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Inactivation of medial frontal cortex changes risk preference

Xiaomo Chen1,2,3 and Veit Stuphorn*1,2

1Department of Neuroscience, Johns Hopkins University School of Medicine and Zanvyl Krieger 
Mind/Brain Institute, 3400 N. Charles St., Baltimore, MD 21218-2685, USA

2Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles 
St., Baltimore, MD 21218-2685, USA

Summary

Humans and other animals need to make decisions under varying degrees of uncertainty. These 

decisions are strongly influenced by an individual’s risk preference, however the neuronal circuitry 

by which risk preference shapes choice is still unclear [1]. Supplementary eye field (SEF), an 

oculomotor area within primate medial frontal cortex, is thought to be an essential part of the 

neuronal circuit underlying oculomotor decision-making, including decisions under risk [2–5]. 

Consistent with this view, risk-related action value and monitoring signals have been observed in 

SEF [6–8]. However, such activity has also been observed in other frontal areas, including 

orbitofrontal [9–11], cingulate [12–14], and dorsal lateral frontal cortex [15]. It is thus unknown 

whether the activity in SEF causally contributes to risky decisions, or if it is merely a reflection of 

neural processes in other cortical regions. Here, we tested a causal role of SEF in risky oculomotor 

choices. We found that SEF inactivation strongly reduced the frequency of risky choices. This 

reduction was largely due to a reduced attraction to reward uncertainty and high reward gain, but 

not due to changes in the subjective estimation of reward probability or average expected reward. 

Moreover, SEF inactivation also led to increased sensitivity to differences between expected and 

actual reward during free choice. Nevertheless, it did not affect adjustments of decisions based on 

reward history.
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Chen et al. (2018) report a causal role of medial frontal cortex in regulating risky and impulsive 

behavior in risky decisions. These findings provide new insight into the neuronal circuits 

underlying inconsistent, context dependent choices under risk observed across humans and non-

human primates.

Results

Monkeys are risk-seeking

In our gambling task, two monkeys (Macaca mulatta, A and I) had to choose between two 

gambles with different combinations of maximum reward amount and winning probability 

(Figure 1A and Methods). Risk was quantified as reward uncertainty, using standard 

economic models [16–18].

The monkeys used the gamble cues in an economically rational way. They consistently 

selected gambles with higher reward amount (error rates: Monkey A: 9.22%; Monkey I: 

1.99%; Figure 2A) and higher winning probability (error rates: Monkey A: 4.94%; Monkey 

I: 2.75%; Figure 2A) when the other attribute was matched. Overall, the monkeys clearly 

preferred options with higher expected value (EV) (Figure S1 A, B, H, and I). The monkeys 

were also risk-seeking, consistent with many previous studies [6,10,19,20]. For gambles 

with identical EV, both monkeys preferred the gamble option with the higher outcome 

variance, i.e. higher risk (Figure 2B, t-test, Monkey A: P(choose more risky 

option)=79.01%, t-test: p=2.37×10−6; Monkey I: P(choose more risky option)=73.40%, t-

test: p=5.19×10−4).

We quantified the monkeys’ risk preference using two standard economic models: the risk-

value and the prospect theory model (Methods). The risk-value model is derived from 

financial theory and decomposes the subjective value of each option into a weighted linear 

combination of EV and variance risk, computed as the variance (Var) of the gamble 

outcomes [10,16,17]. It outperformed models using only the EV or the Var term, and models 

using coefficient of variance of the gamble outcomes, an alternative measure of risk [22] 

(Table S2). The monkeys preferred options with higher EV (Figure 2C, t-test, Monkey A: 

βEV = 5.08, p= 5.60×10−8; Monkey I: βEV = 6.39, p= 8.03×10−11) and higher Var, leading to 

risk seeking behavior, (Figure 2C, t-test, Monkey A: βVar = 4.29, p= 2.03×10−6; Monkey I: 

βVar = 2.60, p= 7.00×10−5).

The prospect theory model is derived from expected utility theory and estimates subjective 

value using a non-linear utility and probability weighting function [9,22,23]. This model 

predicted the monkeys’ choice behavior better than models using either utility or probability 

weighting functions alone, and also slightly better than the risk-value model (Table S2). The 

best-fitting utility functions of both monkeys were convex (Figure 2 D and E, t-test, Monkey 

A: ρ = 1.47, H1:ρ ≠ 1, p= 2.39×10−11; Monkey I: ρ = 1.42, H1: ρ≠ 1, p= 6.30×10−12). In 

addition, the monkeys also significantly overweighed low and underweighted high 

probabilities (Figure 2 E and F, t-test, Monkey A: α= 0.65, H1: α≠ 1, p= 2.32×10−10; 

Monkey I: α= 0.86, H1: α ≠ 1, p= 0.03). Therefore, the monkeys were attracted 
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disproportionally to large reward amounts and overestimated the likelihood of obtaining 

them when the winning probability was low, leading to risk seeking behavior.

