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ABSTRACT OF THE DISSERTATION 

 
Applications of Machine Learning and Reinforcement Learning in Investment and Trading 

 
By 

 
Chenzhe Tian 

 
Doctor of Philosophy in Management 

 
 University of California, Irvine, 2020 

 
Professor Zheng Sun, Chair 

 
 
 

Machine learning is increasingly gaining applications in Finance industry. In this 

dissertation, I use machine learning methods to predict mutual fund and hedge fund 

performances and address the issue whether mutual fund and hedge fund managers add 

value. Overall, machine learning methods tend to outperform OLS in terms of return 

prediction. From a machine learning point of view, mutual fund managers don’t add value 

while hedge funds do deliver risk-adjusted performance. Also, such outperformance of top 

hedge funds is persistent with three-year horizon. Furthermore, such outperformance 

provided by machine learning methods are not driven by fund characteristics. A regression 

of machine learning outperformance on macroeconomic variables show that machine 

learning models tend to perform better when the economy is in recession, when the market 

is bearish, and when the market and economic policy uncertainty are increased. 

Recently, reinforcement learning (RL) is being explored by practitioners in trading. In 

particular, algorithmic trading provides an ideal setting for RL. In this dissertation, I 

trained an agent to place aggressive stock market orders with deep Q-network with multi-

step temporal difference. The back-test results show that, the aggressive order agent 
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outperforms an agent with linear execution schedule by an average of 0.12 to 0.69 basis 

points on simulated orders in Asia Pacific stock markets. This shows that RL-based 

methods are capable of recognizing and utilizing market information and are promising to 

outperform traditional execution algorithms. 

In summary, machine learning and reinforcement learning are promising to provide 

better performances in portfolio investment and trading. 
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Introduction 

With the breakout of the big data era and the recent development of machine 

learning, the finance industry is experiencing fundamental changes. For example, when 

customers apply for credit, machine learning algorithms in the back end is helping lenders 

evaluate their credit worthiness according to applicants’ own historical records and data of 

others with similar characteristics. Also, there are billions of credit card transactions every 

day, identifying a few fraud transactions among billions is like finding needles in haystacks. 

With the help of machine learning, this task could be done within seconds. There are 

countless examples of machine learning applications that are making our life more efficient. 

Although machine learning has been successfully applied in consumer banking and 

fraud detection, it’s application in the area of investments, especially to predict mutual fund 

and hedge fund returns, seems very scarce. In fact, in mutual fund and hedge fund 

literature, researchers mainly use linear models. However, due to the complexity of 

economic activities, using linear models to characterize the fundamental associations 

between returns and predictive variables is far from enough. One of the biggest advantages 

of machine learning is the ability to review large volumes of data to identify patterns and 

trends, and such patterns and trends are often non-linear. 

Furthermore, in mutual fund literature, the question whether mutual fund managers 

add value is a long-existing debate. With linear model such as ordinary least squares as the 

tool, researchers have reached opposite conclusions with different data. One of the possible 

reasons for such contradiction is the lack of tools that are capable of capturing subtle and 

non-linear relationships in the data. With the help of machine learning, we may be able to 
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get closer to the fundamental relationships and add more evidences to the debate from the 

point of view of machine learning. 

Another research topic that machine learning could be helpful is in hedge fund 

performance. Although researchers have generally accepted that hedge fund managers are 

able to deliver positive risk-adjusted returns, whether such performances are persistent is 

not clear. Machine learning, with the ability to uncover non-linear relationships, could be 

helpful to unveil the mystery. 

Another fast-evolving technology that is changing the way we live is reinforcement 

learning. Its applications are already everywhere in our life. Our new cars may be equipped 

with self-driving functionality that can go to any place without human intervention. Such 

achievement is done by training a computer program on large amount of existing data, 

rather than explicitly coding rules in the program. When you are calling customer service, 

sometimes you can’t tell whether it’s a human or a machine on the other end. Such 

naturality is based on voice recognition and natural language processing. And perhaps 

astonishing, the best chess player in the world is not human anymore, but a computer 

program with self-improvement ability that has seen and learnt millions of chess games, 

which is not possible to be achieved by human players. Behind the scene of these moments 

in life is tremendous amount of data and the successful development and application of 

reinforcement learning. However, when it comes to trading of financial products, especially 

in those highly computerized environments, there is very few reinforcement learning 

applications. Hence, the cross discipline of reinforcement learning and finance is a whole 

new area of research that needs to be explored. 
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In the first two chapters of this dissertation, I will explore the possibility to use 

machine learning methods to find a systematic way to predict mutual fund and hedge fund 

returns. For mutual funds, the general conclusion is that machine learning methods are 

promising to provide higher raw returns than linear method for a zero-investment 

portfolio to take long positions in top performers and short positions in bottom ones. 

However, such performance is not statistically significant after risk adjustment. Hence, 

mutual fund managers do not add value from the angle of machine learning. 

On the other hand, for hedge fund data, using the same machine learning methods, I 

do find higher raw returns than linear method, as well as risk-adjusted performances for 

the zero-investment strategy. Such outperformance of machine learning methods is 

persistent with three-year horizon and is robust under the presence of hedge fund 

characteristics. Furthermore, in a regression analysis of the outperformance with 

macroeconomic variables, I find that machine learning methods tend to outperform when 

the economy is in recession, when the market is bearish, and when the uncertainty 

increases. 

In the third chapter, I explore the possibility to use reinforcement learning in the 

setting of stock trading. Specifically, I train a computerized agent with deep Q-network  and 

multi-step temporal difference that can execute aggressive orders under various market 

conditions. With a linear execution schedule as the benchmark, the agent can 

systematically beat the benchmark by 0.12 to 0.69 basis points in 11 Asia Pacific stock 

markets. Furthermore, the outperformance is robust under high noise-to-signal ratios. 

To my knowledge, my findings make the following contributions to finance 

literature: 
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1. this is the first paper to explore the possibility to use machine learning methods 

to predict mutual fund and hedge fund returns; 

2. it adds a new piece of evidence that mutual fund managers do not add value from 

a machine learning point of view; 

3. it demonstrates that, when applied to hedge fund data, machine learning methods 

are promising to generate higher risk-adjusted performances and persistence than linear 

methods; 

4. this is the first paper to apply reinforcement learning in the area of aggressive 

stock trading. And it demonstrates that the performance of reinforcement learning-based 

agent is promising to beat a linear benchmark, even under the presence of high noise-to-

signal ratios, which is valuable to industry practitioners. 

Overall, this dissertation demonstrates the possibility to apply cutting edge 

technologies in machine learning and reinforcement learning in the area of investments 

and trading. 
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Chapter 1  

On the Skills of Mutual Fund Managers via Machine Learning Methods  
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1.1 Background 

Mutual fund is an area with abundant research in finance. However, some 

fundamental questions, such as whether mutual fund managers can generate positive 

excess returns, or whether their performance is persistent, remain drastically debated. On 

the one hand, some researchers believe that mutual fund managers do not add value. One 

of the earliest papers with this argument dates back to Jensen (1968), which finds that 

mutual funds on average are not able to outperform a buy-the-market-and-hold strategy 

and that individual funds cannot perform better than what is expected from mere random 

chance. Sharpe (1966) finds evidence that supports the efficient markets by denying the 

ability of fund managers to beat a risk-adjusted market portfolio. Elton, Gruber, Das, and 

Hlavka (1993) find that mutual funds do not earn returns that justify their information 

acquisition costs, which implies the net-of-fee alpha provided by mutual funds is negative. 

Carhart (1997) suggests that one-year momentum can explain the “hot hand” phenomenon 

described in Hendricks, Panel, and Zeckhauser (1993). 

On the other hand, some researchers argue that mutual fund managers are capable 

of generating risk-adjusted returns. Grinblatt and Titman (1992) find positive persistence 

in mutual fund performance. Hendricks, Panel, and Zeckhauser (1993) find a “hot hand” 

effect within top performers. Wermers (2000) finds that funds’ stock picking ability 

enables them to cover their costs, thereby supporting the value of active mutual fund 

management. Ibbotson and Patel (2002) also find performance persistence in mutual funds. 

Also, Berk and Green (2004) provide a rational model of active portfolio management and 

argues that lack of persistence does not imply lack of skill. They argue that fund flows 

pursue past superior performance even though performance is not persistent. With 
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diminishing returns to scale, in equilibrium superior funds do not show persistence. Pástor, 

Stambaugh, and Taylor (2015) confirm decreasing returns to scale at both industry level 

and fund level and the active management industry has become more skilled over time. 

There are two potential channels for the above-mentioned papers to reach opposite 

conclusions: lack of comprehensive data and possible incapability of research methodology. 

Since the origination of the debate, mutual fund data has become more comprehensive. 

Researchers has found various variables that has predictive power of future fund 

performances. For example, Chevalier and Ellison (1997) find a non-linear flow-

performance relationship and that mutual fund managers alter the riskiness of their 

portfolios to take advantage of such relationship. Kacperzyk, Sialm, and Zheng (2005) 

create an industry concentration index and finds that more concentrated funds perform 

better. Kacperzyk, Sialm, and Zheng (2008) find that return gap, which is defined as the 

difference between the reported fund return and the return on a portfolio that invests in 

the previously disclosed fund holdings, predicts fund performance. Cremers and Petajisto 

(2019) introduce Active Share as a measure of activeness of mutual funds and finds that 

funds with the highest Active Share significantly outperform their benchmarks. Amihud 

and Goyenko (2013) find that a low level of coefficient of determination, which is the 𝑅2 

obtained from a regression of fund returns on a multifactor benchmark model, significantly 

predicts better performance. 

Furthermore, most of the above-mentioned papers use ordinary least squares (OLS) 

method to evaluate the relationship between performance and predictive variables. 

However, OLS can only pick up linear relationships. If the relationship is non-linear, it could 

be ignored by OLS or even mis-specified. Recently machine learning has drawn much 
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attention from both industry and academia and has found many successful real-world 

applications such as predicting credibility of borrowers and algorithmic trading. Many 

machine learning models are better than OLS in prediction in that machine learning models 

are better at reviewing large volumes of data and identifying patterns and trends. 

Therefore, using machine learning models to predict mutual fund performance with more 

comprehensive data is a natural research topic to pursue. 

In this chapter, I will first evaluate the potential effectiveness of seven machine 

learning models, including least absolute shrinkage and selection operator, ridge 

regression, principal component regression, partial least squares, random forest, gradient 

boosting random trees, and neural networks, in a simulation with non-linear predictive 

variables, and select the models with the highest predictabilities. Next, the selected models 

will be applied to a comprehensive mutual fund data with 94 independent variables to 

predict fund returns. Then a portfolio sorting approach will be used to evaluate the 

absolute performance and risk-adjusted performance of the machine learning models. 

Finally, the debate whether mutual fund managers have skills will be revisited. 

The rest of this chapter is organized as follows. Section 1.2 will give a brief 

introduction of machine learning models used in this chapter. Section 1.3 presents the 

fund-level variables used as independent variables, the methodologies to back-test model 

performance, and performance evaluation measures. Section 1.4 presents data and 

summary statistics. Section 1.5 shows empirical evidence of tests. And section 1.6 

concludes. 
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1.2 Machine Learning Methods 

In this section, I will introduce seven machine learning methods that are used in this 

chapter: least absolute shrinkage and selection operator (LASSO), ridge regression, 

principal component regression (PCR), partial least square (PLS), decision trees, random 

forests (RF), gradient boosting random tree (GBRT), and neural networks (NN). Here I only 

focus on the basic ideas of these models, so that readers without machine learning and 

programming backgrounds can easily follow. 

 

1.2.1 The Basics of Machine Learning 

Machine learning, often seen as a subset of artificial intelligence, includes a set of 

algorithms or statistical models. It is often used to perform prediction tasks. Machine 

learning models are “trained”, i.e., fitted or calibrated, on sample data in order to make 

predictions without being explicitly programmed to perform the task. According to the 

nature of the task, machine learning falls into two categories: supervised learning and 

unsupervised learning. 

In supervised learning, models are trained on sample data, which includes both 

predictor as inputs and desired results as outputs. In the language of machine learning, the 

inputs are also called features, and the outputs are called labels or targets. Supervised 

learning can be further categorized into two main types according to the nature of targets: 

regression and classification. A regression model tries to predict targets with continuous 

values. For example, given historical firm characteristics such as size, book-to-market ratio, 

or momentum, predict future stock price. Or given build year, location, and size, predict 

house prices. In these two examples, both stock price and house price are continuous 
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variables, therefore, these two tasks are regression problems. A classification model, on the 

other hand, tries to predict a categorical target. For example, given health records such as a 

computed tomography image, predict whether a patient has cancer or not. Or given credit 

history and financial ratios of a borrower, predict whether it will default in the future.  

In unsupervised learning, data does not have a label, i.e., there is no specific or 

desired output to predict. Rather, we often use unsupervised learning algorithms to 

perform grouping or clustering tasks. In practice, supervised learning makes the majority 

of machine learning tasks, which is also the focus of this chapter. 

A major difference between machine learning and traditional linear models such as 

OLS is that the structure of machine learning models often is much more complicated. As a 

result, machine learning models are much richer in terms of parameters, which makes 

them more flexible than traditional linear models. The optimal values of model parameters 

are inferred and gradually adjusted during training process. Another characteristic that 

makes machine learning models different from OLS is that they almost always have hyper-

parameters. Hyper-parameters are a set of parameters that control the model complexity, 

regularization, training process, and stopping criteria, etc. Unlike model parameters, hyper-

parameters, cannot be inferred during training. Instead, they can only be set before training 

starts. And the optimal values of hyper-parameters are obtained through trial-and-error 

with multiple times of training. 

Although machine learning models are very flexible, there are downsides as well. 

The biggest issue is over-fitting, which is the problem that a model fits too closely or 

exactly to a particular set of data but fails to fit additional data. To control over-fitting, 

sample data is often split into three exhaustive and mutually exclusive sets, i.e., training set, 
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validation set, and test set. Training set is the set that machine learning models are trained 

on. Given the large number of parameters, machine learning models can be easily fit to the 

training set with arbitrarily good in-sample performance, which leads to over-fitting. This 

is where regularization comes into play. Regularization is the process of imposing 

additional requirements on the model parameters to discourage the model from becoming 

overly complex. 

To control the extent of regularization, the validation set are used to tune hyper-

parameters in order to obtain a good out-of-sample performance at the cost of reducing in-

sample performance. However, it’s also possible that machine learning models are over-

fitted to the validation set. In order to diagnose whether this happens, we also need the test 

set to evaluate the performance of machine learning models on samples that haven’t been 

used in training, nor hyper-parameter tuning, which are truly out-of-sample. Ideally, a well-

trained model should have similar performance on all three sets. Good training set 

performance with bad validation and test set performance suggest that the model is over-

fitted to training set. And good training and validation set performance with inferior test 

set performance indicate the model is over-fitted to the validation set. 

Finally, to train a machine learning model, we also need an objective or loss function 

that measures the difference between ground truth (i.e., true target values) and model 

predictions. For a continuous target, mean-squared-error or mean-absolute-error are often 

used as the loss function. For a categorical target, cross entropy is often used. From a 

mathematical point of view, training the model is just to minimize the loss by adjusting 

model parameters, subject to any imposed regularization criteria. 

Next, I will introduce machine learning models used in this chapter one by one. 
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1.2.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

LASSO, introduced in Tibshirani (1996), is a shrinkage method in the sense that it 

shrinks some of the regression coefficients completely to zero. Simply speaking, LASSO 

imposes a penalty term to OLS loss as the sum of the absolute value of coefficients. Its 

Lagrangian form is 

𝛽̂𝐿𝐴𝑆𝑆𝑂 = argmin
𝛽

{
1

2
∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑗|

𝑝

𝑗=1

}, 

where 𝜆 is the regularization parameter, which controls the extent of penalty that is 

imposed to non-zero coefficients. The first term on the right-hand-side is the OLS loss, and 

the second term is LASSO regularization penalty. Note that this absolute-value penalty has 

very nice mathematical property such that given an appropriate value of 𝜆, it shrinks some 

of the regression coefficients completely to zero. Therefore, LASSO does a kind of variable 

selection. Obviously, OLS is just a special case of LASSO with the regularization parameter 

𝜆 = 0. A subtle but important technical point is that LASSO is scale variant. Therefore, when 

using LASSO, the features should be standardized first to have zero mean and unit variance, 

such that all features are on the same scale. This is important because standardization 

ensures that the coefficients are penalized fairly on the same scale. 

The LASSO estimator does not have an explicit analytical solution. To solve LASSO 

numerically, we can use Least Angle Regression introduced in Efron, Hastie, Johnstone, and 

Tibshirani (2004). 
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1.2.3 Ridge Regression 

Tikhonov regularization or ridge regression, introduced in Tikhonov (1963), is 

another shrinkage method. Ridge shrinks the coefficients of regression by imposing a 

penalty on their size. Mathematically, the solution of ridge regression minimize a (squared 

size of coefficients) penalized residual sum of squares: 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = argmin
𝛽

{∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

𝑁

𝑖=1

+ 𝜆∑𝛽𝑗
2

𝑝

𝑗=1

}, 

where 𝜆 ≥ 0 is the parameter that controls the amount of regularization: larger values of 𝜆 

result in greater amount of shrinkage. As a result, higher 𝜆 shrinks 𝛽 more towards zero. 

Note that unlike LASSO, which causes some of the coefficients to be exactly zero, ridge is a 

kind of “soft” shrinking, which does not cause the coefficient to be zero exactly. Therefore, 

in ridge regression, every input variable contributes to the loss function. Finally, similar to 

LASSO, the features should be standardized first to ensure that ridge coefficients are 

penalized fairly on the same scale. 

 Ridge regression estimator has analytical solution, which is 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌. 

 

1.2.4 Principal Components Regression (PCR) 

Unlike LASSO or ridge regression that use the standardized features as input, PCR 

uses the principal components of the input features as the independent variables in OLS. 

