.3.4. Therefore U cannot be continuous

at χ, and so χ is not a C-point for the model (M ⊕M ,U). Then by Theorem 1.5.4, χ is

a nondifferentiable carapoint for ϕ.

Applying the notion of examining the differentiability of the function in terms of

the spectral structure of Y gives a refinement of Theorem 2.2.6 that is a partial converse

to Theorem 3.3.10.

Theorem 3.3.11. Let χ = (1,1) be a nondifferentiable carapoint for ϕ ∈ S2. Then there

exists a generalized model (M ,v, IY ) of ϕ with a C-point at χ such that

lim
λ

nt→χ

PN ⊥vλ 6= 0.

where N = kerY (1−Y ).

Proof. Suppose that ϕ ∈ S2 has a nondifferentiable carapoint at χ. By Theorem 2.2.6,

there exists a generalized model (M ,v, I) with a C-point at χ.

To show that

PN ⊥vχ 6= 0,

we will use facts about the directional derivative of ϕ at χ. From Lemma 3.2.2, for δ
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pointing into the bidisc,

Dδϕ(χ) =

〈
δ1δ2

δ1(1−Y )+δ2Y
vχ,vχ

〉
. (3.3.24)

Decompose Y as 1E1 +0E0 +Y0, where E1 and E0 are projections onto kerY and

ker1−Y respectively. Let E = 1−E0−E1. Then Y can be written in block matrix form

as

Y =


1 0 0

0 0 0

0 0 Y0


M1

M0

Ms

where M1 = E1M ,M0 = E0M , and Ms = EM . Then

(δ1(1−Y )+δ2(Y ))−1 =


δ2 0 0

0 δ1 0

0 0 δ1(1−Y0)+δ2Y0


−1

=


1
δ2

0 0

0 1
δ1

0

0 0 (δ1(1−Y0)+δ2Y0)
−1

 ,

and so

δ1δ2

δ1(1−Y )+δ2Y
=


δ1 0 0

0 δ2 0

0 0 δ1δ2
δ1(1−Y0)+δ2Y0

= δ1E1 +δ2E0 +
δ1δ2

δ1(1−Y0)+δ2Y0
E.
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Then the formula given in (3.3.24) decomposes as

Dδϕ(χ) =
〈
δ1E1vχ,E1vχ

〉
+
〈
δ2E0vχ,E0vχ

〉
+

〈
δ1δ2

δ1(1−Y0)+δ2Y0
Evχ,Evχ

〉
. (3.3.25)

As ϕ has a nondifferentiable carapoint at χ, the directional derivative cannot be

linear in δ. This implies that Evχ must be non-zero, but this is precisely the condition

lim
λ

nt→χ

P⊥N vλ 6= 0.

Note that this also precludes the case that Y is a projection.

3.4 Regularity of generalized models at carapoints

The results of the previous section indicate that the structure of the generalized

model of a function at a point in the distinguished boundary has bearing on the behavior

of the function at that point. With this in mind, we make the following definitions.

Definition 3.4.1. For a Schur function ϕ with a carapoint at χ, let the generalized model

(M ,v, IY ) be as in Theorem 2.2.6. Let N = kerY (1−Y ) and denote the orthogonal

complement by N ⊥. We call a generalized model regular if PN ⊥vχ = 0. Otherwise, the

model is singular. If instead PN vχ = 0, then the generalized model is purely singular.

Note 3.4.2. We should point out that by the above definitions, if Y is a projection then

(M ,v, IY ) as above is automatically a regular generalized model.

Every ϕ with a carapoint at χ has a generalized model that is either regular or

singular. Then these definitions allow us to make an explicit classification of carapoints

by looking at the connections between geometrical conditions on a generalized model
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and the analyticity of the function at a boundary point in T2. The following two theorems

are restatements of Theorems 3.3.9 and 3.3.11 with respect to the above definition.

Theorem 3.4.3. Let ϕ ∈ S2 have a carapoint at χ. If ϕ has a purely singular generalized

model (M ,v, IY ) at χ then ϕ has a non-differentiable carapoint at χ.

Theorem 3.4.4. Let ϕ ∈ S2 have a nondifferentiable carapoint at χ. Then ϕ has a

singular generalized model (M ,v, IY ) at χ.

We have an even stronger statement for differentiable carapoints.

Theorem 3.4.5. Let ϕ ∈ S2 have a carapoint at χ. ϕ has a regular generalized model if

and only if χ is a differentiable carapoint for ϕ.

Proof. (⇒) : Suppose that ϕ has a regular generalized model (M ,v, IY ) at χ. From

(3.3.25),

Dδϕ(χ) =
〈
δ1E1vχ,E1vχ

〉
+
〈
δ2E0vχ,E0vχ

〉
+

〈
δ1δ2

δ1(1−Y0)+δ2Y0
Evχ,Evχ

〉
,

but as the model is regular, this reduces to

Dδϕ(χ) =
〈
δ1E1vχ,E1vχ

〉
+
〈
δ2E0vχ,E0vχ

〉
.

Clearly the directional derivative is linear in δ, and thus χ is a differentiable carapoint for

ϕ.

(⇐): Assume that ϕ has a differentiable carapoint. By Theorem 2.2.6, there is a

generalized model (M ,v, IY ) of ϕ. Any expression for the directional derivative will have

to be linear in δ, but this means that PN ⊥vχ = 0, and so the model must be regular.
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In the case where a boundary point is analytic, the differentiabilty of ϕ is im-

mediate. However, there are relatively simple functions that possess singular C-points.

In [ATDY12], the author with Agler and Young developed a method for constructing

generalized models that uses the idea of cutting a realization (a,β,γ,D) down by remov-

ing the kernel of the operator (1−D) from the model space. If ker(1−D) = {0}, then

the differentiabilty of ϕ at χ follows directly. However, this is not a necessary condi-

tion for checking differentiability. Indeed, consider the example stated in the following

proposition [You12].

Proposition 3.4.6. Let ϕ(λ) be the rational inner function given by the formula

ψ(λ) =
−4λ1(λ2)2 +(λ2)2 +3λ1λ2−λ1 +λ2

(λ2)2−λ1λ2−λ1−3λ2 +4
. (3.4.1)

ψ is in the Schur class, has a C-point at χ= (1,1), satisfies ψ(1,1) = 1 and D−δϕ(1,1) =

−2δ2. ψ is not analytic at χ. Further, there exists a realization (a,β,γ,D) of ψ so that

ker(1−D) is non-trivial.

The nature of the singularity at χ = (1,1) is not immediately obvious. One way

to conclude that χ is a C-point for ψ is by a laborious calculation of the directional

derivative. However, a generalized model reveals the nature of the boundary point χ.

Proposition 3.4.7. For ψ, a diagonal generalized model (M ,v, IY ) is given by

Y =

1
2 0

0 0

 , IY (λ) =

φ 1
2
(λ) 0

0 λ2

 ,
and

vλ =

√
2

(λ2)2−λ1λ2−λ1−3λ2 +4

2−λ1−3λ2 +λ1λ2 +(λ2)2

1−λ1λ2

 .
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This generalized model is regular at χ.

Proof. That (M ,v, IY ) is a generalized model for ψ follows from computation. To show

that the model is regular, note that PN ⊥vλ is given by

PN ⊥vλ =

√
2(2−λ1−3λ2 +λ1λ2 +(λ2)2)

(λ2)2−λ1λ2−λ1−3λ2 +4
.

On the ray (r,r) with r < 1, this becomes

√
2(2− r−3r+ r2 + r2)

r2− r2− r−3r+4
=

2
√

2(1−2r+ r2)

−4(r−1)
=

2
√

2(r−1)
−4

,

and taking the limit as r→ 1−, we get

PN⊥vχ = 0.

The non-zero component of vχ is contained entirely inside kerY (1−Y ) and so the model

(M ,v, IY ) is regular. Thus ψ has a differentiable carapoint at χ.



Chapter 4

Nevanlinna representations in several

variables

4.1 Introduction

This chapter will be concerned with the generalization of the following classical

integral representation of Pick functions, proved by R. Nevanlinna in [Nev22].

Theorem 4.1.1 (Nevanlinna’s Representation). Let h be a function defined on Π. There

exists a finite positive measure µ on R such that

h(z) =
∫ dµ

t− z
(4.1.1)

if and only if h ∈ P and

liminf
y→∞

y |h(iy)|< ∞. (4.1.2)

A closely related theorem, also referred to in the literature as Nevanlinna’s

Representation, provides an integral representation for a general element of P .

81
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Theorem 4.1.2. A function h : Π→ C belongs to the Pick class P if and only if there

exist a ∈ R, b≥ 0 and a finite positive Borel measure µ on R such that

h(z) = a+bz+
∫ 1+ tz

t− z
dµ(t) (4.1.3)

for all z ∈Π. Moreover, for any h ∈ P , the numbers a ∈ R, b≥ 0 and the measure µ≥ 0

in the representation (4.1.3) are uniquely determined.

What are the several-variable analogs of Nevanlinna’s theorems? In this chapter,

we shall propose four types of Nevanlinna representation for various subclasses of the

n-variable Pick class Pn. In addition, we shall present necessary and sufficient conditions

for a function defined on Πn to possess a representation of a given type in terms of

asymptotic growth conditions at ∞.

The integral representation (4.1.1) of those functions in the Pick class that satisfy

condition (4.1.2) can be written in the form

h(z) =
〈
(A− z)−11,1

〉
L2(µ) ,

where A is the operation of multiplication by the independent variable on L2(µ) and 1 is

the constant function 1. We propose that an appropriate n-variable analog of the Cauchy

transform is the formula

h(z1, . . . ,zn) =
〈
(A− z1Y1−·· ·− znYn)

−1v,v
〉

H for z1, . . . ,zn ∈Π, (4.1.4)

where H is a Hilbert space, A is a densely defined self-adjoint operator on H , Y1, . . . ,Yn

are positive contractions on H summing to 1 and v is a vector in H .

Theorem 4.1.6 below characterizes those functions on Πn that have a representa-

tion of the form (4.1.4). To state this theorem we require a notion based on the following
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classical result of Pick [Pic16].

Theorem 4.1.3. A function h defined on Π belongs to P if and only if the function A

defined on Π×Π by

A(z,w) =
h(z)−h(w)

z−w

is positive semidefinite, that is, for all n≥ 1,z1, . . . ,zn ∈Π,c1, . . . ,cn ∈ C,

∑A(z j,zi)cic j ≥ 0.

The following theorem, proved in [Agl90], leads to a generalization of Theorem

4.1.3 to two variables. The Schur class of the polydisc, denoted by S2, is the set of

analytic functions on the polydisc Dn that are bounded by 1 in modulus.