Thus, both economic models indicated a strong preference for riskier options. In contrast, 

there was only very weak evidence for directional bias (risk-value model: t-test, Combined: 

βd = 0.06, p=0.21; Monkey A: βd = 0.04, p=0.23; Monkey I: βd = 0.07, p=0.42; prospect 

theory model: t-test, Combined: d = 0.06, p=0.01; Monkey A: d= 0.04, p=0.05; Monkey I: d
= 0.09, p=0.03). There was no evidence that the monkeys tended to repeat the previous 

choice direction (t-test, Combined: βd = 0.06, p=0.21; Monkey A: βd = 0.04, p=0.23; 

Monkey I: = 0.07, p=0.42).

SEF inactivation reduces risk-seeking

SEF neurons encode action value signals that reflect the subjective value of options in the 

oculomotor gambling task and are correlated with the monkeys’ choices [8]. To test if these 

signals have a causal effect on decision making, we examined whether bilateral inactivation 

of SEF influenced monkeys’ behavior in the oculomotor gambling task, using a cryoplate 

(Figure 1 C and D). This method allows us to quickly and reversibly inactivate the SEF in 

both hemispheres [24]. We monitored neuronal activity in both SEF hemispheres during 

control and inactivation conditions. Consistent with previous reports [25,26], the spiking 

activity decreased with decreasing temperature in both hemispheres (Figure 1E and Figure 

S2). Neuronal activity was less affected as distance increased between the recording sites 

and the cooling plate (Figure S2), so that the cooling effect was restricted to SEF. In total, 

we performed 31 bilateral inactivation sessions (Monkey A: 16 sessions and Monkey I: 15 

sessions), with an average of 1399 successful trials and 7 periods of inactivation per session.

The effect of SEF inactivation on risky choice was highly consistent across the two 

monkeys. During inactivation, we observed in both monkeys some small changes in saccade 

metrics (Figure S3), fixation stability (Figure S3) and reaction times (S4A and Table S3), 

consistent with previous findings [27–30]. These changes in oculomotor behavior were too 

small to affect choice. SEF inactivation caused only small and inconsistent changes in error 

rate when the options only differed in either winning probability or magnitude (Figure 3A). 

Therefore, SEF inactivation did not affect the ability of the monkeys to use the visual cues 

for economically rational choices. Nevertheless, both monkeys showed a significantly 

altered pattern of choice during SEF inactivation: they were consistently less risk seeking 

(Figure 3 C and E). The monkeys showed reduced risk preference in 90% (28/31) of 

inactivation sessions as measured by the risk-value and prospect theory models.

In the risk-value model, the risk term (Var) coefficients were significantly smaller during 

inactivation compared to the control condition (Figure 3C, paired t-test, Combined: Δβvar = 

1.21, p= 9.92×10−6; Monkey A: Δβvar = 0.86, p= 0.02; Monkey I: Δβvar = 1.59, p= 

1.23×10−4). Thus, both monkeys showed a strong reduction of risk preference during 

inactivation (Combined: Δβvar/βvar = 35%; Monkey A: Δβvar/βvar = 20%; Monkey I: Δβvar/

βvar = 60%). For gambles with identical EV, both monkeys chose the higher risk option 

significantly less often (Figure 3B, paired t-test, Combined: ∆P(choose higher risk option)= 
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6.97%, p= 1.46×10−3; Monkey A: ∆P(choose higher risk option)= 4.29%, p= 0.05; Monkey 

I: ∆P(choose higher risk option)= 9.66%, p= 0.01). The monkeys’ choices were also less 

determined by EV differences during inactivation (Figure 3D, paired t-test, Combined: ΔβEV

= 0.90, ΔβEV/βEV = 16%, p= 0.01; Monkey A: ΔβEV = 1.10, ΔβEV/βEV = 21%, p= 0.01; 

Monkey I: ΔβEV = 0.70, ΔβEV/βEV = 11%, p= 0.18). Across all trials, the monkeys chose the 

smaller EV option significantly more often (paired t-test, Combined: P(choose lower EV 

option)= 1.71%, p= 3.63×10−4; Monkey A: P(choose lower EV option)= 1.46%, p= 

5.39×10–3; Monkey I: ∆P(choose lower EV option)= 1.97%, p= 0.02). However, this effect 

was less pronounced than the one resulting from the lower preference for risk (Figure S4B).

In the prospect theory model, the utility functions of both monkeys were less convex during 

inactivation (Figure 3 E and G, paired t-test, Combined: Δρ = −0.11, p=6.32×10−6; Monkey 

A: Δρ = −0.08, p= 2.00×10−3; Monkey I: Δρ = −0.14, p=7.35×10−4). The monkeys showed 

less overestimation of high reward amounts during inactivation. In contrast, the probability 

weighting function, which captures the monkeys’ estimation of the probability of winning, 

remained unchanged (Figure 3 F and G, paired t-test, Combined: Δα = −0.09, p= 0.17; 

Monkey A: Δαa = 0.02, p= 0.59; Monkey I: Δα = −0.08, p= 0.06).