The principal components 𝑍𝑚 is computed as 𝑍𝑚 = 𝑋𝑣𝑚 , where 𝑋 is the input features, and 

𝑣𝑚  is the eigenvector of the variance-covariance matrix of 𝑋. Since 𝑍𝑚 are all orthogonal to 
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each other, the regression with 𝑀 principal components is just a sum of product between 

univariate regression coefficients 𝜃̂ and the principal components 𝑍: 

𝑦̂𝑀
𝑃𝐶𝑅 = 𝜃̂0 + ∑ 𝜃̂𝑚

𝑀

𝑚=1

𝑍𝑚 , 

where by construction  𝜃̂0 ≡ 𝑦̅. 

A subtle technical point to note is that PCR is scale variant. Thus, before PCA 

decomposition, the input feature 𝑋 also need to be standardized, since PCA projects the 

original data onto directions that maximize the variance. Without standardization, the 

features with largest variance will mechanically compose a principal component, thus 

suppressing the effect of other components and reducing the efficiency of PCR. 

 

1.2.5 Partial Least Squares Regression (PLS) 

Similar to PCR, PLS also uses a linear combination of inputs for regression. However, 

unlike PCR that constructs inputs (components) only with input features 𝑋, PLS also uses 

target 𝑦. To perform PLS, 𝑦 is univariately regressed on each feature 𝑋𝑖  to obtain a 

univariate coefficient 𝛽1,𝑖 , which works as a partial sensitivity. Then the first regressor 𝑍1 is 

computed as 𝑍1 =
∑ 𝛽1,𝑖𝑖 𝑋𝑖

∑ 𝛽1,𝑖𝑖
, which is the weighted average of 𝑋𝑖’s. And then we regress 𝑦 on 

𝑍1. Next 𝑋 is orthogonalized with respect to 𝑍1, and the above process is repeated until the 

desired number of regressors are obtained. By construction, if we repeat this process as 

many times as the number of features, we will restore the solution of OLS. Similar to PCA, 

PLS is also scale variant, so we need to standardize the input features before conducting 

PLS regression. 
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1.2.6 Decision Trees 

Although decision tree is not used as a separate estimator in this chapter, it is the 

building block of random forest and gradient boosting random trees. A decision tree is a 

tree-like decision flow, in which non-leaf nodes represent the conditions/features to split 

on, and leaf nodes represent a portion of targets. For example, in classification trees the leaf 

nodes represent one of the target categories, whereas in regression trees the leaf nodes 

represent a specific target value. More specifically, a decision tree “learns” the data in an 

iterative fashion. In each iteration, the tree selects the feature (grows a branch) that splits 

current set of observations optimally according to some measure such as impurity. Within 

each branch, the tree again selects the feature that splits the observations in the current 

branch optimally. Essentially, a decision tree repetitively divides the feature space 

(potentially a hyper-space if there are more than 3 features) into smaller sub-spaces 

according to one or multiple threshold values of features, and it keeps doing so until all the 

subspaces are pure, i.e., the labels of each observation in the same subspace are the same. 

However, in practice it’s often very hard to obtain a pure partition. Therefore, the decision 

tree is stopped according to some stopping criteria. For example, the tree stops growing if, 

a) the total depth of the tree reaches a predefined value, or b) there is no branch with 

number of observations more than a prespecified value, or c) the number of leaves reaches 

a predetermined number, etc. For more details about decision trees, please refer to 

Breiman, Friedman, Olshen, and Stone (1984). 

Obviously, the learning process of decision tree makes it extremely prone to over-

fitting to training data and perform poorly on new data. Therefore, in practice a single 

decision tree is hardly used. Instead, random forest and gradient boosting methods, which 
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are derivatives of decision trees, are developed to overcome such disadvantage of decision 

trees. 

 

 

1.2.7 Random Forest 

As its name suggests, random forest consists of multiple decision trees. Simply 

speaking, each decision tree in a random forest is trained simultaneously on a 

bootstrapped sample with replacement from the training data, such that trees with 

different bootstrapped sample grow differently. At this point, each tree is still prone to 

over-fitting to its bootstrapped sample. However, when it comes to predicting new/unseen 

samples, each tree in the random forest is used to make a prediction, and the final 

prediction of the random forest is made by taking a majority vote of the trees in case of a 

classification problem, or by taking the average of the predictions of individual trees in case 

of a regression problem. In this way, over-fitting is largely mitigated. Therefore, by 

increasing the number of trees in the random forest, out-of-sample performance is often 

improved. However, the marginal improvement is decreasing with the number of trees 

growing, and a larger random forest requires more computational resources. But the trees 

in the random forest can be estimated in parallelization. 

 

1.2.8 Gradient Boosting 

Unlike random forest that trains each individual tree in a parallel fashion and takes 

a majority vote or an average, the idea of gradient boosting is to sequentially connect 

multiple weak learners to form a single strong learner in an iterative fashion. The logic 
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behind the scene is that subsequent learners learn from the mistakes of their predecessors. 

In the first iteration, a simple and shallow tree is trained on the training data. This tree 

almost surely fails to achieve a good performance since its shallow structure makes it 

underfit to the training data, hence the term weak learner. In the second iteration, another 

simple decision tree is trained on the residuals of the prediction of the first decision tree, 

trying to correct the errors of its predecessor. Then the prediction of the first two trees is 

summed up to form a slightly better prediction, and a set of new residuals between the 

ground truth and this new prediction is also computed. In the third iteration, a new simple 

tree is trained on this newly computed set of residuals. And similarly, a new set of 

predictions and residuals are computed as a result. The model keeps growing one tree after 

another until the prespecified number of trees are reached or some other stopping criteria 

is fulfilled. Gradient boosting is fairly robust to over-fitting, so a large number of trees 

usually results in better performance. However, similar to random forest, gradient boosting 

with more trees requires more computational power. And the computation of the 

individual trees cannot be done in parallelization. 

 

1.2.9 Neural Networks 

Neural network, or artificial neural network, is a computation system that is partly 

inspired by biological neural networks. The building block of a neural network is neuron. A 

neural network is consisted of multiple layers, and each layer is consisted of multiple 

neurons. There are connections between neurons in consecutive layers, but no connection 

exists between neurons in the same layer. A neuron is essentially a non-linear 

transformation of its input from a mathematical point of view. Inside a neuron, there are 
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two stages of operations. The first stage is a linear transformation of the inputs, i.e., 𝑦 =

𝑊𝑋 + 𝑏, where 𝑊 is called a weight matrix and 𝑏 is called. Both the weight matrix and the 

bias are learnable parameters of the network. In the second stage, a non-linear activation 

function 𝜎(∙) is applied to the linearly transformed inputs, i.e., a = 𝜎(𝑦) = 𝜎(𝑊𝑋 + 𝑏). 

Several choices of the activation function are available, including sigmoid function, 

hyperbolic-tangent function, rectified linear unit or ReLU, etc. The role of these activation 

functions is to provide non-linearities for the network. Then the nonlinearly transformed 

output a is passed to the next connected neuron as its input. 

The simplest neural network consists of three layers: one input layer, one output 

layer, and one hidden layer in the middle. The neurons in the input layer get their values 

from the features of data and pass such values directly to the hidden layer, hence the name 

input layer. By construction, the number of neurons in the input layer is the same as the 

number of features. The hidden layer gets its values from the input layer, after nonlinearly 

transforming the inputs, it passes those values to the output layer. For a regression 

problem or a binary classification problem, there is generally only one neuron in the output 

layer. For a non-binary classification problem, the number of neurons in the output layer is 

the number of categories in the target. The output layer then uses its inputs to make a 

prediction. 

The number of parameters grows extremely fast with number of hidden layers and 

number of neurons in each layer. Also, a deep neural network (neural networks with many 

hidden layers) often requires a huge amount of data to train. To give readers a sense of 

magnitude, one of the most successful deep neural network architectures for image 

recognition, called GoogLeNet, has 22 layers to classify objects in images into 1000 
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categories. This network has about 100 million parameters and is trained with 1.2 million 

images. 

To train a neural network, we impose a loss function 𝐿 ≡ 𝐿(𝑦𝑝𝑟𝑒𝑑 , 𝑦𝑡𝑟𝑢𝑒;𝑊, 𝑏) that 

measures the difference between the prediction of the neural network and the ground 

truth. Therefore, the ultimate goal of the network is to get the value of the output layer as 

close to the target as possible, by changing the value of network parameters 𝑊 and 𝑏. As a 

result, the loss function of the neural network is differentiable with respect to 𝑊 and 𝑏. A 

method called gradient descent is used to minimize the loss function. More specifically, the 

loss function 𝐿 is minimized iteratively with the so-called forward-propagation step and 

backward-propagation step. In forward propagation, a set of predictions are computed 

with the current parameter values 𝑊𝑖 and 𝑏𝑖 . Then in the back-propagation step, the loss 

function is evaluated and differentiated w.r.t. 𝑊𝑖 and 𝑏𝑖 to compute the partial derivative 

𝜕𝐿

𝜕𝑊𝑖
 and 

𝜕𝐿

𝜕𝑏𝑖
. Afterwards, 𝑊 and 𝑏 are updated in the following way: 𝑊𝑖+1 = 𝑊𝑖 − 𝛼 ∙

𝜕𝐿

𝜕𝑊𝑖
, and 

𝑏𝑖+1 = 𝑏𝑖 − 𝛼 ∙
𝜕𝐿

𝜕𝑏𝑖
, in which 𝛼 is the learning rate. The updated 𝑊 and 𝑏 are again used in 

forward-propagation and a set of new partial derivatives is also computed in the following 

backpropagation. Thus forward-propagation and backward-propagation alternate to 

minimize the loss function. 
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1.3 Methodology 

1.3.1 Fund-Level Performance Predictors 

The existing mutual fund literature has documented a variety of fund characteristics 

that have a statistically significant effect on mutual fund’s performance. In the following 

subsections I will present the basic ideas and formal definitions of the variables used in this 

chapter as fund-level performance predictors. 

1.3.1.1 Fund Flow 

The relationship between flow and performance is a heavily addressed topic in 

mutual fund literature. Sirri and Tufano (1998) find a non-linear relationship between fund 

flow and past performance: mutual fund investors chase returns by flocking to funds with 

highest previous returns, though failing to punish poorly-performing fund managers by 

withdrawing funds. Berk and Green (2004) argue that there is decreasing returns to scale, 

and performance-chasing behavior of investors drives mutual fund performance towards 

zero in equilibrium. Therefore, past performance and flows has indirect effects on future 

performances. In this chapter, we follow the definition of fund flow in Sirri and Tufano 

(1998): 

𝐹𝐿𝑂𝑊𝑖,𝑡 =
𝑇𝑁𝐴𝑖,𝑡 − 𝑇𝑁𝐴𝑖,𝑡−1 ∗ (1 + 𝑅𝑖,𝑡)

𝑇𝑁𝐴𝑖,𝑡−1
, 

where 𝑇𝑁𝐴𝑖,𝑡 is fund 𝑖’s total net assets at time 𝑡, and 𝑅𝑖,𝑡 is the fund’s return over the 

period ending at time 𝑡. 

1.3.1.2 Industry Concentration Index 

Kacperczyk, Sialm, and Zheng (2005) argue that mutual fund managers may have 

informational advantages on industries they are familiar with, and accordingly deviate 
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their holdings from a well-diversified portfolio and concentrate on such industries. The 

authors show that mutual funds with higher industry concentration index (ICI) perform 

better than others, even controlling for risk. ICI is defined as below: 

𝐼𝐶𝐼𝑡 =∑(𝜔𝑗,𝑡 − 𝜔̅𝑗,𝑡)
2

10

𝑗=1

, 

where 𝜔𝑗,𝑡 is the fund’s weight on industry 𝑗 at time 𝑡, and 𝜔̅𝑗,𝑡 is the weight on industry 𝑗 at 

time 𝑡 for the market portfolio. Therefore, ICI measures how much a mutual fund’s 

portfolio deviates from the market portfolio. 

1.3.1.3 𝑹𝟐 Selectivity 

Amihud and Goyenko (2013) propose that a mutual fund’s performance can be 

predicted by its 𝑅2, which is the coefficient of determination from a regression of its 

returns on a multifactor benchmark model, such as Carhart four-factor model. Higher 𝑅2 

indicates a fund tracks the benchmark closely. On the contrary, lower 𝑅2 means the fund 

tracks the benchmark less closely. Thus, 𝑅2 selectivity is defined as 1 − 𝑅2 ≡
𝑆𝑆𝐸

𝑆𝑆𝑇
, where 

𝑆𝑆𝐸 is the residual sum of squares, and 𝑆𝑆𝑇 is the total sum of squares. Therefore, the 𝑅2 

selectivity measures how much of a fund’s variance of returns can be attributed to 

idiosyncratic risk. 

1.3.1.4 Return Gap 

Kacperczyk, Sialm, and Zheng (2008) argue that the actions of mutual fund 

managers are not fully observed by investors. In order to estimate the impact of such 

unobserved actions, they calculate the return gap, i.e., the difference between the net 

return on recently disclosed portfolio holdings and fund’s reported return. The authors find 

that funds with large past return gaps tend to outperform, even after adjusting for risks and 
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investment styles. Therefore, this project adopts their methodology to construct return gap 

as below. 

Given a fund’s recent portfolio holdings, its hypothetical “return on holdings” is 

𝑅𝐻𝑡
𝑓
=∑𝜔̃𝑖,𝑡−1

𝑓
𝑅𝑖,𝑡

𝑛

𝑖=1

, 

where 𝑅𝐻𝑡
𝑓

 is the return of holdings at time 𝑡 for fund 𝑓, 𝜔̃𝑖,𝑡−1
𝑓

 is the weight of asset 𝑖 from 

the most recent portfolio disclosure for fund 𝑓, and 𝑅𝑖,𝑡 is asset 𝑖’s return at time 𝑡. Note 

that funds may have changed their holdings during the period from 𝑡 − 1 to 𝑡, such action is 

unobservable, however, hence this is a hypothetical return. To compute the net return of 

holdings, the expense ratio of fund 𝑓 is subtracted from 𝑅𝐻𝑡
𝑓

. As a result, the return gap is 

defined as 

𝑅𝐺𝑡
𝑓
= 𝑅𝐹𝑡

𝑓
− (𝑅𝐻𝑡

𝑓
− 𝐸𝑋𝑃𝑡

𝑓
), 

where 𝑅𝐹𝑡
𝑓

 is the fund’s reported return, and 𝐸𝑋𝑃𝑡
𝑓

 is the expense ratio at time 𝑡 for fund 𝑓. 

1.3.1.5 Active Share 

Cremers and Petajisto (2009) introduce a measure to gauge the activeness of mutual 

fund managers, by comparing the weight of holdings in mutual fund portfolio with the 

weight of corresponding assets in benchmark indexes. The authors find that mutual funds 

with high active share measure significantly outperform their benchmark indexes, while 

those with low active share measure underperform. The active share is defined as the 

following: 

𝐴𝑐𝑡𝑖𝑣𝑒 𝑆ℎ𝑎𝑟𝑒 =
1

2
∑|𝜔𝑓𝑢𝑛𝑑,𝑖 −𝜔𝑖𝑛𝑑𝑒𝑥,𝑖|

𝑁

𝑖=1

, 
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where 𝜔𝑓𝑢𝑛𝑑,𝑖 is the weight of asset 𝑖 in the fund’s portfolio, and 𝜔𝑖𝑛𝑑𝑒𝑥,𝑖 is the weight of 

asset 𝑖 in the benchmark index. 

1.3.1.6 Other Fund-Level Performance Predictors 

Hendricks, Patel, and Zeckhauser (1993) show that lagged one-year return has 

predictive power for future one-year returns. Also, Carhart (1997) shows that expense 

ratios and turnover are negatively related future performance, and past alpha from four-

factor model also has some predictive power for future risk-adjusted performance. 

Furthermore, Chen, Hong, Huang, and Kubik (2004) show that actively managed funds 

present decreasing returns to scale for various performance benchmarks, due to illiquidity 

of small stocks. Finally, I use fund age as a performance predictor to control for incubation 

bias (Evans (2010)), though later in Section 1.4 I require a mutual fund have at least three 

years of return history to enter my sample. 

 

1.3.2 Back-Testing Methodology 

1.3.2.1 Cross Validation 

Traditionally, for OLS models, to evaluate the performance we often split a sample 

into two mutually exclusive sub-samples, fit OLS on one sub-sample and test the OLS on 

another sample. However, as discussed previously, machine learning models often are rich 

in parameters and the model structures are very flexible, which make them prune to 

overfitting. To overcome such issue, various types of regularization are used. These 

regularization methods are implemented through model hyper-parameters, which directly 

controls model structures. Therefore, for machine learning methods, a sample is split into 

three sub-samples instead of two, i.e., training sample, validation sample, and test sample. 
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The training sample is used to fit the model, validation sample is used to tune model hyper-

parameters, and test sample is used to evaluate model performance. In this chapter, I use 

K-fold cross validation to tune model hyper-parameters and an out-of-sample data set to 

evaluate model performance. The procedures are as following. 

A sample is first split into two subsets: training set and test set. The training set 

would have the majority of the observations. Next a set of hyper-parameters is pre-set to 

determine model structure and the extent of regularization. Then, the training set is further 

evenly split into 𝐾 folds. For each fold 𝑖, the model will be trained on all folds except fold 𝑖, 

and the performance will be evaluated on fold 𝑖. Hence, we will have one performance 

value for each fold, and the overall performance associated with the current set of hyper-

parameters is just the average of these values. We can repeat these procedures with a 

different set of hyper-parameters until we reach a good performance. After the set of 

optimal hyper-parameters is obtained, the performance of the model associated with such 

set of hyper-parameters will be evaluated on the test set to verify the efficacy of the trained 

model. 

1.3.2.2 Back-Testing 

My data is panel data with monthly frequency ranging from 1983 to 2017. To 

evaluate the overall performance, I use expanding rolling samples, and recalibrate model 

monthly. Starting from January 1998, in each month, I use all of the previous data for cross-

validation with three folds. And the model performance is evaluated for the current month. 

For example, to evaluate the model performance in October 2000, all models would be 

cross validated with three folds on data from January 1983 to September 2000. 
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Besides the above time-series back-testing procedure, I also adopt the back-testing 

methodology introduced in Mamaysky, Spiegel, and Zhang (2007). The basic idea is to only 

predict the performance on those mutual funds for which the model has good performance 

on in the past. The procedures are as follows: 

1) Estimate a model on data up to 𝑡 − 2. 