Theorem 4.1.4. A function ϕ defined on D2 belongs to S2 if and only if there exist positive

semidefinite functions A1 and A2 on D2 such that

1−ϕ(µ)ϕ(λ) = (1−µ1λ1)A1(λ,µ)+(1−µ2λ2)A2(λ,µ). (4.1.5)

By way of the transformations

z = i
1+λ

1−λ
, λ =

z− i
z+ i

, (4.1.6)

and

h(z) = i
1+ϕ(λ)

1−ϕ(λ)
, ϕ(λ) =

h(z)− i
h(z)+ i

, (4.1.7)

there is a one-to-one correspondence between functions in the Schur and Pick classes.

Under these transformations, Theorem 4.1.4 becomes the following generalization of

Pick’s theorem to two variables.
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Theorem 4.1.5. A function h defined on Π2 belongs to P2 if and only if there exist positive

semidefinite functions A1 and A2 on Π2 such that

h(z)−h(w) = (z1−w1)A1(z,w)+(z2−w2)A2(z,w).

In the light of Theorems 4.1.3 and 4.1.5 we define the Loewner class P2 to be the

set of analytic functions h on Πn with the property that there exist n positive semidefinite

functions A1, . . . ,An on Πn such that

h(z)−h(w) =
n

∑
j=1

(z j−w j)A j(z,w) (4.1.8)

for all z,w ∈ Πn. The Loewner class P2 played a key role in [AMY12b], which gave

a generalization to several variables of Loewner’s characterization of the one-variable

operator-monotone functions [Löw34]. As the following theorem makes clear, P2 also

has a fundamental role to play in the understanding of Nevanlinna representations in

several variables.

Theorem 4.1.6. A function h defined on Πn has a representation of the form (4.1.4) if

and only if h ∈ P2 and

liminf
y→∞

y|h(iy, . . . , iy)|< ∞. (4.1.9)

In the cases when n = 1 and n = 2, Theorems 4.1.3 and 4.1.5 assert that that

P2 = Pn, and so for n = 1, Theorem 4.1.6 is Nevanlinna’s classical Theorem 4.1.1, and

when n = 2, Theorem 4.1.6 is a straightforward generalization of that result to two

variables. When there are more than two variables, it is known that the Loewner class is

a proper subset of the Pick class, P2 6= Pn [Par70, Var74]. Nevertheless, Nevanlinna’s

result survives as a theorem about the representation of elements of P2. Other than the

work in [GKVVW08] very little is known about the representation of functions in Pn for
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three or more variables.

For a function h on Πn, we call the formula (4.1.4) a Nevanlinna representation

of type 1. Thus, Theorem 4.1.6 can be rephrased as the assertion that h has a Nevanlinna

representation of type 1 if and only if h ∈ P2 and h satisfies condition (4.1.9). Somewhat

more complicated representation formulae are needed to generalize Theorem 4.1.2. We

identify three further representation formulae, of increasing generality, and show that

every function in P2 has a representation of one or more of the four types.

For a function h defined on Πn, we refer to a formula

h(z1, . . . ,zn) = a+
〈
(A− z1Y1−·· ·− znYn)

−1v,v
〉

H for z1, . . . ,zn ∈Π, (4.1.10)

where a is a constant, H is a Hilbert space, A is a densely defined self-adjoint operator

on H , Y1, . . . ,Yn are positive contractions on H summing to 1 and v is a vector in H , as

a Nevanlinna representation of type 2.

Theorem 4.1.7. A function h defined on Πn has a Nevanlinna representation of type 2 if

and only if h ∈ P2 and

liminf
y→∞

y Im h(iy, . . . , iy)< ∞. (4.1.11)

A Nevanlinna representation of type 3 of a function h defined on Πn is of the

form

h(z) = a+
〈
(1− iA)(A− zY )

−1(1+ zY A)(1− iA)−1v,v
〉

for all z ∈Π
n

for some real a, some self-adjoint operator A and some vector v, where Y1, . . . ,Yn are

operators as in equation (4.1.4) above and zY = z1Y1 + · · ·+ znYn.

Theorem 4.1.8. A function h defined on Πn has a Nevanlinna representation of type 3 if
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and only if h ∈ P2 and

liminf
y→∞

1
y

Im h(iy, . . . , iy) = 0.

Finally, Nevanlinna representations of type 4 are given by the formula

h(z) = 〈M(z)v,v〉 , (4.1.12)

where M(z) is an operator of the form

−i 0

0 1− iA



1 0

0 A

− zP

0 0

0 1



−1zP

1 0

0 A

+
0 0

0 1



−i 0

0 1− iA


−1

,

(4.1.13)

acting on an orthogonal direct sum of Hilbert spaces N ⊕M . In (4.1.12), v is a vector in

N ⊕M . In (4.1.13), A is a densely-defined self-adjoint operator acting on M and zP is

the operator acting on N ⊕M via the formula

zP = ∑ziPi

where P1, . . . ,Pn are pairwise orthogonal projections acting on N ⊕M that sum to 1.

Theorem 4.1.9. Let h be a function defined on Πn. Then h has a Nevanlinna representa-

tion of type 4 if and only if h ∈ P2.

A weaker, “generic” version of Theorem 4.1.9 appeared in [AMY12b, Theorem

6.9], where it was used to show that elements in P2 are locally operator-monotone.

It turns out that for 1 ≤ k ≤ 4, if h is a function on Πn and h has a Nevanlinna

representation of type k, then for k ≤ j ≤ 4, h also has a Nevanlinna representation of

type j. Thus, it is natural to define the type of a function in P2 to be the smallest k such

that h has a Nevalinna representation of type k.
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As the point χ = (1, . . . ,1) is transformed to the point ∞ = (∞, . . . ,∞) by (4.1.6),

it is natural to say that a function h ∈ P2 has a carapoint at ∞ if the associated Schur

function ϕ, given by the transformation in (4.1.7), has a carapoint at χ, and in that case

to define h(∞) by

h(∞) = i
1+ϕ(χ)

1−ϕ(χ)
. (4.1.14)

The connection between carapoints and function types is given in the following

theorem.

Theorem 4.1.10. For a function h ∈ P2,

1. h is of type 1 if and only if ∞ is a carapoint of h and h(∞) = 0;

2. h is of type 2 if and only if ∞ is a carapoint of h and h(∞) ∈ R\{0};

3. h is of type 3 if and only if ∞ is not a carapoint of h;

4. h is of type 4 if and only if ∞ is a carapoint of h and h(∞) = ∞.

The paper is structured as follows. As is clear from the formulae used to define the

various Nevanlinna representations, Nevanlinna representations are generalizations of the

resolvent of a self-adjoint operator. These structured resolvents, studied in Sections 4.2

and 4.3, are analytic operator-valued functions on the polyhalfplane Πn with non-negative

imaginary part, fully analogous to the familiar resolvent operator.

In modern texts Nevanlinna’s representation is derived from the Herglotz Rep-

resentation with the aid of the Cayley transform [Lax02, Don74]. In Section 4.4 we

introduce the n-variable strong Herglotz class and then prove Theorem 4.1.12 by applying

the Cayley transform to Theorem 1.8 of [Agl90].

In Section 4.5 we derive the Nevanlinna representations of type 3,2, and 1, we

show how they arise naturally from the underlying Hilbert space geometry and we
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prove slight strengthenings of Theorems 4.1.6, 4.1.7 and 4.1.8. In Section 4.6 we give

function-theoretic conditions for a function h ∈ P2 to possess a representation of a given

type.

In Section 4.7 we introduce the notion of carapoints for functions in the Pick class

and in Section 4.8 we establish the criteria in Theorem 4.1.10 for the type of a function

using the language of carapoints.

Results related to ours from a system-theoretic perspective have been obtained in

ongoing work of J. A. Ball and D. Kalyuzhnyi-Verbovetzkyi [BKVa, BKVb]. See also

[BS06], where Krein space methods are applied to similar problems.

4.2 Structured resolvents of operators

The resolvent operator (A− z)−1 of a densely defined self-adjoint operator A on

a Hilbert space plays a prominent role in spectral theory. It has the following properties.

1. It is an analytic bounded operator-valued function of z in the upper halfplane Π;

2. it satisfies the growth estimate ‖(A− z)−1‖ ≤ 1/ Im z for z ∈Π;

3. (A− z)−1 has non-negative imaginary part for all z ∈Π;

4. it satisfies the “resolvent identity”.

Here we are interested in several-variable analogs of the resolvent. These will again

be operator-valued analytic functions with non-negative imaginary part, but now on

the polyhalfplane Πn. Because of the additional complexities in several variables we

encounter three different types of resolvent; all of them have the four listed properties,

with very slight modifications, and therefore deserve the name structured resolvent.

For any Hilbert space H , a positive decomposition of H will mean an n-tuple

Y = (Y1, . . . ,Yn) of positive contractions on H that sum to the identity operator. For any
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z = (z1, . . . ,zn) ∈ Cn and any n-tuple T = (T1, . . . ,Tn) of bounded operators we denote

by zT the operator ∑ j z jTj. Here each Tj is a bounded operator from H1 to H2, for some

Hilbert spaces H1, H2, so that zT is also a bounded operator from H1 to H2.

Definition 4.2.1. Let A be a closed densely defined self-adjoint operator on a Hilbert

space H and let Y be a positive decomposition of H . The structured resolvent of A of

type 2 corresponding to Y is the operator-valued function

z 7→ (A− zY )
−1 : Π

n→ L(H ).

The following observation is essentially [AMY12b, Lemma 6.25].

Proposition 4.2.2. For A and Y as in Definition 4.2.1 the structured resolvent (A− zY )
−1

is well defined on Πn and satisfies, for all z ∈Πn,

‖(A− zY )
−1‖ ≤ 1

min j Im z j
. (4.2.1)

Moreover

Im
(
(A− zY )

−1)= (A− z∗Y )
−1 (Im zY )(A− zY )

−1 (4.2.2)

= (A− zY )
−1 (Im zY )(A− z∗Y )

−1

≥ 0.

The range of the bounded operator (A− zY )
−1 is of course D(A), the domain of

A.
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Proof. For any vector ξ in the domain of A,

‖(A− zY )ξ‖ ‖ξ‖ ≥ |〈(A− zY )ξ,ξ〉 |

≥ | Im 〈(A− zY )ξ,ξ〉 |

= 〈(Im zY )ξ,ξ〉

= ∑
j
(Im z j)

〈
Yjξ,ξ

〉
≥ (min

j
Im z j)

〈
∑

j
Y jξ,ξ

〉

= (min
j

Im z j)‖ξ‖2.

Thus A−zY has lower bound min j Im z j > 0, and so has a bounded left inverse. A similar

argument with z replaced by z̄ shows that (A− zY )
∗ also has a bounded left inverse, and

so A− zY has a bounded inverse and the inequality (4.2.1) holds.

The identities (4.2.2) are easy.

Resolvents of type 2 are the simplest several-variable analogues of the familiar

one-variable resolvent but they are not sufficient for the analysis of the several-variable

Pick class. To this end we introduce two further generalizations. Let us first recall some

basic facts about closed unbounded operators.