We tested if changes in motor strategies could explain this preference change, since 

manipulation of dopaminergic receptors in frontal eye field can change positional bias and 

the tendency to repeat actions [31]. There was no significant change of directional 

preference (risk-value model: t-test, Combined: p=0.19; Monkey A: p=0.06; Monkey I: 

p=0.01; prospect theory model: t-test, Combined: p=0.31; Monkey A: p=0.06; Monkey I: 

p=0.23) or repetition of the previous choice direction (Combined: p=0.21; Monkey A: 

p=0.91; Monkey I: p=0.16). The reduced risk-seeking reflects therefore a true change in 

choice preference.

SEF inactivation increases trial desertion after gamble loss

During the result epoch, SEF neurons encode reward prediction error (RPE), the difference 

between expected and actual reward [6]. RPE signals are thought to guide reinforcement 

learning and updating of action value signals [6,31]. We therefore tested whether SEF 

inactivation influenced the monkeys’ sensitivity to these locally encoded RPE signals. 

Following the loss of a gamble, both monkeys occasionally actively broke fixation by 

making a saccade outside of the fixation window (Figure S3C), thus deserting the trial 

before reward delivery. This behavior was maladaptive, because it did not change the 

outcome of the trial, and substantially prolonged the time until reward delivery, as well as 

the time until the next chance to make a choice. Trial desertion developed spontaneously, 

was sensitive to negative RPE, and increased with larger errors (Figure 4A). Interestingly, 

desertion rate was significantly higher in choice trials than no-choice trials (paired t-test, 

Combined: Δα = 0.03, p= 4.73×10−4; Monkey A: Δα =0.02, p= 0.02; Monkey I: Δα = 0.04, 

p= 0.01). Following SEF inactivation, both monkeys were substantially more sensitive to 

RPE in choice trials (Figure 4 A and B top, paired t-test, Combined: Δα = −0.11, p= 

9.35×10−9; Monkey A: Δα = −0.06 p=1.82×10−4; Monkey I: Δα = −0.16 p= 1.85×10−7), but 

not in no-choice trials (Figure 4 A and B bottom, paired t-test, Combined: Δα = −0.02, p= 
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0.06; Monkey A: Δα =−0.02, p= 0.16; Monkey I: Δα = −0.02, p= 0.21.) In addition, desertion 

rates alsosignificantly increased in all other task epochs of choice trials during inactivation 

(Figure S4). Thus, outcome monitoring signals in the SEF were not necessary to drive 

desertion behavior. On the contrary, SEF activity seems to be necessary to suppress desertion 

behavior throughout the task, but in particular following aversive events following free 

choices (Figure 4 A and B).

SEF inactivation does not affect reward-history dependent adjustments of risk preference

Both monkeys showed a significant change of risk preference depending on the preceding 

gamble outcome. They were less risk seeking when they had lost the previous gamble than 

when they had won it. In the risk-value model, this manifested itself in a significant 

difference in the Var coefficient (Figure 4C,paired t-test, Combined: Δβvar = 0.38, p= 0.03; 

Monkey A: Δβvar = 0.25, p= 0.10; Monkey I: ΔβCV = 0.50, p= 0.09), while the EV 

coefficient was not significantly different (paired t-test, Combined: ΔβEV = −0.46, p= 0.11; 

Monkey A: ΔβEV = 0.16, p= 0.45; Monkey I: ΔβEV = −1.09, p= 0.14). In the prospect theory 

model, the same change in risk preference manifested itself in less convex utility functions 

(paired t-test, Combined: Δρ = 0.03, p= 0.05; Monkey A: Δρ = 0.03, p= 0.06; Monkey I: Δρ
= 0.04, p= 0.27) and in a more linear probability weighting function (paired t-test, 

Combined: Δα = −0.06, p= 0.01; Monkey A: Δα = −0.04, p= 0.09; Monkey I: Δα = −0.08, p= 

0.01) after losing in the previous trial. Thus, following a loss, both monkeys were more risk 

averse in their subsequent choice. However, this gamble outcome effect persisted during 

SEF inactivation and did not show any significant changes (Figure 4D, paired t-test, Δ(ΔβEV)

= 0.09, p= 0.77; Δ(Δρ)= −0.02, p= 0.62; Δ(Δα)= 0.01, p= 0.82). Therefore, although gamble 

outcome history modulates the monkeys’ gamble value estimation, this adjustment does not 

depend on local RPE signals in SEF.

Discussion

Decision related activity has been observed in many brain regions [32]. However, it remains 

unknown whether this activity is causally related to the decision process [33–35]. Here we 

showed that the SEF, an oculomotor area within the medial frontal cortex, does play a causal 

role in regulating risky and impulsive behavior in oculomotor decisions.

SEF is only one among a number of cortical [1,13,15,36] and subcortical [14,37–39] brain 

areas that contribute to decision-making under risk. However, the effect of SEF inactivation 

is not a simple decrease in decision accuracy, as would be expected if SEF operates in 

parallel with other areas that contain redundant signals, so that SEF inactivation merely 

reduces the overall strength of the decision variable. Instead, SEF seems to selectively 

mediate the effect of risk preferences, but not expected value, on choice. Eliminating these 

signals cannot be fully compensated for by other parts of the decision-making circuit.

