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It was demonstrated in earlier work that a nondefective, linear dynamical system with an
invertible mass matrix in free or forced motion may be decoupled in the configuration
space by a real and isospectral transformation. We extend this work by developing a
procedure for decoupling a linear dynamical system with a singular mass matrix in the

sets of real, independent, first- and second-order differential equations. Numerical exam-
ples are provided to illustrate the application of the decoupling procedure.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Coordinate coupling in viscously damped, linear dynamical systems presents challenges for computational efficiency and
for understanding the underlying nature of the system response. Because of the difficulties arising from coupling in
both practical and theoretical pursuits, much attention has been given to the problem of decoupling a linear dynamical
system through simultaneous diagonalization of the coefficient matrices defining the system in terms of its inertia and
viscoelasticity. The equation of motion governing the response of a second-order linear system with n degrees of freedom
has the matrix-vector representation

M €xðtÞ þ C _xðtÞ þ KxðtÞ ¼ fðtÞ; (1)

where the order n matrices M, C, and K are real, symmetric, and represent the mass, damping, and stiffness proper-
ties, respectively. Generally, the system matrices are not diagonal, resulting in coupling among the coordinates. The
n-dimensional column vector xðtÞ specifies the system coordinates, and fðtÞ denotes the applied forcing. We assume that
system (1) is nondefective (i.e., there exists a complete set of system eigenvectors), and the damping matrix C and stiffness
matrix K are taken to be positive definite. In most cases, the mass matrix M is also positive definite, but under certain
circumstances, it is possible to generate a mass matrix that is singular. For example, singular mass matrices arise in the
analysis of constrained mechanical systems when more than the minimum number of required coordinates are used for
modeling to simplify obtaining the governing equations (e.g., see [1]). Also, a lumped-mass approach to modeling may result
in a singular mass matrix if certain degrees of freedom have no inertia associated with them (e.g., see [2]). In addition, when
a mass matrix M is invertible but contains very small terms such that M is ill-conditioned, it is common practice to set these
terms to zero, rendering M singular. Finally, as discussed by Balakrishnan in [3], modeling of smart structures (that is, beams
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with self-straining materials, i.e., piezoelectric strips) may yield a differential-algebraic system of equations with a singular
mass matrix. We shall focus our attention on the singular case when the mass matrix M for system (1) is positive semi-
definite with rank ron. Since M is singular, the equation of motion (1) is characterized as a differential-algebraic equation,
which has certain properties that often make such a system a challenge to solve numerically (e.g., see [4]).

The purpose of this paper is to develop a well-defined decoupling procedure in the n-dimensional configuration space
such that the coupled differential-algebraic system (1) is transformed into

A2 €pðtÞ þ A1 _pðtÞ þ A0pðtÞ ¼ gðtÞ; (2)

where the order n coefficient matrices Ai ði¼ 1; 2; 3Þ are real and diagonal, and the leading coefficient matrix A2 is singular
with the same rank r as the mass matrix M. For this to be the case, A2 must have n�r zeros on its diagonal, and hence the
decoupled system (2) is composed of a set of r real, independent, second-order differential equations and a set of n�r real,
independent, first-order differential equations, the latter corresponding to the zeros on the diagonal of A2. The coordinates
and forcing associated with the decoupled equations are denoted by pðtÞ and gðtÞ, respectively. A major advantage of the
decoupling process is that it transforms the differential-algebraic system (1) into a set of independent differential equations
that is far simpler to solve numerically. The work we present herein represents an extension of previous efforts [5–8] in
decoupling nondefective systems with an invertible mass matrix M.

The organization of this paper is as follows. In Section 2, we provide preliminary information about decoupling an
undamped system (1) (i.e., when system (1) has no damping matrix C), difficulties that arise when viscous damping effects
are included, and the limitations and inadequacies associated with current techniques for analyzing a damped system (1).
A review of decoupling nondefective systems with an invertible mass matrix M in free and forced motion is provided
as background information for the decoupling methodology developed thereafter for systems with singular M. We
demonstrate in Section 3 how the homogeneous form of the coupled differential-algebraic equation (1) may be transformed
into the unforced decoupled system (2) and develop a decoupling transformation in the n-dimensional configuration space
that recovers the response of (1) from the solution of (2). We repeat this analysis for forced motion in Section 4. Examples
are provided in Section 5 to illustrate the decoupling process. Finally, we summarize the major results of this paper in
Section 6.

2. Preliminaries

We shall begin our treatment of systems with a singular mass matrix by first discussing how the undamped system may
be decoupled and why including viscous damping introduces difficulties for decoupling. We will then briefly review the
highlights of prior work on decoupling a nondefective systemwith an invertible mass matrix in free and forced motion since
this information will be helpful when tackling the singular case. In the equations that follow, the identity matrix, zero
matrix, and zero vector are denoted by I, O, and 0, respectively. When a subscript is omitted, it is implied that the identity
and zero matrices are square and of size n, and the zero vector is of length n. Otherwise, as an example, Oα is an order α zero
matrix, while Oα�β denotes an α� β matrix of zeros.

2.1. Decoupling of an undamped system with a singular mass matrix

Associated with the undamped form of the differential-algebraic system (1) (i.e., when the damping matrix C¼O) is the
generalized eigenvalue problem (e.g., see [9])

λMu¼Ku: (3)

Solution of the generalized eigenvalue problem (3) yields n eigenvalues λj (j¼1, 2, …, n), of which r are real and positive, and
the remaining n�r are infinite because the stiffness matrix K is positive definite and the mass matrix M is positive semi-
definite with rank ron. The real eigenvectors uj associated with the r finite eigenvalues are orthogonal with respect to M
and K. Make the substitution μ¼ 1=λ in Eq. (3) to obtain

Mu¼ μKu: (4)

Thus, infinite eigenvalues λ¼1 of the generalized eigenvalue problem (3) are zero eigenvalues μ¼ 0 of Eq. (4). Consequently,
the eigenvectors uj that correspond to the n�r infinite eigenvalues are (linearly independent) vectors in the null space of M.
Physically, an infinite eigenvalue corresponds to a static mode of vibration inwhich all system components with nonzero mass
are at rest, while only those components with zero mass may be in motion.

For a nondefective equation of motion (1), the mass matrix M and stiffness matrix K, because they are symmetric, may
be diagonalized by a congruence transformation in the n-dimensional configuration space, where the corresponding
transformation matrix U is constructed from the undamped system's eigenvectors uj (see Theorem 6 in Chapter 12 of [10]).
This procedure is conceptually similar to classical modal analysis for a system with a positive definite mass matrix M (e.g.,
see [11]). For the case when M is singular, suppose the eigenvectors of the r finite eigenvalues are normalized according to
uT
i Muj ¼ δij (i, j¼1, 2, …, r), where the superscript T is the transpose operator and δij represents the Kronecker delta. Let the

first r columns of U contain these eigenvectors, and hence the remaining n�r columns consist of the eigenvectors for the
infinite eigenvalues (i.e., those linearly independent vectors in the null space of M). It is straightforward to verify that M is
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always diagonalized by congruence transformation via U such that UTMU¼ Ir � On�r . Unfortunately, not all choices of the
eigenvectors for the infinite eigenvalues are such that K is diagonalized according to UTKU. Once an appropriate
transformation matrix U has been determined, the (undamped) coupled and decoupled systems are related by the real,
linear, time-invariant coordinate transformation xðtÞ ¼UpðtÞ:

UTMU €pðtÞ þ UTKUpðtÞ ¼UTfðtÞ; (5)

where it is clear that A2 ¼UTMU, A0 ¼UTKU, and gðtÞ ¼UTfðtÞ when Eq. (5) is compared to the decoupled form (2) with
no damping. A closer inspection of Eq. (5) reveals that the decoupled system consists of r real, independent, second-order
differential equations and n�r real solutions that are linear combinations of the components of the applied forcing fðtÞ.