Lemma 4.2.3. Let T be a closed densely defined operator on a Hilbert space H , with

domain D(T ). The operator 1+T ∗T is a bijection from D(T ∗T ) to H , and the operators

B def
= (1+T ∗T )−1, C def

= T (1+T ∗T )−1

are everywhere defined and contractive on H . Moreover B is self-adjoint and positive,

and ranC ⊂D(T ∗).
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Proof. All these statements are proved in [RSN90, Sections 118, 119], although the final

statement about ranC is not explicitly stated. We must show that for all v ∈ H there

exists y ∈H such that, for all h ∈H ,

〈T h,Cv〉= 〈h,y〉 .

It is straightforward to check that this relation holds for y = v−Bv, and so ranC ⊂

D(T ∗).

Definition 4.2.4. Let A be a closed densely defined self-adjoint operator on a Hilbert

space H and let Y be a positive decomposition of H . The structured resolvent of A of

type 3 corresponding to Y is the operator-valued function M : Πn→ L(H ) given by

M(z) = (1− iA)(A− zY )
−1(1+ zY A)(1− iA)−1. (4.2.3)

We denote the `1 norm on Cn by ‖ · ‖1. Note that ‖zY‖ ≤ ‖z‖1 for all z ∈ Cn and

all positive decompositions Y .

Proposition 4.2.5. For A and Y as in Definition 4.2.4 the structured resolvent M(z) of

type 3 given by equation (4.2.3) is well defined as a bounded operator on H for all

z ∈Πn and satisfies

‖M(z)‖ ≤ (1+2‖z‖1)

(
1+

1+‖z‖1

min j Im z j

)
. (4.2.4)

Proof. Since

1+ zY A = 1− izY + izY (1− iA) : D(A)→H

and (1− iA)−1 is a contraction on all of H , with range D(A), the operator (1+ zY A)(1−



92

iA)−1 is well defined as an operator on H and

‖(1+ zY A)(1− iA)−1‖= ‖(1− izY )(1− iA)−1 + izY‖

≤ ‖1− izY‖+‖zY‖

≤ 1+2‖zY‖

≤ 1+2‖z‖1. (4.2.5)

Similarly (1− iA)(A− zY )
−1 is well defined on H , and since

i(A− zY ) =−(1− iA)+(1− izY ) : D(A)→H

we have

i =−(1− iA)(A− zY )
−1 +(1− izY )(A− zY )

−1 : H →H .

Thus, by virtue of the bound (4.2.1),

‖(1− iA)(A− zY )
−1‖= ‖i− (1− izY )(A− zY )

−1‖

≤ 1+‖1− izY‖ ‖(A− zY )
−1‖

≤ 1+
1+‖z‖1

min j Im z j
. (4.2.6)

On combining the estimates (4.2.6) and (4.2.5) we obtain the bound (4.2.4).

The following alternative formula for the structured resolvent of type 3, valid on

the dense subspace D(A) of H , allows us to show that Im M(z)≥ 0.
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Proposition 4.2.6. For A and Y as in Definition 4.2.4 and z ∈Πn

M(z)|D(A) = (1− iA)
{
(A− zY )

−1−A(1+A2)−1}(1+ iA) (4.2.7)

= (1− iA)(A− zY )
−1(1+ iA)−A : D(A)→H . (4.2.8)

Moreover, for every v ∈D(A),

Im 〈M(z)v,v〉=
〈
(1− iA)(A− z∗Y )

−1(Im zY )(A− zY )
−1(1+ iA)v,v

〉
≥ 0. (4.2.9)

Proof. By Lemma 4.2.3 the operator A(1+A2)−1 is contractive on H and has range

contained in D(A). On D(A2) we have the identity

1+ zY A = 1+A2− (A− zY )A.

Since (1+A2)−1 maps H into D(A2) we have

(1+ zY A)(1+A2)−1 = 1− (A− zY )A(1+A2)−1 : H →H ,

and therefore

(A− zY )
−1(1+ zY A)(1+A2)−1 = (A− zY )

−1−A(1+A2)−1 : H →D(A). (4.2.10)

Clearly

(1+A2)−1(1+ iA) = (1− iA)−1 on D(A)

and so, on multiplying equation (4.2.10) fore and aft by 1± iA, we deduce that, as
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operators from D(A) to H ,

M(z)|D(A) = (1− iA)(A− zY )
−1(1+ zY A)(1− iA)−1

= (1− iA)(A− zY )
−1(1+ zY A)(1+A2)−1(1+ iA)

= (1− iA)
{
(A− zY )

−1−A(1+A2)−1}(1+ iA).

This establishes equation (4.2.7).

The expression (4.2.8) follows from equation (4.2.7) since

(1− iA)A(1+A2)−1(1+ iA) = A on D(A).

By equation (4.2.8) we have, for any z ∈Πn and v ∈D(A),

Im 〈M(z)v,v〉= Im
〈
(1− iA)(A− zY )

−1(1+ iA)v,v
〉
− Im 〈Av,v〉

= Im
〈
(A− zY )

−1(1+ iA)v,(1+ iA)v
〉

and hence, by equation (4.2.2),

Im 〈M(z)v,v〉=
〈
(A− z∗Y )

−1(Im zY )(A− zY )
−1(1+ iA)v,(1+ iA)v

〉
,

and so equation (4.2.9) holds.

Corollary 4.2.7. For A and Y as in Definition 4.2.4 the structured resolvent M(z) given

by equation (4.2.3) satisfies Im M(z)≥ 0 for all z ∈Πn.

For, by Propositions 4.2.5 and 4.2.6, M(z) is a bounded operator on H and

Im 〈M(z)v,v〉 ≥ 0 for v ∈D(A). The conclusion follows by density of D(A) and conti-

nuity.
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In the case of bounded A there is yet another expression for the structured resol-

vent of type 3.

Proposition 4.2.8. If A is a bounded self-adjoint operator on H and Y is a positive

decomposition of H then, for z ∈Πn,

M(z) = (1+ iA)−1(1+AzY )(A− zY )
−1(1+ iA) (4.2.11)

Proof. Since A is bounded it is defined on all of H . We have

1+AzY = 1+A2−A(A− zY )

and hence

(1+AzY )(A− zY )
−1 = (1+A2)(A− zY )

−1−A.

Thus

(1+ iA)−1(1+AzY )(A− zY )
−1(1+ iA) = (1− iA)(A− zY )

−1(1+ iA)−A

= M(z)

by equation (4.2.8).

Remark 4.2.9. In the case of unbounded A the expression (4.2.11) for M(z) is valid

wherever it is defined, but it is not to be expected that this will be a dense subspace of H

in general.

Here are two examples of structured resolvents of type 3, one on C2 and one on

an infinite-dimensional space.
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Example 4.2.10. Let

H = C2, A =

1 0

0 −1

 , Y1 =
1
2

1 1

1 1

 , Y2 = 1−Y1, Y = (Y1,Y2).

Then

M(z) = (1− iA)(A− zY )
−1(1+ zY A)(1− iA)−1

=
1

1− z1z2

(1+ z1)(1+ z2) −i(z1− z2)

i(z1− z2) −(1− z1)(1− z2)

 .
Example 4.2.11. Let H = L2(R), let A be the operation of multiplication by the inde-

pendent variable t and let Y = (P,Q) where P,Q are the orthogonal projection operators

onto the subspaces of even and odd functions respectively in L2. Thus

P f (t) = 1
2 { f (t)+ f (−t)} , Q f (t) = 1

2 { f (t)− f (−t)} .

Let Y ′ = (Q,P). Note that

PA = AQ, QA = AP

and hence

zY A = AzY ′, zY ′A = AzY , zY zY ′ = z1z2 = zY ′zY .

It follows that zY and zY ′ commute with A2, and it may be checked that

(A− zY )
−1 = (A2− z1z2)

−1(zY ′+A) = (zY ′+A)(A2− z1z2)
−1
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and hence

(A− zY )
−1(1+ zY A) = (A2− z1z2)

−1 ((1+A2)zY ′+(1+ z1z2)A
)
.

A straightforward calculation now shows that the structured resolvent M(z) of A corre-

sponding to Y is given by

(M(z) f )(t) =

(1
2(z1 + z2)(1+ t2)+(1+ z1z2)t

)
f (t)+ 1

2(z2− z1)(1− it)2 f (−t)
t2− z1z2

for all z ∈Π2, f ∈ L2(R) and t ∈ R. In particular, we note for future use that if f is an

even function,

(M(z) f )(t) =
t(1+ z1z2)+(1− it)(itz1 + z2)

t2− z1z2
f (t). (4.2.12)

4.3 The matricial resolvent

The third and last form of structured resolvent that we consider has a 2× 2

matricial form. As will become clear, this extra complication is needed for the description

of the most general type of function in the several-variable Loewner class.

By an orthogonal decomposition of a Hilbert space H we shall mean an n-tuple

P = (P1, . . . ,Pn) of orthogonal projection operators with pairwise orthogonal ranges such

that ∑
n
j=1 Pj is the identity operator.

Proposition 4.3.1. Let H be the orthogonal direct sum of Hilbert spaces N ,M , let A

be a densely defined self-adjoint operator on M with domain D(A) and let P be an

orthogonal decomposition of H . For every z ∈Πn the operator on H given with respect
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to the decomposition N ⊕M by the matricial formula

M(z) =

−i 0

0 1− iA



1 0

0 A

− zP

0 0

0 1



−1

(4.3.1)

×

zP

1 0

0 A

+
0 0

0 1



−i 0

0 1− iA


−1

(4.3.2)

is a bounded operator defined on all of H , and

‖M(z)‖ ≤ (1+
√

10‖z‖1)

(
1+

1+
√

2‖z‖1

min j Im z j

)
(4.3.3)

Proof. Let z ∈Πn. Let the projection Pj have operator matrix

Pj =

X j B j

B∗j Yj

 (4.3.4)

with respect to the decomposition H = N ⊕M . Then

X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn)

are positive decompositions of N , M respectively, and

B = (B1, . . . ,Bn), B∗ = (B∗1, . . . ,B
∗
n)

are n-tuples of contractions summing to 0, from M to N and from N to M respectively.