Risk preference is often seen as a fundamental, stable personality trait [40]. However, the 

risk preference of individuals can vary substantially across different behavioral domains 

[41]. Even when tested only within the financial domain, risk preference varies [42]. These 
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findings suggest that risk preference is not a stable personality trait, but rather emerges 

during decision-making in a context-dependent manner. Risk-attitude depends on beliefs 

about the environment, the set of available options, and the contingencies governing action 

outcomes [43]. In the context of our experimental task, the small stakes and large number of 

trials likely reduced the averseness of losing a gamble and thus induced risk-seeking 

behavior [42,43]. These contextual factors are not directly observable and must be inferred. 

Nevertheless, they are important elements of a cognitive representation of task space [46]. A 

recent study [43] shows that rhesus monkeys show very different utility and probability 

weighting functions when tested with different gamble tasks. This supports the hypothesis of 

the use of flexible cognitive processes in constructing risk attitudes in a context-dependent 

fashion.

A number of cortical areas might be important in influencing risk-attitude. Orbital frontal 

cortex (OFC) is involved in representing task space [47,48] and contains risk selective 

neurons [10,36]. Recent lesion experiments in macaques indicate also a role of ventrolateral 

prefrontal cortex (VLPFC) in learning and encoding the probability of reward outcomes 

[49]. In addition, ACC has also been shown to be correlated with risk uncertainty [12–14]. 

SEF receives synaptic input from frontal areas including OFC, VLPFC, and ACC, and 

projects to the frontal eye field, and superior colliculus [50]. It integrates sensory and task 

context information to guide the selection of appropriate actions [5]. Thus, the effect of SEF 

inactivation likely reflects the diminished influence of these belief states about the task 

structure, so that the subjective value of a gamble option is less determined by risk 

preference.

Perturbations of dopaminergic activity can also modulate risky choices [37,51–53]. In 

rodents, ventral tegmental area stimulation after non-rewarded choices increased subsequent 

willingness to choose a risky gamble [51]. In contrast to modulating risk preference by 

changing cognitive processes, these perturbations likely change choice behavior by 

modulating EV updates using model-free learning mechanisms. The fact that SEF 

inactivation does not affect reward-history dependent EV adjustments suggests the 

independent contributions of two different brain circuits to the evaluation of uncertain 

reward options: risk preference is associated with a goal-directed frontal cortex-based 

circuit, including SEF, while EV representation is associated with a more automatic 

subcortical circuit.

The monkeys sometimes desert the trial following an unexpected loss. This behavior likely 

represents an automatic response to the aversive outcome, especially following free choices. 

The fact that SEF inactivation increased this behavior, but only during free choice trials, 

cannot be explained by the fixation quality during inactivation (Figure S3 and Methods). 

Instead, it suggests that SEF activity contributes to self-control by suppressing automatic, 

but maladaptive, responses and promoting behavior that maximizes long-term reward. Such 

a role would be consistent with the well-known contribution of SEF to other forms of 

executive control [5,54].

In conclusion, our results demonstrate for the first time the causal role of SEF in mediating 

the effect of risk preference on decisions under uncertainty. These findings provide new 
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insight into the neuronal circuits underlying inconsistent, context dependent choices under 

risk observed across humans [18,42,55] and non-human primates [45], and may provide the 

basis for more effective treatments of highly maladaptive impulsive risky behaviors.

STAR Methods:

KEY RESOURCES TABLE

 REAGENT or RESOURCE  SOURCE  IDENTIFIER

 Experimental Models: Organisms/Strains

 Macaca mulatta  Johns Hopkins
 University

 N/A

 Software and Algorithms

 MATLAB Statistics and Machine
 Learning Toolbox, R2016b, R2017b

 Mathworks  https://www.mathworks.com/products/matlab.html

 Online Sorter, Version 3.0  Plexon  https://plexon.com/products/offline-sorter/

 Other

 SR Research Eyelink Eye
 Tracker, Eyelink 1000 Plus

 Eyelink  http://www.sr-research.com

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Veit Stuphorn (veit@jhu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal care and experimental procedures were in compliance with the US Public Health 

Service policy on the humane care and use of laboratory animals, and were approved by 

Johns Hopkins University Animal Care and Use Committee. Two male rhesus monkeys 

(Macaca mulatta, Monkey A: 7.5 kg, Monkey I: 7.2 kg) were trained to perform the tasks 

used in this study. After training, we placed a hexagonal chamber (29 mm in diameter) 

centered over the midline, 28 mm (Monkey A) and 27 mm (Monkey I) anterior of the 

interaural line.

METHOD DETAILS

Electrophysiological techniques.

During each bilateral inactivation session, single units were recorded using two tungsten 

microelectrodes with an impedance of 2–4 MΩs (Frederick Haer, Bowdoinham, ME), one in 

each hemisphere (Figure 1C). The microelectrodes were advanced, using a self-built 

microdrive system. Data were collected using the PLEXON system (Plexon, Inc., Dallas, 

TX). The electrodes penetrated the cortex perpendicular to the surface of the SEF. The 

depths of the neurons were estimated by their recording locations relative to the surface of 

the cortex.
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Behavioral task.

