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Arvind Rangarajan
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Abstract— Experiments are performed to observe the influence or
quantify the effect a process choice has on the process outcome.
Utilization of results from controlled experiments for production plan
design using conventional data analysis techniques can lead to inefficient
use of available information. The scheme described in this report helps
overcome this pitfall by modifying the objective function used to compute
the regression parameters. The report also presents a discussion on the
various ways of applying this scheme to generate the envelope.

Keywords: process planning, precision manufacturing, surface finish,
bounded specification, statistical.

1. Introduction

A specification in the manufacturing sense implies a measurable physical characterestic
like surface finish or edge quality. Experiments are performed to characeterize these
specifications. They are generally the response variable in a statistical experiment. There
is prior knowledge on the nature of effect like linear, quadratic etc., with respect to the
variables that affect the response. These are tunable parameters in the physical domain.
The aim of experiments conducted in industry is to identify the range of parameters that
would satisfy the designer’s criteria. These are generally observed in the form of bounds
on a response. Parameter estimation is predominantly limited to fitting the best surface.
This provides enormous information in terms of identifying the basic underlying
relationships [1,2]. Experiments performed for production planning is to ensure that a
specification is below the designers choice of maxiumum, minmum or specified bounds. It
can be clearly seen that such an approach, even though provides information, does not
directly address the issue at hand. The objective of this paper is to estimate the regression
parameters with the view that the results would be tested against a bound either upper or
lower. The first section defines the choice of objective function and its utility for this
objective. The second section describes the methodology for estimating the parameter.
The scheme is applied to a standard dataset from Rpackage to demonstrate its utility.
Finally, the asymptotic properties of this response surface is discussed to gain better
insight into the data fitting scheme. Testing the envelopes for the family of estimated
parameters is discussed.



2. Objective Function

The least squares estimation procedure is actually minimizing the residual sum square
error in the regression. The objective function is symmetric about the errors, i.e. the
positive and negative errors are weighted evenly, Figure 1. The estimate fits the line so
that sum of errors is zero. In contrast, the new objective function is designed to weight
the errors depending on the bound that is specified. Upper bound specification is used an
example to demonstrate the concept. If the objective is to maintain the response below a
value, the fit surface should be erring on the negative side or the positive errors in the
objective function should be weighted less than the negative error promoting positive
error by the design of objective function.

plot for y= x2 weighting function Y = exp(-x)
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Figure 1. Plots of component functions in the objective.

After investigating various functions exp(-ax), where a is a constant, is the best solution
as it has a minimum at zero, implying the fact that a perfect fit if exists will not be
lost.The beauty of this function is that it monotically decreases from +ocofo—oo,

Behavior of the newly created objective function can be demonstrated by observing the
functions x°, x’e™, x’¢*, x’e”™™. In Figure 2, a refers to the coefficient of the exponential
function. LSE can be viewed as the case when a=0. The assymmetry implies that for any
value of x various exponentially weighted curves are above the RSE on the positive side

and lies below the curve for negative values of x.



Plot of exponenitaly weighted error
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Figure 2. Objective functions utilized by the scheme.

3. Coefficient Estimation

Method for estimating the coefficients f3;’s:
Y=, ot Z BiXj
J
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Minimizing this objective function for constant values of a with respect to beta we get the
following set of equations:

Equation for f3,:
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Equation for the i coefficient where i 1= 0:
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Solving this set of equations for various simple data sets, shown in Table 1, for various
values of ‘a’ we obtain a series of solutions with the solution moving from least fit
towards the upper bound, Figure 3. If the relationship between reponse and control
variables is in product form, the coefficients on the powers of products can be determined
by taking log and solving the problem in the previously described fashion.

Table 1. Sample dataset used for estimating upperbound coefficients.
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Figure 3. Upperbound fits for varying values of parameter ‘a’.