2.2. Limitations and inadequacies

Including the effects of viscous damping introduces difficulties for decoupling the associated equation of motion. While it
is always possible to diagonalize the mass matrix M and the stiffness matrix K by congruence transformation, it is generally
the case that the damping matrix C is not diagonalized (i.e., UTCU is not diagonal). WhenM is invertible, it is known that the
systemmatrices must satisfy the commutativity relationship CM�1K¼KM�1C for the equation of motion to be decoupled by
congruence transformation in the n-dimensional configuration space using the eigenvectors of the undamped system (i.e.,
by classical modal analysis) [12]. If satisfied, the system is said to be classically damped because it may be decoupled by
classical modal analysis. Unfortunately, an analogous condition when M is singular for simultaneous diagonalization of all
system matrices does not yet exist, and to be clear, the goal of this paper is not to attempt to provide such a condition. We
instead choose to make knowledge of this condition irrelevant by extending the decoupling methodology in [5–8] for a
nondefective system of the form (1) with an invertible mass matrix to one with a singular mass matrix so that it may be
decoupled in the configuration space under any circumstance. However, we do hope that our efforts here would lead to
discovering a necessary and sufficient condition for decoupling viscously damped systems with a singular mass matrix by
congruence transformation.

Of course, one could consider decoupling the damped system (1) by transforming it into a first-order form in the
2n-dimensional state space and applying a complex congruence transformation to the larger state equation. However, doing
so requires greater computational effort than analysis in the configuration space. Moreover, the decoupled coordinates are
generally complex, greatly diminishing insight into the nature of the solution since it is impossible to connect the 2n state
variables with physical quantities such as displacements and velocities. An alternative approach developed by Bhat and
Bernstein [13] extends Guyan reduction to viscously damped systems with a singular mass matrix and decomposes an
unforced coupled system (1) into three subsystems: one that is algebraic, another that is a set of first-order differential
equations, and the last being a set of second-order differential equations. Unfortunately, these subsystems are generally
coupled, and even if they are independent of one another, there is no guarantee that the first- and second-order differential
equations themselves will be decoupled. Furthermore, this reduction technique is limited to homogeneous systems.
Similarly, Newland demonstrated that the original n-degree-of-freedom, differential-algebraic system (1) may be rewritten
as a first-order differential equation through a reduction method (see [Chapter 6, 14]), but his approach is limited to
homogenous systems with a mass matrix of rank n�1. Finally, Garvey et al. [15,16] have recently proposed decoupling
through what they term “structure-preserving transformations.” While their work focuses on the case when the mass
matrix M is invertible, the authors do briefly mention how their decoupling methodology may be extended to include the
case when M is singular. However, their procedure involves an iterative process by which a singular mass matrix M is
replaced with an invertible matrix Mþ ϵΔM, where ϵ is a small parameter and ΔM is a constant perturbation matrix.
Diagonalizing transformations for decreasing values of ϵ are obtained, and the value of the transformation is deduced for
ϵ¼ 0 from some visible pattern in the results. What we provide in this paper is an explicit form for this transformation.

2.3. Review of decoupling nondefective systems with an invertible mass matrix

Before we address how to decouple a nondefective system (1) with a singular mass matrix M, it is instructive to briefly
review the methodology detailed in [5,6,8] by which any nondefective system of the form (1) with invertible M is
decoupled, as this information will form the basis for generalizing the decoupling procedure to the singular case. The
interested reader may find additional details on decoupling nondefective systems with an invertible mass matrix in [7].

As demonstrated in [5,6,8], a process referred to as phase synchronization is able to decouple a nondefective system (1)
with an invertible mass matrix M into system (2) given spectral data, which are obtained by solving the quadratic eigen-
value problem (e.g., see [17–19]) associated with system (1):

ðMλ2 þ Cλþ KÞv¼ 0: (6)

Because the system matrices M, C, and K are real, of the 2n eigenvalues λj ðj¼ 1; 2; …; 2nÞ and eigenvectors vj generated by
the quadratic eigenvalue problem (6), n of the eigenvalues λk ðk¼ 1; 2; …; nÞ and their corresponding eigenvectors vk may
be paired with the remaining n eigenvalues λ̂k and their associated eigenvectors v̂k, where the ornamenting hat denotes a
pairing of complex conjugate or distinct real eigensolutions, whichever is appropriate (see [6,8] for further details of pairing
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real eigensolutions). It was shown in [5,6,8] that, when the paired eigenvectors vk and v̂k are normalized according to

2λkvTkMvk þ vTkCvk ¼ λk�λ̂k ; (7)

2λ̂kv̂
T
kMv̂k þ v̂T

kCv̂k ¼ λ̂k�λk (8)

(which reduces to normalization with respect to the mass matrix M when system (1) is undamped or classically damped
[20]), application of phase synchronization yields the coefficient matrices

A2 ¼ I; A1 ¼�ðΛþ bΛÞ; A0 ¼ΛbΛ (9)

for the decoupled system (2), where Λ and bΛ are order n diagonal matrices of the paired eigenvalues λk and λ̂k, respectively:

Λ¼ �n
k ¼ 1

λk; bΛ ¼ �n
k ¼ 1

λ̂k: (10)

In addition, the decoupled system's excitation gðtÞ is given by

gðtÞ ¼ TT
1fðtÞ þ TT

2
_f ðtÞ; T1 ¼ ðVbΛ�bVΛÞðbΛ�ΛÞ�1; T2 ¼ ðbV�VÞðbΛ�ΛÞ�1; (11)

where V and bV are order n matrices whose columns contain the paired eigenvectors vk and v̂k, respectively:

V¼ ½v1 j⋯ j vn�; bV ¼ ½v̂1 j ⋯ j v̂n�: (12)

When phase synchronization is formulated in the state space, the response xðtÞ of the coupled system (1) is related to the
decoupled solution pðtÞ by the state transformation

xðtÞ
_xðtÞ

" #
¼ V bV

VΛ dVΛ
" #

I I
Λ bΛ

� ��1 pðtÞ
_pðtÞ�TT

2fðtÞ

" #
¼ S

pðtÞ
_pðtÞ�TT

2fðtÞ

" #
; (13)

which provides a convenient means for connecting the initial conditions pð0Þ and _pð0Þ for the decoupled system to the
initial conditions xð0Þ and _xð0Þ of the original system when evaluated at time t¼0. Upon solving the decoupled system (2),
the response xðtÞ of the coupled system (1) may be obtained exactly from the decoupled solution pðtÞ in the n-dimensional
configuration space by

xðtÞ ¼ T1pðtÞ þ T2 _pðtÞ�T2T
T
2fðtÞ: (14)

To summarize, a coupled, nondefective, n-degree-of-freedom system (1) with an invertible mass matrix may be decoupled
by phase synchronization into a set of n real, independent, second-order differential equations. All parameters required for
decoupling are obtained through solution of the quadratic eigenvalue problem (6), and the decoupling transformation itself
is isospectral because the eigenvalues of system (1) and their multiplicities are preserved upon transformation. Finally, in
the event that system (1) is classically damped (i.e., when CM�1K¼KM�1C), the eigenvectors vk ¼ v̂k correspond to the
classical normal modes uk of the undamped system if they have been normalized in accordance with Eqs. (7) and (8),
reducing Eq. (14) to the classical modal transformation xðtÞ ¼UpðtÞ (e.g., see [9]).

2.4. Some additional preliminary details

A few additional details that were not presented in [5–8] will later prove useful in our treatment of decoupling
nondefective systems with a singular mass matrix. First, the response xðtÞ of the forced system (1) may be written as (e.g.,
see [18])

xðtÞ ¼VxeJxt cx þ
Z t

0
e�JxsYxfðsÞ ds

� �
; (15)

for which Jx is an order 2n Jordan matrix of the system eigenvalues on the diagonal, Vx is an n� 2n matrix of the associated
(right) eigenvectors, cx is a 2n-dimensional vector of coefficients related to the initial conditions xð0Þ and _xð0Þ, and Yx is a
2n� n matrix containing the system's left eigenvectors. Using the Leibniz integral rule and exploiting biorthogonality of the
right and left eigevectors (e.g., see [11,19]), the derivative of Eq. (15) is

_xðtÞ ¼ VxJxe
Jxt cx þ

Z t

0
eJxsYxfðsÞ ds

� �
: (16)

Expressing Eqs. (15) and (16) as a state equation and evaluating it at time t¼0 yields

xð0Þ
_xð0Þ

" #
¼

Vx

VxJx

" #
cx ¼ Sxcx: (17)

Analogous to Eq. (15), the decoupled forced response pðtÞ has the solution

pðtÞ ¼VpeJpt cp þ
Z t

0
e�JpsYpgðsÞ ds

� �
: (18)
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Here, Jp is an order 2n Jordan matrix containing the system eigenvalues, Vp is an n� 2n matrix of (right) eigenvectors that
essentially pairs the eigenvalues according to a specified pairing scheme, the 2n-long vector cp of coefficients is determined
by applying the decoupled system's initial conditions pð0Þ and _pð0Þ, and Yp is a 2n� n matrix of the corresponding left
eigenvectors. Similar to Eq. (16), the decoupled response's derivative