Since the B j are contractions we have

‖zB‖ ≤ ‖z‖1.
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For any z ∈ Cn,

zP =

 zX zB

zB∗ zY

 . (4.3.5)

Consider the third and fourth factors in the product on the right hand side of

equation (4.3.1); the product of these two factors is well defined as an operator on H

since (1− iA)−1 maps M to D(A). It is even a bounded operator, since, by virtue of

equation (4.3.5),

zP

1 0

0 A

+
0 0

0 1



−i 0

0 1− iA


−1

=

 izX zBA(1− iA)−1

izB∗ (1+ zY A)(1− iA)−1

 . (4.3.6)

Since

‖A(1− iA)−1‖= ‖i
(
1− (1− iA)−1)‖ ≤ 2

we can immediately see that the operator (4.3.6) is bounded. We can get an estimate of

the norm of the operator matrix (4.3.6) if we replace each of the four operator entries by

an upper bound for its norm. We find that

∥∥∥∥∥∥∥∥
zP

1 0

0 A

+
0 0

0 1



−i 0

0 1− iA


−1
∥∥∥∥∥∥∥∥≤

∥∥∥∥∥∥∥
‖z‖1 2‖z‖1

‖z‖1 1+2‖z‖1


∥∥∥∥∥∥∥

≤ 1+‖z‖1

∥∥∥∥∥∥∥
1 2

1 2


∥∥∥∥∥∥∥

= 1+
√

10‖z‖1. (4.3.7)
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Now consider the second factor in the definition (4.3.1) of M(z). We find that


1 0

0 A

− zP

0 0

0 1



−1

=

1 −zB

0 A− zY


−1

=

1 zB(A− zY )
−1

0 (A− zY )
−1

 , (4.3.8)

which maps H into N ⊕D(A). Hence the product of the first two factors in the product

on the right hand side of equation (4.3.1) is

−i 0

0 1− iA



1 0

0 A

− zP

0 0

0 1



−1

=

−i −izB(A− zY )
−1

0 (1− iA)(A− zY )
−1

 . (4.3.9)

Since

‖(1− iA)(A− zY )
−1‖= ‖(1− izY )(A− zY )

−1− i‖

≤ 1+‖1− izY‖‖(A− zY )
−1‖

≤ 1+
1+‖z‖1

min j Im z j

we deduce from equation (4.3.9) that

∥∥∥∥∥∥∥∥
−i 0

0 1− iA



1 0

0 A

− zP

0 0

0 1



−1
∥∥∥∥∥∥∥∥≤

∥∥∥∥∥∥∥
1 ‖z‖1 ‖(A− zY )

−1‖

0 1+(1+‖z‖1)‖(A− zY )‖−1


∥∥∥∥∥∥∥

≤ 1+

∥∥∥∥∥∥∥
0 ‖z‖1

0 1+‖z‖1


0 0

0 ‖(A− zY )
−1‖


∥∥∥∥∥∥∥

≤ 1+
1+
√

2‖z‖1

min j Im z j
. (4.3.10)



101

On combining the estimates (4.3.10) and (4.3.7) we obtain the bound (4.3.3) for ‖M(z)‖.

Remark 4.3.2. On multiplying together the expressions (4.3.9) and (4.3.6) we obtain

the formula

M(z) =

 zX + zB(A− zY )
−1zB∗ −izB(A− zY )

−1(1+ iA)

i(1− iA)(A− zY )
−1zB∗ (1− iA)(A− zY )

−1(1+ zY A)(1− iA)−1

 .
Notice in particular that the (2,2) entry (that is, the compression of M(z) to M ) is the

structured resolvent of A of type 3 corresponding to Y , the compression of P to M , as in

equation (4.2.3).

Definition 4.3.3. Let H be the orthogonal direct sum of Hilbert spaces N ,M , let A

be a densely defined self-adjoint operator on M with domain D(A) and let P be an

orthogonal decomposition of H . The structured resolvent of A of type 4 corresponding

to P is the operator-valued function M : Πn→ L(H ) given by equation (4.3.1).

We shall also refer to M(z) as the matricial resolvent of A with respect to P. The

important property that Im M(z)≥ 0 is not at once apparent from the formula (4.3.1);

as with structured resolvents of type 3, there are alternative formulae from which this

property is more easily shown. Once again the alternatives suffer the minor drawback

that they give M(z) only on a dense subspace of H .
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Proposition 4.3.4. With the notation of Definition 4.3.3, as operators on N ⊕D(A),

M(z) =

−i 0

0 1− iA



1 0

0 A(1+A2)−1

zP +

0 0

0 (1+A2)−1


×


1 0

0 A

−
0 0

0 1

zP


−1 i 0

0 1+ iA

 (4.3.11)

=

−i 0

0 1− iA



1 0

0 0

zP +

0 0

0 1




1 0

0 A

−
0 0

0 1

zP


−1 i 0

0 1+ iA


−

0 0

0 A

 (4.3.12)

=

−i 0

0 1− iA



1 0

0 A

− zP

0 0

0 1



−1zP

1 0

0 0

+
0 0

0 1



 i 0

0 1+ iA


−

0 0

0 A

 (4.3.13)

for all z ∈Πn. Moreover, for all z, w ∈Πn,

M(z)−M(w)∗ =

−i 0

0 1− iA



1 0

0 A

−w∗P

0 0

0 1



−1

×

(zP−w∗P)


1 0

0 A

−
0 0

0 1

zP


−1 i 0

0 1+ iA


(4.3.14)

on N ⊕D(A).
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Proof. By Lemma 4.2.3 the operators (1+A2)−1 and

C def
= Im (1− iA)−1 = A(1+A2)−1

are self-adjoint contractions defined on all of M . Furthermore,

ran(1+A2)−1 = D(A2), ranC ⊂D(A).

We claim that, as operators on N ⊕D(A),


1 0

0 A

 −zP

0 0

0 1



−1zP

1 0

0 A

+
0 0

0 1


=


1 0

0 C

zP +

0 0

0 (1+A2)−1




1 0

0 C

−
0 0

0 (1+A2)−1

zP


−1

.

(4.3.15)
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We havezP

1 0

0 A

+
0 0

0 1




1 0

0 C

−
0 0

0 (1+A2)−1

zP


=

0 0

0 C

+ zP

1 0

0 AC

−
0 0

0 (1+A2)−1

zP− zP

0 0

0 C

zP

=

0 0

0 C

+ zP


1 0

0 AC

−1

+

1−

0 0

0 (1+A2)−1


zP− zP

0 0

0 C

zP

=

0 0

0 C

− zP

0 0

0 (1+A2)−1

+
1 0

0 AC

zP− zP

0 0

0 C

zP

=


1 0

0 A

− zP

0 0

0 1




1 0

0 C

zP +

0 0

0 (1+A2)−1


 .

This is an identity between operators on H , in both cases a composition H → N ⊕

D(A)→ H , and moreover the first factor on the left hand side and the second factor

on the right hand side are invertible, from N ⊕D(A) to H and from H to N ⊕D(A)

respectively. We may pre- and post-multiply appropriately to obtain equation (4.3.15), but

note that the equation is then only valid as an identity between operators on N ⊕D(A).

On combining equations (4.3.1) and (4.3.15) we deduce that

M(z) =

−i 0

0 1− iA



1 0

0 C

zP +

0 0

0 (1+A2)−1


×


1 0

0 C

−
0 0

0 (1+A2)−1

zP


−1−i 0

0 1− iA


−1

.
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Since −i 0

0 1− iA


−1

=

1 0

0 1+A2


−1 i 0

0 1+ iA


and 1 0

0 1+A2



1 0

0 C

−
0 0

0 (1+A2)−1

zP

=

1 0

0 A

−
0 0

0 1

zP,

we deduce further that

M(z) =

−i 0

0 1− iA



1 0

0 C

zP +

0 0

0 (1+A2)−1


×


1 0

0 A

−
0 0

0 1

zP


−1 i 0

0 1+ iA

 , (4.3.16)

which proves equation (4.3.11). It is straightforward to verify that


1 0

0 C

zP +

0 0

0 (1+A2)−1




1 0

0 A

−
0 0

0 1

zP


−1

(4.3.17)

=


1 0

0 0

zP +

0 0

0 1




1 0

0 A

−
0 0

0 1

zP


−1

−

0 0

0 A(1+A2)−1

 .
(4.3.18)

Clearly −i 0

0 1− iA


0 0

0 A(1+A2)−1


 i 0

0 1+ iA

=

0 0

0 A

 ,
and so on suitably pre- and post-multiplying equation (4.3.17), we obtain equation
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(4.3.12).

To prove equation (4.3.13), check first that


1 0

0 A

− zP

0 0

0 1




1 0

0 0

zP +

0 0

0 1


=

zP

1 0

0 0

+
0 0

0 1




1 0

0 A

−
0 0

0 1

zP


as operators on N ⊕D(A). It follows that


1 0

0 0

zP +

0 0

0 1




1 0

0 A

−
0 0

0 1

zP


−1

=


1 0

0 A

− zP

0 0

0 1



−1zP

1 0

0 0

+
0 0

0 1




as operators from H to N ⊕D(A). On combining this relation with equation (4.3.12)

we derive the expression (4.3.13) for M(z)|N ⊕D(A).

We now derive the identity (4.3.14). Let

D =

 i 0

0 1+ iA


and consider z, w ∈Πn. By equation (4.3.11)

M(z) = D∗W (z)D (4.3.19)
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on N ⊕D(A), where

W (z) = R(z)S(z)−1−

0 0

0 A(1+A2)−1

 (4.3.20)

and

R(z) =

1 0

0 0

zP +

0 0

0 1

 , S(z) =

1 0

0 A

−
0 0

0 1

zP.

We have seen that S(z) is invertible for any z ∈Πn, so that W (z) is a bounded operator

on H . Clearly

M(z)−M(w)∗ = D∗
(
R(z)S(z)−1−S(w)∗−1R(w)∗

)
D

= D∗S(w)∗−1 (S(w)∗R(z)−R(w)∗S(z))S(z)−1D.

Here

S(w)∗R(z)−R(w)∗S(z) =

1 0

0 0

zP +

0 0

0 A

−w∗P

0 0

0 1

−
w∗P

1 0

0 0

+
0 0

0 A

−
0 0

0 1

zP


= zP−w∗P.

Hence

M(z)−M(w)∗ = D∗S(w)∗−1(zP−w∗P)S(z)
−1D,

which is equation (4.3.14).

The next result shows that the matricial resolvent belongs not just to the operator
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Pick class, but to the smaller operator Loewner class.

Proposition 4.3.5. With the notation of Definition 4.3.3, there exists an analytic operator-

valued function F : Πn→ L(H ) such that for all z, w ∈Πn,

M(z)−M(w)∗ = F(w)∗(z− w̄)PF(z) (4.3.21)

on H .

Proof. The identity (4.3.14) shows that such a relation holds on N ⊕D(A); we must

extend it to all of H . Write Pj as an operator matrix with respect to the decomposition

H = N ⊕M , as in equation (4.3.4). Then zP has the matricial expression (4.3.5). For

z ∈Πn let

F](z) =


1 0

0 A

−
0 0

0 1

zP


−1 i 0

0 1+ iA

 .
Then F](z) is an operator from N ⊕D(A) to H , and we find that

F](z) =

 1 0

−zB∗ A− zY


−1 i 0

0 1+ iA


=

 i 0

i(A− zY )
−1zB∗ (A− zY )

−1(1+ iA)

 : N ⊕D(A)→H .