2) Use the obtained model in step 1) to calculate predicted returns at 𝑡 − 1 for each 

fund. For each fund, if the sign of the predicted return is the same as realized 

return, then it’s added to the active pool. 

3) Refit the model only on funds in the active pool on data up to 𝑡 − 1, and evaluate 

model performance at 𝑡. 

 

1.3.3 Performance Measures 

In this chapter, I use three measures to gauge model performance: root mean 

squared error, ordinary 𝑅2, 𝑅2 defined in Gu, Kelly, and Xiu (2018) (GKX 𝑅2). The root 

mean squared error is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦𝑖̂)2
𝑁
𝑖=1

𝑁
 

And the normal 𝑅2 is defined as follows: 

1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)2
𝑁
𝑖=1

 

The last performance measure is GKX 𝑅2, which is defined and used by Gu, Kelly, 

and Xiu (2018). Unlike normal 𝑅2 which assume a model that always predicts average y as 

the benchmark, the GKX 𝑅2 assumes a model that always predicts 0 as the benchmark. 
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1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1

∑ 𝑦𝑖2
𝑁
𝑖=1

 

In the next section, I will present the sample construction process and summary 

statistics. 

 

 

1.4 Data and Summary Statistics 

For my empirical analysis, I create the mutual fund data set by merging four 

databases: Center for Research in Security Prices (CRSP) U.S. stock database, Standard & 

Poor’s Capital IQ COMPUSTAT, CRSP Survivorship-Bias-Free Mutual Fund Database, and 

Thomson Reuters CDA/Spectrum Mutual Fund Holdings (S12). The CRSP U.S. stock 

database contains end-of-day and end-of-month information, including high, low, close, 

volume, returns, etc., for stocks listed on NYSE, NYSE MKT, NASDAQ, and Arca exchanges. 

The COMPUSTAT database provides more than 500 company-level fundamentals on 

income statements, balance sheets, and statement of cash flows, which is mainly collected 

from SEC filings. The CRSP mutual fund database includes fund-class-level information, 

including monthly returns, total net assets (TNA), expense ratios, front/rear loads, 

turnover ratio, and other fund characteristics. The CDA/Spectrum database provides stock 

holdings data starting in the first quarter of 1980 for mutual funds and investment 

companies, which are also collected from SEC filings. Prior to 1985, SEC requires mutual 

funds to report their portfolio holdings on a quarterly basis. After 1985, mutual funds are 

required to report semi-annually. However, a slight majority of mutual funds also 

voluntarily report their quarterly holdings. Around 2000, mutual funds are required to 
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report portfolio holdings on a quarterly basis again. Next, I briefly describe the procedures 

to create the data set. 

My mutual fund data set includes three types of performance predictors: fund-level 

characteristics, stock-level characteristics, and macro-economic variables. I focus on open-

end U.S. domestic equity mutual funds, for which data are most reliable and complete, and 

eliminate balanced, bond, index, international, and sector funds. I follow Wermers (2000) 

to merge CRSP mutual fund database and CDA/Spectrum Mutual Fund Holdings database. 

To avoid incubation bias (Evans (2010)), I require mutual funds to have at least 36 months 

return history. Following Elton, Gruber, and Blake (1996), I require mutual funds to have 

total net assets of at least $15 million to avoid survivorship bias caused by small funds. 

Following Kacperczyk, Sialm, and Zheng (2005), I require all mutual funds to have at least 

11 stock holdings in order to have a reasonable industry concentration index (ICI) measure. 

The original holdings data is at quarterly frequency (a minority of the observations 

are at semi-annual frequency). Since mutual fund holdings are reasonably stable and my 

research objective is focused on predicting monthly mutual fund returns, I populate 

holdings data from quarterly frequency to monthly frequency by assuming that portfolio 

holdings remain the same (shares held remain the same and relative weight changes with 

stock prices) since the most recent holdings report, i.e., mutual funds only rebalance their 

portfolio at the end of their fiscal quarter. For each fund-month, holdings are linked to 

CRSP stock database and COMPUSTAT to collect and compute fund-level and stock-level 

characteristics. 

In this chapter, I collected and computed 14 fund-level characteristics that have 

been shown to have a significant effect on fund performance in the existing literature, 
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including expense ratio, turnover ratio, Carhart alpha based on the previous 36 month 

performance (Carhart (1997)), age (Evans (2010)), fund size (Chen, Hong, Huang, and 

Kubik (2004) and Berk and Green (2004)), prior one-year return (Hendricks, Patel, and 

Zeckhauser (1993)), previous one-month net flow, previous one-quarter net flow, previous 

one-year net flow (Berk and Green (2004) and Sirri and Tufano (1998)), industry 

concentration index (ICI) (Kacperczyk, Sialm, and Zheng (2005)), R-square selectivity 

(Amihud and Goyenko (2013)), return gap, previous one-year average return gap 

(Kacperczyk, Sialm, and Zheng (2008)), and active share (Cremers and Petajisto (2009)). 

SEC requires mutual funds to report portfolio holdings within 60 days of the end of 

their fiscal quarter, to avoid look-ahead bias, all holdings-related fund-level characteristics, 

for example return gap, ICI, and active share, are created with two-months lag. 

Besides fund-fund level characteristics, following Green, Hand, and Zhang (2013), I 

also use 71 stock-level characteristics that have been shown to have predictive powers for 

stock returns1. One thing to note is that in their original paper, the authors use 94 stock-

level characteristics. However, in my data set I found some of the variables are extremely 

highly correlated. To reduce unnecessary data redundancy and to improve model 

interpretability, especially for the linear-based models, these 94 predictors are 

preprocessed through a stepwise procedure call VIF test: eliminate one predictor with the 

highest variable inflation factor (VIF) at a time until the VIF of all predictors are below a 

threshold of 5. After this procedure, 71 stock-level predictors remain, and all correlation 

coefficients are below 0.8. These stock-level predictors are merged with holdings data for 

each fund-month, and then collapsed to fund level by averaging across all holdings with the 

 
1 Thanks to Professor Jeremiah Green for kindly sharing the SAS code to construct these predictors. 
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value of holdings as weight. Similar to fund-level characteristics, all 71 predictors are 

lagged by 2 months. 

In addition, following Welch and Goyal (2008), I also construct eight 

macroeconomic predictors, including dividend-to-price ratio, earning-to-price ratio, book-

to-market ratio, net equity expansion, treasury-bill rate, term spread, default spread, and 

stock variance at monthly frequency2. 

My final mutual fund sample spans from 1983 to 2017. Table 1.1 reports summary 

statistics of the fund-level characteristics. There are 3596 distinct funds and 464702 fund 

month observations in total. The number of distinct funds in each month ranges from 180 

(April 1983) to 2000 (September 2008), with an average of 1147. From 1983 to 2017, an 

average fund earns a monthly raw return of 0.89% with a slightly negative risk-adjusted 

return of -0.01% (Carhart (1997) four-factor). For mutual fund total net assets, the average 

is about $1461 millions, with a median of only $332 millions and a standard deviation of 

about $3500 millions, suggesting the fund size is extremely positively skewed: a minority 

number of funds manage a majority value of assets. 

Table 1.2 reports the correlation coefficients of monthly returns and its predictors. 

The correlations between lagged flow and previous one-year return, and the correlations 

between lagged flow and risk-adjusted past performance are all moderately positive (for 

example, correlation of one-year flow and past 36-month Carhart alpha is 0.4), confirming 

the performance-chasing behavior of mutual fund investors. Also, there is a high 

correlation of 0.84 between ICI and 𝑅2 selectivity. 

  

 
2 The data used to construct these macro variables is available at Professor Amit Goyal’s website. 
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Table 1.1 Summary Statistics of Mutual Fund Data 

Variable Mean Median 
Standard 
Deviation 

Minimum Maximum 

Total number of funds 3596 
        

Average number of funds per month 1147 
        

Total number of observations 464702 
        

Monthly raw return 0.89% 1.26% 5.03% -36.70% 40.00% 

Monthly Carhart alpha -0.01% -0.01% 1.89% -21.54% 35.82% 

Previous 1-year return 11.40% 12.85% 20.72% -73.64% 251.02% 

Carhart alpha of past 36 months 0.04% 0.02% 0.37% -3.34% 2.52% 

Total net assets (in millions) 1461.39 331.90 3488.48 15.00 41764.70 

Expense ratio 1.14% 1.13% 0.45% 0.00% 3.67% 

Age 15.07 11.59 11.67 3.00 62.33 

Past 1-month flow -0.02% -0.50% 5.87% -71.78% 244.70% 

Past 1-quarter flow 1.72% -0.86% 20.22% -83.84% 640.34% 

Past 1-year flow 11.16% -4.98% 78.08% -128.98% 2958.03% 

Turnover ratio 79.04% 58.00% 81.39% 0.90% 1153.00% 

Industry concentration index 8.31% 3.78% 14.25% 0.02% 89.85% 

𝑅2  selectivity 10.24% 7.23% 10.50% 0.06% 99.15% 

Return gap with 2 lags -0.03% -0.02% 0.98% -17.25% 17.81% 

12-month average return gap with 2 lags -0.03% -0.03% 0.32% -3.02% 2.58% 

Active share with 2 lags 83.00% 88.96% 19.51% 5.42% 100.00% 
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Table 1.2 Cross-Sectional Correlation of Fund-Level Characteristics 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

(1)   Monthly Raw Ret 1.00                

(2)   Carhart Alpha 0.50 1.00               

(3)   Previous 1-yr Ret -0.09 -0.08 1.00              

(4)   Past 36m Carhart alpha -0.23 -0.11 0.03 1.00             

(5)   TNA -0.03 -0.04 0.00 -0.03 1.00            

(6)   Exp Ratio -0.12 -0.13 -0.13 -0.11 -0.66 1.00           

(7)   Age -0.04 -0.07 -0.08 -0.25 0.44 -0.41 1.00          

(8)   Flow 1M lag1 -0.17 -0.14 0.21 0.25 -0.07 -0.18 -0.27 1.00         

(9)   Flow 1Qtr lag1 -0.18 -0.15 0.35 0.32 -0.09 -0.17 -0.33 0.81 1.00        

(10) Flow 1Yr lag1 -0.20 -0.16 0.25 0.40 -0.11 -0.12 -0.39 0.63 0.83 1.00       

(11) Turnover Ratio -0.12 -0.15 -0.16 -0.21 -0.44 0.49 -0.29 -0.11 -0.11 -0.08 1.00      

(12) ICI lag2 -0.17 -0.16 -0.16 -0.01 -0.30 0.33 -0.10 -0.19 -0.21 -0.17 0.14 1.00     

(13) R2 Selectivity -0.21 -0.19 -0.13 0.03 -0.37 0.46 -0.20 -0.16 -0.15 -0.09 0.23 0.84 1.00    

(14) Ret Gap lag2 -0.10 -0.08 -0.25 -0.08 -0.06 -0.11 -0.07 -0.19 -0.19 -0.19 -0.10 -0.15 -0.20 1.00   

(15) Ret Gap lag2 12M lag2 -0.08 -0.09 -0.36 0.06 -0.10 -0.07 -0.13 -0.15 -0.18 -0.16 -0.07 -0.12 -0.21 0.50 1.00  

(16) Active Share lag2 -0.13 -0.15 -0.05 -0.06 -0.52 0.60 -0.29 -0.17 -0.16 -0.11 0.27 0.42 0.53 -0.16 -0.14 1.00 
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1.5 Empirical Evidence 

In this section, I present the empirical results. First, I will show the influence of the 

number of non-linear features and noise-to-signal ratio on the predicting power of machine 

learning methods. Then using machine learning models, I construct quintile portfolios 

based on the predicted fund returns, and test whether a hypothetical long-short trading 

strategy can earn risk-adjusted returns, thereby adding new evidence from the angle of 

machine learning on the debate whether mutual fund managers have skills. It turns out that 

machine learning methods don’t have predicting power higher than OLS, in turn suggesting 

there is no-skill on average among mutual fund managers. And in the next subsection I will 

dive deeper to examine the exact reason of the failure. Finally, the same methodology is 

applied to hedge fund data and the results are presented. 

 

1.4.1 How Does the Number of Non-linear Features and Noise-to-signal Ratio Affect 

the Performance of Machine Learning Methods? A Simulation 

The current successful machine learning applications are based on relatively clean 

data that are less noisy, in terms of both features and labels. For example, given pictures of 

animals, predict the species of the animal. In this case, the picture is clean, and the label is 

100% accurate. Also, machine learning methods are generally good at uncovering non-

linear relationships based on big data. Here, “big” means both the number of features and 

the number of observations. However, it is well-known that financial data is highly noisy. A 

regression 𝑅2 of 5% of a prediction for returns is not abnormal. Therefore, before applying 

machine learning methods to financial data and drawing any conclusions, I want to run a 
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pilot test on simulated data to get a rough idea of how machine learning methods will 

perform under different conditions. Also, the simulation will act as a first-step screening: 

only the best performing methods will be applied to real data. 

1.4.1.1 Simulation Assumptions 

There are four assumptions underlying the simulation: 

1) The joint distribution of features and labels are time invariant. 

2) The measurement error only presents in features. 

3) The relationship between features and labels are non-linear. 

4) There are no omitted variables. 

1.4.1.2 Data Generating Process 

The data generating process is described as the following: 

𝑦 = 𝑓(𝑋𝑠), 

where y is the label, 𝑋𝑠~𝑁(0, 𝐼) is the matrix of state variables that is not directly 

observable. 𝑋𝑠 ∈ 𝑅
𝑁×𝑀, where 𝑁 is the number of observations and 𝑀 is the number of 

non-linear features, and 𝑓(∙) is a polynomial function of order 2 with interactions. What the 

economist can observe is 𝑋 = 𝑋𝑠 + 𝜀𝑋, where 𝜀𝑋~𝑁(0, 𝜎𝜀𝑋
2 ). Also, the noise-to-signal ratio is 

defined as 
𝜎𝜀𝑋
𝜎𝑋𝑠

. 𝑀 is assumed to have one of the five levels from [5, 10, 20, 40, 80], and 
𝜎𝜀𝑋
𝜎𝑋𝑠

 is 

assumed to take one value from [0, 0.1, 0.5, 1, 10]. 

1.4.1.3 Machine Learning Model Performance on Simulated Data 

To examine how the machine learning methods perform under different noise level 

and different number of non-linear features, according to the data generating process, for 

each level of M and 
𝜎𝜀𝑋
𝜎𝑋𝑠

, I generated 25 samples, each of them containing 450000 
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observations, which is about the same number of observations in the mutual fund data. 

Then each sample is randomly split into a training set of 400000 observations which is 

used to fit models, a validation set of 40000 observations which is used to tune hyper-

parameters, and a test set of 10000 observations which is used to evaluate model 

performance. The machine learning models are trained and tuned on each of the 25 

simulated data sample according to the procedures described in section 1.3.2. The model 

performances are presented in the following graphs. 

Figure 1.1a shows the performance of Ordinary Least Square under various levels of 

noise-to-signal ratio and number of non-linear features. The x-axis represents five levels of 

noise-to-signal ratio 
𝜎𝜀𝑋
𝜎𝑋𝑠

 from 0 to 10, the y-axis represents five levels of the number of non-

linear features 𝑀 from 5 to 80, and the z-axis is performance, which is measured by out-of-

sample 𝑅2. From the simulation results of OLS we can see that when noise-to-signal ratio is 

low and there is no non-linear feature, OLS performs best, the out-of-sample 𝑅2 can be as 

high as 95%. However, as the noise-to-signal value increases and with the presence of non-

linear features, the performance deteriorates quickly. This result is expected since OLS only 

models linear relationships. 

Figure 1.1b to Figure 1.1h show the performance advantage of machine learning 

models over OLS, including LASSO, Ridge, principal component analysis (PCA), partial least 

squares (PLS), random forest (RF), gradient boost random trees (GBRT), and neural 

networks (NN), respectively. The x-axis and y-axis are the same as Figure 1.1a, the z-axis is 

the performance advantage of the machine learning model over OLS. The performance 

advantage means the outperformance of a particular machine learning model over OLS. 
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Relatively higher values of performance advantage are in red colors and lower values are in 

blue colors. 

From Figure 1.1b and Figure 1.1c, we can see that LASSO and Ridge perform 

basically the same as OLS, though under lower values of noise-to-signal ratio and number 

of non-linear features, they are a marginal advantage over OLS. Figure 1.1d shows the 

performance advantage of PCR over OLS. Unfortunately, PCR does even worse than OLS 

under all levels of noise-to-signal ratio and number of non-linear features. PLS is better 

than PCR, as shown in Figure 1.1e, however it has only marginal advantage over OLS under 

high levels of number of non-linear features. The results from Figure 1.1b to Figure 1.1e 

suggest that linear methods are not capable of capturing the underlying relationship in the 

data. 

Figure 1.1f and Figure 1.1g show the performance advantage of random forest and 

gradient boost random tree respectively over OLS. We can see that under most 

circumstances, tree-based methods provide performance advantage over OLS. And they are 

significantly better than OLS at moderate level of number of non-linear features, and the 

advantage could be as high as 25% in terms of out-of-sample 𝑅2.  Furthermore, neural 

network performs significantly better than OLS even when the number of non-linear 

features is high, as shown in Figure 1.1h. Also, NN is reasonably resistant to noise, it has a 

performance advantage of 20% even at level 4 noise-to-signal ratio. 
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Figure 1.1a OLS Performance on Simulated Data 

 

Figure 1.1b LASSO Performance Advantage over 
OLS on Simulated Data 

 

Figure 1.1c Ridge Performance Advantage over 
OLS on Simulated Data 

 

Figure 1.1d PCR Performance Advantage over    
OLS on Simulated Data 
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Figure 1.1e PLS Performance Advantage over   
OLS on Simulated Data 

 

Figure 1.1f   RF Performance Advantage over    
OLS on Simulated Data 

 

Figure 1.1g GBRT Performance Advantage over 
OLS on Simulated Data 

 

Figure 1.1h NN Performance Advantage over    
OLS on Simulated Data 
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To summarize the simulation result, the linear-based models don’t yield satisfying 

results. On the contrary, non-linear models, i.e., RF, GBRT, and NN provide much better 

results over OLS. Therefore, in the tests that follows, I will only use these three models. 