_pðtÞ ¼VpJpe
Jpt cp þ

Z t

0
eJpsYpgðsÞ ds

� �
: (19)

Using Eqs. (18) and (19) to write the initial conditions pð0Þ and _pð0Þ in the form of a state equation,

pð0Þ
_pð0Þ

" #
¼

Vp

VpJp

" #
cp ¼ Spcp: (20)

As discussed in Section 3.1 of [21], when system (1) is nondefective,

Sx ¼
Vx

VxJx

" #
¼ V bV

VΛ dVΛ
" #

; Sp ¼
Vp

VpJp

" #
¼ I I

Λ bΛ
� �

: (21)

Finally, evaluating the state transformation (13) at time t¼0, substituting Eqs. (17) and (20) into the resulting state equation,
and utilizing Eq. (21) reveal that

Spðcp�cxÞ�
0

TT
2fð0Þ

" #
¼ 0

0

� �
: (22)

In our upcoming discussion of decoupling nondefective systems with a singular mass matrix, we shall make use of the result
in Eq. (22). It is interesting to note that when no forcing is applied to system (1), Eq. (22) implies that the coefficient vectors
cx and cp are identical since the order 2n matrix Sp is invertible. Moreover, it can be shown that, for the unforced case, the
elements of cx and cp are, in fact, the paired eigensolution coefficients, which is consistent with the observation that phase
synchronization does not alter the eigensolution coefficients upon decoupling an unforced system (1) (see [21]).
3. Decoupling of nondefective systems with a singular mass matrix in free motion

We shall now illustrate how the homogenous form of system (1) may be decoupled when the mass matrix M is singular.
We begin with an explanation of the quadratic eigenvalue problem for a differential-algebraic system (1) and follow this
with a detailed discussion of the methodology for decoupling this type of system when it is unforced.
3.1. The quadratic eigenvalue problem

Similar to the case when the mass matrix of system (1) is invertible, the solutions of the associated quadratic eigenvalue
problem (6) are 2n generally complex eigenvalues λj ðj¼ 1; 2; …; 2nÞ and their corresponding eigenvectors vj, where the
complex eigensolutions necessarily occur in conjugate pairs because the mass matrix M, damping matrix C, and stiffness
matrix K are real. Since M is singular with rank ron and C is positive definite, the eigenspectrum of system (1) contains
ϵ¼ n�r infinite eigenvalues, while the remaining s¼ 2n�ϵ¼ nþ r finite eigenvalues consist of some combination of
complex conjugate pairs and pairs of distinct real eigenvalues (e.g., see [19]). Let Jx;f be an order s Jordan matrix of the s
finite eigenvalues (that is diagonal because system (1) is nondefective), and take Vx;f to be an n� s matrix containing the
associated eigenvectors in its columns. The matrices Jx;f and Vx;f constitute a Jordan pair for Mλ2 þ Cλþ K (e.g., see [18]) and
satisfy the relation

MVx;f J
2
x;f þ CVx;f Jx;f þ KVx;f ¼On�s: (23)

Multiplying the quadratic eigenvalue problem (6) through by μ2 ¼ 1=λ2 yields

ðMþ Cμþ Kμ2Þv¼ 0; (24)

and hence, the ϵ infinite eigenvalues λ¼1 of Eq. (6) correspond to the ϵ zero eigenvalues μ¼ 0 of Eq. (24), where the
associated eigenvectors form a set of linearly independent vectors in the null space of M. Analogous to Eq. (23), the ϵ zero
eigenvalues of the related quadratic eigenvalue problem (24) and the corresponding eigenvectors satisfy

MVx;1 þ CVx;1Jx;1 þ KVx;1J2x;1 ¼On�ϵ; (25)

where Jx;1 is an order ϵ Jordan matrix of the zero eigenvalues μ¼ 0, and Vx;1 is an n� ϵ matrix of the associated eigenvectors in
its columns. Since system (1) is nondefective, the Jordan matrix Jx;1 ¼Oϵ, which implies from Eq. (25) that MVx;1 ¼On�ϵ, i.e.,
the eigenvectors that correspond to the infinite eigenvalues lie in the null space of M. We may then construct an order 2n
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invertible matrix Sx from the spectral data obtained by solving the quadratic eigenvalue problem (e.g., see [19]):

Sx ¼
Vx;f Vx;1Jx;1

Vx;f Jx;f Vx;1

" #
¼

Vx;f On�ϵ

Vx;f Jx;f Vx;1

" #
: (26)

3.2. State-space representation of the free response

The free response xðtÞ of the n-degree-of-freedom differential-algebraic system (1) has the general form (e.g., see [18])

xðtÞ ¼Vx;f eJx;f tc; (27)

where the s�dimensional column vector c of eigensolution coefficients is determined by the consistent initial conditions
xð0Þ and _xð0Þ (that is, those initial conditions xð0Þ and _xð0Þ that satisfy M €xð0Þ þ C _xð0Þ þ Kxð0Þ ¼ fð0Þ). Casting the solution
(27) and its derivative as a state equation,

xðtÞ
_xðtÞ

" #
¼

Vx;f

Vx;f Jx;f

" #
eJx;f tc; (28)

which may be modified to incorporate the order 2n invertible matrix Sx:

xðtÞ
_xðtÞ

" #
¼

Vx;f On�ϵ

Vx;f Jx;f Vx;1

" #
eJx;f t Os�ϵ

Oϵ�s Iϵ

" #
c
0ϵ

" #
¼ Sx

eJx;f t Os�ϵ

Oϵ�s Iϵ

" #
c
0ϵ

" #
: (29)

In principle, the order ϵ identity matrix Iϵ in Eq. (29) may be replaced by any matrix of the same dimensions since it is
eventually eliminated by matrix-vector multiplication so that Eqs. (28) and (29) are equivalent. However, for reasons that
will become clear later, we have deliberately chosen to use Iϵ so that the matrix product in Eq. (29) is invertible.

3.3. Mechanics of decoupling the free response

As mentioned earlier, since the mass matrix M of system (1) has rank ron, the decoupled system (2) will be partitioned
into two sets of real, independent differential equations, one of which contains r second-order equations, while the other
consists of n�r first-order equations. Moreover, we know from prior work [5,6,8] that these independent, second-order
differential equations are obtained through phase synchronization of paired eigensolutions. Consequently, of the s¼ nþ r
finite eigenvalues of system (1), we must assign r pairs of complex conjugate or distinct real eigenvalues, while the
remaining n�r finite eigenvalues are to be left unpaired and correspond to the independent, first-order differential
equations of the decoupled system (2). Of course, complex eigenvalues must always be paired, so the n�r unpaired
eigenvalues are always real, which is consistent with the observation that a real, first-order differential equation must
always have a real eigenvalue. As a result, we may express the free response xðtÞ of system (1) in the expanded form

xðtÞ ¼ ∑
r

i ¼ 1
ðviaieλi t þ v̂ iâieλ̂ i tÞ þ ∑

n�r

k ¼ 1
wkbkeξkt : (30)

In the first summation of Eq. (30), λi ði¼ 1; 2; …; rÞ represent the r finite eigenvalues that constitute the r pairs of eigenvalues,
while vi and ai denote the corresponding eigenvectors and eigensolution coefficients, respectively. As before, the ornamenting
hat in Eq. (30) denotes a pairing of complex conjugate or distinct real eigensolutions, whichever is appropriate. Likewise, the
second summation of Eq. (30) consists of the remaining n�r unpaired eigenvalues ξk ðk¼ 1; 2; …; n�rÞ and their associated
eigenvectors and eigensolution coefficients wk and bk, respectively. As in the case when the mass matrix M is invertible, we
assume that the paired eigenvectors vi and v̂ i are normalized in accordance with

2λivTi Mvi þ vTi Cvi ¼ λi�λ̂i ; (31)

2λ̂ iv̂
T
i Mv̂ i þ v̂T

i Cv̂ i ¼ λ̂i�λi: (32)

In addition, inspired by Eqs. (31) and (32), we shall normalize the eigenvectors wk associated with the unpaired eigenvalues
according to

2ξkwT
kMwk þwT

kCwk ¼�ξk: (33)

We can connect the matrix-vector representation (27) of the free response xðtÞ to the summation form (30) as follows.
First, let Λ and bΛ be order r diagonal matrices of the paired eigenvalues λi and λ̂ i, respectively, and define a diagonal matrix Ξ
consisting of the remaining n�r unpaired eigenvalues ξk:

Λ¼ �r
i ¼ 1

λi; bΛ ¼ �r
i ¼ 1

λ̂ i; Ξ¼ �n�r

k ¼ 1
ξk: (34)
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Next, arrange the paired eigenvectors vi and v̂ i in the columns of the n� r matrices V and bV , respectively, and let the
n� ðn�rÞ matrix W contain the eigenvectors wk of the n�r unpaired finite eigenvalues:

V¼ ½v1 j⋯ j vr �; bV ¼ ½v̂1 j ⋯ j v̂r�; W¼ ½w1 j⋯ jwn�r�: (35)

Lastly, define r-dimensional column vectors a and â consisting of the paired eigensolution coefficients ai and âi, respectively,
and let b be a column vector of length n�r containing the unpaired eigensolution coefficients bk:

a¼ ½a1 ⋯ ar�T; â ¼ ½â1 ⋯ âr�T; b¼ ½b1 ⋯ bn�r �T: (36)

It follows that Eq. (30) may be written more compactly as

xðtÞ ¼ ðVeΛtaþ bVebΛt âÞ þWeΞtb; (37)

and thus it must be the case that

Jx;f ¼Λ � bΛ � Ξ; Vx;f ¼ ½V j bV jW�; c¼ ½aT âT bT�T (38)

by comparing Eqs. (27) and (37).
Now, suppose we partition the decoupled free response vector pðtÞ as

pðtÞ ¼
yðtÞ
zðtÞ

" #
; yðtÞ ¼ ½y1ðtÞ ⋯ yrðtÞ�T; zðtÞ ¼ ½z1ðtÞ ⋯ zn�rðtÞ�T; (39)

where yiðtÞ ¼ piðtÞ and zkðtÞ ¼ prþkðtÞ are the solutions to the r second-order and n�r first-order, independent differential
equations, respectively, that comprise the unforced decoupled system (2). From previous work on systems with an invertible
mass matrix [5–8], we know that each of the r decoupled, second-order equations generated via phase synchronization of
the r paired eigensolutions (i.e., the r summands in the first summation of Eq. (30)) is of the form

€yiðtÞ�ðλi þ λ̂ iÞ _yiðtÞ þ λiλ̂ iyiðtÞ ¼ 0 (40)

and has as its solution

yiðtÞ ¼ aieλi t þ âieλ̂ i t : (41)

Since phase synchronization relies on the pairing of eigensolutions, we must conclude that phase synchronization does not
apply to the eigensolutions associated with the n�r unpaired eigenvalues ξk (i.e., the n�r terms in the second summation of
Eq. (30)), and hence they remain unchanged during decoupling. Consequently,

zkðtÞ ¼ bke
ξkt (42)

represents the solution to each of the n�r independent, first-order subsystems in the unforced decoupled system (2), where
each subsystem is governed by the differential equation, say,

�ξk _zkðtÞ þ ξ2kzkðtÞ ¼ 0: (43)

It should be noted that, as in the case when the mass matrix of system (1) is invertible, the eigensolution coefficients ai, âi,
and bk are not affected by the decoupling procedure. Expressing the r second-order equations (40) and the n�r first-order
equations (43) in matrix-vector form,

€yðtÞ�ðΛþ bΛÞ _yðtÞ þ ΛbΛyðtÞ ¼ 0r ; (44)

�Ξ _zðtÞ þ Ξ2zðtÞ ¼ 0n�r : (45)

Based on the partitioning (39) of the decoupled free response pðtÞ, combining Eqs. (44) and (45) yields the n-degree-of-
freedom decoupled system (2) with the transformed forcing gðtÞ ¼ 0 and coefficient matrices given by

A2 ¼ Ir � On�r ; A1 ¼�ðΛþ bΛÞ � �Ξ; A0 ¼ΛbΛ � Ξ2: (46)

It is straightforward to verify that solution of the quadratic eigenvalue problem associated with the decoupled system
matrices (46) yields the same eigenvalues (and multiplicities) obtained for the coupled system (1), and thus the decoupling
transformation that relates the two systems must be isospectral as expected. Note that if system (1) has more than one
real finite eigenvalue, then the form of the decoupled system is not unique since different choices of pairing distinct real
eigenvalues result in different forms of the coefficient matrices A1 and A0 (see [6,8] for more detail regarding this
nonuniqueness due to pairing real eigenvalues).

3.4. Decoupling transformations in the state and configuration spaces

How are the free responses of the coupled and decoupled systems related? Since the eigensolution coefficients that
comprise the column vector c are preserved upon transforming the homogeneous form of system (1) into its unforced
decoupled form (2), we may cast the free response pðtÞ of the decoupled system in a matrix-vector form analogous
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to Eq. (27):

pðtÞ ¼ Vp;f e
Jp;f tc: (47)

Here, Jp;f is an order s¼ nþ r Jordan matrix of the decoupled system's finite eigenvalues, and the n� s matrix Vp;f

essentially specifies if and how the finite eigenvalues are paired. Since the decoupling transformation is isospectral, it must
be the case that the Jordan matrix Jp;f ¼ Jx;f . To determine the form of Vp;f , first note that the collection of scalar solutions
(41) and (42) for the r second-order and n�r first-order, independent subsystems may be written more compactly as yðtÞ ¼
eΛtaþ ebΛt â and zðtÞ ¼ eΞtb, respectively. Recalling how the response pðtÞ is partitioned, a comparison of these expressions
and Eq. (47) reveals that

Vp;f ¼ ½Ir j Ir� � In�r : (48)

The matrices Jp;f and Vp;f constitute a Jordan pair for A2λ
2 þ A1λþ A0 and satisfy a relationship analogous to Eq. (23), albeit

with the systemmatricesM, C, and K replaced with A2, A1, and A0, respectively. Likewise, let Jp;1 and Vp;1 denote the Jordan
pair associated with the ϵ¼ n�r infinite eigenvalues. Since system (1) is nondefective, the Jordan matrix Jp;1 ¼Oϵ, and thus
the matrix Vp;1 is determined by the relation A2Vp;1 ¼Oϵ by analogy to Eq. (25). In other words, Vp;1 contains linearly
independent vectors in the null space of the leading coefficient matrix A2.

Similar to the state-space formulation of the free response xðtÞ in Section 3.2, express the decoupled solution pðtÞ and its
derivative in the form of a state equation and rewrite it in terms of an invertible matrix Sp of size 2n:

pðtÞ
_pðtÞ

" #
¼

Vp;f

Vp;f Jp;f

" #
eJp;f tc¼

Vp;f On�ϵ

Vp;f Jp;f Vp;1

" #
eJp;f t Os�ϵ

Oϵ�s Iϵ

" #
c
0ϵ

" #
¼ Sp

eJp;f t Os�ϵ

Oϵ�s Iϵ

" #
c
0ϵ

" #
: (49)

Next, use the state equation (49) to eliminate the coefficient vector ½cT 0T
ϵ �T from Eq. (29) to obtain

xðtÞ
_xðtÞ

" #
¼ Sx

eJx;f te�Jp;f t Os�ϵ

Oϵ�s Iϵ

" #
S�1
p

pðtÞ
_pðtÞ

" #
: (50)

Setting Jp;f ¼ Jx;f because system (1) is nondefective yields a transformation in the state space that relates the free responses
of the coupled and decoupled systems:

xðtÞ
_xðtÞ

" #
¼ SxS�1

p

pðtÞ
_pðtÞ

" #
¼

Vx;f On�ϵ

Vx;f Jx;f Vx;1

" #
Vp;f On�ϵ

Vp;f Jp;f Vp;1

" #�1 pðtÞ
_pðtÞ

" #
¼ S

pðtÞ
_pðtÞ

" #
: (51)

Eq. (51) implies that the system free response xðtÞ is recovered from the decoupled solution pðtÞ by a linear time-invariant
transformation in the state space. Moreover, while the components of Sx and Sp may be complex, the overall transformation
S is real because the solutions xðtÞ and pðtÞ are real. Inverting the state equation (51) and evaluating it at time t¼0 gives the
relationship between the consistent initial conditions xð0Þ and _xð0Þ and the decoupled system's consistent initial conditions
pð0Þ and _pð0Þ:

pð0Þ
_pð0Þ

" #
¼ S�1 xð0Þ

_xð0Þ

" #
¼

Vp;f On�ϵ

Vp;f Jp;f Vp;1

" #
Vx;f On�ϵ

Vx;f Jx;f Vx;1

" #�1 xð0Þ
_xð0Þ

" #
: (52)