Let

F(z) =

 i 0

i(A− zY )
−1zB∗ i+(A− zY )

−1(1+ izY )

 : N ⊕M →H . (4.3.22)

Since

(A− zY )
−1(1+ iA) = i+(A− zY )

−1(1+ izY )
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on N ⊕D(A) and the right hand side of the last equation is a bounded operator on all of

H , it is clear that, for every z ∈Πn, F(z) is a continuous extension to H of F](z) and is

a bounded operator. Furthermore F is analytic on Πn.

By Proposition 4.3.4, equation (4.3.14), the relation (4.3.21) holds on the dense

subspace N ⊕D(A) of H for every z, w ∈ Πn. Since the operators on both sides of

equation (4.3.21) are continuous on H , the equation holds throughout H .

Corollary 4.3.6. A matricial resolvent has a non-negative imaginary part at every point

of Πn.

Proof. In the notation of Proposition 4.3.5, on choosing w = z in equation (4.3.21) and

dividing by 2i we obtain the relation

Im M(z) = F(z)∗(Im zP)F(z)

on H . We have

Im zP = ∑
j
(Im z j)Pj ≥ 0,

and so Im M(z)≥ 0 on H for all z ∈Πn.

Here is a concrete example of a matricial resolvent.

Example 4.3.7. The function

M(z) =
1

z1 + z2

 2z1z2 i(z1− z2)

−i(z1− z2) −2

 (4.3.23)

is the matricial resolvent corresponding to

H = C2, N = M = C, A = 0 on C, P1 =
1
2

1 1

1 1

 , P2 = 1−P1.
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4.4 Nevanlinna representations of type 4

In this section we derive a multivariable analog of the most general form of

Nevanlinna representation for functions in the one-variable Pick class (Theorem 4.1.2).

We start with a multivariable Herglotz theorem [Agl90, Theorem 1.8]. We shall say that

an analytic operator-valued function F on Dn is a Herglotz function if Re F(λ)≥ 0 for

all λ ∈ Dn. For present purposes we need the following modification of the notion.

Definition 4.4.1. An analytic function F : Dn→ L(K ), where K is a Hilbert space, is a

strong Herglotz function if, for every commuting n-tuple T = (T1, . . . ,Tn) of operators on

a Hilbert space and for 0≤ r < 1, Re F(rT )≥ 0.

In [Agl90] these functions were called Fn-Herglotz functions. The class of

strong Herglotz functions has also been called the Herglotz-Agler class (for example

[KV05, BKVb]). It is clear that every strong Herglotz function is a Herglotz function,

and in the cases n = 1 and 2 the converse is also true [Agl90].

Theorem 4.4.2. Let K be a Hilbert space and let F : D2→ L(K ) be a strong Herglotz

function such that F(0) = 1. There exist a Hilbert space H , an orthogonal decomposition

P of H , an isometric linear operator V : K →H and a unitary operator U on H such

that, for all λ ∈ Dn,

F(λ) =V ∗
1+UλP

1−UλP
V. (4.4.1)

Conversely, every function F : Dn→ L(K ) expressible in the form (4.4.1) for

some H , P, V and U with the stated properties is a strong Herglotz function and satisfies

F(0) = 1.

Note that λP = ∑ j λ jPj has operator norm at most ‖λ‖∞ < 1 for λ ∈ Dn, and

hence equation (4.4.1) does define F as an analytic operator-valued function on Dn.
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On specialising to scalar-valued functions in the n-variable Herglotz class we

obtain the following consequence.

Corollary 4.4.3. Let f be a scalar-valued strong Herglotz function on Dn. There exists a

Hilbert space H , a unitary operator L on H , an orthogonal decomposition P of H , a

real number a and a vector v ∈H such that, for all λ ∈ Dn,

f (λ) =−ia+
〈
(L−λP)

−1(L+λP)v,v
〉
. (4.4.2)

Conversely, for any H ,L,P,a and v with the properties described, equation (4.4.2) defines

f as an n-variable strong Herglotz function.

Again, the right hand side of equation (4.4.2) is an analytic function of λ ∈ Dn

since

(L−λP)
−1 = L−1(1−λPL−1)−1

is a bounded operator and is analytic in λ.

Definition 4.4.4. A Nevanlinna representation of type 4 of a function h : Πn→C consists

of an orthogonally decomposed Hilbert space H = N ⊕M , a self-adjoint densely

defined operator A on M , an orthogonal decomposition P of H , a real number a

and a vector v ∈H such that

h(z) = a+ 〈M(z)v,v〉 (4.4.3)

for all z ∈Πn, where M(z) is the structured resolvent of A of type 4 corresponding to P

(given by the formula (4.3.1)).

We wish to convert Corollary 4.4.3 to a representation theorem for suitable

analytic functions on Πn. The fact that the corollary only applies to strong Herglotz
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functions results in representation theorems for a subclass of the Pick class Pn. Recall

from the introduction:

Definition 4.4.5. The Loewner class P2 is the set of analytic functions h on Πn with the

property that there exist n positive semi-definite functions A1, . . . ,An on Πn, analytic in

the first argument, such that

h(z)−h(w) =
n

∑
j=1

(z j−w j)A j(z,w)

for all z,w ∈Πn.

A function h on Πn belongs to P2 if and only if it corresponds under conjugation

by the Cayley transform to a function in the Schur-Agler class of the polydisc [AMY12b,

Lemma 2.13]. Another characterization: h ∈ P2 if and only if, for every commuting

n-tuple T of bounded operators with strictly positive imaginary parts, h(T ) has positive

imaginary part.

We can now prove Theorem 4.1.9 from the introduction: a function h defined on

Πn has a Nevanlinna representation of type 4 if and only if h ∈ P2.

Proof. Let h ∈ P2. Define an n-variable Herglotz function f : Dn→ C by

f (λ) =−ih(z) (4.4.4)

where

z j = i
1+λ j

1−λ j
for j = 1, . . . ,n. (4.4.5)

When λ∈Dn the point z belongs to Πn, and so f (λ) is well defined, and since Im h(z)≥ 0

we have Re f (λ)≥ 0, so that f is indeed a Herglotz function. In fact f is even a strong

Herglotz function: since h ∈ P2, the function ϕ ∈ S2 corresponding to h lies in the
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Schur-Agler class of the polydisc, and so f = (1+ϕ)/(1−ϕ) is a strong Herglotz

function.

By Corollary 4.4.3 there exist a real number a, a Hilbert space H , a vector v ∈H ,

a unitary operator L on H and an orthogonal decomposition P on H such that, for all

z ∈Πn,

h(z) = i f (λ) = a+
〈
i(L−λ)−1(L+λ)v,v

〉
= a+

〈
i[L− (z− i)(z+ i)−1]−1[L+(z− i)(z+ i)−1]v,v

〉
. (4.4.6)

Here and in the rest of this section z, λ are identified with the operators zP, λP on H ,

and in consequence the relation

λ =
z− i
z+ i

is meaningful and valid.

For z ∈Πn let

M(z) = i(L−λ)−1 (L+λ) = i
(

L− z− i
z+ i

)−1(
L+

z− i
z+ i

)
. (4.4.7)

Since L is unitary on H and λ ∈Dn, the operator M(z) is bounded on H for every z ∈Πn

and, by equation (4.4.6), we have

h(z) = a+ 〈M(z)v,v〉 (4.4.8)

for all z ∈Π2. Theorem 4.1.9 will follow provided we can show that M(z) is given by

equation (4.3.1) for a suitable self-adjoint operator A.
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Observe that

M(z) = i((z+ i)L− (z− i))−1((z+ i)L+(z− i))

= i(z(L−1)+ i(L+1))−1 (z(L+1)+ i(L−1)) . (4.4.9)

We wish to take out a factor 1−L from both factors in equation (4.4.9), but this may be

impossible since 1−L can have a nonzero kernel. Accordingly we decompose H into

N ⊕M where N = ker(1−L), M = N ⊥. With respect to this decomposition we can

write L as an operator matrix

L =

1 0

0 L0

 ,
where L0 is unitary and ker(1−L0) = {0}. Substituting into equation (4.4.9) we have

M(z) = i

z

0 0

0 L0−1

+ i

2 0

0 L0 +1



−1z

2 0

0 L0 +1

+ i

0 0

0 L0−1

z


=

−z

0 0

0 1−L0

+
2i 0

0 i(1+L0)



−1z

2i 0

0 i(1+L0)

+
0 0

0 1−L0




(4.4.10)

Formally we may now write

M(z) =

−1
2 i 0

0 (1−L0)
−1


−z

0 0

0 1

+
1 0

0 i1+L0
1−L0



−1

×

z

1 0

0 i1+L0
1−L0

+
0 0

0 1



2i 0

0 1−L0

 , (4.4.11)

but whereas equation (4.4.10) is a relation between bounded operators defined on all of
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H , equation (4.4.11) involves unbounded, partially defined operators and we must verify

that the product of operators on the right hand side is meaningful.

Let

A = i
1+L0

1−L0
.

Since L0 is unitary on M and ker(1−L0) = {0}, the operator A is self-adjoint and densely

defined on M [RSN90, Section 121]. The domain D(A) of A is the dense subspace

ran(1−L0) of M . It follows from the definition of A that

(1−L0)
−1 = 1

2(1− iA), (4.4.12)

which is an equation between bijective operators from D(A) to M . Likewise

1+L0 =−2iA(1− iA)−1 : M →D(A) (4.4.13)

are bounded operators.

Let us continue the calculation from the first factor on the right hand side of

equation (4.4.10). Since ker(1−L0) = {0}, the right hand side of the relation

−z

0 0

0 1−L0

+
2i 0

0 i(1+L0)

=

−z

0 0

0 1

+
1 0

0 A



2i 0

0 1−L0


comprises a bijective map from H to N ⊕D(A) followed by a bijection from N ⊕D(A)

to H (recall the equation (4.3.8)). We may therefore take inverses in the equation to
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obtain

−z

0 0

0 1−L0

+
2i 0

0 i(1+L0)



−1

(4.4.14)

=

−1
2 i 0

0 (1−L0)
−1



1 0

0 A

− z

0 0

0 1



−1

=

−1
2 i 0

0 1
2(1− iA)



1 0

0 A

− z

0 0

0 1



−1

(4.4.15)

as operators on N ⊕D(A).

Similar reasoning applies to the equation

z

2i 0

0 i(1+L0)

+
0 0

0 1−L0

=

z

1 0

0 A

+
0 0

0 1



2i 0

0 1−L0


=

z

1 0

0 A

+
0 0

0 1



−1

2 i 0

0 1
2(1− iA)


−1

;

(4.4.16)

it is valid as an equation between operators on H . The right hand side comprises an

operator from H to N ⊕D(A) followed by an operator from N ⊕D(A) to H , and so

both sides of the equation denote an operator on H .
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On combining equations (4.4.10), (4.4.14) and (4.4.16) we obtain

M(z) =

−1
2 i 0

0 1
2(1− iA)



1 0

0 A

− z

0 0

0 1



−1

×

z

1 0

0 A

+
0 0

0 1



−1

2 i 0

0 1
2(1− iA)


−1

.