Another important observation from the simulation is that, given the NN outperforms OLS 

most of the cases, the only cases where NN does not yield better performance over OLS is 

when either noise-to-signal ratio is extremely high, or number of non-linear features are 

very low. 

1.4.2 Do Mutual Fund Managers Have Skill? Empirical Evidence from Machine 

Learning Methods 

In this subsection, I will apply the three selected machine learning methods based 

on results from simulation, together with OLS as a benchmark, on mutual fund data. 

1.4.2.1 Machine Learning Model Performance V.S. OLS Performance 

Following the back-testing methodology described in Section 1.3.2, I train and tune 

each model as the following. The mutual fund data sample spans from 1983 to 2017. In 

order to train, tune, and evaluate the models, and to avoid introducing look-ahead bias, I 

use an expanding window of data starting from 1983 as training set and a fixed size 

window of 1-year data as test set. For example, to evaluate the out-of-sample performance 

of a model on data from 1998, the model is trained and tuned with 3-fold cross-validation 

on data from 1983 to 1997. And to evaluate the model on 1999, the model would be trained 

and tuned on data from 1983 to 1998, and so on so forth. In this way, each model is 

recalibrated during each year from 1998 to 2017. Using the model obtained, the predicted 

return of each mutual fund for each month of a particular year is computed. And the 
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predicted returns of all years are stacked vertically with respect to time and side by side 

with realized returns to calculate out-of-sample model performance. 

The results of model performance are presented in Table 1.3, which shows the out-

of-sample 𝑅2 of the three machine learning models with OLS as the benchmark. Table 1.3 

shows both the performance of each model in each individual year from 1998 to 2017 and 

the overall performance of the whole sample period. From Table 1.3 we can see that OLS 

does a poor job in predicting mutual fund returns. The overall out-of-sample 𝑅2 of OLS is -

3.98%, which suggests that OLS is dominated by a naïve forecasting model that predicts 

zero return at all times. On the contrary, the machine learning models perform better than 

OLS. Specifically, random forest yields a higher GKX 𝑅2 of 0.29%, gradient boost random 

trees yield a higher GKX 𝑅2 of 0.4%, and neural network performs best, it yields the highest 

GKX 𝑅2 of 0.52%. Also, by examining year by year performance, RF and GBRT perform 

better than OLS in 17 out of 20 years, and NN performs better than OLS in 19 out of 20 

years. The results obtained from real data are consistent with the results in simulation. In 

summary, we do see a performance boost by using machine learning models. 

 

1.4.2.2 Machine Learning Portfolio Performance 

Now that I showed machine learning models are more effective predicting mutual 

fund returns, I want to address on the long-debated topic: whether mutual fund managers 

have skills. On one hand, Fama (1970) introduces the famous efficient market hypothesis, 

citing evidences that active mutual funds under-perform the market. Carhart (1997) argues 

that mutual fund managers do not have skills by using net alpha earned by investors. Zheng 

(1999) argues that there is no significant evidence that funds receive more money 
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subsequently beat the market, suggesting that there is no performance persistence. On the 

other hand, a part of the literature does find evidence of skill. Grinblatt and Titman (1989) 

find positive gross alpha for small and growth funds. Wermers (2000) finds stocks that are 

held by mutual funds outperform market indices and argues that funds pick stock well 

enough to cover their costs. Kacperczyk, Sialm, and Zheng (2008) find that unobserved 

actions of some funds add value, suggesting that these funds do have skills. 

However, no matter which side these papers take, the tool used in these papers are 

simple OLS. It’s possible that it is the incapability of OLS that prevents those papers from 

discovering evidence for skill. Machine learning methods, as shown in the previous sections 

both with simulation and real data, are more powerful than OLS. Therefore, I will revisit the 

debate with the help of these more powerful methods. 

To assess the skill of mutual fund managers, I use a zero-investment strategy to test 

whether this strategy can achieve positive risk-adjusted return. Specifically, at the end of 

each month from 1998 to 2017, I sort all funds into five quintiles Q1 to Q5 by the predicted 

return of the next month given by OLS and machine learning methods, with Q1 being the 

lowest predicted return quintile group and Q5 being the highest. Then for each quintile 

group in each month, a simple average of the realized return across all funds is calculated, 

representing the return of a strategy to invest equally in each mutual fund in the quintile 

group. Next, the return of the zero-investment strategy is calculated as the return of Q5 

minus the return of Q1, meaning long Q5 and short Q1. Thus, we will have a total of six 

return time series. 
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Table 1.3 Out-of-Sample Performance of Machine Learning Models 

Year 
Model 

OLS RF GBRT NN 

1998 6.28% 8.94% 4.96% 7.62% 

1999 7.94% 11.16% 12.72% 11.79% 

2000 -5.73% -0.48% 0.77% 2.01% 

2001 -24.77% -7.64% -7.93% -8.22% 

2002 -7.67% -7.79% -6.17% -4.57% 

2003 5.96% 6.45% 7.28% 8.10% 

2004 0.63% 3.43% 5.13% 5.69% 

2005 1.26% 3.29% 2.69% 2.99% 

2006 8.62% 9.90% 9.30% 10.50% 

2007 1.28% 6.39% 5.80% 6.97% 

2008 -9.02% -6.57% -6.31% -5.55% 

2009 -14.65% -12.02% -11.72% -13.50% 

2010 2.90% 7.33% 7.02% 6.70% 

2011 -6.04% -0.63% -0.99% -2.44% 

2012 5.14% 4.92% 5.43% 7.47% 

2013 19.13% 21.63% 20.70% 21.16% 

2014 0.45% 0.21% -0.40% 1.40% 

2015 -16.32% -2.03% 0.50% -1.52% 

2016 7.45% 12.41% 11.96% 7.86% 

2017 19.41% 20.77% 18.64% 17.93% 

Overall -3.98% 0.29% 0.40% 0.52% 
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Panel A in Table 1.4 shows the average raw return of the quintile portfolios of each 

model. We can see that for each model, the average realized return of the quintile portfolios 

increases monotonically, indicating that machine learning models are providing consistent 

return predictions with realized returns. Furthermore, for zero-investment portfolios, OLS 

earns an average realized return of 0.19% per month, RF earns 0.30%, GBRT earns 0.32%, 

and NN earns 0.41%. Machine learning models do earn a better return on the zero-

investment strategy. This result is consistent with the previous findings that machine 

learning models are more versatile in discovering non-linear relationships. It should be 

noted that the zero-investment return for OLS, RF and GBRT are not statistically significant. 

However, NN does provide a statistically significant raw return. 

It appears that neural network model is promising to show that mutual fund 

managers are skillful. However, it is possible that the zero-investment portfolio 

constructed by neural networks takes excess risk such that it shows non-zero returns. 

Therefore, in Panel B, Panel C, and Panel D, I use Capital Asset Pricing Model (CAPM, 

Lintner (1965)), Fama-French 3-Factor Model (Fama and French (1992, 1993)), and 

Carhart 4-Factor Model (Carhart (1997)), respectively, to calculate the risk-adjusted 

returns for the quintile portfolios and the zero-investment portfolio. 

Panel B in Table 1.4 shows that compared with Panel A results, the quintile 

portfolios earn much less CAPM alpha in terms of magnitude. Also, unlike in Panel A, in 

which the raw returns are all statistically significant, there are a smaller number of quintile 

portfolios that have statistically significant CAPM alpha. For OLS, RF, and GBRT, the CAPM 

alpha is insignificant, which is not surprising. However, CAPM alpha for neural networks is 

marginally significant at 0.41%, which is the same as the raw return, suggesting that CAPM 
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cannot explain the excess return earned by zero-investment portfolio constructed by NN. It 

appears that neural network provides some evidence that mutual fund managers are 

skillful. However, CAPM only adjusts risk for the market and ignore other risks. Thus, we 

turn to Fama-French 3-Factor Model, which adjusts for small capitalization and high book-

to-market ratio. 

Panel C shows the Fama-French alpha. We can see that there is an even smaller 

number of alphas that are significant for quintile portfolios, suggesting that most of the 

quintile portfolio returns can be explained by the three factors of Fama-French model. For 

the zero-investment portfolio of neural networks, Fama-French alpha is smaller than CAPM 

alpha at 0.31%, and it is still marginally significant. 

Panel D shows the Carhart alpha. The Carhart alpha of zero-investment portfolios of 

OLS, RF, and GBRT are insignificant, and very close to 0 in magnitude. Also, the Carhart 

alpha for the zero-investment portfolio of neural network becomes insignificant at 0.20%, 

suggesting that the excess returns of the portfolio can be explained by market risk, small 

capitalization, high book-to-market ratio, and momentum factors. 

In summary, machine learning models do provide higher raw return potentials than 

simple OLS. However, such higher return achieved by zero-investment portfolio can be 

explained by Carhart 4-Factor Model. 
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Table 1.4 Machine Learning Quintile Portfolio Performance 

Panel A: Raw Return 

Quintile OLS RF GBRT NN 

Q1 0.96% *** 0.72% *** 0.94% *** 0.55% * 

Q2 1.02% *** 0.85% *** 1.04% *** 0.66% ** 

Q3 1.03% *** 0.98% *** 1.05% *** 0.69% ** 

Q4 1.09% *** 1.01% *** 1.26% *** 0.78% ** 

Q5 1.16% *** 1.02% *** 1.26% *** 0.96% *** 

Q5-Q1 0.19%  0.30%  0.32%  0.41% ** 
         

Panel B: CAPM Alpha 

Quintile OLS RF GBRT NN 

Q1 0.11%  0.10%  0.15%  0.00%  

Q2 0.22% ** 0.23% ** 0.26% ** 0.12% * 

Q3 0.25% ** 0.36% *** 0.22% * 0.15% * 

Q4 0.33% ** 0.37% ** 0.43% ** 0.25% *** 

Q5 0.40% * 0.36% * 0.41% ** 0.41% *** 

Q5-Q1 0.29%  0.27%  0.25%  0.41% ** 
         

Panel C: Fama-French Alpha 

Quintile OLS RF GBRT NN 

Q1 0.10%  0.11%  0.12%  0.01%  

Q2 0.17%  0.19% ** 0.20% ** 0.10%  

Q3 0.17%  0.27% ** 0.15%  0.12%  

Q4 0.22%  0.24% * 0.32% ** 0.19% ** 

Q5 0.24%  0.20%  0.26% * 0.31% *** 

Q5-Q1 0.14%  0.10%  0.13%  0.31% ** 
         

Panel D: Carhart Alpha 

Quintile OLS RF GBRT NN 

Q1 0.15%  0.17% * 0.17% * 0.05%  

Q2 0.19% * 0.20% ** 0.20% ** 0.12% * 

Q3 0.19% * 0.24% ** 0.16%  0.12%  

Q4 0.21%  0.19%  0.30% ** 0.18% ** 

Q5 0.20%  0.14%  0.23%  0.24% ** 

Q5-Q1 0.05%  -0.03%  0.06%  0.20%  

∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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1.6 Summary 

In this chapter, I use three machine learning models, random forest, gradient 

boosting random trees, and neural networks, to predict mutual fund returns with a 

comprehensive data with 94 independent variables. Zero-investment portfolios 

constructed by taking long positions in the best quintile of funds and short positions in the 

worst quintile of funds based on machine learning models are able to provide higher raw 

return than OLS. However, such outperformance is explained by Carhart 4-factor model.  

Machine learning models are best at uncovering non-linear relationships with high volume 

of data. Such result suggests that even with superior tool of machine learning, we cannot 

construct a zero-investment portfolio with positive risk-adjusted returns, which implies 

that the mutual fund industry on average does not provide positive risk-adjusted returns. 

To my knowledge, this is the first research to apply machine learning methods in 

mutual fund performance prediction, and it adds an extra piece of evidence on the lack of 

skills of mutual funds managers to the mutual fund literature from an angle of machine 

learning. 
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Chapter 2  

On the Skills of Hedge Fund Managers via Machine Learning Methods 
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2.1 Background 

In the previous chapter, I use three machine learning models, random forest, 

gradient boost random trees, and neural networks, to predict the performance of mutual 

funds3. Although machine learning methods are promising to provide higher raw returns 

with a zero-investment portfolio by taking long positions on those funds that are predicted 

as best performers and short the worst ones, such portfolio does not provide statistically 

significant performance after adjusting for risks. Such results suggest that mutual fund 

managers on average do not add value. 

However, it is well documented in hedge fund literature that at least a portion of 

hedge fund managers do deliver positive, statistically significant risk-adjusted returns. For 

example, Ackermann, McEnally, and Ravenscraft (1999) show that hedge funds have both 

higher risk-adjusted performance and higher levels of risk, and outperform equities and 

fixed income asset classes. Liang (1999) shows that hedge funds provide higher Sharpe 

ratios than mutual funds, and the performance reflects better manager skills. Fung and 

Hsieh (2005) show that equity long-short hedge funds have significant alpha to both 

conventional as well as alternative risk factors. 

Furthermore, as another way to distinguish managerial skill from luck, many 

authors examined the persistence of hedge funds’ abnormal performance. For instance, 

Agarwal and Naik (2000) argue that hedge funds do show performance persistence, the 

persistence is at its maximum at quarterly horizon, and it decreases at yearly horizon. 

Edwards and Caglayan (2001) find that hedge funds exhibit persistence over one- and two-

year horizons and that both winners and losers exhibit significant persistence. Koh, Koh, 

 
3 Readers are encouraged to read Section 1.2 for the introduction of machine learning models used in this chapter. 



48 
 

and Teo (2003) find that Asian hedge funds exhibit persistence most strongly at monthly 

horizons to quarterly horizons. Baquero, Horst, and Verbeek (2005) find positive 

persistence in hedge fund quarterly returns after correcting for investment style. Also, 

Jagnnathan, Malakhov, and Novikov (2010) examine whether “hot hands” exist among 

hedge fund managers. The authors use both relative performance and absolute 

performance to rank funds and find that portfolios constructed by both ranking methods 

exhibit persistence at a three-year horizon and such persistence mainly exists with top 

performers. 

In this chapter, I will continue to explore the possibility to predict hedge fund 

performances with the three machine learning methods used in the previous chapter. The 

research questions that are pursued include the following. For example, are portfolios 

constructed by machine learning methods be able to achieve positive risk-adjusted returns? 

And if so, is the performance of the portfolios persistent? How does the performance of 

machine learning models compare with OLS? What factors or variables could potentially 

drive the outperformance? And in what circumstances does the outperformance tend to 

occur? 

The rest of this chapter is organized as follows. Section 2.2 describes the data. 

Section 2.3 presents the methodology of hedge fund performance evaluation and the 

methodology to evaluate performance persistence. Section 2.4 presents empirical results. 

And Section 2.5 summarizes the findings. 
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2.2 Data 

In order to examine the performance of the machine learning models on hedge fund 

returns, I use Lipper Trading Advisor Selection System (TASS) database. TASS is one of the 

few vendors that provide hedge fund data, which includes variables such as the monthly 

returns, fund style, fee structures, number of lockup months, whether a personal capital is 

dedicated, age of funds, etc. Due to the facts that hedge funds are less regulated and their 

trading strategies are highly secretive, they are not required to report their holdings. 

Therefore, TASS does not have holdings information unfortunately. 

One known bias existing in hedge fund databases is backfill bias, which is a variation 

of survivorship bias. This happens when hedge fund databases allow funds to back fill their 

past performance. Such behavior causes an upward bias: the performance of hedge funds 

could be inflated. Since hedge fund reporting is voluntary, those funds who are 

outperformers tend to join hedge fund databases for marketing purposes, and those funds 

that are underperformers are not incentivized to report their performances. Therefore, 

removing backfill bias is an essential step in conducting hedge fund research. 

To correct backfill bias, I deleted all the backfilled observations for which the date of 

return is earlier than when the fund actually joined the database. My final sample spans 

from 1997 to 2015, which includes a total of 731362 observations. There are 15079 

distinct hedge funds in the sample, and the average monthly raw return is 0.27%. 
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2.3 Methodology 

2.3.1 Performance Evaluation Models 

In this chapter, I use three methods to evaluate the performance of a hedge fund or a 

portfolio. The first method is Fung and Hsieh seven-factor model Fung and Hsieh (2004)4 

as the following: 

𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖,1𝑃𝑇𝐹𝑆𝐵𝑡 + 𝛽𝑖,2𝑃𝑇𝐹𝑆𝐶𝑢𝑟𝑡 + 𝛽𝑖,3𝑃𝑇𝐹𝑆𝐶𝑜𝑚𝑡
+ 𝛽𝑖,4𝐸𝑀𝑡 + 𝛽𝑖,5𝑆𝑆𝑡 + 𝛽𝑖,6𝐵𝑀𝑡

+ 𝛽𝑖,7𝐶𝑆𝑡 + 𝜖𝑖,𝑡 , 

where 𝑃𝑇𝐹𝑆𝐵𝑡 , 𝑃𝑇𝐹𝑆𝐶𝑢𝑟𝑡, and 𝑃𝑇𝐹𝑆𝐶𝑜𝑚𝑡
 are trend-following factors for bond, currency, and 

commodity, respectively. 𝐸𝑀𝑡 is equity market factor, 𝑆𝑆𝑡  is size spread factor, 𝐵𝑀𝑡 is bond 

market factor, and 𝐶𝑆𝑡 is credit spread factor. For each fund, the return series is regressed 

on the above seven factors. The intercept of the regression is the risk-adjusted 

performance of the fund. 

The second method is machine learning alpha. For each fund, a particular machine 

learning model, such as random forest, gradient boost random tree, or neural network, is 

fitted by taking Fung and Hsieh 7 factors as the input and the fund’s return series as the 

output. Then, the predicted return from the machine learning model is calculated and a 

series of residual between the realized returns and the predicted returns is obtained. 

Finally, the machine learning alpha is obtained by taking the time series average of the 

residuals. 

The third model employed is style-adjusted alpha. In particular, hedge funds are 

first grouped into portfolios by investment styles. Next, the monthly returns of each style 

 
4 https://faculty.fuqua.duke.edu/~dah7/HFData.htm 
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portfolio are calculated as equal-weighted mean of the return of the underlying hedge 

funds. Finally, to obtain the style-adjusted alpha, the return series of each fund is regressed 

on its corresponding style portfolio return series. The regression intercept is the style-

adjusted alpha. 