In the task, the monkeys had to make saccades to peripheral targets that were associated with 

different reward amounts and probabilities (Figure 1A). The targets were colored squares, 

2.25×2.25° in size. They were always presented 10° away from the central fixation point at a 

45, 135, 225, or 315° angle. There were 7 different gamble targets (Figure 1B), each 

consisting of two colors corresponding to the two possible reward amounts. The portion the 

target filled with each color corresponded to the probability of receiving the corresponding 

reward amount. Four different colors indicated four different reward amounts (increasing 

from 1, 3, 5 to 9 units of water, where 1 unit equaled 30 µl). The minimum reward amount 

for the gamble option was always 1 unit of water (indicated by cyan), while the maximum 

reward amount ranged from 3 (red), 5 (blue) to 9 units (green), with three different 

probabilities of receiving the maximum reward outcome (20, 40, and 80%). Only gamble 

options from either option matrix1 or option matrix 2 were used in an experimental session.

The task consisted of two types of trials - choice and no-choice trials. All trials started with 

the appearance of a fixation point at the center of the screen (Figure 1C), on which the 

monkeys were required to fixate for 500–1000 ms. In choice trials, two targets appeared in 

two locations that were randomly chosen from across the four quadrants (resulting in 12 

distinct possible spatial configurations for each pair of gamble options). Simultaneously, the 

fixation point disappeared, which indicated to the monkeys that they were now free to 

choose between the gambles by making a saccade toward one of the targets. Following the 

choice, the non-chosen target disappeared from the screen. The monkeys were required to 

keep fixating on the chosen target for 500–600ms, after which the gamble outcome was 

revealed. The two-colored square changed into a single-colored square associated with the 

final reward amount. The monkeys were required to continue to fixate on the target for 

another 300 to 600 ms, during which the result cue was still displayed, until the reward was 

delivered. We observed quantitatively similar results using both option matrices (Figure S1). 

We therefore report the combined results in the manuscript. All 7 gamble options in each 

option matrix were systematically paired with all other options from that matrix. This 

resulted in 21 different combinations of gamble options in choice trials. The sequence of 

events in no-choice trials was the same as in choice trials, except that only one target was 

presented. In these trials, the monkeys had to make a saccade to the given target in order to 

get the fluid reward.

If the monkey deserted a choice trial before choosing between the gambles, the choice trial 

was simply repeated. However, if the monkey deserted the trial after the choice, but before 

reward was delivered, the next trial was an unscheduled no-choice trial. The target shown on 

this no-choice trial depended on the stage at which the monkey had deserted the preceding 

trial. If the monkey had deserted before the gamble result was revealed, the target was the 

previously chosen gamble option. If the monkey had deserted the trial after the gamble result 

was shown, the target was the previously indicated sure reward that was the gamble 

outcome. Thus, a gamble option or result was binding, once it was chosen or revealed, 

respectively. Accordingly, desertion behavior was suboptimal and only reduced the average 

reward rate across trials.
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Cryogenic inactivation apparatus and procedure.

To determine the location of the SEF, we obtained magnetic resonance images (MRI) for 

Monkey A and Monkey I. We used the location of the branch of the arcuate sulcus as an 

anatomical landmark. Before the inactivation experiment, we identified the SEF by 

neurophysiology recordings (Figure 1C). In both monkeys, we found neurons active during 

the saccade preparation period in the region from 0 to 11 mm anterior to the genu of the 

arcuate branch and within 5 mm to 2 mm of the longitudinal fissure. We designated the 

cortical areas with saccade-preparation related activity as belonging to the SEF [8], 

consistent with previous studies from our lab and existing literature [44,56].

Cooling plates (Figure 1C) were used to inactivate the SEF bilaterally (10mm from anterior 

to posterior and 12mm from left to right). This method allows us to rapidly and repeatedly 

inactivate a large and confined surface cortical area [24,57]. The cooling method followed 

the design by Lomber et al. [24]. Room temperature methanol was pumped through Teflon 

tubing that passed through a dry ice bath, in which it was reduced to subzero temperature. 

The chilled methanol was then pumped through a cryoloop attached to a stainless-steel plate 

placed over the dura, which cooled down the underlying cortical tissue. The methanol was 

then returned to the same reservoir from which it came to form a closed loop. The cortical 

temperature on the dura was monitored by a micro-thermocouple attached to the cooling 

plate. At the same time, two electrodes recorded cortical activity in the left and right 

hemisphere. During each session, monkeys initially performed the task for 10–15 min in the 

control state. Then the SEF region was deactivated bilaterally for 10–15 min by pumping 

chilled methanol through the cryoloop while the task continued. The cortical temperature 

returned quickly to normal after switching off the methanol pump (Figure 1E), while the 

monkey continuously performed the task. This whole process was repeated throughout the 

experimental session and resulted on average in 1399 successful trials, which is on average 7 

repetitions of control/inactivation cycles. In the control state, the temperature measured at 

the cooling probe was 35–39 ºC. During the inactivation state, the temperature at the cooling 

plate was reduced to 0–15 ºC. Transition trials, right after turning on the pump and turning 

off the pump, with the temperature between 34 and 16 °C, were not used in the behavioral 

analysis. The monkeys were sitting in an acoustic noise-isolated chamber. The methanol 

pump was placed outside this chamber.