Premultiply this equation by 2 and postmultiply by 1
2 to deduce that M(z) is indeed the

structured resolvent of A of type 4 corresponding to P, as defined in equation (4.3.1).

Thus the formula (4.4.8) is a Nevanlinna representation of h of type 4.

Conversely, let h ∈ P2 have a type 4 representation (4.4.3). By Proposition

4.3.5 there exists an analytic operator-valued function F : Πn→ L(H ) such that, for all

z, w ∈Πn,

M(z)−M(w)∗ = F(w)∗(z− w̄)PF(z) (4.4.17)

on H . Hence

h(z)−h(w) = 〈(M(z)−M(w)∗)v,v〉

= 〈F(w)∗(z− w̄)PF(z)v,v〉

=
n

∑
j=1

(z j− w̄ j)A j(z,w)

for all z, w ∈Πn, where

A j(z,w) =
〈
PjF(z)v,F(w)v

〉
.

The A j are clearly positive semidefinite on Πn, and hence h belongs to the Loewner class

Ln.
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4.5 Nevanlinna representations of types 3, 2 and 1

Nevanlinna representations of type 4 have the virtue of being general for functions

in P2, but they are undeniably cumbersome. In this section we shall show that there are

three simpler representation formulae, corresponding to increasingly stringent growth

conditions on h ∈ P2.

In Nevanlinna’s one-variable representation formula of Theorem 4.1.2,

h(z) = a+bz+
∫ 1+ tz

t− z
dµ(t), (4.5.1)

it may be the case for a particular h ∈ P that the bz term is absent. The analogous

situation in two variables is that the space N in a type 4 representation may be zero.

Equivalently, in the corresponding Herglotz representation, the unitary operator L does

not have 1 as an eigenvalue. This suggests the following notion.

Definition 4.5.1. A Nevanlinna representation of type 3 of a function h on Πn con-

sists of a Hilbert space H , a self-adjoint densely defined operator A on H , a positive

decomposition Y of H , a real number a and a vector v ∈H such that, for all z ∈Πn,

h(z) = a+
〈
(1− iA)(A− zY )

−1(1+ zY A)(1− iA)−1v,v
〉
. (4.5.2)

Thus h has a type 3 representation if h(z) = a+ 〈M(z)v,v〉 where M(z) is the

structured resolvent of A of type 3 corresponding to Y , as given by equation (4.2.3).

In [ATDY12] the authors derived a somewhat simpler representation which can

also be regarded as an analog of the case b = 0 of Nevanlinna’s one-variable formula

(4.5.1).

Definition 4.5.2. A Nevanlinna representation of type 2 of a function h on Πn con-

sists of a Hilbert space H , a self-adjoint densely defined operator A on H , a positive
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decomposition Y of H , a real number a and a vector α ∈H such that, for all z ∈Πn

h(z) = a+
〈
(A− zY )

−1
α,α

〉
. (4.5.3)

This means of course that, for all z ∈Πn,

h(z) = a+ 〈M(z)α,α〉

where M(z) is the structured resolvent of A of type 2 corresponding to Y (compare

equation (4.2.1)).

We wish to understand the relationship between type 3 and type 2 representations.

Proposition 4.5.3. If h∈Pn has a type 2 representation then h has a type 3 representation.

Conversely, if h∈ Pn has a type 3 representation as in equation (4.5.2) with the additional

property that v ∈D(A) then h has a type 2 representation.

Proof. Suppose that h ∈ Pn has the type 2 representation

h(z) = a0 +
〈
(A− zY )

−1
α,α

〉
for some a0 ∈ R, positive decomposition Y and α ∈ H . We must show that h has a

representation of the form (4.5.2) for some a ∈ R and v ∈ H . By Proposition 4.2.6, it

suffices to find a ∈ R and v ∈D(A) such that

h(z) = a+
〈
(1− iA)

{
(A− zY )

−1−A(1+A2)−1}(1+ iA)v,v
〉

for all z ∈Πn.
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To this end, let C = A(1+A2)−1 and let

a = a0 + 〈Cα,α〉 . (4.5.4)

Since 1+ iA is invertible on H and ran(1+ iA)−1 ⊂D(A) we may define

v = (1+ iA)−1
α ∈D(A). (4.5.5)

Then

h(z) = a0 +
〈
(A− zY )

−1
α,α

〉
= a−〈Cα,α〉+

〈
(A− zY )

−1
α,α

〉
= a+

〈{
(A− zY )

−1−C
}
(1+ iA)v,(1+ iA)v

〉
= a+

〈
(1− iA)

{
(A− zY )

−1−C
}
(1+ iA)v,v

〉
as required. Thus h has a type 3 representation.

Conversely, let h have a type 3 representation (4.5.2) such that v ∈D(A), that is

h(z) = a+ 〈M(z)v,v〉

where a ∈ R and M is the structured resolvent of A of type 3 corresponding to Y , as

in equation (4.2.3). Since v ∈D(A) we may define the vector α
def
= (1+ iA)v ∈H , and
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furthermore, by Proposition 4.2.6,

h(z) = a+
〈
(1− iA)

{
(A− zY )

−1−C
}
(1+ iA)v,v

〉
= a+

〈{
(A− zY )

−1−C
}

α,α
〉

= a−〈Cα,α〉+
〈
(A− zY )

−1
α,α

〉
= a0 +

〈
(A− zY )

−1
α,α

〉
,

where a0 ∈ R is given by equation (4.5.4). Thus h has a representation of type 2.

A special case of a type 2 representation occurs when the constant term a in

equation (4.5.3) is 0. In one variable, this corresponds to Nevanlinna’s characterization

of the Cauchy transforms of positive finite measures on R. Accordingly we define a type

1 representation of h ∈ P2 to be the special case of a type 2 representation of h in which

a = 0 in (4.5.3).

Definition 4.5.4. An analytic function h on Πn has a Nevanlinna representation of type

1 if there exist a Hilbert space H , a densely defined self-adjoint operator A on H , a

positive decomposition Y of H and a vector α ∈H such that, for all z ∈Πn,

h(z) =
〈
(A− zY )

−1
α,α

〉
. (4.5.6)

A representation of type 1 is obviously a representation of type 2. The following

proposition is an immediate corollary of Proposition 4.5.3.

Proposition 4.5.5. A function h ∈ P2 has a type 1 representation if and only if h has a

type 3 representation as in equation (4.5.2) with the additional properties that v ∈D(A)

and

a−
〈
A(1+A2)−1

α,α
〉
= 0.
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For consistency with our earlier terminology for structured resolvents and repre-

sentations we should have to define a structured resolvent of type 1 to be the same as a

structured resolvent of type 2. We refrain from making such a confusing definition.

We conclude this section by giving examples of the four types of Nevanlinna

representation in two variables.

Example 4.5.6. (1) The formula

h(z) =− 1
z1 + z2

=
〈
(0− zY )

−1v,v
〉
C ,

where Y = (1
2 ,

1
2) and v = 1/

√
2, exhibits a representation of type 1, with A = 0.

(2) Likewise

h(z) = 1− 1
z1 + z2

= 1+
〈
(0− zY )

−1v,v
〉
C

is a representation of type 2.

(3) Let

h(z) =



1
1+ z1z2

(
z1− z2 +

iz2(1+ z2
1)√

z1z2

)
if z1z2 6=−1

if

1
2(z1 + z2) if z1z2 =−1

(4.5.7)

where we take the branch of the square root that is analytic in C\ [0,∞) with range Π.

We claim that h ∈ P2 and that h has the type 3 representation

h(z) = 〈M(z)v,v〉L2(R) , (4.5.8)

where M(z) is the structured resolvent of type 3 given in Example 4.2.11 and v(t) =

1/
√

π(1+ t2). To see this, let h be temporarily defined by equation (4.5.8). Since v is an
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even function in L2(R), equation (4.2.12) tells us that

h(z) =
∫

∞

−∞

t(1+ z1z2)+(1− it)(itz1 + z2)

π(t2− z1z2)(1+ t2)
dt.

Since the denominator is an even function of t, the integrals of all the odd powers of t in

the numerator vanish, and we have, provided z1z2 6=−1,

h(z) =
2
π

∫
∞

0

z2 + t2z1

(t2− z1z2)(1+ t2)
dt

=
2
π

∫
∞

0

z2(1+ z2
1)

1+ z1z2

1
t2− z1z2

+
z1− z2

1+ z1z2

1
1+ t2 dt.

Now, for w ∈Π, ∫
∞

0

dt
t2−w2 =

iπ
2w

,

and so we find that h is indeed given by equation (4.5.7) in the case that z1z2 6=−1. When

z1z2 =−1 we have

h(z) =
2
π

∫
∞

0

z2 + z1t2

(1+ t2)2 dt

=
2
π

∫
∞

0

z1

1+ t2 +
z2− z1

(1+ t2)2 dt

= 1
2(z1 + z2).

Thus equation (4.5.8) is a type 3 representation of the function h given by equation

(4.5.7). This function is constant and equal to i on the diagonal z1 = z2.

(4) The function

h(z) =
z1z2

z1 + z2
=−

(
− 1

z1
− 1

z2

)−1
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clearly belongs to P2. It has the representation of type 4

h(z) = 〈M(z)v,v〉C2

where M(z) is the matricial resolvent given in Example 4.3.7 and

v =
1√
2

1

0

 .

We claim that each of the above representations is of the simplest available type

for the function in question; for example, the function h in part (4) does not have a

Nevanlinna representation of type 3. To prove this claim we need characterizations of the

types of functions – the subject of the next two sections.

4.6 Asymptotic behavior and types of representations

In this section we shall give function-theoretic conditions for a function in P2 to

have a representation of a given type. These conditions will be in terms of the asymptotic

behavior of the function at ∞.

Every function in P2 has a type 4 representation, by Theorem 4.1.9. Let us

characterize the functions that possess a type 3 representation. We denote by χ the vector

(1, . . . ,1) of ones in Cn. The following statement contains Theorem 4.1.8.

Theorem 4.6.1. The following three conditions are equivalent for a function h ∈ P2.

1. The function h has a Nevanlinna representation of type 3;

2.

liminf
s→∞

1
s

Im h(isχ) = 0; (4.6.1)
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3.

lim
s→∞

1
s

Im h(isχ) = 0. (4.6.2)

Proof. (1)⇒(3) Suppose that h has a Nevanlinna representation of type 3:

h(z) = a+
〈
(1− iA)(A− zY )

−1(1+ zY A)(1− iA)−1v,v
〉

(4.6.3)

for suitable a ∈ R,H ,A,Y and v ∈H . Since

(isχ)Y = ∑
j

isYj = is

we have

h(isχ) = a+
〈
(1− iA)(A− is)−1(1+ isA)(1− iA)−1v,v

〉
.