 

2.3.2 Persistence Evaluation 

I employ the methodology in Jagannathan, Malakhov, and Novikov (2010) to 

evaluate performance persistence. In particular, hedge fund alphas are compared over two 

consecutive non-overlapping three-year periods. During the first three-year period, which 

is also called the portfolio formation period, hedge funds are ranked by performance 

measures, such as Fung and Hsieh 7-factor alpha or machine learning model alpha. Three 

mutually exclusive and collectively exhaustive portfolios are then constructed, with the 

Superior group containing hedge funds with the best 10% of funds, the Inferior group 

containing hedge funds with the worst 10% of funds, and the Neutral group containing the 

remaining funds. Then the risk-adjusted returns of the three performance groups are 

calculated in the formation period. Finally, the risk-adjusted returns of the three groups 

during the second three-year period, which is also called the testing period, are calculated. 

For a particular performance group, if the alphas from the portfolio formation period and 

the testing period are both of the same sign and statistically significant, the performance of 

such group is persistent. 
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2.4 Empirical Results 

The existing literature has generally accepted that hedge funds deliver positive 

excess returns. However, whether hedge funds show performance persistence remains 

unclear. In this section, I first present the result of performance persistence from three 

machine learning portfolios as wells as OLS model and show that the persistence obtained 

from machine learning portfolios are potentially higher than a portfolio obtained by 

traditional OLS method. 

 

2.4.1 Performance Persistence of Machine Learning Portfolios 

To evaluate performance, I employ method described in Section 2.3.2. I use samples 

from rolling window of 6 years from 1997 to 2015, with the first three-year period as 

portfolio formation period, and the second three-year period as testing period. For OLS 

method, hedge funds are sorted into three portfolios by Fung and Hsieh 7-factor alpha 

during the portfolio formation period. For the machine learning method, hedge funds are 

sorted by machine learning alphas, for which the calculation procedure was described in 

Section 2.3.1. Once the portfolios are formed, Fung and Hsieh 7-factor alpha of both the 

formation period and testing period are calculated for all portfolios from each machine 

learning model, with OLS model as the benchmark. The results are shown in Table 2.1. 

Looking at the results cross-sectionally, we can see that for OLS model, for each 

rolling window sample, the formation period alphas are strictly monotonically increasing, 

which is not surprising since by construction the hedge funds are sorted by alphas. Also, for 

machine learning models, the formation period alphas are almost monotonically increasing, 

suggesting that machine learning models evaluate the performance of hedge funds in a 
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similar way to OLS. For testing period results, all models send the same message in terms of 

performance persistence: the Superior portfolios show persistence most of the time (9 out 

of 14 rolling window samples) while the Inferior portfolios don’t. This result is 

qualitatively similar to Jagannthan, Malakhov, and Novikov (2010), which finds significant 

performance persistence among superior funds but little evidence of persistence among 

inferior funds. 

Looking at the results time-seriesly, we can see that not all of the rolling window 

samples show performance persistence. For example, the sample 1997-1999 to 2000-2002, 

and samples with testing period from 2008 to 2011. The Superior portfolios do not show 

persistence during these years, possibly because of the tech bubble crisis and the 2008 sub-

prime crisis. More tests will be focused on the association of machine learning model 

performance and economic hardships in the following sections. 

Comparing machine learning models with their benchmark OLS model, we can see 

that the Superior portfolios formed by machine learning methods provide higher testing 

period alphas than OLS model, while the out-of-sample performance of Inferior portfolios 

are similar among machine learning models and OLS model. Among the machine learning 

models, neural network provides the best out-of-sample performance. This result suggests 

that machine learning methods may be better at evaluating hedge fund performances and 

that portfolios based on machine learning methods may provide a higher out-of-sample 

risk-adjusted return for investors. 
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Table 2.1 Performance Persistence of Machine Learning Models 

Cross-Section Group 

OLS 

 

RF 

 

GBRT 

 

NN 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

1997-1999 to 
2000-2002 

Inferior -1.47 *** -0.01   -0.06  -0.10   -0.99 *** -0.30   -0.30 ** -0.70  

Neutral 1.57 *** -0.33   1.48 *** -0.32   1.53 *** -0.33   1.27 *** -0.29  

Superior 2.02 *** 0.03   1.19 *** -0.10   1.88 *** 0.09   2.37 *** 0.00  

                     
1998-2000 to 
2001-2003 

Inferior -1.11 *** 0.10   0.02  -0.03   -0.93 ** 0.19   0.39  0.07  

Neutral 0.88 * 0.10   0.68  0.07   0.86 * 0.08   0.37 ** 0.18  

Superior 1.17 *** 0.25 ***  1.34 ** 0.54 ***  1.21 *** 0.27 ***  0.78 *** 0.32 *** 

                     
1999-2001 to 
2002-2004 

Inferior -0.96 *** 0.07   -0.58  0.36   -0.92 *** -0.30   -0.10  0.13  

Neutral 0.65  0.15   0.48  0.10   0.65  0.18   0.48  0.34  

Superior 0.92 *** 0.40 ***  0.44 ** 0.46 ***  0.93 *** 0.43 ***  1.00 *** 0.35 *** 

                     
2000-2002 to 
2003-2005 

Inferior -1.71 *** 0.50   -0.25  0.24   -0.07  0.24   -1.56 *** 0.21  

Neutral 0.09  0.44 **  -0.03  0.42 **  0.07  0.44 **  0.03  0.35 * 

Superior 0.81 *** 0.27 ***  0.29 *** 0.73 **  0.26 ** 0.59 ***  1.17 *** 0.73 *** 

                     
2001-2003 to 
2004-2006 

Inferior -0.85 *** 0.40   0.09  0.33   -0.13  0.39   -0.02  0.32  

Neutral 0.30  0.64 ***  0.24  0.64 ***  0.23  0.62 ***  0.22  0.58 *** 

Superior 0.79 *** 0.53 ***  0.34 *** 0.43 **  0.63 *** 0.64 ***  0.65 *** 0.95 *** 

                     
2002-2004 to 
2005-2007 

Inferior -0.71 ** 0.31   0.16  0.21   0.06  0.27   0.18  0.27  

Neutral 0.42 ** 0.59 ***  0.34  0.55   0.35 * 0.55 **  0.27  0.48 *** 

Superior 0.88 *** 0.45 ***  0.58 *** 0.61 ***  0.62 *** 0.64 ***  1.15 *** 1.19 *** 

                     
2003-2005 to 
2006-2008 

Inferior -0.55 *** 0.11   -0.41  0.51   0.29  0.22   0.13  0.30  

Neutral 0.50 ** 0.35   0.23  0.27   0.40 * 0.29   0.36 ** 0.23  

Superior 0.98 *** -0.04   0.47 ** 0.18   0.91 *** 0.28   0.96 *** 0.28  

∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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Table 2.1 Performance Persistence of Machine Learning Models - Continued 

Cross-Section Group 

OLS 

 

RF 

 

GBRT 

 

NN 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

Formation 
Period 
Alpha 

Testing 
Period 
Alpha 

2004-2006 to 
2007-2009 

Inferior -0.41 ** 0.13  
 

0.62 *** 0.09  
 

0.62 ** -0.21  
 

0.55  -0.05  

Neutral 0.71 *** 0.03  
 

0.53 ** 0.02  
 

0.60 *** 0.03  
 

0.75 *** 0.32  

Superior 1.06 *** -0.38  
 

0.77 *** -0.22  
 

0.87 *** 0.04  
 

1.12 *** -0.01  

                     
2005-2007 to 
2008-2010 

Inferior -0.35 *** -0.13  
 

0.59 *** -0.29  
 

0.42 * -0.32  
 

0.08  -0.13  

Neutral 0.61 *** -0.02  
 

0.56 ** -0.02  
 

0.55 * -0.01  
 

0.51 *** -0.10  

Superior 1.06 *** -0.05   0.53 *** 0.17   0.77 *** 0.12   1.47 *** 0.48  

                     
2006-2008 to 
2009-2011 

Inferior -0.72 *** -0.04  
 

-0.30  0.12  
 

0.08  0.23  
 

0.35  0.20  

Neutral 0.42  0.23  
 

0.39  0.23  
 

0.38  0.20  
 

0.40  0.15  

Superior 1.18 *** 0.30   0.44  0.23   0.71 *** 0.31   0.55  0.27  

                     
2007-2009 to 
2010-2012 

Inferior -0.99 *** 0.05  
 

-0.97 *** -0.05  
 

-0.46  0.02  
 

0.09  0.18  

Neutral 0.17  0.24  
 

0.18  0.25  
 

0.15  0.25  
 

0.31 * 0.54  

Superior 1.21 *** 0.39 ***  1.16 *** 0.37 *** 
 

0.88 *** 0.42 *  0.63 ** 0.44 ** 

                     
2008-2010 to 
2011-2013 

Inferior -1.31 *** 0.11  
 

-1.08 *** -0.10  
 

-0.55  0.53  
 

-0.42  0.19  

Neutral 0.09  0.31   0.08  0.31   0.99 ** 0.42   0.03  0.26  

Superior 1.27 *** 0.34 **  1.10 *** 0.40 *** 
 

1.38 *** 0.43 ***  0.86 *** 0.49 *** 

                     
2009-2011 to 
2012-2014 

Inferior -0.90 *** 0.26  
 

-0.83 *** 0.35  
 

-0.26  0.21  
 

-0.21  0.12  

Neutral 0.22  0.41 **  0.22  0.40 ** 
 

0.20  0.41 ** 
 

0.17  0.43 *** 

Superior 1.01 *** 0.39 ***  0.91 *** 0.46 ***  0.57 *** 0.48 ***  0.66 *** 0.44 *** 

                     
2010-2012 to 
2013-2015 

Inferior -0.78 *** 0.02  
 

0.19  0.29  
 

-0.09  0.21  
 

0.05  0.39  

Neutral 0.27  0.48 *** 
 

0.25  0.46 *** 
 

0.23  0.47 *** 
 

0.18  0.56 *** 

Superior 0.96 *** 0.50 *** 
 

0.08   0.49 *** 
 

0.57 *** 0.53 *** 
 

0.84 *** 0.72 *** 

∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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Table 2.2 Style-Adjusted Alpha for Machine Learning Portfolios in Testing Period 

Cross-Section Group OLS RF GBRT NN  Cross-Section Group OLS RF GBRT NN 

1997-1999 to 
2000-2002 

Inferior 0.19  -0.11  -0.68 ** -0.32   2004-2006 to 
2007-2009 

Inferior 0.08  -0.06  -0.12  -0.11  

Neutral -0.57 *** -0.54 *** -0.54 ** -0.41 ***  Neutral -0.05  -0.04  -0.06  -0.06  

Superior 0.00  -0.14  0.07  0.03   Superior -0.36  -0.30  -0.15  -0.07  

                     

1998-2000 to 
2001-2003 

Inferior -0.14  -0.46  0.04  -0.20   2005-2007 to 
2008-2010 

Inferior -0.09  -0.20  -0.27 *** -0.20  

Neutral -0.22  -0.21  0.21  0.03   Neutral -0.11  -0.10  -0.09  -0.11  

Superior 0.12 ** 0.38 *** 0.15 *** 0.14 **  Superior -0.06  0.03  -0.02  0.03  

                     

1999-2001 to 
2002-2004 

Inferior -0.15  0.02  -0.26 * -0.16   2006-2008 to 
2009-2011 

Inferior -0.10  -0.10  -0.12  -0.26  

Neutral -0.05  -0.07  -0.04  -0.04   Neutral -0.12  -0.12  -0.10  -0.07  

Superior 0.44 *** 0.41 *** 0.45 *** 0.38 ***  Superior 0.04  0.03  -0.14  -0.21  

                     

2000-2002 to 
2003-2005 

Inferior -0.12  0.04  0.11  0.22   2007-2009 to 
2010-2012 

Inferior -0.22 ** -0.32 *** -0.16 ** -0.15  

Neutral 0.26 *** 0.22 *** 0.23 *** 0.18 ***  Neutral -0.24 *** -0.25 *** -0.23 *** 0.22 ** 

Superior 0.38 *** 0.57 *** 0.45 *** 0.76 ***  Superior 0.12 * 0.21 *** 0.17 ** 0.18 *** 

                     

2001-2003 to 
2004-2006 

Inferior -0.12  -0.26  -0.10  0.07   2008-2010 to 
2011-2013 

Inferior -0.42  -0.38  -0.35  -0.13  

Neutral 0.06  0.11  0.09  0.12 *  Neutral -0.30 *** -0.31 *** -0.27  -0.21 *** 

Superior 0.37 *** 0.18 * 0.42 *** 0.48 ***  Superior 0.13  0.22 *** 0.22 *** 0.26 *** 

                     

2002-2004 to 
2005-2007 

Inferior -0.04  0.04  0.08  0.03   2009-2011 to 
2012-2014 

Inferior -0.20  -0.23  -0.18  -0.33  

Neutral 0.14 ** 0.12 * 0.12 ** 0.18 ***  Neutral -0.13 * -0.13 * -0.11  -0.02  

Superior 0.24 *** 0.28 *** 0.21 ** 0.31 ***  Superior 0.17 *** 0.18 *** 0.21 *** 0.23 *** 

                     

2003-2005 to 
2006-2008 

Inferior -0.04  0.02  -0.09  -0.04   2010-2012 to 
2013-2015 

Inferior -0.42 *** -0.27 ** -0.18 ** -0.22 *** 

Neutral -0.04  -0.12  -0.07  -0.09   Neutral 0.00  0.00  0.00  0.08  

Superior -0.43 * 0.02   -0.20   -0.13    Superior 0.26 *** 0.27 ** 0.20 * 0.32 *** 

∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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It should be noted that in OLS regression one of the main assumptions is error terms 

are uncorrelated. Violation of this assumption may yield spuriously high value of alpha. 

This is called correlated estimation error. Therefore, the previous result of performance 

persistence might be due to the violation of the assumption of uncorrelated error. To 

address this concern, a simple cure is to use another method, such as style-adjusted alpha, 

to evaluate the out-of-sample portfolio performance. The out-of-sample style-adjusted 

alphas are shown in Table 2.2. The results are similar to that with FH 7-factor alpha. 

 

2.4.2 Full Sample Investment Performance of Machine Learning Portfolios 

In the previous subsection, I showed that machine learning portfolios provide 

higher performance persistence than OLS model with rolling window subsamples. In this 

subsection, I use the full sample data and create trading strategies according to OLS and 

machine learning models by investing in the Superior group funds and Inferior group funds, 

respectively, with the portfolios rebalanced every three years. Performance characteristics 

such as maximum draw down, max 1-month loss, Sharpe ratio and portfolio turnover ratio 

are reported. The raw return and Fung and Hsieh 7-factor adjusted performance of the 

portfolios are also presented, as well as the factor loadings. The results are shown in Table 

2.3. The first four columns show the results of OLS and machine learning models, the last 

three columns show the difference between machine learning models and OLS model. 

Panel A of Table 2.3 presents the performance characteristics of Superior portfolios. 

The three machine learning model portfolios have lower maximum draw down than OLS, 

which is at -25.47%. GBRT has the lowest maximum draw down of -13.54%. RF and NN has 

comparable maximum 1-month loss with OLS at roughly -7%. GBRT has the lowest 1-
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month loss of -3.5%. For the Sharpe ratio, OLS and RF are less than 1, NN is slightly higher 

than 1, and GBRT is at 1.46. For the turnover ratio, all models are at the range of 15% to 

20%. In terms of raw return, OLS has the lowest performance at 0.4% per month, RF is 

slightly higher at 0.42%, GBRT is at 0.5%, and NN has the highest performance at 0.55% 

per month. The raw performance difference is also tested. The raw performance difference 

between both GBRT and OLS and NN and OLS are statistically significant, while there is no 

statistically significant difference between RF and OLS. 

Panel B presents the Fung and Hsieh 7-factor adjusted performance and factor 

loadings of the Superior portfolios. After risk adjustment, the alphas of all models are 

smaller than the raw performance but remain statistically significant. Also, the difference of 

alphas between GBRT and OLS and NN and OLS are statistically significant while there is no 

significance on the difference between RF and OLS. For NN model, it outperforms OLS in 

terms of risk-adjusted performance by 2.4% per year on average. 

Panel C shows the performance characteristics for Inferior portfolios. The maximum 

draw down, max 1-month loss, Sharpe Ratio, and raw return of machine learning portfolios 

are all worse than OLS. However, the difference of raw returns between machine learning 

portfolios and OLS are not statistically significant. 