Lastly, it is possible to extract a decoupling transformation in the n-dimensional configuration space from Eq. (51) that
recovers xðtÞ directly, making it unnecessary to evaluate the larger state equation. It is straightforward to show that isolating
the upper half of the state equation (51) yields

xðtÞ ¼ T1pðtÞ þ T2 _pðtÞ; (53)

with the real transformation matrices T1 and T2 given by

T1 ¼ ½ðVbΛ�bVΛÞðbΛ�ΛÞ�1 jW�; T2 ¼ ½ðbV�VÞðbΛ�ΛÞ�1 j On�ϵ�; (54)

where the matrices Λ, bΛ, V, bV , and W are as defined in Eqs. (34) and (35).
To summarize, we have illustrated how an unforced, nondefective, n-degree-of-freedom system (1) with a singular mass

matrix M of rank ron may be decoupled into a set of r decoupled, real, second-order differential equations and a set of n�r
independent, real, first-order subsystems by phase synchronization of the r paired eigensolutions. The coefficient matrices
of the decoupled system are given by Eq. (46), and its consistent initial conditions are determined from Eq. (52). The
decoupled solution pðtÞ may be obtained through standard methods for ordinary differential equations since coupled
algebraic constraints have been eliminated. The free response pðtÞ of the decoupled system and transformation (53) may
then be used to recover the coupled system's free response xðtÞ in the configuration space. While the decoupled system's
coefficient matrices A1 and A0 may not be unique because of the choice of pairing distinct real eigensolutions, the solution
xðtÞ will always be unique (see [6,8]). The parameters required for decoupling are obtained through solving the quadratic
eigenvalue problem (6) and by finding linearly independent vectors in the null spaces of the leading coefficient matrices M
and A2. The decoupling process is isospectral, preserving the eigenvalues of system (1) and their multiplicities. In the event
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that the mass matrix of system (1) is invertible, the results developed in this section reduce to their counterparts in Section 2.3
since all terms associated with infinite eigenvalues vanish and every decoupled subsystem is second order.

Finally, we wish to briefly elaborate on the properties of the order 2n transformation matrix S in Eq. (51). Suppose we
express the coupled differential-algebraic system (1) in the symmetric state-space realization (e.g., see [6,15])

C M
M O

� � _xðtÞ
€xðtÞ

" #
þ K O

O �M

� � xðtÞ
_xðtÞ

" #
¼ fðtÞ

0

� �
(55)

with the forcing fðtÞ ¼ 0, apply the coordinate transformation (51), and premutliply the resulting state equation by ST. Doing
so, we would find that

ST
C M
M O

� �
S¼

A1 A2

A2 O

" #
; ST

K O
O �M

� �
S¼

A0 O
O �A2

" #
: (56)

While the symmetric structure of the state matrices in Eq. (56) is preserved under congruence transformation using S, it can
be shown that, in general,

ST
O K
K C

� �
Sa

O A0

A0 A1

" #
: (57)

Thus, strictly speaking, S alone does not generate a structure-preserving transformation as defined by Garvey et al. [15] since
not every symmetric state-space formulation of system (1) in [15] has its symmetry preserved under transformation.

4. Decoupling of nondefective systems with a singular mass matrix in forced motion

Let us now extend the decoupling procedure to the case when the coupled differential-algebraic system (1) is forced.
We begin by expressing the forced equation of motion (1) as the symmetric state equation (55) and, to ensure that the
decoupling transformation for forced motion is also isospectral, by defining a linear, time-invariant change of coordinates
based on the free response's state-space transformation (51):

xðtÞ
_xðtÞ

" #
¼ S

p1ðtÞ
p2ðtÞ

" #
; p1ðtÞ ¼

y1ðtÞ
z1ðtÞ

" #
; p2ðtÞ ¼

y2ðtÞ
z2ðtÞ

" #
; (58)

where p1ðtÞ and p2ðtÞ are n-dimensional column vectors whose relationship to the decoupled forced response pðtÞ and its
corresponding velocity _pðtÞ is to be determined. The column vectors yjðtÞ ðj¼ 1; 2Þ and zjðtÞ denote the partitioning of the
decoupled solutions into the sets of r second-order and n�r first-order, independent subsystems, respectively, similar to
Eq. (39). We must also address how the decoupled system's excitation gðtÞ is related to the applied forcing fðtÞ.

4.1. Transformation of the applied forcing

Apply the state transformation (58) to the symmetric state-space realization (55) and premultiply the resulting equation
by ST to obtain

A1 A2

A2 O

" #
_p1ðtÞ
_p2ðtÞ

" #
þ

A0 O
O �A2

" #
p1ðtÞ
p2ðtÞ

" #
¼

TT
1

TT
2

" #
fðtÞ; (59)

where the coefficient matrices Ai ði¼ 1; 2; 3Þ are still given by Eq. (46), and the transformation matrices T1 and T2 are the
same as in Eq. (54), respectively. Separating the state equation (59) into its upper and lower halves yields, respectively,

A1 _p1ðtÞ þ A2 _p2ðtÞ þ A0p1ðtÞ ¼ TT
1fðtÞ; (60)

A2 _p1ðtÞ�A2p2ðtÞ ¼ TT
2fðtÞ: (61)

To continue with our analysis, it is necessary to examine the structures of Eqs. (60) and (61) more closely. For convenience, let

TT
1fðtÞ ¼

h1ðtÞ
k1ðtÞ

" #
; TT

2fðtÞ ¼
h2ðtÞ
k2ðtÞ

" #
; (62)

where the column vectors hjðtÞ and kjðtÞ are of lengths r and n�r, respectively. Based on the form of the transformation matrix
T2 in Eq. (54), it is straightforward to show that k2ðtÞ is identically zero: k2ðtÞ ¼ 0n�r . In terms of yjðtÞ and zjðtÞ, Eq. (60) contains
the expressions

�ðΛþ bΛÞ _y1ðtÞ þ _y2ðtÞ þ ΛbΛy1ðtÞ ¼ h1ðtÞ; (63)

�Ξ _z1ðtÞ þ Ξ2z1ðtÞ ¼ k1ðtÞ: (64)



D.T. Kawano et al. / Journal of Sound and Vibration 332 (2013) 6829–68466838
Comparing Eq. (64) to its unforced counterpart (45), it becomes clear that z1ðtÞ corresponds to the forced response zðtÞ of the
decoupled first-order subsystem. Furthermore, we deduce from the left-hand side of Eq. (64) that the last n�r rows of the
excitation gðtÞ for the decoupled system (2) are given by k1ðtÞ. To eliminate _y2ðtÞ from Eq. (63), we will need to investigate how
Eq. (61) is partitioned into yjðtÞ and zjðtÞ:

_y1ðtÞ�y2ðtÞ ¼ h2ðtÞ; (65)

On�r _z1ðtÞ þOn�rz2ðtÞ ¼ 0n�r : (66)

Rearranging Eq. (65) to solve for y2ðtÞ, differentiating this expression, and substituting in the result for _y2ðtÞ in Eq. (63) yields an
equation of motion in y1ðtÞ:

€y1ðtÞ�ðΛþ bΛÞ _y1ðtÞ þ ΛbΛy1ðtÞ ¼ h1ðtÞ þ _h2ðtÞ: (67)

A comparison of Eqs. (67) and (44) reveals that y1ðtÞ must be the solution yðtÞ to the set of r real, independent, second-order
differential equations that constitute the forced decoupled system (2). Consequently, we find from Eq. (65) that y2ðtÞ ¼
_yðtÞ�h2ðtÞ. Moreover, since we have determined that y1ðtÞ ¼ yðtÞ and z1ðtÞ ¼ zðtÞ, it follows from the partitioning in Eq. (58) that
p1ðtÞ is in fact the response pðtÞ of the decoupled equation of motion (2): p1ðtÞ ¼ pðtÞ. Lastly, the left-hand side of Eq. (67) implies
that the first r rows of the excitation gðtÞmay bewritten as h1ðtÞ þ _h2ðtÞ. Thus, when Eqs. (67) and (64) are combined to yield the
decoupled system (2), we observe that the associated excitation gðtÞ is related to the applied forcing fðtÞ according to

g tð Þ ¼ h1ðtÞ þ _h2ðtÞ
k1ðtÞ

" #
¼

h1ðtÞ
k1ðtÞ

" #
þ d
dt

h2ðtÞ
0n�r

" #
¼ TT

1f tð Þ þ TT
2
_f tð Þ: (68)