Let ν be the scalar spectral measure for A corresponding to the vector v ∈H . By

the Spectral Theorem

h(isχ) = a+
∫
(1− it)(t− is)−1(1+ ist)(1− it)−1 dν(t)

= a+
∫ 1+ ist

t− is
dν(t).

Since

Im
1+ ist
t− is

=
s(1+ t2)

s2 + t2 ,

we have
1
s

Im h(isχ) =
∫ 1+ t2

s2 + t2 dν(t).

The integrand decreases monotonically to 0 as s→ ∞ and so, by the Monotone Conver-

gence Theorem, equation (4.6.2) holds.

(3)⇒(2) is trivial.
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(2)⇒(1) Now suppose that h ∈ P2 and

liminf
s→∞

1
s

Imh(isχ) = 0.

By Theorem 4.1.9, h has a Nevanlinna representation of type 4: that is, there exist

a,H ,N ⊂H , operators A, Y on N ⊥ and a vector v ∈H with the properties described

in Definition 4.5.1 such that

h(z) = a+ 〈M(z)v,v〉

for all z ∈Πn, where

M(z) =

−i 0

0 1− iA



1 0

0 A

− zP

0 0

0 1



−1

×

zP

1 0

0 A

+
0 0

0 1



−i 0

0 1− iA


−1

. (4.6.4)

Thus, for s > 0, since once again (isχ)P = is,

M(isχ) =

−i 0

0 1− iA


1 0

0 (A− is)−1


is 0

0 1+ isA


 i 0

0 (1− iA)−1


=

is 0

0 (1− iA)(A− is)−1(1+ isA)(1− iA)−1

 .
Let the projections of v onto N , N ⊥ be v1,v2 respectively. Then

h(isχ) = a+ 〈M(isχ)v,v〉

= a+ is‖v1‖2 +
〈
(1− iA)(A− is)−1(1+ isA)(1− iA)−1v2,v2

〉
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and therefore

1
s

Im h(isχ) = ‖v1‖2 +
1
s

Im
〈
(1− iA)(A− is)−1(1+ isA)(1− iA)−1v2,v2

〉
≥ ‖v1‖2

by Corollary 4.2.7. Hence

0 = liminf
s→∞

1
s

Im h(isχ)

≥ ‖v1‖2 .

It follows that v1 = 0.

Let the compression of the projection Pj to N ⊥ be Yj: then Y = (Y1, . . . ,Yn) is a

positive decomposition of N ⊥, and the compression of zP to N ⊥ is zY . By Remark 4.3.2

the (2,2) block M22(z) in M(z) is

M22(z) = (1− iA)(A− zY )
−1(1+ zY A)(1− iA)−1.

Since v1 = 0 it follows that

h(z) = a+ 〈M(z)v,v〉

= a+ 〈M22(z)v2,v2〉

= a+
〈
(1− iA)(A− zY )

−1(1+ zY A)(1− iA)−1v2,v2
〉
,

which is the desired type 3 representation of h. Hence (2)⇒(1).

In [BKVb] it is shown that condition (3) in the above theorem is also a necessary

and sufficient condition that −ih have a Πn-impedance-conservative realization.
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Type 2 representations were characterized by the following theorem in [ATDY12]

in the case of two variables. The following result, which contains Theorem 4.1.7, shows

that the result holds generally.

Theorem 4.6.2. The following three conditions are equivalent for a function h ∈ P2.

1. The function h has a Nevanlinna representation of type 2;

2.

liminf
s→∞

s Imh(isχ)< ∞; (4.6.5)

3.

lim
s→∞

s Imh(isχ)< ∞. (4.6.6)

Proof. (1)⇒(3) Suppose that h has the type 2 representation h(z) = a+
〈
(A− zY )

−1v,v
〉

for a suitable real a, self-adjoint A, positive decomposition Y and vector v. Let ν

be the scalar spectral measure for A corresponding to the vector v. Then, for s > 0,

A− (isχ)Y = A− is and so

s Im h(isχ) = s Im
∫ dν(t)

t− is

=
∫ s2 dν(t)

t2 + s2 .

The integrand is positive and increases monotonically to 1 as s→ ∞. Hence, by the

Dominated Convergence Theorem

lim
s→∞

s Im h(isχ) = ν(R) = ‖v‖2 < ∞.

Hence (1)⇒(3).

(3)⇒(2) is trivial.
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(2)⇒(1) Suppose (2) holds. A fortiori,

liminf
s→∞

1
s

Im h(isχ) = 0.

By Theorem 4.6.1 h has a type 3 representation (4.6.3) for suitable a ∈ R,H ,A,Y and

v ∈H . Let ν be the scalar spectral measure for A corresponding to the vector v. Then for

s > 0

s Im h(isχ) = s Im
∫ 1+ ist

t− is
dν(t)

=
∫ s2(1+ t2)

t2 + s2 dν(t).

As s→∞ the integrand increases monotonically to 1+ t2. Condition (2) now implies that

∫
1+ t2 dν(t)< ∞.

It follows that v ∈ D(A). Hence, by Proposition 4.5.3, h has a representation of type

2.

In [ATDY12] we proved Theorem 4.6.2 for n = 2 using a different approach from

the present one.

From this theorem the characterization of type 1 representations follows just as

in the one-variable case. We obtain a strengthening of Theorem 4.1.6.

Theorem 4.6.3. The following three conditions are equivalent for a function h ∈ P2.

1. The function h has a Nevanlinna representation of type 1;

2.

liminf
s→∞

s |h(isχ)|< ∞;
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3.

lim
s→∞

s |h(isχ)|< ∞. (4.6.7)

Proof. We follow Lax’s treatment [Lax02] of the one-variable Nevanlinna theorem.

(1)⇒(3) Suppose that h has a type 1 representation as in equation (4.5.6) for

some H , A, Y and v. Then

h(isχ) =
〈
(A− is)−1

α,α
〉

=
〈
(A+ is)(A2 + s2)−1

α,α
〉
,

and so

Re sh(isχ) =
〈
sA(A2 + s2)−1

α,α
〉
, Im sh(isχ) =

〈
s2(A2 + s2)−1

α,α
〉
.

Let ν be the scalar spectral measure for A corresponding to the vector α ∈H . Then

Re sh(isχ) =
∫ st

t2 + s2 dν(t), Im sh(isχ) =
∫ s2

t2 + s2 dν(t).

The integrand in the first integral tends pointwise in t to 0 as s→∞, and by the inequality

of the means it is no greater than 1
2 ; thus the integral tends to 0 as s→∞ by the Dominated

Convergence Theorem. The integrand in the second integral increases monotonically to

1 as s→ ∞. Thus

Re sh(isχ)→ 0, Im sh(isχ)→‖α‖2 as s→ ∞.

Hence the inequality (4.6.7) holds. Thus (1)⇒(3).

(3)⇒(2) is trivial.
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(2)⇒(1) Suppose that

liminf
s→∞

s |h(isχ)|< ∞. (4.6.8)

As

liminf
s→∞

s Imh(isχ)≤ liminf
s→∞

s |h(isχ)|< ∞,

h satisfies condition (4.6.5) of Theorem 4.6.2. Therefore h has a representation of type 2,

say

h(z) = a+
〈
(A− zY )

−1
α,α

〉
.

It remains to show that a = 0. The inequality (4.6.8) implies that there exists a sequence

sn tending to ∞ such that h(isnχ)→ 0. But

Reh(isnχ) = a+
〈
A(A2 + s2

n)
−1

α,α
〉
→ a.

Hence a = 0 and h has a type 1 representation. This establishes (2)⇒(1).

4.7 Carapoints at infinity

How can we recognise from function-theoretic properties whether a given function

in the n-variable Loewner class admits a Nevanlinna representation of a given type? In

the preceding section it was shown that it depends on growth along a single ray through

the origin. In this section we describe the notion of carapoints at infinity for a function in

the Pick class, and in the next section we shall give succinct criteria for the four types in

the language of carapoints.

Carapoints (though not with this nomenclature) were first introduced by Carathéodory

in 1929 [Car29] for a function ϕ on the unit disc, as a hypothesis in the “Julia-Carathéodory
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Lemma”. Recall that for any τ ∈ T, a function ϕ in the Schur class satisfies the

Carathéodory condition at τ if

liminf
λ→τ

1−|ϕ(λ)|
1−|λ|

< ∞. (4.7.1)

The notion has been generalized to other domains by many authors. Consider domains

U ⊂Cn and V ⊂Cm and an analytic function ϕ from U to the closure of V . The function

ϕ is said to satisfy Carathéodory’s condition at τ ∈ ∂U if

liminf
λ→τ

dist(ϕ(λ),∂V )

dist(λ,∂U)
< ∞.

Thus, for example, when U = Πn,V = Π, a function h ∈ Pn satisfies Carathéodory’s

condition at the point x ∈ Rn if

liminf
z→x

Im h(z)
min j Im z j

< ∞. (4.7.2)

This definition works well for finite points in ∂U , but for our present purpose we need to

consider points at infinity in the boundaries of Πn and Π. We shall introduce a variant of

Carathéodory’s condition for the class Pn with the aid of the Cayley transform

z = i
1+λ

1−λ
, λ =

z− i
z+ i

, (4.7.3)

which furnishes a conformal map between D and Π, and hence a biholomorphic map

between Dn and Πn by co-ordinatewise action. We obtain a one-to-one correspondence

between S2 \{1} and Pn via the formulae

h(z) = i
1+ϕ(λ)

1−ϕ(λ)
, ϕ(λ) =

h(z)− i
h(z)+ i

(4.7.4)
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where 1 is the constant function equal to 1 and λ,z are related by equations (4.7.3). For

ϕ ∈ S2 we define τ ∈ Tn to be a carapoint of ϕ if

liminf
λ→τ

1−|ϕ(λ)|
1−‖λ‖

∞

< ∞. (4.7.5)

We can now extend the notion of carapoints to points at infinity. The point (∞, . . . ,∞)

in the boundary of Πn corresponds to the point χ in the closed unit disc; as in the last

section, χ denotes the point (1, . . . ,1) ∈ Cn.

Definition 4.7.1. Let h be a function in the Pick class Pn with associated function ϕ in

the Schur class S2 given by equation (4.7.4). Let τ ∈ Tn, x ∈ (R∪∞)n be related by

x j = i
1+ τ j

1− τ j
for j = 1, . . . ,n. (4.7.6)

We say that x is a carapoint for h if τ is a carapoint for ϕ. We say that h has a carapoint

at ∞ if h has a carapoint at (∞, . . . ,∞), that is, if ϕ has a carapoint at χ.

Note that, for a point x ∈ Rn, to say that x is a carapoint of h is not the same as

saying that h satisfies the Carathéodory condition (4.7.2) at x. Consider the function

h(z) = −1/z1 in Pn. Clearly h does not satisfy Carathéodory’s condition at 0 ∈ Rn.