QUANTIFICATION AND STATISTICAL ANALYSIS

In general, two-tailed t-tests were used for statistical tests, unless specified otherwise.

Risk behavior analysis.

Trial-by-trial data was collected during control and inactivation. We quantified the monkeys’ 

risk behavior using two types of risk models: risk-value models and prospective theory 

models. All reported p values regarding mean differences between control and inactivation 

conditions are results of two-tailed paired t-tests. P values relating to gamble history effects 

are based on one-tailed paired t-tests.
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The risk-value model is derived from financial theory [16] and represents the value of a 

gamble as the sum of multiple terms related to the distribution of possible gamble outcomes. 

The first term is the mean value of the gamble outcome distribution (i.e., the expected value 

of the gamble). The second term is the variance of the gamble outcomes (i.e., variance risk). 

The sign of this term determines if outcome variance increases (risk-seeking) or decreases 

(risk-averse) the value of gambles. In the following, we will refer to this second component 

simply as risk. In more complex models of this type, higher statistical moments describing 

the outcome distribution (skewness, kurtosis) are also taken into account. However, here we 

will not use these higher-order terms.

We used logistic regression to quantify the ability of the risk-value model to predict choice 

behavior. We assumed that choice depended in a stochastic fashion on the difference in 

subjective value between the two gamble options. We used a soft-max decision function to 

model this aspect of behavior:

hβ(x) = 1
1 + e( − βTx)

(1)

such that:

hβ(x) = P(y = 1 x; β) (2)

where y ∈ {0,1} is a dummy variable indicating whether the monkeys choose the first option 

or not, and β is the set of weights learned by the model. The first option is defined as the left 

option if the choice options were on both left and right visual field, and is defined as the up 

option if the choice options were both on the same visual field. The full risk-value model has 

two terms: expected value (EV) and outcome variance (Risk, Var). Expected value is defined 

as the arithmetic mean of the outcomes: EV = Vwin × pwin + Vloss × ploss, with Vwin 

denoting the winning reward magnitude, Vloss denoting the losing reward magnitude, pwin 

denoting the winning probability, and ploss denoting the losing probability. We defined risk 

as the variance of the gamble option [17]: Var = ((Vwin − V loss) × pwin(1 − pwin)) and 

coefficient of variance [21]: CV = ((Vwin − V loss) × pwin(1 − pwin))/EV (Table S1). We 

achieved slightly better behavioral fitting by using standard deviation than coefficient of 

variance (Table S2). We tested three variants of the risk-value model, whereby subjective 

value of a gamble depended only on: (3) expected value, (4) risk, (5) or both (the full 

model):

βTx = βD + βEV(EV1 − EV2) (3)

Chen and Stuphorn* Page 10

Curr Biol. Author manuscript; available in PMC 2019 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



βTx = βD + βVar(Var1 − Var2) (4)

βTx = βD + βVar(Var1 − Var2) + βEV(EV1 − EV2) (5)

Comparing the predictions of the three versions with trial-by-trial choices of the monkey 

allowed us to determine, if both factors were necessary to predict choice behavior. In order 

to quantify the tendency of choosing the same direction as in the previous trial, we added an 

additional parameter which represent whether the choice option appear at the previous 

chosen direction or not for both choice options.

βTx = BD + βVar(Var1 − Var2) + βEV(EV1 − EV2) + βr(R1 − R2) (6)

Ri is 1 if the location of the option i is the same as the chosen direction in the previous trial, 

and Ri is 0 if the location of the option i is different.

We used the gradient descent algorithm to minimize the cost function, which represents 

negative log-likelihood function, over training examples:

J(β) = − 1
m (∑i = 1

m yilog(hβ(xi)) + (1 − yi)log(1 − hβ(xi))) (7)

Both EV and Var were normalized to [0, 1] to enable the comparison among different 

independent variables. βD represents the directional bias. The regression coefficient for Var 

indicates the risk attitude. A negative sign of the coefficient indicated that increased outcome 

variance reduced subjective value, indicating risk-aversion, while a positive sign indicated 

risk-seeking.

Prospect theory is derived from classical expected value theory in economics [18] and 

assumes that the subjective value of a gamble depends on the utility of the reward amount 

that can be earned, weighted by the ‘subjective’ estimation of the probability of the 

particular outcome. Both the utility function and the probability function can be non-linear 

and thus might influence risk preference. Prospect theory also makes the assumption that 

utilities are perceived in a relative framework (i.e., as gains or losses relative to a reference 

point), not an absolute framework (i.e., the total amount of earned reward). However, this 

aspect of the model is irrelevant for our study, because the monkey does not encounter 

negative outcomes, so that for each individual trial the relative and absolute reference frame 

make identical predictions.