Mathematica is used to solve the nonlinear simultaneous equations. The equations get
more cumbersome to solve with number of data. To accelerate convergence we start with
coefficients obtained for the ‘a’ parameter that is immediately lower than one we try to
estimate. Error from the actual dataset can be captured using the residual sum square
error. The asymptotic error behavior of the curve exhibits trends contrary to the
expectations. The upper bound curve converges for large values of a with reducing
resdiual sum square error, Figure 4.



Behavior of resdiual sum square error with 'a’
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Figure 4. Residual sum square error plot for various ‘a’ values.

The convergence was also observed on other data sets tested. We can immediately see
that by using function ¢*" the error can be weighted to observe lower bound. The given
set of data along with a known relationship can be used to bound data from either sides.

4. Application for manufacturing process optimization.

The significance of the devised procedure is demonstrated by applying to manufacturing
examples. Surface finish has been empirically modeled for ages to understand the basic
relationships. Least square fit is commonly used to identify the relationship. This
information is very relevant for analyzing the underlying physical process. Nevertheless,
this data with its scatter cannot ably guarantee a surface finish. A design engineer
generally tends to specify an upperbound for the surface finish which has to be met by
every part during processing. The most common approach is to use a large factor of
safety on the experimentally observed data. With high speed machining gaining
prominence, and the direct relation that exist between most of these parameters and
productivity, it is possible that pockets of high uncertainty might occur, so a high factor
of safety might exclude potential high benefit regions. The previously presented results
can be utlized much more effectively by employing one of the three procedures outlined
below. These normally incorporate both the mean and variance during experiments.

The most commonly identified influence parameters for finish are speed, feed and depth
of cut. Experiments were perfomed on an engine block of a certain material for 12
different conditions: 3 speeds * 2 feeds * 2 depths of cut, and the observed values are



shown in the plot by the thick line (Figure 3). The basic relationship is assumed to be
additive and the finish is proportional to the square of the feed and linear with respect to
speed and depth of cut. These are used as X/, X2, and X3 in the scheme, and the linear
coefficients are estimated. It should be noted that, even though rugosity is proportional to
the square of the feed, the equation is still linear in coefficients; hence, the above scheme
can be applied without modification. This scheme was applied to estimate the values of 3

for the case of surface finish and the plots are shown for various values of the ‘a’
parameter, Figure 5. We can see that as a increases, the curve moves away, enveloping the
observed values at those conditioins. This is shown by the bold line corresponding to
a=40.

The upperbound of the surface finish or other manufacturing experimental data sets can
be obtained starting with two different assumptions:

1. The observed data can be assumed to be representative of the data to be observed in
production, based on a sufficient experiment condition, and find the upper bound for
the existing data set. This is an aggressive approach.

2. The results of repeated experiments at a given condition can be assumed as gaussian
and the observed data as a small sample. A 99% limit for one sided t-distribution can
be used as the value to be bounded by the scheme. This is a less conservative
approach, but it can yield more statistically confident results.
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Figure 5. Upperbound Ra plots.

The graph shown in Figure 5 is based on the type 2 approach. Either scheme can be



chosen, depending on the manufacturing philosophy. By applying the bound, any point
in the solution space provided can be used for further optimization:

Solution space: B, + B,speed + B, feed” + B,depthofcut < Raspecified .

5. Conclusion

A procedure for estimating parameters that can bound experimental data from either side
has been developed. The scheme was also successfully applied to estimating surface
finish upperbounds for various cutting conditions. The surprising behavior of upper
bound curves in limit is observed. Future work would involve applying this to more
practical scenarios and demonstrate the ability of the scheme to capture high productivity
pockets effecitively. Bootstrapping and Crossvalidation techniques will be used to further
strengthen the claim on the equations’ asymptotic behavior.

References

[1] Hines, W .H. and Montgomery, C.D., Probability and Statistics in Engineering and
Management Science, John Wiley and Sons, 1980.

[2] Montgomery, C.D., Response Surface Methodology, Wiley Series in Probability and
Statistics, 1995.