Panel D shows the Fung and Hsieh 7-factor adjusted performance and factor 

loadings of the Inferior portfolios. After risk adjustment, the alphas of the portfolios are not 

statistically different from 0. And there is no significant difference of alphas between 

machine learning portfolios and OLS.  
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Table 2.3 Full Sample Machine Learning Investing Portfolio Analysis 

  OLS RF GBRT NN RF - OLS GBRT - OLS NN - OLS 

Panel A: Superior Group Performance Characteristics 
Max Draw Down (%) -25.47  -21.79  -13.54  -22.53        

Max 1 Month Loss (%) -7.09  -6.09  -3.50  -7.71        

Sharpe Ratio 0.96  0.97  1.46  1.09        

Turnover Ratio (%) 15.35  19.12  15.94  17.46        

Raw Return (% p.m.) 0.40 *** 0.42 *** 0.50 *** 0.55 *** 0.03   0.11 ** 0.16 * 

Panel B: Superior Group Fung and Hsieh 7 Factor Loadings 
Alpha (% p.m.) 0.17 ** 0.18 * 0.30 *** 0.37 *** 0.01  0.13 *** 0.20 ** 

               
S&P 5.77 *** 4.04 ** 2.50  2.48  -1.73  -3.28 *** -3.29  

SC-LC 11.08 *** 14.57 *** 12.12 *** 9.04 ** 3.49 * 1.04  -2.04  

10Y -0.05 
 

-0.73 * -0.40  -1.19 ** -0.68 *** -0.35 * -1.14 *** 

CredSpr -2.74 *** -2.94 *** -2.12 *** -3.12 *** -0.20  0.61 ** -0.38  

BdOpt -2.18 *** -2.32 *** -1.15 ** -0.77  -0.14  1.03 *** 1.41 * 

FXOpt 0.76 
 

1.05 * 1.12 ** 1.18  0.29  0.37  0.42  

ComOpt -0.24 
 

0.30  0.53  1.79 ** 0.54  0.77 ** 2.03 *** 

AdjR2 (%) 41.18   35.02   29.37   15.55   5.56   26.66   13.50   

Panel C: Inferior Group Performance Characteristics 
Max Draw Down (%) -16.31 

 
-20.06  -23.25  -44.5        

Max 1 Month Loss (%) -4.58 
 

-6.51  -7.16  -11.98        

Sharpe Ratio 0.54 
 

0.50  0.48  0.15        

Turnover Ratio (%) 26.08 
 

23.43  22.66  21.99        

Raw Return (% p.m.) 0.25 ** 0.24 ** 0.22 ** 0.13   -0.01   -0.03   -0.13   

Panel D: Inferior Group Fung and Hsieh 7 Factor Loadings 
Alpha (% p.m.) 0.03 

 
0.08  0.02  -0.07  0.04  -0.01  -0.11  

               
S&P 0.35 

 
2.99  2.21  0.39  2.65  1.86  0.04  

SC-LC 13.15 *** 11.54 *** 12.72 *** 32.45 *** -1.61  -0.43  19.30 *** 

10Y -0.06 
 

-0.23  -0.68 * -0.07  -0.17  -0.63 * -0.01  

CredSpr -2.74 *** -4.17 *** -4.25 *** -3.48 *** -1.43 *** -1.51 *** -0.74  

BdOpt -1.86 ** -0.59  -1.30 ** 0.61  1.28 ** 0.57  2.47  

FXOpt 1.12 * 1.30 ** 0.91 * 0.35  0.19  -0.21  -0.77  

ComOpt -1.12 
 

-0.07  -0.42  1.58  1.05 * 0.70  2.69 * 

AdjR2 (%) 29.44   38.70   46.21   18.38   7.88   5.18   3.43   

Panel E: Superior Group Minus Inferior Group Risk-Adjusted Performance 
Alpha (% p.m.) 0.14   0.10   0.28 *** 0.45 *** -0.04   0.15 * 0.31 ** 

∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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Panel E shows the risk-adjusted performance of a zero-investment trading strategy 

by taking long positions in hedge funds in the Superior portfolio and short positions in the 

Inferior portfolio. OLS and RF do not provide significant risk-adjusted performance while 

GBRT delivers significant monthly alpha at 0.28% and NN delivers significant monthly 

alpha at 0.45%. 

The raw time series cumulative performance of both Superior portfolio and Inferior 

portfolio of each model are presented in Figure 2.1. The Superior portfolio performances 

are plotted in solid curves while the Inferior portfolio performances are plotted in dashed 

curves. It can be observed that OLS has the inner-most two curves, which suggests the 

ability of OLS to differentiate the best funds from the worst ones are at weakest. The 

machine learning models performance curves embraces the OLS curves. NN has the best 

Superior portfolio raw performance and the worst Inferior portfolio performance. And the 

Figure 2.1 Machine Learning Portfolio Cumulative Performance 
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ultimate difference between the Superior portfolio and the Inferior portfolio of NN are at 

its maximum at roughly 150%. The shaded grey areas indicate bear market periods. And it 

should be noted that during the 2008 financial crisis, all portfolios experienced heavy 

losses. 

In summary, both Table 2.3 and Figure 2.1 suggest that machine learning models 

have higher ability to differentiate best funds from the worst ones, in terms of both raw 

return and risk-adjusted performance. 

 

2.4.3 Robustness Check with Fund Characteristics as Control Variables 

In this subsection I continue to explore the outperformance of machine learning 

models with a panel regression approach. The portfolio approach in previous subsections 

does not control hedge fund characteristics that are known to affect future performances. It 

is possible that the outperformances of machine learning models are driven by fund 

characteristics. To investigate this possibility, I use the following panel regression: 

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖,𝑡 = 𝑐𝑜𝑛𝑠𝑡 + 𝛽𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡−1 + 𝜖𝑖,𝑡 . 

The abnormal performance is obtained by the following procedures. For each fund 

at each month, I first regress the previous 36-month returns on Fung and Hsieh 7 factors to 

obtain factor loadings. And the loadings are used in the current month to obtain the 

predicted return. The difference between the real return and the predicted return is 

treated as the abnormal performance of the current month. 

For the control variables, I use 13 lagged fund characteristics, including 

performance volatility of past 2 years, measured in percent; the redemption notice period, 

measured in units of 30 days; lock up periods, measured in months; personal capital 
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dummy; high water mark dummy; management fees and incentive fees, measured in 

percent; age in years; natural log of asset under management; flows into funds within the 

past 12 months as percentage of AUM; average monthly net-of-fee returns, measured in 

percent; natural log of minimum investment; and a leverage dummy as an indicator 

whether the fund uses leverage. In the panel regression, if the constant is statistically 

significant, it means that the abnormal performance cannot be explained by fund 

characteristics. Hence, the performance is not driven by fund characteristics. 

The results of the panel regression are shown in Table 2.4. Panel A presents the 

panel regression using observations of hedge funds in the Superior portfolios. The constant 

of OLS and RF are not statistically different from 0 and the constant of GBRT and NN are 

positive and statistically significant. This demonstrates that the performance of OLS and RF 

may be driven by fund characteristics while the performance of GBRT and NN is not. GBRT 

and NN provide an average risk-adjusted return of 0.24% and 0.33%, respectively, even 

after controlling fund characteristics. 

Panel B shows the result of the panel regression with observations of hedge funds in 

the Inferior portfolios. The constants of all models are not statistically different from 0, 

which is not surprising, since the abnormal performance of the Inferior group is not 

statistically significant either (see Panel D in Table 2.3). 

In order to compare the relative effectiveness of machine learning models with OLS 

under the presence of control variables, I pool all the observations from both the Superior 

group and the Inferior group together, and run the following panel regression with an 

additional Superior group indicator, which takes value of 1 if the fund belongs to the 

Superior group and 0 otherwise:  
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Table 2.4 Panel Regression of Abnormal Performance on Control Variables 

  OLS RF GBRT NN 

Panel A: Superior Group 
Const -0.02  0.04  0.24 *** 0.33 *** 
VolPast2Y (% p.m.) -0.06 *** -0.03 *** -0.06 *** -0.04 *** 
RedemptionNotice (30Days) 0.00  -0.03 *** -0.01  -0.03 *** 
Lockup (months) 0.00 *** 0.00 *** -0.01 *** 0.00 *** 
PersonalCapitalDummy 0.06 *** -0.01  0.01  0.01  

HighWaterMarkDummy -0.05 *** -0.02 * -0.04 *** -0.06 *** 
MgmtFee (%) 0.06 *** 0.10 *** 0.02 * 0.02 * 
IncentiveFee (%) 0.00 *** 0.00 *** 0.00 *** 0.00 *** 
Age (years) -0.01 *** -0.01 *** -0.02 *** -0.02 *** 
ln (AUM) 0.00  0.00  -0.01 ** 0.00  

FlowPast1Y (%) 0.00 *** 0.00  0.00  0.00  

AvgPast2YRet (% p.m.) 0.06 *** 0.02 *** -0.02 *** 0.01 ** 
Ln (MinInvestment+1) 0.02 *** 0.01 *** 0.02 *** 0.02 *** 
Leverage 0.05 *** -0.03 *** 0.08 *** -0.03 ** 
AdjR2 (%) 6.36   2.55   5.59   4.92   

Panel B: Inferior Group 
Const 0.05   0.03   -0.03   -0.05   
VolPast2Y (% p.m.) -0.01 *** -0.01 *** -0.01 *** -0.01   
RedemptionNotice (30Days) 0.04 *** 0.01   0.08 *** -0.04 *** 
Lockup (months) -0.01 *** 0.00 *** 0.00 * 0.00 *** 
PersonalCapitalDummy -0.09 *** -0.08 *** -0.08 *** -0.03 *** 
HighWaterMarkDummy 0.04 *** 0.01   -0.01   0.07 *** 
MgmtFee (%) -0.09 *** 0.08 *** 0.08 *** 0.06 ** 
IncentiveFee (%) -0.01 *** 0.00 *** 0.00   0.00 *** 
Age (years) -0.02 *** -0.01 *** 0.00   -0.02 *** 
ln (AUM) 0.02 *** 0.00   0.00   0.01   
FlowPast1Y (%) 0.00 *** 0.00 *** 0.00   0.00   
AvgPast2YRet (% p.m.) 0.02 *** -0.06 *** 0.00   -0.01 ** 
Ln (MinInvestment+1) -0.02 *** -0.01   -0.03 *** 0.01   
Leverage 0.07 *** 0.08 *** 0.01   0.04   
AdjR2 (%) 4.40   2.51   3.54   2.76   

Panel C: Both Superior and Inferior Group with Superior Group Indicator 
SuperiorGroupInd. 0.00   0.02 * 0.21 *** 0.29 *** 
Const 0.00   0.02   -0.02   -0.06   
VolPast2Y (% p.m.) -0.03 *** -0.02 *** -0.04 *** -0.02 *** 
RedemptionNotice (30Days) 0.02 *** -0.01 *** 0.04 *** -0.03 *** 
Lockup (months) 0.00 ** 0.01 *** 0.00   0.00 *** 
PersonalCapitalDummy -0.02 *** -0.04 *** -0.04 *** -0.01 *** 
HighWaterMarkDummy -0.01 *** -0.01 *** -0.02 *** 0.01 *** 
MgmtFee (%) -0.01 *** 0.09 *** 0.05 *** 0.04 *** 
IncentiveFee (%) -0.01 *** 0.00   0.00   0.00 *** 
Age (years) -0.02 *** -0.01 *** -0.01 *** -0.02 *** 
ln (AUM) 0.01 *** 0.00 ** 0.00 *** 0.00   
FlowPast1Y (%) 0.00 ** 0.00 * 0.00   0.00 *** 
AvgPast2YRet (% p.m.) 0.04 *** -0.02 *** -0.03 *** 0.01 *** 
ln (MinInvestment+1) 0.00   0.01 *** 0.01 *** 0.01 *** 
Leverage 0.06 *** 0.02 *** 0.04 *** -0.01 *** 
AdjR2 (%) 1.83   1.79   5.71   6.43   
∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖,𝑡 = 𝑐𝑜𝑛𝑠𝑡 + 𝛾𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝐺𝑟𝑜𝑢𝑝𝐼𝑛𝑑𝑖,𝑡 + 𝛽𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡−1 + 𝜖𝑖,𝑡 . 

In this panel regression, 𝛾 captures the effectiveness of a machine learning model to 

differentiate the best funds from the worst ones. I expect better model to have higher value 

of 𝛾. The result of this panel regression is presented in Panel C. The coefficient on 

SuperiorGroupInd of OLS is not statistically different from 0, which indicates no difference 

of risk-adjusted performance between the Superior group and the Inferior group after 

controlling fund characteristics. Although the coefficient of RF is marginally significant, it’s 

economically small. The coefficients of GBRT and NN are statistically significant and 

economically large: after controlling for fund characteristics, the average difference of 

abnormal performance between the Superior group and the Inferior group are 0.21% and 

0.29% per month for GBRT and NN, respectively. Such results are qualitatively similar to 

Table 2.3. 

 

2.4.4 The Performance of Machine Learning Models with Macroeconomic Conditions 

In the previous subsections, I showed that GBRT and NN are able to provide higher 

persistence than OLS model. They are promising to outperform OLS in terms of both raw 

returns and risk-adjusted returns, and the outperformance is robust under fund 

characteristics as control variables. In this subsection, I continue to explore the association 

of the outperformance with macroeconomic conditions, i.e., when does machine learning 

model tend to outperform? 

I use a total of 6 macroeconomic indicators as the independent variables, which can 

be further grouped into 3 categories: economy state, market state, and uncertainty. The 
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economy state has two variables: a recession indicator5, which indicates when the business 

cycle steps into recession, and the percent change of unemployment rate. The market state 

variables include a bull-bear market indicator, which is calculated using the definition of 

bull/bear market provided in Lunde and Timmermann (2004), and value-weighted market 

return. The uncertainty variables include the percentage change of VIX index and the 

percentage change of US economic policy uncertainty6. All the 6 variables are of monthly 

frequency. 

To examine the association between the outperformance of machine learning 

models and macros, I first calculate the difference of monthly portfolio-level returns 

between machine learning models and OLS, for both of the Superior group and the Inferior 

group, and obtain 6 time series: monthly return difference of the Superior portfolios 

between RF and OLS, GBRT and OLS, and NN and OLS, respectively, and 3 corresponding 

time series of the Inferior portfolios. Next, three additional diff-in-diff time series are 

obtained by calculating the difference of the difference of each machine learning model 

with OLS between the Superior group and the Inferior group. These nine monthly time 

series are then regressed on each of the macroeconomic variables. The results are shown in 

Table 2.5. Column 1 to column 3 show the results for the Superior group difference, column 

4 to column 6 shows the results of the Inferior group difference, and column 7 to column 9 

show the results of diff-in-diff. 

 

 

 
5 Data source: https://fred.stlouisfed.org/series/USREC 
6 Data Source: http://www.policyuncertainty.com/us_monthly.html 
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Table 2.5 Machine Learning Performances with Macroeconomic Conditions 

Model 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Superior Diff: 
RF - OLS 

Superior Diff: 
GBRT - OLS 

Superior Diff: 
NN - OLS 

Inferior Diff: 
RF - OLS 

Inferior Diff: 
GBRT - OLS 

Inferior Diff: 
NN - OLS 

Diff in Diff: 
RF - OLS 

Diff in Diff: 
GBRT - OLS 

Diff in Diff: 
NN - OLS 

Panel A: Business Cycle 
Recession Ind. -0.03  0.49 *** 0.56 * -0.08  0.07  0.13  0.05  0.42  0.42   

                  

Constant 0.02  0.03  0.09  -0.02  -0.05  -0.11  0.03  0.07  0.20  

AdjR2 (%) -0.53  4.58  1.29  -0.49  -0.51  -0.51  -0.54  0.41  -0.29  

Panel B: Unemployment Rate 
∆Unemp 0.43  1.05 *** 1.55 ** 0.33  0.58  1.17  0.10  0.47  0.38   

                  

Constant 0.01  0.09  0.15  -0.03  -0.04  -0.10  0.04  0.13  0.25  

AdjR2 (%) 0.40  5.12  2.89  -0.28  0.22  0.12  -0.54  -0.26  -0.50  

Panel C: Bull vs. Bear Market 
Bull market ind. -0.07  -0.40 *** -0.62 *** 0.71 *** 0.63 *** 1.28 *** -0.78 *** -1.03 *** -1.90 ***  

                  

Constant 0.06  0.39 *** 0.63 *** -0.56 *** -0.51 *** -1.05 *** 0.62 *** 0.90 *** 1.68 *** 
AdjR2 (%) -0.39  4.93  3.09  7.79  5.36  4.76  5.41  8.52  7.89  

Panel D: Value-Weighted Market Return 
Market returns -0.02 * -0.04 *** -0.05 ** 0.03  0.02  -0.03  -0.05 ** -0.06 *** -0.02   

                  

Constant 0.02  0.11 ** 0.18 * -0.04  -0.04  -0.08  0.06  0.15  0.26  

AdjR2 (%) 1.19  6.39  1.88  0.69  0.08  -0.20  1.88  3.15  -0.47  

Panel E: VIX 
∆VIX -0.01 *** 0.00  0.00  -0.01 *** -0.01  -0.02 ** 0.00  0.01  0.02   

              
 
 

 
 

Constant 0.03  0.09  0.16  -0.01  -0.03  -0.06  0.03  0.11  0.22  

AdjR2 (%) 3.90  0.19  -0.52  3.44  0.45  1.72  -0.37  0.85  0.88  

Panel F: Economic Policy Uncertainty 
∆EPU 0.00  0.00  0.00  -0.01 ** -0.01 *** -0.03 *** 0.01  0.01 *** 0.03 **  

          
 
   

 
 

 
 

Constant 0.02  0.09  0.17  -0.01  -0.02  -0.05  0.03  0.11  0.21  

AdjR2 (%) 0.18   -0.11   -0.37   2.77   3.94   5.18   0.36   3.19   2.77   
∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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Panel A and Panel B show when the machine learning models outperform OLS under 

different economy state. For the differences in the Superior group, GBRT and NN performs 

significantly better than OLS when the economy turns into recession or when the 

unemployment rate increases. For the Inferior groups, there is no significant difference. 

And the diff-in-diff results are not significant either, though the coefficient estimates are 

positive. 

Panel C and Panel D show when the machine learning models outperform OLS under 

different market state. When it is in bull market, GBRT and NN tend to do worse than OLS 

in the Superior group and do better than OLS in the Inferior group. Looking the other way 

around, when market is bearish, GBRT and NN tend to perform better than OLS in the 

Superior group and worse than OLS in the Inferior group. The diff-in-diff results in Panel C 

also confirms that when market is in bearish state, machine learning models are better at 

differentiating best funds from the worst ones than OLS. The result in Panel D are similar to 

Panel C except that for the Inferior groups the differences are not significant. 

Panel E shows the performances under different levels of VIX. Both the Superior 

group and the Inferior group tend to do worse than OLS when VIX increases, there is no 

significant difference between the two groups. 

Panel F shows the performances under different levels of economic policy 

uncertainty. While there is no difference for the Superior groups, the machine learning 

models of GBRT and NN tend to perform worse in the Inferior groups when economic 

policy uncertainty increases. And the ability of GBRT and NN to differentiate best funds 

from the worst ones when economic policy uncertainty is high is better than OLS, though it 

is not economically big (1% change in economic policy uncertainty is associated with 0.01% 
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change in the performance difference between the Superior group and the Inferior group of 

GBRT over OLS, and 0.03% change in NN over OLS). 

In summary, Table 2.5 shows that GBRT and NN tend to perform better when the 

economy is in recession, when the unemployment rate increases, when the market is 

bearish, and when the uncertainty increases. The findings are consistent with the existing 

literature. For example, Cao, Goldie, Liang, and Petrasek (2016) demonstrate that hedge 

funds’ superior performance is attributed to their ability to manage downside risk, and Sun, 

Wang, and Zheng (2018) show that hedge fund performance is persistent following weak 

markets but is not persistent following strong markets. 