4.2. Connecting the consistent initial conditions

How are the consistent initial conditions of the coupled and decoupled systems related? To answer this question, we
shall start with the analytical solution for the forced response xðtÞ of system (1) (e.g., see [18]):

xðtÞ ¼ Vx;f e
Jx;f t cx þ

Z t

0
e�Jx;f sZx;f fðsÞ ds

� �
; (69)

for which cx is a s�dimensional column vector of coefficients and the s� n matrix Zx;f is determined from

Zx;f ¼ ½Is j Os�ϵ�
Jx;f Os�ϵ

Oϵ�s Oϵ

" #
Vx;f Vx;1

MVx;f Jx;f �CVx;1

" #�1
O
I

� �
: (70)

Utilizing the Leibniz integral rule to differentiate the solution (69),

_xðtÞ ¼ Vx;f Jx;f e
Jx;f t cx þ

Z t

0
e�Jx;f sZx;f fðsÞ ds

� �
þ Vx;fZx;f fðtÞ; (71)

where the last term Vx;fZx;f fðtÞ would vanish due to biorthogonality of the left and right eigenvectors in the event that the
mass matrix M is invertible (e.g., see [19]). We may then evaluate Eqs. (69) and (71) at time t¼0 and combine the results in
the form of a state equation to obtain an expression for the consistent initial conditions for the coupled system (1):

xð0Þ
_xð0Þ

" #
¼

Vx;f

Vx;f Jx;f

" #
cx þ

0
Vx;fZx;f fð0Þ

" #
: (72)

Alternatively, writing Eq. (72) in terms of the order 2n invertible matrix Sx,

xð0Þ
_xð0Þ

" #
¼

Vx;f On�ϵ

Vx;f Jx;f Vx;1

" #
cx
0ϵ

" #
þ

0
Vx;fZx;f fð0Þ

" #
¼ Sx

cx
0ϵ

" #
þ

0
Vx;fZx;f fð0Þ

" #
: (73)

Analogous to Eq. (69), the forced response pðtÞ of the decoupled system (2) has the analytical solution

pðtÞ ¼Vp;f eJp;f t cp þ
Z t

0
e�Jp;f sZp;fgðsÞ ds

� �
; (74)

where cp is a s�long column vector of coefficients and the s� n matrix Zp;f is calculated as follows:

Zp;f ¼ Is Os�ϵ
� � Jp;f Os�ϵ

Oϵ�s Oϵ

" #
Vp;f Vp;1

A2Vp;f Jp;f �A1Vp;1

" #�1
O
I

� �
: (75)

The corresponding derivative of Eq. (74) is given by

_pðtÞ ¼ Vp;f Jp;f e
Jp;f t cp þ

Z t

0
e�Jp;f sZp;f gðsÞ ds

� �
þ Vp;fZp;fgðtÞ: (76)
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By analogy to Eqs. (72) and (73), setting time t¼0 in Eqs. (74) and (76) and writing the results as a state equation in terms of
the invertible matrix Sp of size 2n yields an expression for the decoupled system's consistent initial conditions:

pð0Þ
_pð0Þ

" #
¼

Vp;f

Vp;f Jp;f

" #
cp þ

0
Vp;fZp;f gð0Þ

" #
¼

Vp;f On�ϵ

Vp;f Jx;f Vp;1

" #
cp
0ϵ

" #
þ

0
Vp;fZp;f gð0Þ

" #
¼ Sp

cp
0ϵ

" #
þ

0
Vp;fZp;f gð0Þ

" #
: (77)

We could then connect the coupled and decoupled system's consistent initial conditions using the coordinate transforma-
tion (58) if we had expressions for the column vectors p1ðtÞ and p2ðtÞ in terms of the decoupled solution pðtÞ and its
derivative _pðtÞ. We found earlier that p1ðtÞ ¼ pðtÞ, but it is not entirely clear how p2ðtÞ is related to pðtÞ and _pðtÞ. We do have
some information about p2ðtÞ, namely that y2ðtÞ ¼ _yðtÞ�h2ðtÞ by Eq. (65) since y1ðtÞ ¼ yðtÞ. Unfortunately, the situation is not
so clear for z2ðtÞ because Eq. (66) is identically satisfied and provides nothing meaningful. Based on the form of y2ðtÞ, it
would seem reasonable to assume that z2ðtÞ ¼ _zðtÞ�k2ðtÞ. However, since the forcing component k2ðtÞ ¼ 0n�r , this statement
implies that z2ðtÞ ¼ _zðtÞ, and it can be shown that the resulting transformation of initial conditions returns erroneous values
for the initial derivative _zð0Þ. Fortunately, _zð0Þ is not actually needed to solve the first-order subsystem since only a
consistent zð0Þ needs to be specified, but the described discrepancy is undesirable and we should make some attempt to
determine the true form of z2ðtÞ to establish a proper transformation. Considering how y2ðtÞ ¼ _yðtÞ�h2ðtÞ, postulate that
z2ðtÞ ¼ _zðtÞ�q2ðtÞ, where our goal is to determine the form of the unknown column vector q2ðtÞ that yields the correct
transformation relating the responses of the coupled and decoupled systems. Given the assumed form of z2ðtÞ, we may
express p2ðtÞ as

p2ðtÞ ¼
y2ðtÞ
z2ðtÞ

" #
¼

_yðtÞ
_zðtÞ

" #
�

h2ðtÞ
0n�r

" #
�

0r

q2ðtÞ

" #
¼ _pðtÞ�TT

2fðtÞ�qðtÞ: (78)

By setting time t¼0 in Eq. (78) and utilizing the state transformation (77) with pð0Þ ¼ p1ð0Þ, the initial values p1ð0Þ and p2ð0Þ
may be cast in the form of a state equation:

p1ð0Þ
p2ð0Þ

" #
¼ Sp

cp
0ϵ

" #
þ

0
Vp;fZp;fgð0Þ�TT

2fð0Þ

" #
�

0
qð0Þ

" #
: (79)

Next, substitute Eqs. (73) and (79) into the coordinate transformation (58) evaluated at time t¼0, premultiply the resulting
equation by S�1, and rearrange terms to obtain

Sp
cp�cx
0ϵ

" #
�

0
TT
2fð0Þ

" #
¼

0
qð0Þ

" #
�

0
Vp;fZp;f gð0Þ

" #
þ S�1

0
Vx;fZx;f fð0Þ

" #
: (80)

Due to the similarities we have observed thus far in decoupling a system (1) with an invertible mass matrix and one with a
singular mass matrix, it seems reasonable to postulate that the left-hand side of Eq. (80) vanishes as it does in Eq. (22), and
hence

0
qð0Þ

" #
¼

0
Vp;fZp;f gð0Þ

" #
�S�1

0
Vx;fZx;f fð0Þ

" #
: (81)

By inspection, it is clear that the upper half of the state equation (81) is identically satisfied. As for the bottom half of
Eq. (81), direct numerical calculations show that the first r rows yield the expression 0r ¼ 0r , while q2ð0Þ is generally
nonzero. Thus, as desired, Eq. (81) affects only the initial value z2ð0Þ. It follows from Eqs. (58), (78), and (81) that the
consistent initial conditions for the decoupled system (2) are related to those of the coupled system (1) by the state equation

pð0Þ
_pð0Þ

" #
¼ S�1

xð0Þ
_xð0Þ�Vx;fZx;f fð0Þ

" #
þ

0
Vp;fZp;fgð0Þ þ TT

2fð0Þ

" #
: (82)

Numerical checks of Eq. (82) verify that the given transformation does indeed generate an initial derivative _zð0Þ that is
consistent with the first-order subsystem's governing equation (64) evaluated at time t¼0.