We assumed again a soft-max decision function where the probability of selecting the 

gamble was indicated by the difference of the subjective value of the two options:
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h(ΔU) = 1
1 + e( − (ΔU) + d) (8)

where ΔU = U1 − U2 is the utilities difference between gamble options, and d is the 

directional bias between two options. The utility of the choice option i was calculated as 

following:

Ui = uρ Vwin_i   × wα pwin_i   + uρ V loss_i   × wα ploss_i (9)

where uρ(V) is a power function to model the utility function, following previous research 

[9,22]:

uρ(V) = V ρ (10)

and wα(p) is a 1-parameter Prelec function to model the probability weighting function, as 

commonly done [9,22,23,58]:

wρ(p) = e( − ( − ln(p))α) (11)

ρ in equation (10), α in equation (10) and d in equation (8) were free parameters optimized 

by a Nelder-Mead search algorithm to minimize the sum of negative log likelihoods with 

respect to the utility function. As in classical expected value theory in economics [22], a 

convex utility function (ρ > 1) implies risk seeking, because in this scenario, the subject 

values large reward amounts disproportionally more than small reward amounts. Gain from 

winning the gamble thus has a stronger influence on choice than loss from losing the 

gamble. In the same way, a concave utility function (ρ < 1) implies risk seeking, because 

large reward amounts are valued disproportionally less than small ones. Independently, a 

non-linear weighting of probabilities can also influence risk attitude. For example, a S-

shaped probability weighting function (α < 1) implies that the subject overweighs small 

probabilities and underweights the large probabilities. This would lead to higher willingness 

to accept a risky gamble, because small probabilities to win large amounts would be 

overweighted relative to high probabilities to win moderate amounts.

As with the variability risk model, we tested three variants of the prospect theory model: 1) a 

full model, in which both utility function and weighting function were allowed to be non-

linear, 2) a ‘utility-only’ version, in which only the utility function was allowed to be non-

linear, and 3) a ‘probability weighting only’ version, in which only the probability weighting 

function was allowed to be non-linear.
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Model comparison.

The Bayesian information criterion [59,60] was used for model comparison.

BIC = k × log n − 2log(L) (12)

where log(L) is the log-likelihood (LL) of the model, n is the number of trials. k is the 

number of free parameters to be estimated.

In addition, we also combined all the trials across different experiment sessions from one 

monkey in a given task together. We then performed five-fold cross-validation method with 

different models based [43]. During cross-validation, we randomly divided all the trials into 

training set (80%) and test set (20%). We used training set to optimize the parameters for a 

given model, and use the test set to calculate LL to evaluate the model (Table S3). Cross 

validation procedures were repeated 50 times independently for each monkey per task.

Desertion Behavior.

We used an exponential function to quantify the monkeys’ desertion behavior as a function 

of reward prediction error during the result period:

p(desertion) = a ∗ e −a * x (13)

where a is the rate parameter. Paired t-tests were used to test for significance of any 

difference in desertion rate in the control and inactivation condition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Monkeys show strong risk seeking during gambling.

• Medial frontal cortex (MFC) inactivation reduces the frequency of risky 

choices.

• MFC inactivation reduces the ability to suppress automatic, but maladaptive, 

responses to negative reward prediction errors.

• MFC inactivation does not affect adjustments of decisions based on reward 

history.
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Figure 1. Task design and experimental setup.
(A) Task design and trial sequence. Monkeys fixated a white dot while two option stimuli 

were presented. Monkeys could earn a reward by making a saccade to one of the option 

stimuli. The lines below indicate the duration of epochs in the gambling task.

(B) Two sets of gamble options (option matrix 1 and option matrix 2) used in the gambling 

task. In a given session, we presented seven possible gamble options with three levels of 

maximum reward amount and three levels of winning probability (see Figure S1). Each 

option stimulus contains two colors. There are four different colors in total (cyan, red, blue 

and green) indicating four different reward amounts (increasing from 1, 3, 5 to 9 units of 

water, 1 unit = 30 µL of water). The proportions of the areas covered by the colors indicate 

the probability of receiving the corresponding reward. The expected value of the gamble 

targets increases along the axis indicated by the arrow (see Figure S2).

(C)Cryoinactivation experiment setup. The black square in the left subplot indicates the 

position of the cooling plate during bilateral inactivation. The black dots within the square 

indicate the recording sites at which neurophysiological recordings were performed during 

inactivation. Red dots indicate the recording sites where task related neuronal activity was 

recorded in separate experiments. Blue dots indicate the recording sites with no task related 
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neuronal activities. The back square indicates the cooling plate covers the majority of the 

cortical area with task related activity.

(D) The cooling device consist of three parts: the cooling plate (10 mm × 12 mm), the brown 

plastic cap, which stabilizes the whole cooling device in the recording chamber, and the two 

micro-drives, which hold two tungsten electrodes monitoring the neuronal activity during 

inactivation.

(E) A representative experimental session. The first row shows the on- and offset of the 

cooling device. The second row shows the temperature recorded at the cooling plate, right 

above the dura. The shaded green area indicates the temperature range defined as the control 

state, and the shaded orange area indicates the temperature range defined as the inactivation 

state. The third and fourth row shows the multi-unit spiking activities recorded 

simultaneously in both left (the third row) and right (the fourth row) SEF (see Figure S2).
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Figure 2. Monkeys show risk-seeking behavior.
(A) The monkeys showed first-order stochastic dominance. They strongly preferred the 

gamble option with the higher probability or higher amount, when the other factor (reward 

amount or probability) was held constant.