 

 

2.5 Summary 

In this chapter, I use three machine learning methods, random forest, gradient boost 

random trees, and neural network, to predict future hedge fund performances. Using two-

period portfolio sorting approach with 14 rolling window samples of 6-year, I show that 

portfolios with the best hedge funds constructed with machine learning methods are 

promising to provide higher performance persistence than OLS method. With the full 

sample portfolio analysis, I show that the Superior machine learning portfolios provide 

better performance than OLS in terms of both raw returns and Fung and Hsieh 7-factor 

adjusted returns, while the Inferior machine learning portfolios do not have significant 

performance difference from OLS. In a panel regression with hedge fund characteristics, I 

show that the outperformance of the Superior group of machine learning methods are not 

driven by fund characteristics. And in the analysis on the association of outperformances of 
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machine learning methods with macroeconomic conditions, I show that machine learning 

methods tend to perform better than OLS when the economy is in recess, when the market 

is bearish, and when the level of uncertainty increases.  
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Chapter 3  

An Application of Reinforcement Learning on Algorithmic Trading 
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3.1 Background 

Machine learning research had many significant advances in recent years, 

transforming our technology. In many industries, machine learning has found valuable 

applications. For example, in financial services industry, machine learning has been applied 

to provide automated financial guidance and services (robo-advisors), fraud detection, loan 

and insurance underwriting, risk management, etc. As an important area in machine 

learning, reinforcement learning (RL) is increasingly getting attention in the area of 

algorithmic trading. 

In a typical setting of algorithmic trading, a computer program called director 

manages the execution. By construction, the director executes its orders indirectly by 

outsourcing the orders to its two sub-agents: a passive order agent and an aggressive order 

agent7 (aggressive agent hereafter). Normally orders are mainly executed by the passive 

order agent to save execution cost, aggressive agent only comes into play in certain cases, 

such as when execution is in urgency. The advantage of executing orders aggressively is 

that orders are almost always filled immediately. However, the downside is that it would 

incur an extra bid-ask spread to the transaction cost. In this chapter, transaction cost is 

defined as the differences between the stock price when a trading decision is made and the 

average price of the stock when the transaction is actually executed, or implementation 

shortfall. 

However, executing a big chunk of aggressive orders at once is very costly, as it 

would trigger huge market impact. A natural solution is to smooth out the aggressive order 

 
7 An order is passive when traders set a price that stock must reach before they go ahead with buying or selling. In 

contrast, aggressive orders are when a trader executes the order to buy or sell straightaway. Passive orders are 
also called limit orders, aggressive orders are also called market orders. 
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execution: instead of executing a single big chunk of quantity at once, it gradually executes 

a series of smaller orders across time, thereby imposing a smaller market impact and 

potentially reducing the transaction cost. A natural way to do this is to follow a linear 

schedule, which is to execute evenly through time. 

Although executing aggressive orders with a linear schedule within a time range is 

better than doing so at a single point in time, it is definitely not optimal, since this simple 

strategy does not take any book information8 or trade signals9 into account at all. Ideally, 

we should be able to form an opinion about the market based on the book information and 

form trade signals such that we would behave differently under various market conditions. 

Therefore, the distribution of the orders executed would be hardly the same as uniform. 

To take the advantage of book information, there are multiple methods: model-

based methods and model-free methods. Model-based methods assume that the market 

evolves according to some pre-imposed statistical processes. Such methods can often run 

into a dilemma: on one hand, some models are too simplified to describe the market 

dynamic; on the other hand, complex models often face the curse of dimensionality, i.e., 

data needed to calibrate the model increases exponentially with the number of model 

parameters. In either case, the models are of little practical use. 

On the contrary, model-free methods, as the name indicates, do not assume a model 

for the market. One of such methods is RL, which is concerned with an agent that learns an 

optimal way to accumulate its rewards. RL consists of several key elements: an 

environment, an agent, and a reward function. Simply speaking, we can interpret the order 

execution process in the real world into these elements of RL: 

 
8 Book refers to limit order book.  
9 A trade signal is a trigger for action, either to buy or sell a security or other asset, generated by analysis. 
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• A trading environment (the market) that takes orders and gives responses. 

• An agent that executes orders according to different market conditions. 

• A series of rewards, such as market return or price movements, that are 

associated with the market condition and the agent's action. 

This abstraction of a real-world trading problem fits well into an RL framework: the 

market evolves constantly and gives the agent necessary information, the agent decides 

whether to trade or not, and if so, the quantity to execute, and reduces transaction cost as 

much as possible. 

Under the framework of RL, a model that characterizes the transition probability of 

the environment is not needed. Instead, RL focuses on data, and the data speaks for itself as 

the training process goes. Using a market simulator, we generate and feed real market data 

to the agent in terms of episodes10 and let the agent explore and improve. The agent must 

be able to execute the required quantity within the given time and minimize the 

transaction cost. Typically, the agent must go through a large number of episodes before it 

stabilizes and converges. 

My data is the daily data of trade and quote for each stock from all major Asia Pacific 

markets from opening to close. Trade data contain all trades for a stock, and each trade 

record includes the timestamp at which the trade took place, stock price, and trade size. 

Quote data contains the time series of book information, including timestamp, best bid and 

ask price, and the available quantity. 

To train the agent, I use deep Q-network (DQN) with temporal difference of 20 steps, 

for which implementation details will be discussed in Section 3.4. Once the agent is trained, 

 
10 An episode is defined as a sub-order, which has a required quantity and a time horizon to execute. 



74 
 

I employ arrival price slippage11 to measure the performance of the agent. Furthermore, I 

benchmark the performance of the agent against an agent with linear execution schedule, 

which I call a linear agent hereafter. I train and test the agent in all major stock markets in 

Asia. In each market, I test the agent on the 100 most actively traded stocks. For each stock, 

I randomly generated 100 episodes to evaluate the performance. The results show that the 

aggressive agent outperforms the linear agent in major Asia Pacific markets: on average the 

aggressive agent outperforms the linear agent by 0.11 bps to 1.12 bps in terms of arrival 

slippage for in-sample data, and 0. 12 bps to 0.69 bps for out-of-sample data. 

I notice that there are several previous works that have examined the prosperity of 

RL in trading execution. In particular, Almgren and Chriss (2001) provide an abstract 

mathematical framework for trade execution problems. Nevmyvaka, Feng, and Kearns 

(2006) explore a large-scale empirical application of RL on microstructural data. Hendricks 

and Wilcox (2014) extend Almgren and Chriss (2001) with a linear market impact model 

and apply RL in South Africa equity market. Ritter (2017) explores the application of RL 

under risk-aversion settings. Ritter and Tran (2018) provide an RL framework for trading 

problems with continuous states. And Capponi and Cont (2019) examine the empirical 

relationship between market impact and volatility. To the best of my knowledge, this 

project is the first to apply RL with multi-step temporal difference DQN method in trading 

execution in Asia Pacific stock markets. 

The chapter proceeds as follows. In Section 3.2, I give a brief introduction of RL. In 

Section 3.3, I present the trading problem formally as an RL formulation. In Section 3.4, I 

 
11 Arrival price slippage is the difference between realized execution cost and hypothetical cost at the price when 
order arrives. 
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discuss the implementation details. In Section 3.5, I present agent's behavior and 

performance analytics. And in Section 3.6 I conclude. 

 

 

3.2 Overview of Reinforcement Learning 

As an important area of machine learning, RL is concerned with an agent who learns 

an optimal way to maximize cumulative rewards in a certain environment. Specifically, the 

basic ingredient of an RL problem is a Markov decision process (MDP), which is a discrete 

time stochastic control process that consists of three basic elements: environment, agent, 

and reward. Typically, the MDP evolves as follows: 

1) The environment gives out a set of states 𝑀. 

2) Observing 𝑀, the agent performs an action 𝐴 according to its policy 𝜋 = 𝜋(𝑀). 

3) The environment transits from state 𝑀 to state 𝑀̃ under the agent's action 𝐴, 

according to its transition probability 𝑃. 

4) The agent receives a reward 𝑅 as a function of 𝑀, 𝑀̃, and 𝐴. 

5) The environment gives out the next state 𝑀̃, and the process continues as such. 

The exact solution of an MDP can be derived with dynamic programming techniques 

when the dynamics of the MDP (i.e., the transition probability 𝑃) is completely known. 

When it is unknown or when the MDP is so large that a dynamic programming solution 

becomes infeasible (due to the curse of dimensionality), RL comes into play. 

Unlike supervised learning, the data of RL problems does not have labels. Therefore, 

an RL agent would not be dictated to perform the right action. Instead it is on its own. In 
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fact, an RL agent often behaves randomly initially and acts sub-optimally early in the 

training process. Such random behavior is what we call exploration. As it learns from its 

experience and gradually improves itself (by updating its policy 𝜋) as the training goes, the 

agent tries to perform the same actions that are associated with higher rewards and to 

avoid bad actions associated with lower rewards. Hence the term reinforce. 

 

 

3.3 The Aggressive Trading Problem: A Reinforcement Learning 

Formulation 

3.3.1 Cost Minimization under No information 

As described in Section 3.1, what we face is the problem to execute certain number 

of shares within a certain time horizon. We adopt the trading model used in Almgren and 

Chriss (2001). Suppose we have in total a quantity of 𝑋 shares to execute within a time 

horizon 𝑇, which we refer to as one episode. We view this time horizon 𝑇 as a series of 𝑁 

discrete intervals with an arbitrary small duration of 𝜏 =
𝑇

𝑁
. Orders can be placed in the 

stock market at any time. We denote 𝑡𝑘  as the end time of the 𝑘th interval and 𝑆𝑘  as the 

stock price at 𝑡𝑘 . In each interval 𝑖, we place 𝑛𝑖 shares. After 𝑘 intervals, we have executed 

∑ 𝑛𝑖
𝑘
𝑖=0  shares, with the remaining quantity being 𝑋𝑘 = 𝑋 −∑ 𝑛𝑖

𝑘
𝑖=0 , i.e., 𝑛𝑘 = 𝑋𝑘−1 − 𝑋𝑘 . We 

require that 𝑋 = ∑ 𝑛𝑖
𝑁
𝑖=0 , i.e., order is fully executed when time is up. We summarize our 

notations in Table 3.1. 
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Table 3.1 Notations of A Trading Model 

Notation Description 

𝑆𝑘  Fundamental stock price at interval 𝑘 

𝑆𝑘̃  Observed instantaneous execution price 

𝑋 Total quantity to execute 

𝑁 Total number of intervals 

𝑇 Terminal time of the order 

𝑡𝑘  Time point at the beginning of the 𝑘th interval, with 𝑡0 = 0 and 𝑡𝑁 = 𝑇. 

𝜏 Length of each interval 

𝑋𝑘 Remaining quantity to execute at the 𝑘th interval, with 𝑋0 = 𝑋 and 𝑋𝑁 = 0. 

𝑛𝑘 Quantity executed at the 𝑘th interval, 𝑛𝑘 ≥ 0. 

𝜐 = 𝑛𝑘/𝜏 Speed of trading 

 

Assume a sell order is being executed. Further assume no interactive effects among 

stocks, i.e., the prices of any pair of stocks is uncorrelated, the stock price 𝑆𝑘  follows a 

random walk with a drift term caused by stock sale 

 𝑆𝑘 = 𝑆𝑘−1 + 𝜎𝜏
1/2𝜉𝑘 − 𝜏𝑔 (

𝑛𝑘
𝜏
), (1) 

where 

 𝑔(𝜐) = 𝛾𝜐 (2) 

is the linear permanent price impact with respect to the trading speed 𝜐 with impact 

coefficient 𝛾, 𝜉𝑘 ∼ 𝑁(0, 1) is an i.i.d. normal random variable with zero mean and unit 

variance, and 𝜎 is the volatility of the stock. We regard 𝑆𝑘  as the equilibrium price, where 

executions happened in the interval 𝑘 change it as well as bring it to a new equilibrium. The 

actual stock price 𝑆𝑘̃  for each execution in the 𝑘th interval depends on the previous 

permanent price 𝑆𝑘−1 and the executions happened in the market 

 𝑆𝑘̃ = 𝑆𝑘−1 − ℎ (
𝑛𝑘
𝜏
), (3) 

where 
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 ℎ(𝜐) = 𝜂𝜐 +
𝑐

2
 (4) 

is the linear temporary price impact with respect to the trading speed 𝜐 with 𝜂 being the 

coefficient of the impact and 𝑐 being the price difference between the best buy and sell 

prices. Intuitively, the price movement from 𝑆𝑘−1 to 𝑆𝑘̃  is short-term, since the impact by 

the execution of 𝑛𝑘 shares is instantaneous. In other words, although the order execution 

may break the balance of the demand and supply, such balance would resume shortly. 

However, its temporary impact may be carried over. That is, 𝑆𝑘  has a tendency to 

revert to the original level of 𝑆𝑘−1, but not fully, as illustrated in Figure 3.1. We call such 

phenomena permanent impact, as the effect remains in the subsequent market dynamics. 

In each interval 𝑘, which lasts for 𝜏 seconds, the agent decides a portion 𝑛𝑘 of the 

order to execute. Our target is to complete the order with an optimal trajectory 𝑛∗ =

(𝑛0, 𝑛1, 𝑛2, … , 𝑛𝑁). The objective is to minimize arrival slippage, defined as 

 
𝑈(𝑛) = 𝑋𝑆0 −∑𝑆𝑘̃

𝑁

𝑘=0

𝑛𝑘 , (5) 

which is the difference between the total cash collected by execution and the hypothetical 

amount if the order is executed at the price when the order is received. 
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Figure 3.1 An Illustration of Market Dynamics 

Let us first solve the optimal trajectory if the agent had no book information or 

trade signals. According to (1) and (3), and the fact that 𝑛𝑘 = 𝑋𝑘−1 − 𝑋𝑘, (5) can be 

rewritten as 

 
𝑈(𝑛) = ∑[𝜏𝑔 (

𝑛𝑘
𝜏
) − 𝜎𝜏1/2𝜉𝑘]

𝑁

𝑘=0

𝑋𝑘 +∑𝑛𝑘ℎ(
𝑛𝑘
𝜏
)

𝑁

𝑘=0

, (6) 

for which the expectation and variance are then 

 
𝐸[𝑈(𝑛)] = ∑𝜏𝑋𝑘𝑔 (

𝑛𝑘
𝜏
)

𝑁

𝑘=0

+∑𝑛𝑘ℎ(
𝑛𝑘
𝜏
)

𝑁

𝑘=0

 (7) 

and 

 
𝑉𝑎𝑟[𝑈(𝑛)] = 𝜎2∑𝜏𝑋𝑘

2

𝑁

𝑘=0

. (8) 
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Furthermore, if we substitute (2) and (4) into (7), we can further expand (7) as 

 

𝐸[𝑈(𝑛)] =
1

2
𝛾𝑋2 +

𝑐

2
𝑋 +

𝜂 −
1
2 𝛾𝜏

𝜏
∑𝑋𝑘

2

𝑁

𝑘=0

. (9) 

There are three key observations from (9): 

• The term 
1

2
𝛾𝑋2 is due to permanent impact, as 𝛾 inherits from (2). 

• The term 
𝑐

2
𝑋 is due to temporary market impact and is linear in 𝑐, i.e., how large 

is the gap between the best buy and sell price. 

• Most importantly, the last term is quadratic to each slice of the execution 

schedule. Therefore, the optimal schedule to reach minimum expected arrival 

slippage is 

 
𝑛∗ =

𝑋

𝑁
∙ 1, (10) 

which means 𝑛0
∗ = 𝑛1

∗ = ⋯ = 𝑛𝑁
∗ =

𝑋

𝑁
, i.e., a linear time schedule. 

Interestingly, the result in (10) implies that the minimum payment that we expected 

to make is 
𝑋

𝑁
∑ 𝑆𝑘̃
𝑁
𝑘=0  by following a linear schedule. 

 

3.3.2 Utilizing Book information and Trade Signals 

Although the optimal trading schedule has been mathematically derived to be a 

linear schedule, we can use additional information in the market to seize the opportunistic 

benefits to further lower the execution cost. From an economic point of view, deviating 

from the otherwise optimal linear schedule (10) would incur extra cost, but utilizing trade 

signals might achieve extra benefit. Next we will consider the tradeoff between extra 

benefit and extra cost. 
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Suppose that the return between 𝑡𝑘  and 𝑡𝑘+𝑚  is 𝛼𝑘 , where 𝑚 is the prediction 

horizon, and we have no predictions for other future horizons. In order to achieve the 

benefit, the agent intentionally trades 𝜖𝑘  more shares in the current time interval. The extra 

gain from utilizing the signals is hence 

 𝜖𝑘𝛼𝑘𝜏. (11) 

Note that 𝜖𝑘  can be either positive or negative, i.e., the agent can execute faster than 

a linear schedule or slower. Also note that even if 𝛼𝑘 is large, 𝜖𝑘  in (11) would not be 𝑋𝑘, the 

number of all the remaining quantities: the agent would not be myopic to execute all the 

remaining quantities only based on one promising signal, since there may be a chance the it 

could get an even better signal in the next interval. 

Once the additional 𝜖𝑘  is executed, the agent needs to resume the linear schedule 

thereafter. Since the total quantity to execute is fixed, at each of the next 𝑁 − 𝑘 time 

intervals the agent would execute 
𝜖𝑘

𝑁−𝑘
 shares less in order to offset the extra 𝜖𝑘  shares 

executed at the current interval 𝑘. That is, the agent executes orders with the following 

schedule 

 

𝑛̂𝑖(𝜖𝑖) =

{
 
 

 
 

𝑋

𝑁
, 𝑖 = 0,… , 𝑘 − 1

𝑋

𝑁
+ 𝜖𝑖 , 𝑖 = 𝑘

𝑋

𝑁
−

𝜖𝑘
𝑁 − 𝑘

, 𝑖 = 𝑘 + 1,… , 𝑁

. (12) 

Given the additional shares 𝜖𝑖 executed in time interval 𝑡𝑘 , we derive the expected 

extra cost as 

 

𝐸[𝑈(𝑛∗) − 𝑈(𝑛̂)] =
𝜂 −

1
2
𝛾𝜏

𝜏
[𝜖𝑘
2 −

𝜖𝑘
2

𝑁 − 𝑘
], (13) 
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which is the difference of the expected arrival slippage between the original linear schedule 

(10) and the deviating schedule (12). 