4.3. Decoupling transformations in the state and configuration spaces

We infer from Eq. (81) that qðtÞ satisfies the relationship

0
qðtÞ

" #
¼

0
Vp;fZp;fgðtÞ

" #
�S�1

0
Vx;fZx;f fðtÞ

" #
; (83)

and hence Eqs. (58), (78), and (83) imply that the forced response xðtÞ of the coupled system (1) is recovered from the
decoupled solution pðtÞ in the state space via

xðtÞ
_xðtÞ

" #
¼ S

pðtÞ
_pðtÞ�Vp;fZp;f gðtÞ�TT

2fðtÞ

" #
þ

0
Vx;fZx;f fðtÞ

" #
: (84)
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Alternatively, we may solve for the response xðtÞ directly without needing to evaluate the entire state equation (84) by
extracting the upper half. Doing so, we obtain

xðtÞ ¼ T1pðtÞ þ T2ð _pðtÞ�Vp;fZp;f gðtÞ�TT
2fðtÞÞ; (85)

where the transformation matrices T1 and T2 are still given by Eq. (54). It can be shown that the product T2Vp;fZp;f ¼O, and
hence the configuration-space transformation (85) reduces to the simpler form

xðtÞ ¼ T1pðtÞ þ T2 _pðtÞ�T2T
T
2fðtÞ: (86)

In summary, we have presented an extension of the decoupling procedure in [6,8] to a forced differential-algebraic system (1).
Its associated decoupled form (2) is defined by the same coefficient matrices (46) as the unforced system (and are based on the
solutions of the quadratic eigenvalue problem (6)), and the decoupled system's excitation is related to the applied forcing by
Eq. (68). The response of the decoupled system may then be obtained using the consistent initial conditions (82) and standard
techniques for solving ordinary differential equations, as opposed to requiring a differential-algebraic equation solver. The
forced response xðtÞ of system (1) is then directly recovered from the decoupled solution pðtÞ using the configuration-space
transformation (86). Reduction of Eq. (86) and the initial conditions transformation (82) to their unforced counterparts (53)
and (52) is obvious, and it should be clear that the procedure for decoupling a differential-algebraic system (1) is equivalent to
Fig. 1. Flowchart for decoupling a nondefective system (1) with a singular mass matrix M in free or forced motion. The consistent initial conditions for the
decoupled system (2) are obtained from Eq. (52) for free motion and Eq. (82) for forced motion. The system response xðtÞ is recovered from the decoupled
solution pðtÞ using transformation (53) for free motion and transformation (86) for forced motion.



Fig. 2. Mass-spring-damper system of Example 1.
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the methodology in [5,6,8] in the event that the mass matrix M is invertible. A flowchart outlining the process for decoupling
system (1) in free or forced motion is illustrated in Fig. 1 for convenience.
5. Illustrative examples

We now provide a few examples that illustrate the decoupling methodology developed for systems of the form (1) with a
singular mass matrix in free and forced motion.

Example 1. Consider the mass-spring-damper system depicted in Fig. 2, for which the system parameters m1 ¼ 1, m2 ¼ 0,
c1 ¼ c2 ¼ 1, k1 ¼ 1, and k2 ¼ 2 so that the equation of motion (1) has as its coefficient matrices

M¼ 1 0
0 0

� �
; C¼ 1 �1

�1 2

� �
; K¼ 1 �1

�1 3

� �
: (87)

Let the system be unforced, in which case xð0Þ ¼ ½1; �1�T and _xð0Þ ¼ ½2; 3�T constitute a set of consistent initial conditions.
Because the rank of M is r¼1, there is a single infinite eigenvalue, and we can take Vx;1 ¼ ½0; 1�T. Solving the associated
quadratic eigenvalue problem, we find that the 3 finite eigenvalues consist of a pair of complex conjugates for which

λ¼�0:28þ i0:78; V¼ 1:02e�i0:661

�0:37e�i165:951

" #
; (88)

and the remaining real eigenvalue is such that

Ξ¼�1:44; W¼ 0:21
�0:77

� �
: (89)

The matrices Jx;f and Vx;f may then be constructed according to Eq. (38). From Eqs. (88), (89), and (46), the coefficient
matrices for the decoupled system are given by

A2 ¼
1 0
0 0

� �
; A1 ¼

0:56 0
0 1:44

� �
; A0 ¼

0:69 0
0 2:08

� �
: (90)

Since A2 ¼M, we can take Vp;1 ¼ Vx;1 for this example. By Eq. (48), Vp;f ¼ ½1j1� � 1 since r¼1, and the transformation
matrices T1 and T2 are calculated from Eq. (54):

T1 ¼
1:01 0:21
0:39 �0:77

� �
; T2 ¼

�0:01 0
0:12 0

� �
: (91)

The decoupled system's consistent initial conditions are calculated using Eq. (52): pð0Þ ¼ ½0:62; 1:98�T and _pð0Þ ¼ ½2:54;
�2:86�T. The decoupled solution pðtÞ is illustrated in Fig. 3(a), and the system response xðtÞ obtained via transformation (53)
is shown in Fig. 3(b). It can be verified that the solution of the original system by direct numerical integration and that
obtained by Eq. (53) are indeed the same.
We shall now compare the illustrated decoupling procedure with the iterative approach proposed by Garvey et al. [15].

First, replace the given singular mass matrix M in Eq. (87) with an invertible one of the form Mþ ϵΔM, where ϵ is a small
parameter. A convenient choice of the perturbation matrix ΔM is the identity matrix: ΔM¼ I2. Next, since the modified
mass matrix is invertible, we may decouple the system using the procedure detailed in [5,6,8] and reviewed in Section 2.3 of
this paper, fromwhich we obtain the spectral data needed to construct the state transformation matrix S defined in Eq. (13)
for a particular value of the small parameter ϵ. According to Garvey et al., by repeating this process for values of ϵ
approaching zero, we should find that S converges (i.e., the magnitude of each element smoothly approaches a finite value
as ϵ-0), presumably to the numerical form of S obtained through the decoupling procedure for the case when M is singular
(see Eq. (51)). For this example, decoupling the differential-algebraic system defined by the matrices in Eq. (87) yields the



Fig. 4. Convergence of the iterative approach to decoupling a nondefective system with a singular mass matrix proposed by Garvey et al. [15] for Example 1.
(a) The magnitude S4;1 of the entry in the fourth row and first column of the state transformation matrix S converges as ϵ-0 and (b) the magnitude S4;2 of the
entry in the fourth row and second column of S diverges as ϵ vanishes.

Fig. 3. Free response of Example 1. (a) Decoupled solutions pj(t) (j¼1, 2) and (b) system responses xj(t).
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state transformation matrix

S¼

1:01 0:21 �0:01 0
0:39 �0:77 0:12 0
0:01 �0:30 1:02 0
�0:08 2:56 0:33 1

26664
37775; (92)

and so for decreasing ϵ, we should notice that, say, S4;1 (the magnitude of the entry in the fourth row and first column) and
S4;2 (the magnitude of the entry in the fourth row and second column) approach 0.08 and 2.56, respectively. Fig. 4 depicts
the evolution of S4;1 and S4;2 as ϵ-0 from the right (which ensures that the modified mass matrix is positive definite). From
Fig. 4(a), it is clear that S4;1 does indeed converge to 0.08 as ϵ is decreased. In fact, we find from this iterative approach that
convergence occurs for all elements in the first and third columns. However, as seen in Fig. 4(b), S4;2 oscillates wildly and
grows without bound as ϵ-0, and the same is true of the other elements in the second column. Thus, it appears that we are
not able to deduce a unique and bounded form of the transformation matrix S by this type of iterative technique, implying
that the exact structure of the decoupled system is indeterminate.

Example 2. Suppose the mass-spring-damper system illustrated in Fig. 5 has the following values for its systems parameters:
m1 ¼ 1, m2 ¼m3 ¼ 0, k1 ¼ k2 ¼ k3 ¼ 1, c1 ¼ c5 ¼ 2, and c2 ¼ c3 ¼ c4 ¼ 1. The coefficient matrices for the associated equation of
motion (1) are given by

M¼
1 0 0
0 0 0
0 0 0

264
375; C¼

3 �1 0
�1 3 �1
0 �1 3

264
375; K¼

2 �1 0
�1 2 �1
0 �1 1

264
375: (93)



Fig. 6. Components gj(t) (j¼1, 2, 3) of the forcing gðtÞ exerted on the decoupled system for Example 2.