(B) The monkeys were risk-seeking. They strongly preferred the gamble option with higher 

variance, when expected value was identical for both gambles options. This preference 

increased with increasing variance differences.

(C) The risk-value model explains choices between two gamble options as a function of 

outcome variance differences (ΔVar), expected value differences (ΔEV), and directional bias 

(Dir). The regression coefficients for ΔVar and ΔEV for both monkeys are significantly 

different from 0 (t-test, p <10−4). (Monkey A: black; Monkey I: blue). The Var coefficients 

are positive, indicating attraction to risk. The regression coefficients for Dir are not 

significant different from 0. Each dot represents an estimated regression coefficient for one 

experimental session.

(D) The prospect theory model explains choices between two gamble options as a function 

of the non-linear utility of outcomes, weighted by a non-linear probability function, and the 

directional bias. The estimated coefficients for both utility and probability distortion are 
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significantly different from 1 (t-test, p <10−4). The estimated coefficients for direction is 

slightly above 0 (t-test, p <0.05).

(E) The estimated power utility functions for both monkeys. The thin lines denote the 

individual session estimations, while the thick lines denote the average estimation. The 

utility functions are convex, indicating risk-seeking. (Monkey A: black; Monkey I: blue).

(F) probability weighting function using the 1-parameter Prelec weighting function for both 

monkeys. The color scheme is similar to f. Error bars denote s.e.m; *, p <0.05; ****, p 

<10−4.

See also Figure S1 for choice patterns with both option matrices separately.
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Figure 3. SEF inactivation reduces risk-seeking.
(A) Inactivation has only a small and non-consistent effect on the monkeys’ ability to choose 

the optimal gamble option, if they vary only in one factor (either magnitude or probability). 

Error rates are low both in the control (green) and inactivation (orange) condition and do not 

show consistent differences across monkeys.

(B) Inactivation reduces risk-seeking. The preference for gamble options with larger 

outcome variance is less pronounced during inactivation (orange) compared to the control 
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(green) condition (paired t-test, Combined: p=1.46×10−3; Monkey A: p=0.05; Monkey I: 

p=0.01).

(C–D) Reduction of risk-seeking estimated by the risk-value model.

(C) Comparison of the coefficients for risk (Var) in the control and inactivation condition for 

all experimental sessions (Monkey A: black; Monkey I: blue). The arrows indicate the mean 

value for each condition. The coefficients were consistently lower in the inactivation 

condition, indicating reduced preference for risk.

(D) The coefficients for expected value (EV) were slightly, but consistently decreased in the 

inactivation condition. All conventions are identical to C here and in all other scatter plots.

(E–G) Reduction of risk-seeking estimated by the prospect theory model.

(E) The parameter controlling curvature of the utility function is consistently decreased in 

the inactivation condition, which indicates reduced risk-seeking.

(F) The parameter controlling probability weighting is not significantly changed during 

inactivation.

(G) The corresponding utility functions (top) and probability weighing functions (bottom) 

are shown for both monkeys during the control (green) and inactivation (orange) condition. 

Thin lines indicate individual sessions, while thick lines indicate the average function. Error 

bars denote s.e.m.; paired t-test, ns, non-significant; *, p <0.05; **, p <10−2 ***, p <10−3; 

****, p <10-4.

See SEF inactivation effect on saccade reaction times in Table S3. See reduction of risk-

seeking estimated by the prospect theory model separately for both monkeys in Figure S4C.
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Figure 4. Influence of SEF inactivation on desertion rates and gamble history effect.
(A) Desertion rates during result periods as a function of reward expectation errors, the 

differences between actual and anticipated reward, during control (green) and inactivation 

(orange) condition in choice trials (top) and no-choice trials (bottom). The overall desertion 

rates are estimated using an exponential fit, indicated by the colored lines. These rates are 

significantly increased during inactivation in choice trials. This increase is larger with larger 

negative prediction errors. Trial desertion here is defined as making saccades actively 
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outside of the fixation windows (see Figure S3C and D). See Figure S4 for trial quitting 

rates in other task epochs.

(B) Changes of scaling parameters of the exponential functions for each individual 

experiment session in choice trials (top) and no-choice trials (bottom). Each line shows the 

change in the scaling parameters in control and inactivation condition from one experiment 

session.

(C) Changes of risk preference based on gamble outcome history across trials during both 

control and inactivation conditions. The monkeys were less risk-seeking following a lost 

gamble as compared to a won gamble. This effect is captured both by the risk-value (left two 

plots) and the prospect theory (right two plots) models. In the risk-value model, the risk 

coefficient is significantly lower on trials following a gamble loss, while the expected value 

coefficient stays the same. In the prospect theory model, the utility function becomes less 

concave (ρ closer to 1) and the probability weighting function becomes more linear (α 
closer to 1) on trials following a gamble loss.

(D) The effect on risk preference by gamble outcome history does not change across control 

(green) and inactivation (orange) conditions. Error bars denote s.e.m.; paired t-test, ns, non-

significant; *, p <0.05; **, p <10−2 ***, p <10−3, ****, p <10−4.
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