However, the function ϕ in S2 corresponding to h is ϕ(λ) = −λ1, which does have a

carapoint at −χ, the point in Tn corresponding to 0 ∈ Rn. Hence h has a carapoint at 0.

We shall be mainly concerned with carapoints at 0 and ∞. The following observa-

tion will help us identify them. For any h ∈ Pn we define h[ ∈ Pn by

h[(z) = h
(
− 1

z1
, . . . ,− 1

zn

)
for z ∈Π

n.

For ϕ ∈ S2 we define

ϕ
[(λ) = ϕ(−λ).



134

If h and ϕ are corresponding functions, as in equations (4.7.4), then so are h[ and ϕ[.

Proposition 4.7.2. The following conditions are equivalent for a function h ∈ Pn.

1. ∞ is a carapoint for h;

2. 0 is a carapoint for h[;

3.

liminf
y→0+

Im h[(iyχ)

y|h[(iyχ)+ i|2
< ∞;

4.

liminf
y→∞

y Im h(iyχ)

|h(iyχ)+ i|2
< ∞.

Proof. (1)⇔(2) Since −χ ∈ Tn corresponds under the Cayley transform to 0 ∈ Rn, we

have

∞ is a carapoint of h ⇔ χ is a carapoint of ϕ

⇔ −χ is a carapoint of ϕ
[

⇔ 0 is a carapoint of h[.

(2)⇔(3) A consequence of the n-variable Julia-Carathéodory Theorem [Jaf93, Aba98],

is that τ ∈ Tn is a carapoint of ϕ ∈ S2 if and only if

liminf
r→1−

1−|ϕ(rτ)|
1− r

< ∞.
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It follows that

0 is a carapoint for h[ ⇔ −χ is a carapoint for ϕ
[

⇔ liminf
r→1−

1−|ϕ[(−rχ)|
1− r

< ∞

⇔ liminf
r→1−

1−|ϕ[(−r,−r)|2

1− r2 < ∞.

Let iy ∈Π be the Cayley transform of −r ∈ (−1,0), so that y→ 0+ as r→ 1−. In view

of the identity
1−|ϕ(λ)|2

1−‖λ‖2
∞

=

(
max

j

|z j + i|2

Im z j

)
Im h(z)
|h(z)+ i|2

(4.7.7)

we have

0 is a carapoint for h[ ⇔ liminf
y→0+

|iy+ i|2

y
Im h[(iyχ)

|h[(iyχ)+ i|2
< ∞

⇔ liminf
y→0+

Im h[(iyχ)

y|h[(iyχ)+ i|2
< ∞.

(3)⇔(4) Replace y by 1/y.

Corollary 4.7.3. If f ∈ Pn satisfies Carathéodory’s condition

liminf
z→x

Im f (z)
Im z

< ∞ (4.7.8)

at x ∈ Rn then x is a carapoint for f . If

liminf
y→∞

y Im f (iyχ)< ∞

then ∞ is a carapoint for f .
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Proof. Let h = f [ ∈ Pn. Clearly |h[(z)+ i| ≥ 1 for all z ∈ Πn. If the condition (4.7.8)

holds for x = 0 then

liminf
z→0

Im h[(z)
|h[(z)+ i|2 min j Im z j

≤ liminf
z→0

Im h[(z)
min j Im z j

< ∞

and hence, by (2)⇔(3) of Proposition 4.7.2, 0 is a carapoint for h[ = f . The case of a

general x ∈ Rn follows by translation.

If h ∈ Pn has a carapoint at x ∈ (R∪∞)n then it has a value at x in a natural sense.

If ϕ ∈ S2 has a carapoint at τ ∈ Tn, then by [Jaf93] there exists a unimodular constant

ϕ(τ) such that

lim
λ

nt→τ

ϕ(λ) = ϕ(τ). (4.7.9)

Here λ
nt→ τ means that λ tends nontangentially to τ in Dn.

Definition 4.7.4. If h ∈ Pn has a carapoint at x ∈ (R∪∞)n then we define

h(x) =


∞ if ϕ(τ) = 1

if

i
1+ϕ(τ)

1−ϕ(τ)
if ϕ(τ) 6= 1

where τ ∈ Tn corresponds to x as in equation (4.7.6).

Thus h(∞) ∈ R∪{∞} when ∞ is a carapoint of h.

In the example h(z) = −1/z1, since the value of ϕ(−λ) at −χ is 1, we have

h(0) = ∞.

Although the value of h(∞) is defined in terms of the Schur class function ϕ, it

can be expressed more directly in terms of h.
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Proposition 4.7.5. If ∞ is a carapoint of h then

h(∞) = h[(0) = lim
z nt→∞

h(z). (4.7.10)

Here we say that z nt→∞ if z→ (∞, ...,∞) in the set {z∈Πn : (−1/z1, . . . ,−1/zn)∈

S} for some set S ⊂ Πn that approaches 0 nontangentially, or equivalently, if z →

(∞, . . . ,∞) in a set on which ‖z‖∞/min j Im z j is bounded.

Proof. Clearly

h(∞) = ∞ ⇔ ϕ(χ) = 1 ⇔ ϕ
[(−χ) = 1 ⇔ h[(0) = ∞.

Similarly, for ξ ∈ R,

h(∞) = ξ ⇔ ϕ(χ) =
ξ− i
ξ+ i

⇔ ϕ
[(−χ) =

ξ− i
ξ+ i

⇔ h[(0) = ξ.

Thus, whether h(∞) is finite or infinite, h(∞) = h[(0). Equation (4.7.10) follows from

the relation (4.7.9).

4.8 Types of functions in the Loewner class

In this section we shall show that the type of a function h ∈ P2 is entirely deter-

mined by whether or not ∞ is a carapoint of h and by the value of h(∞). Let us make

precise the notion of the type of a function in P2.

Definition 4.8.1. A function h ∈ P2 is of type 1 if it has a Nevanlinna representation of

type 1. For n = 2,3 or 4 we say that h is of type n if h has a Nevanlinna representation of

type n but has no representation of type n−1.
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Clearly every function in P2 is of exactly one of the types 1 to 4. We shall now

prove Theorem 4.1.10. Recall that it states the following, for any function h ∈ P2.

1. h is of type 1 if and only if ∞ is a carapoint of h and h(∞) = 0;

2. h is of type 2 if and only if ∞ is a carapoint of h and h(∞) ∈ R\{0};

3. h is of type 3 if and only if ∞ is not a carapoint of h;

4. h is of type 4 if and only if ∞ is a carapoint of h and h(∞) = ∞.

Proof. (2) Let h∈ P2 have a type 2 representation h(z) = a+
〈
(A− zY )

−1v,v
〉

with a 6= 0.

By Theorem 4.6.2,

liminf
y→∞

y Im h(iyχ)< ∞.

By Corollary 4.7.3, ∞ is a carapoint for h. Furthermore, by Proposition 4.7.5

h(∞) = lim
y→∞

h(iyχ) = a ∈ R\{0}.

Conversely, suppose that ∞ is a carapoint for h and h(∞)∈R\{0}. By Proposition

4.7.2

liminf
y→∞

y Im h(iyχ)

|h(iyχ)+ i|2
< ∞

while by Proposition 4.7.5

lim
y→∞
|h(iyχ)+ i|2 = h(∞)2 +1 ∈ (1,∞).

On combining these two limits we find that

liminf
y→∞

y Im h(iyχ)< ∞,
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and so, by Theorem 4.6.2, h has a representation of type 2. Since h(∞) 6= 0 it is clear that

h does not have a representation of type 1. Thus (2) holds.

A trivial modification of the above argument proves that (1) is also true.

(4) Let h be of type 4. Then h has no type 3 representation, and so, by Theorem 4.6.1,

there exists δ > 0 and a sequence (sn) of positive numbers tending to ∞ such that

1
sn

Imh(isnχ)≥ δ > 0.

Let yn = 1/sn; then −1/(isn) = iyn, and we have

yn Im h[(iynχ)≥ δ for all n≥ 1. (4.8.1)

Since |h[(z)+ i|> Im h[(z) for all z, we have

liminf
z→0

Im h[(z)
|h[(z)+ i|2 min j Im z j

≤ liminf
z→0

1
Im h[(z)min j Im z j

≤ liminf
n→∞

1
yn Im h[(iynχ)

≤ 1/δ.

Hence (0,0) is a carapoint of h[, and so ∞ is a carapoint of h.

Since yn→ 0 it follows from the inequality (4.8.1) that Im h[(iynχ)→ ∞, hence

that h[(0) = ∞, and therefore that h(∞) = ∞.

Conversely, suppose that ∞ is a carapoint of h and that h(∞) = ∞. We shall show

that

lim
s→∞

1
s

Imh(isχ) 6= 0, (4.8.2)

and it will follow from Theorem 4.6.1 that h does not have a representation of type 3,
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that is, h is of type 4.

Let ϕ ∈ S2 correspond to h and let r ∈ (0,1) correspond to is ∈Π. Then

1
s

Im h(isχ) =
1− r
1+ r

1−|ϕ(rχ)|2

|1−ϕ(rχ)|2

=
1−|ϕ(rχ)|2

1− r2
(1− r)2

|1−ϕ(rχ)|2
. (4.8.3)

By hypothesis, χ is a carapoint for ϕ and ϕ(χ) = 1. By definition of carapoint,

liminf
z→χ

1−|ϕ(z)|2

1−‖z‖2
∞

= α < ∞ for all s > 0.

The n-variable Julia-Carathéodory Lemma (see [Jaf93, Aba98]) now tells us that α > 0

and
|1−ϕ(rχ)|2

|1− r|2
≤ α

1−|ϕ(rχ)|2

1− r2 for all r ∈ (0,1). (4.8.4)

On combining equations (4.8.3) and (4.8.4) we obtain

1
s

Im h(isχ)≥ 1
α
> 0 for all s > 0.

Thus the relation (4.8.2) is true, and so, by Theorem 4.6.1, h is of type 4.

Statement (3) now follows easily. The function h ∈ P2 is of type 3 if and only if

it is not of types 1,2 or 4, hence if and only if it is not the case that ∞ is a carapoint for h

and h(∞) ∈ R∪{∞}, hence if and only if ∞ is not a carapoint of h.

Chapter 4 contains material as it may appear in the Proceedings of the London

Mathematical Society, 2014. The dissertation author was a co-author with J. Agler and

N.J. Young on this material.
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[Löw34] K. Löwner. Über monotone Matrixfunktionen. Math. Z., 38:177–216,
1934.

[Nev22] R. Nevanlinna. Asymptotisch Entwicklungen beschränkter Funktionen
und das Stieltjessche Momentproblem. Ann. Acad. Sci. Fenn. Ser. A, 18,
1922.

[Par70] S. Parrott. Unitary dilations for commuting contractions. Pacific Math. J.,
34:481–490, 1970.



143
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