By leveraging (11) and (13), the total cost difference by utilizing the signal is 

 

𝐹(𝜖𝑘) = −𝜖𝑘𝛼𝑘𝜏 +
𝜂 −

1
2𝛾𝜏

𝜏
[𝜖𝑘
2 −

𝜖𝑘
2

𝑁 − 𝑘
], (14) 

where a negative cost difference means that overall, we gain from deviating from the linear 

schedule. We note that, in each time interval 𝑡𝑘 , we might have some signal about the future 

𝛼𝑡 , 𝑡 = 𝑘, 𝑘 + 1,… , 𝑁. However, each 𝛼𝑘 is not known in advance. We decide 𝜖𝑘  in each time 

interval by modeling the decision as a stochastic process with minimizing (14) across the 

trade duration 

 
min∑𝐸(𝛽𝑘𝐹(𝜖𝑘)),

𝑁

𝑘=0

 (15) 

where 𝛽 ∈ (0,1) is the discount factor. Let 𝐼(𝜖𝑘) be the minimum total cost incurred if we 

decide to trade 𝜖𝑘  more shares than the linear schedule, the execution of 
𝑋

𝑁
+ 𝜖𝑘  shares not 

only transits the status of the remaining quantity from 𝑋𝑘 to 𝑋𝑘−1, but also brings us a cost 

of 𝐹(𝜖𝑘). The Bellman equation (Bellman, 1953) in (15) can be written as 

 
𝐼(𝜖0) = min

𝜖0
{𝐹(𝜖0) + 𝛽 [ min

{𝜖𝑘}𝑘=1
𝑁
𝛽𝑘−1𝐹(𝜖𝑘)]}. (16) 

Generally (16) can be solved by dynamic programming if the dynamics of 𝛼𝑘 is 

known. However, in practice we seldom do. Therefore, an exact optimal solution is very 

hard to obtain. Fortunately, under the framework of RL, we can train a neural network to 

represent the unknown dynamics and help us make decisions. In the next section we will 

present how we implement the RL algorithms and approximate optimality. 
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3.4 Implementation 

As discussed in Section 3.2, there are three elements in RL: environment, agent, and 

rewards. Next I will present the details one by one. 

 

3.4.1 Trading Environment 

I use a market simulator to set up the environment to generate trading episodes. 

The simulator takes market data (quote and trade) and trade signals as input, and 

generates episodes given date and time horizon. In each time interval of an episode, the 

simulator sends out a state vector that consists of two parts: book-information-related 

variables and trade signals. This vector is fed to the agent as input. Note that in practice, the 

signals are very noisy: for intraday trade signals, the R-squared of signals on returns is 

often less than 1%. To assess the agent, I let the simulator to generate both perfect and 

more realistic signals. I first train the agent with 1-min forward-looking return, which is a 

100% accurate signal, and then gradually add noise to the signal to test the stability of the 

agent. Training in this way provides an extra benefit: it modularizes the development 

process, such that the agent research and signal research can be performed independently. 

 

3.4.2 Agent 

I use deep Q-network (DQN) to train the agent. There are challenges due to the 

following reasons. First of all, the agent evaluates the environment states and acts 

accordingly every three seconds, the signals it receives are on one-minute frequency. 

Therefore, the signal horizon and the action horizon are different. Secondly, for many APAC 

markets, stock prices do not change during a period as short as three seconds. Thus, the 
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series of the three-second return is very sparse. This would slow down the convergence of 

training, since most of the time, the rewards would be zero. To solve these problems, we 

use DQN with temporal difference of 20 steps, which accumulates rewards for 19 steps to 

iterate the action-value function, for which details will be discussed in Section 3.4.5. By 

doing so, it forces the action horizon to be in line with the signal horizon. The target 

becomes less sparse as well. 

 

3.4.3 Actions 

Ideally, the action space of the agent includes all possible number of shares that can 

be placed. However, there can be potentially arbitrarily large number of shares to execute, 

causing the Q-network too long to converge. Thus, mapping actions to the number of shares 

to execute is incompatible with DQN. Furthermore, different stocks have different 

characteristics and number of shares outstanding. Directly mapping actions to the number 

of shares to execute would lose generality that the agent has to be trained on a per stock 

basis instead of a group of stocks. Training on a per stock basis is sometimes undesired: 

since some stocks are inactively traded, the lack of data of such stocks would make it hard 

to train a meaningful network. 

My solution is to map the actions to a 5-dimensional placement vector instead of the 

number of shares. Specifically, at each step 𝑘, we first compute the quantity that would be 

executed by a linear agent, denoted by 𝑞𝑘. Note that 𝑞𝑘 is dynamically changing based on 

the number of shares that have been executed in the past. For example, suppose the agent 

receives an order to execute 10000 shares within 10 minutes. Since the agent evaluates and 

responds to the environment every 3 seconds, it has a total of 200 steps. Thus, initially 𝑞0 =
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10000

200
= 50. If, for some reason, the aggressive agent deviates the linear schedule, it has 

executed 6000 shares at step 100. Then for the next step, 𝑞101 =
10000−6000

100
= 40. In other 

words, 𝑞𝑘 is the linear quantity recalculated at each step. The placement vector 𝐴𝑘  is the 

following, which is different multiples of 𝑞𝑘 from 0 to 2: 

𝐴𝑘 = [0 0.5 1 1.5 2]
𝑇 ∗ 𝑞𝑘 . 

At each step, the agent could choose one of the five actions. In this way, the agent 

would be generic to different stocks, since the decision is to choose which multiple of 𝑞𝑘 to 

execute, not the actual quantity. 

 

3.4.4 Rewards 

As discussed previously, deviating from a linear schedule due to signal utilization 

has two effects: the penalty from deviating and the benefit from alpha harvesting. 

According to (11) and (13), the positive effect is linear in 𝜖𝑘  and the negative is quadratic in 

𝜖𝑘 . In practice, we design the positive reward as the product of step return 𝑟𝑘 and 𝜖𝑘  

 𝜖𝑘𝑟𝑘 (17) 

where 𝜖𝑘  is defined as 

 
𝜖𝑘 =

𝑛𝑘 − 𝑞𝑘
0

𝑋
 (18) 

Here, (18) is the percentage difference of execution quantities between the 

aggressive agent and the linear agent, normalized by the total quantity X. Note that we 

choose not to use the signal αk in (17) for two reasons. The first reason is that though in 

some of our earlier experiments, using (11) as the positive reward function works under 

perfect αk, αk is very noisy in reality. This means the rewards being collected is noisy as 
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well if we use αk in reward function. Accumulating noisy rewards makes convergence 

harder. The second reason is that using signals directly in the reward function would lose 

the flavor of RL: the agent is dictated to perform a "right" action that is in line with the 

signals. 

Next, we design our negative effect reward as 

 𝜑𝜖𝑘
2𝜎2𝜏. (19) 

In (19), 𝜎 is the annualized volatility of the stock. It is shown in Capponi and Cont (2019) 

that 𝜎2 is positively related to market impact, so we use 𝜎2 as the proxy for market impact. 

We define 𝜑 as the coefficient of risk-aversion, to control the extent of deviation: the larger 

the 𝜑, the more negative the reward, and the smaller the deviation in equilibrium. When 𝜑 

is very large, the aggressive agent would follow a linear schedule. In practice, this 𝜑 is a 

hyper-parameter to be tuned. 

 

3.4.5 Algorithm 

As discussed earlier, we use DQN with temporal difference of 20 steps to train the 

agent. In general, we face two major problems with DQN. The first one is that our training 

samples are not i.i.d., as they are generated sequentially from an episode. To solve this 

problem, we use an experience replay, which is a collection of tuples of current state, action, 

reward, and next state. At each step, instead of training the agent with the current 

transition sample, we add this sample data to the experience replay, and randomly sample 

a batch of data from the replay buffer and train agent on this batch. In this way, samples in 

the batch are less correlated. The second problem is that the target of the Q-network is 
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constantly changing. In particular, we are trying to learn a Q-value function with the 

following updating scheme 

𝑄𝑘+1 ← (1 − 𝛼𝑘)𝑄𝑘(𝑠𝑘 , 𝑎𝑘) + 𝛼𝑘 [𝑟𝑘 + 𝛾max
𝑎𝑘
′
𝑄𝑡(𝑠𝑘+1, 𝑎

′)]. 

By construction, 𝑄 value is changed each time update the network. However, the 

target actions are generated with the same Q-network. The labels are constantly changing 

as well. As a result, training could be unstable. To overcome this problem, we use a target 

network. A target network generates actions, provides the associated predicted Q-values, 

and has the same architecture of the primary network. The primary network is updated at 

each step, while the target network is updated periodically by copying parameter values of 

the primary network. In this way, the target is not constantly moving. The target network 

improves the stability and provides faster convergence. 

Besides the above two problems, we also face the problem of sparse return and 

unmatched signal horizon, as we discussed earlier. The solution is to use multi-step 

temporal difference instead of one-step temporal difference in standard DQN training. In 

Figure 3.2, I show the pseudo code of the algorithm for training. 

Finally, we choose Huber-loss as the loss function to alleviate the impact of outliers 

𝐿𝛿(𝜁) = {

1

2
𝜁2, if |𝜁| < 𝛿

𝛿 (|𝜁| −
1

2
𝛿) , otherwise

. 
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Figure 3.2 Deep Q-Learning Algorithm with Temporal Difference of 20 Steps 

 

 

3.5 Experiments 

In this section, we present the performance analytics of the agent. 

 

3.5.1 Pre-cautionary Executions and Dilatory Executions 

After the aggressive agent is trained, we let it perform on random orders to examine 

its behavior. We observe that the agent demonstrates precautionary execution and dilatory 

execution behavior when appropriate. Pre-cautionary executions refer to a series of 

execution intervals in which the agent executes shares at a higher speed (higher number of 

shares) than the linear agent. On the contrary, dilatory executions refer to those intervals 

Initialize replay memory 𝐷 with capacity 𝑁 

Initialize action-value function 𝑄 with random weights 𝜃 

Initialize target action-value function 𝑄′ with weights 𝜃′ = 𝜃 

For each episode = 1 to 𝑀 do 

 Get initial state 𝑆0 

 While episode not done do 

  If 𝑝~𝑈[0,1] ≤exploration rate then select a random action 𝑎𝑡 
  Else 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎; 𝜃) 
  End if 

  Execute 𝑎𝑡 and obtain 𝑟𝑡 and 𝑠𝑡+1 

  Store the transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡) in 𝐷 

  If size of 𝐷 ≤ mini-batch size then 

  Sample a mini-batch 𝐵 from 𝐷 

  For each 𝑏𝑖 = (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖) in 𝐵 do 

  Compute target value 

   𝑦𝑖 =

{
𝑟𝑖 , if episode done at 𝑠𝑖+1 

∑ 𝛾𝑘−𝑖𝑟𝑘 +
𝑖+19
𝑘=𝑖 𝛾20 max

𝑎′
𝑄′(𝑠𝑖+20, 𝑎

′; 𝜃′) , otherwise 

   End for 

   Update 𝜃 by performing gradient descent on 𝑄 with mean-

squared error  

    𝑀𝑆𝐸(𝑦𝑖 , 𝑄(𝑠𝑖 , 𝑎𝑖; 𝜃)). 
  End if 

  Synchronize target network by setting 𝑄′ = 𝑄 every 𝐶 steps 

 End while 

End for 
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in which the agent executes shares at a lower speed (lower number of shares) than the 

linear agent. Typically, the aggressive agent shows pre-cautionary execution behavior 

when the stock price is moving against it. That is, when the stock price increases for a buy 

order or decreases for a sell order, it executes at a higher speed to avoid higher cost later. 

On the other hand, it shows dilatory execution behavior when the stock price is moving for 

it. That is, when stock price decreases for a buy order or increases for a sell order, it 

executes at a lower speed to take advantage of a better price later on. 

 

3.5.2 Typical Execution Schedule 

In Figure 3.3, I show the comparison of a typical execution schedule for a sell order 

on a high-tech stock listed in Hong Kong Stock Exchange between the aggressive agent and 

the linear agent. The order lasts for 10 minutes. Figure 3.3a shows the stock price. Figure 

3.3b shows the execution progress of both the aggressive agent and the linear agent. Note 

that the execution progress of the linear agent is always the diagonal straight line from 

lower left to upper right. For the actual execution schedule, the slope of the curve shows 

the execution speed. We observe that when the stock price is decreasing (from 15:27 to 

15:29 in Figure 3.3a) the aggressive agent executes at a higher speed (from 15:27 to 15:29 

in Figure 3.3b) to avoid selling at a lower price later. When the stock price is increasing 

(from 15:30 to 15:32 in Figure 3.3a), the aggressive agent executes at a lower speed (from 

15:30 to 15:32 in Figure 3.3b), selling at a higher price later. Figure 3.3c shows the 

weighted average execution price for both agents: the aggressive agent clearly outperforms 

the linear agent by selling shares at a higher average price. 
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Figure 3.3a A Sample Order - Stock Price 

 
Figure 3.3b A Sample Order - Execution Progress 

 
Figure 3.3c A Sample Order - Average Execution Price 

 



91 
 

3.5.3 Network Visualization 

In addition, to better understand how the Q-network performs under different 

signal values, we plot the output values of the Q-network in Figure 3.4 for different values 

of trade signals. For each input signal value, the network outputs 5 Q-values, corresponding 

to each of the 5 actions, from which the agent chooses the one with the highest Q-value to 

perform. In Figure 3.4, the x-axis represents signal values from negative to positive and y-

axis represents each of the 5 actions. Actions with lower Q-values are in brighter colors 

whereas those ones with higher Q-values are in darker colors. The best action is 

highlighted in navy blue. Figure 3.4 shows that as the signal value increases, the best action 

increases monotonically as well. 

 

 
Figure 3.4 Q-Network Visualization 
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3.5.4 Performance Analytics 

To understand how the agent performs in different markets, we test the 

performance of the agent in each of the 11 Asia Pacific stock markets in Table 3.2. For each 

market, we select 100 most actively traded stocks and train the agent on each stock with 

data from May 2019. After training, for each stock, we let the trained agent perform on 100 

randomly generated episodes and benchmark the average performance against the linear 

agent. Then we calculate the average outperformance of the aggressive agent across all the 

stocks in each market in the second column and show the corresponding t-statistics in the 

third column. We also test the out-of-sample performance of the aggressive agent with data 

from June 2019, the results are shown in column 4 and 5, respectively. Table 3.2 shows that 

except for Singapore and Thailand, for in-sample data, the agent consistently outperforms 

the simple linear agent by 0.11 to 1.12 basis points (bps), which are statistically significant. 

For out-of-sample data, the agent performs similarly, it outperforms the linear agent by 

0.12 to 0.69 bps. 

Table 3.2 Aggressive Agent Performance by Asia Pacific Stock Markets 

Market 
In-sample Slippage 

Advantage (bps) 

Out-of-sample Slippage 

Advantage (bps) 

Australia 0.11**a 0.12*** 

China 1.12*** 0.69*** 

Hong Kong 0.32*** 0.25*** 

India 0.69*** 0.60*** 

Indonesia 0.20** 0.18** 

Japan 0.37** 0.21 

Korea 0.36*** 0.49*** 

Malaysia 0.13* 0.20*** 

Singapore 0.00 0.02 

Taiwan 0.35*** 0.28*** 

Thailand 0.10 0.02 

a ∗ 𝑝 ≤ 0.05, ∗∗ 𝑝 ≤ 0.01, ∗∗∗ 𝑝 ≤ 0.001 
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Finally, as we discussed in the previous sections, in this project I am using forward-

looking one-minute return as the trade signal, in order to separate the negative effect of 

inaccurate and noisy signals. Now that the agent works as desired under perfect signal, I 

move on to test its validity when the signals are noisy. To test the agent under such 

scenarios, I introduce the definition of signal-to-noise ratio (SNR). Assume in practice we 

observe a trade signal 𝛼𝑘
𝑂 = 𝛼𝑘

𝑇 + 𝜇𝑘, where 𝛼𝑘
𝑂  is the observed noisy signal, which is the 

sum of the unobserved true signal 𝛼𝑘
𝑇 and a noise 𝜇𝑘 . SNR is defined as the ratio of the 

variance of 𝛼𝑘
𝑇 over the variance of 𝜇𝑘 , that is, 

𝑆𝑁𝑅 =
𝜎2(𝛼𝑘

𝑇)

𝜎2(𝜇𝑘)
. 

I select the same stock as in Figure 3.3 to demonstrate the effect of SNR on the 

performance of the aggressive agent. The agent is trained under a range of SNR's from 1% 

to infinity, i.e., pure signal. For each SNR, as before, the agent is run on 100 randomly 

generated episodes. I plot the outperformance of the aggressive agent over the linear agent 

against SNR. The results are shown in Figure 3.5. As expected, as the signal becomes noisier, 

it is harder for the agent to learn to utilize the signal, and the performance deteriorates. 

However, even under 1% SNR, the aggressive agent still outperforms the linear agent by 

about 0.5 bps per order. Therefore, the aggressive agent is promising to outperform the 

simple linear agent even under very noisy environments. 
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Figure 3.5 RL Agent Performance Advantage under Various SNRs 

 

 

3.6 Summary 

Reinforcement learning applications are increasingly being explored in Finance 

industry. The problem of stock trading provides an ideal setting for reinforcement learning. 

In this chapter, using reinforcement learning with deep Q-network, we successfully trained 

an agent that executes orders aggressively. A well-trained agent exhibits the behaviors of 

pre-cautionary execution and dilatory execution when appropriate. Our back-test analysis 

in APAC stock markets shows that the aggressive agent outperforms an agent with linear 

execution schedule by 0.11 bps to 1.12 bps on average per order for in-sample data, and 

0.12 bps to 0.69 bps for out-of-sample data. Furthermore, as expected, the outperformance 

of the aggressive agent over the linear agent increases with increasing SNR. 
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In this chapter, the actions of the agent are encoded into a finite discrete placement 

vector and trained with DQN method. For future research, we can use the number of shares 

directly as the raw action and train the agent with policy-based methods. 
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