Fig. 5. Mass-spring-damper system of Example 2.
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The forcing fðtÞ ¼ ½ sin t; � cos 2t; cos t�T is applied to the system, and xð0Þ ¼ ½1; 0; �1�T and _xð0Þ ¼ ½1; 0:25; 0:75�T form a
corresponding set of consistent initial conditions. The rank of M is r¼1, so there are 2 infinite eigenvalues, and we can assign

(94)

By solving the associated quadratic eigenvalue problem, we find that the 4 finite eigenvalues are all real: λ1 ¼�1:76, λ2 ¼�1,
λ3 ¼�0:63, and λ4 ¼�0:11. Since r¼1, we may pair, say, λ1 and λ4 such that

Λ¼�1:76; V¼
1:40
0:34
0:06

264
375; bΛ ¼�0:11; bV ¼

0:29
0:55
0:74

264
375; (95)

while the remaining real eigenvalues, λ2 and λ3, must go unpaired:

(96)

We may then construct the matrices Jx;f , Vx;f , and Zx;f using Eqs. (38) and (70), respectively. Eqs. (95), (96) and (46) imply that
the coefficient matrices for the decoupled system are

A2 ¼
1 0 0
0 0 0
0 0 0

264
375; A1 ¼

1:87 0 0
0 0:63 0
0 0 1

264
375; A0 ¼

0:20 0 0
0 0:39 0
0 0 1

264
375: (97)

As A2 ¼M, we can take Vp;1 ¼ Vx;1 for this example. By Eq. (48), Vp;f ¼ ½1j1� � I2 because r¼1, and Zp;f may then be calculated
from Eq. (75). According to Eq. (54), the transformation matrices T1 and T2 are

T1 ¼
0:22 0:30 1
0:56 0:40 0
0:78 �0:17 0

264
375; T2 ¼

�0:67 0 0
0:13 0 0
0:41 0 0

264
375: (98)

After determining the transformation matrix S and using Eq. (68) to obtain the excitation gðtÞ, whose components are illustrated
in Fig. 6, we can then solve for the decoupled system's consistent initial conditions from Eq. (82): pð0Þ ¼ ½�2:45; 2:39; 3�T and



Fig. 7. Forced response of Example 2. (a) Decoupled solutions pj(t) (j¼1, 2, 3) and (b) system responses xj(t).
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_pð0Þ ¼ ½3:52; �2:42; �3�T. Fig. 7(a) depicts the decoupled system's solution pðtÞ, while the system response xðtÞ obtained via
transformation (86) is shown in Fig. 7(b). It can be verified that direct numerical integration of the original system yields the
illustrated solution xðtÞ. Note that there are other ways to pair the real finite eigenvalues. For example, we could have chosen to
pair λ1 and λ2 (and thus λ3 and λ4 are unpaired), in which case the decoupled system would take the form

A2 ¼
1 0 0
0 0 0
0 0 0

264
375; A1 ¼

2:76 0 0
0 0:63 0
0 0 0:11

264
375; A0 ¼

1:76 0 0
0 0:39 0
0 0 0:01

264
375: (99)

Of course, analyzing the decoupled system defined by the coefficient matrices (99) results in the same response xðtÞ as depicted
in Fig. 7(b).
Example 3. Balakrishnan [3] discussed a class of vibrating systems with singular mass matrices associated with modeling
smart structures (i.e., beams with piezoelectric strips for rate feedback), and he presented and analyzed a simple continuum
model of a smart beam by considering it to be a beam experiencing uniform torsion only (i.e., a “Saint-Venant shaft”), or
what he terms a “smart string.” An alternative approach to analyzing and simulating the response of such a “smart string”
involves semidiscretization of the continuum model by, say, finite differences, and one possible formulation leads to a
differential-algebraic system of the form (1). We shall illustrate how the methodology developed in this paper may be used
to analyze this discrete, differential-algebraic representation of a simple smart beam model.
Based on [3], suppose we model a smart beam as a shaft in torsional motion that has a self-straining material along its

entire length with rate feedback and no tip inertia. In dimensionless form for convenience, the equations governing the
response behavior of this beam are given by

m
∂2x
∂t2

þ c
∂x
∂t
�k

∂2x
∂s2

¼ 0; 0oso1

x t;0ð Þ ¼ 0;

k
∂x
∂s

����
s ¼ 1

þ α
∂x
∂t

����
s ¼ 1

¼ 0; (100)

where x¼ xðt; sÞ is the torsion angle, sA ½0;1� denotes the position along the beam, and t is the time. The parameters m and k
represent the beam's inertia and stiffness, respectively, and α40 is the rate feedback gain. We also consider the effects
of external damping, captured by the parameter c (which may be obtained empirically via experimental modal analysis).
Dividing the beam into n segments of length h¼ 1=n and semidiscretizing the continuum model (100) by finite differences
yields the discrete system of equations

m €xi þ c _xi þ
k

h2
�xi�1 þ 2xi�xiþ1
	 
¼ 0; 0o ion

x0 ¼ 0;

k

h2
�xn�1 þ xnð Þ þ α

h
_xn ¼ 0; (101)



Fig. 8. Free response of Example 3. (a) Decoupled solutions p1ðtÞ and p2ðtÞ and (b) system response x15ðtÞ.
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which may then be expressed as a homogenous matrix-vector equation of the form (1) with column vector x, singular mass
matrix M, and damping matrix C given by, respectively,

x¼

x1
x2
⋮

xn�1

xn

26666664

37777775; M¼

m 0 0 ⋯ 0
0 m 0 ⋯ 0

⋱
0 ⋯ 0 m 0
0 ⋯ 0 0 0

26666664

37777775; C¼

c 0 0 ⋯ 0
0 c 0 ⋯ 0

⋱
0 ⋯ 0 c 0
0 ⋯ 0 0 α=h

26666664

37777775 ; (102)

and a stiffness matrix K with the following structure:

K¼ k

h2

2 �1 0 0 0 ⋯ 0
�1 2 �1 0 0 ⋯ 0
0 �1 2 �1 0 ⋯ 0

⋱
0 ⋯ 0 �1 2 �1 0
0 ⋯ 0 0 �1 2 �1
0 ⋯ 0 0 0 �1 1

2666666666664

3777777777775
: (103)

If we specify an initial deflection pattern xð0; sÞ ¼ 0:1½expðlnð2ÞsÞ�1� and take as parameter values m¼1, k¼20, c¼0.01, and
α¼ 0:6, then we require _xð0;1Þ ¼ _xnð0Þ ¼�4:54 and _x1ð0Þ ¼ _x2ð0Þ ¼⋯ _xn�1ð0Þ ¼ 0 for the initial conditions of the differential-
algebraic system to be consistent. Upon choosing the desired number n of discretization segments, we may then analytically
obtain the system response xðtÞ by the decoupling methodology presented herein and illustrated in Example 1, though on a
much larger scale. For example, Fig. 8(a) depicts the first two decoupled solutions, p1ðtÞ and p2ðtÞ, when n¼20, and Fig. 8(b)
shows the corresponding response x15ðtÞ of a point three-quarters of the way down the beam from its fixed end. It can
be verified that the same response is obtained by direct numerical integration of the original discrete system defined by
Eqs. (102) and (103).

6. Conclusions

We have demonstrated how a nondefective, linear dynamical system of the form (1) with a singular mass matrix M
may be decoupled into real, independent, first- and second-order differential equations in the configuration space. By
formulating a general decoupling transformation that builds on the previous work [5–8], we have provided a complete
solution to the problem of decoupling nondefective, linear dynamical systems in free or forced motion. While we have
limited our attention to systems with a positive definite damping matrix C and stiffness matrix K, a further extension of the
decoupling process reported herein to include differential-algebraic systems with nonsymmetric coefficient matrices is
possible by incorporating the work given in [8]. In addition, decoupling a defective system (1) with a singular mass matrix
appears feasible by utilizing the results in [21]. Major results presented in this paper are summarized in the following
statements:
1.
 The configuration-space decoupling transformation for a linear, nondefective, differential-algebraic system (1) in free or
forced motion is real and isospectral (i.e., the system eigenvalues and their multiplicities are preserved).
2.
 For an n-degree-of-freedom system (1) with a mass matrix M of rank ron, r of the real, decoupled differential equations
are second-order and generated by pairing 2r of the nþ r finite eigenvalues (complex conjugates or distinct real
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eigenvalues). The remaining n�r real, independent differential equations are first order and correspond to the n�r
unpaired finite eigenvalues.
3.
 All parameters required for generating the decoupled system (2) and evaluating the decoupling transformations (53)
and (86) for free and forced motion, respectively, are obtained by solving the quadratic eigenvalue problem (6) and by
determining linearly independent vectors in the null spaces of the leading coefficient matrices M and A2.
4.
 Since the decoupled system (2) consists of independent, first- and second-order differential equations, the decoupling
procedure eliminates the numerical difficulties associated with solving the original differential-algebraic system (1).
5.
 The decoupling transformations (53) and (86) for free and forced motion, respectively, are direct generalizations of their
counterparts in [5–8] for the case when the mass matrix is invertible. Should system (1) have an invertible mass matrix
and be classically damped, the decoupling methodology presented herein reduces to classical modal analysis.
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