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Abstract

At best, evaluation of image coders using PSNR is of
questionable perceptual validity. But for several types of al-
gorithms, including those with spatially scalable decoders,
PSNR might not even be computable, and other methods of
evaluation must be used. With a simple reordering of the
transmitted bit stream, the SPIHT algorithm can be made
spatially scalable without any loss in performance or in
progressivity. We present experimental results comparing
this multiscale SPIHT (MSPIHT) against SPIHT in terms of
the bit rates at which viewers recognize objects in the re-
constructed images. MSPIHT is also compared with SPIHT
images which have been downsampled to the same scale as
the MSPIHT images. We show that viewers are able to rec-
ognize reduced-scale images, such as those compressed by
MSPIHT, substantially earlier than images compressed by
SPIHT.

1. Introduction

It is a practical reality that bandwidth limitations often
lead to inconvenient delays while accessing images on the
Internet. As a result, thumbnail images have gained wide
acceptance as a means of providing viewers with a rapidly
available initial preview of a large image [2]. Displaying
an image at reduced scale has the advantage, given that the
image can still be recognized, that a smaller image requires
fewer bits to transmit and store. Thumbnail images are typ-
ically stored separately from their originals, and therefore
require additional storage space. If the viewer decides to
request the full-sized version of the image, the data for that
image is transmitted in addition to the already transmitted
thumbnail version.
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Another approach to the problem of limited bandwidth is
that of progressive transmission. Progressive coders allow
the decoder to reconstruct the image with increasing qual-
ity as more bits arrive. Popular progressive compression
schemes, including SPTHT [3], initially decode a full-sized,
blurred version of the original, which gradually comes into
focus as the transmission proceeds.

These two approaches can be combined in a spatially
scalable compression algorithm, such that versions of the
image at successively increasing scales can be extracted
from the bitstream as more bits arrive. That is, when b;
bits have been received, the decoder can reconstruct an im-
age of a small size, and when a larger number b, of bits
have arrived, the decoder can reconstruct an image that is
either of larger size, or of higher quality at the same size,
or perhaps of both higher quality and increased size. In this
way, no information need be sent or stored twice. Note that,
by this definition, any progressive algorithm can be made
spatially scalable simply by downsampling the output im-
age to the desired scale. That is, the b, and by bits might
both allow reconstruction at a large size, but the b; image
could simply be downsampled and shown at smaller scale.
SPIHT and other zerotree coders based on wavelet decom-
positions would not even require a separate downsampling
step, since the decoder could simply stop doing the wavelet
inverse transform at some level before the final one, and the
resulting low-frequency band is essentially a coarse-scale
version of the original image.

However, spatially scalability is usually taken to mean
that information about detail scales is not transmitted ini-
tially. In zerotree wavelet coders such as SPIHT and EZW
[4], information on some coefficients in higher frequency
bands is sent before all coefficients in the lowest frequency
band have been encoded. So according to the more stringent
view of spatial scalability, the conventional zerotree coders
are not scalable, and even with the less stringent view, these
higher frequency coefficients are not used in reconstructing
the coarse-scale thumbnail, and therefore represent wasted
bits — added cost — when decoding to the coarse-scale ver-
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sion of the image.

In addition to the basic advantage that spatially scala-
bility can lead to bandwidth savings, one might also ask
whether an advantage in recognition performance can be
gained by displaying images at successive scales. That is,
can objects in a small, clear thumbnail image be recognized
more readily than in the larger, blurrier full-scale version
costing the same number of bits? If so, this would lend
an embedded, spatially scalable image coder an additional
advantage over traditional full-scale coders for progressive
image transmission.

In this paper, we show that, by reordering the transmitted
bit stream, the SPIHT algorithm can be made spatially scal-
able with no loss in performance (PSNR versus bit rate) or
in progressivity. We present experimental results compar-
ing this multiscale SPIHT, which we call MSPIHT, against
SPIHT in terms of the bit rates at which viewers recognize
objects in the reconstructed images. Since there is no gen-
erally accepted method for comparing images at different
scales using PSNR, we employ the human observer evalu-
ation framework developed in [1]. We show that viewers
are able to recognize MSPIHT-compressed images substan-
tially earlier than images compressed by SPIHT.

This paper is organized as follows. In Section 2, we de-
scribe the MSPIHT algorithm. Our evaluation of this algo-
rithm using human observers is discussed in Section 3, and
we present conclusions in Section 4.

2. Multiscale SPTHT

We now describe the mechanics of our multiscale ver-
sion of SPIHT, which we call MSPIHT. In MSPIHT, the
schedule of scales and bit rates is freely determined; it con-
sists of reordering the SPIHT bit stream with no additional
bits required to manage the scales.

Wavelet subbands are each associated with a representa-
tion of the image at a given scale. We define a 1/n-scale
image as one where both dimensions are 1/n the origi-
nal dimensions. With a single-level decomposition, the en-
coder could efficiently describe a 1/2-scale image to the de-
coder, by transmitting information only about coefficients
in the LL band. The remaining bands contain information
about frequencies visible in the full-scale image. A single-
level decomposition is illustrated in Figure 1. Each layer
of blocks in the illustration represents a bit plane, and each
column a coefficient whose magnitude is given by the col-
umn height. The LL band is indicated by the dark blocks,
while the remaining blocks represent coefficients in higher-
frequency bands. Both SPIHT and MSPIHT transmit in-
formation only about coefficients which exceed the current
significance threshold 7;. The SPIHT bit stream has co-
efficients ordered primarily by magnitude, so some coeffi-
cients associated with a fine scale may be transmitted before
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all coefficients from coarser scales have been described. In
MSPIHT, a current scale boundary S; is defined which ex-
cludes any such finer-scale coefficients. Information about
these coefficients is deferred until after all coefficients for

the coarser scales have been described.

Figure 1. Coefficient bitplanes. SPIHT de-
scribes all coefficients exceeding threshold
T;. MSPIHT describes only coefficients above
T; and within scale boundary S;, deferring re-
maining coefficients until iater.

A scale schedule specifies the bit rates at which each
jump to the next larger scale occurs. Since both encoder
and decoder know the schedule, no additional bits are re-
quired to manage the scale jumps. (If the schedule were un-
known to the decoder, it could be transmitted as part of the
header with a negligible few bytes). For example, the sched-
ule might specify the initial scale as 1/4. The jump to 1/2
scale might be scheduled to occur at 0.04 bpp, and the jump
to full scale at 0.1 bpp. An example of an MSPIHT pro-
gressive display is shown in Figure 2. Following this scale
schedule, MSPIHT begins by performing sorting and refine-
ment passes in the same manner as SPIHT, comparing each
coefficient with a significance threshold. However, when a
coefficient is examined from a scale larger than 1/4 (that is,
from any of the outer 6 subbands), it is declared out-of-scale
and placed in a deferred list. No bits are transmitted about
it at this time, and processing continues as before. When
the bit rate reaches 0.04 bpp (jump to 1/2 scale), the co-
efficients accumulated in the deferred list are re-examined;
those that are now in-scale are removed from the deferred
list, and sorted and refined until their significance thresh-
old catches up with the current significance threshold -for
the non-deferred coefficients. At this point, processing re-
sumes where it left off when the scale jump occurred. This



sequence of events is repeated for each scale jump, until the
desired final bit rate is reached.

Figure 2. MSPIHT-compressed image at 0.02,
0.09, and 0.30 bpp.

Note that at any given point in the progression, no bits
are spent to describe coefficients from scales finer than the
current one. When the full scale is reached and the coeffi-
cients on the deferred list are processed, the distortion and
bit rate at that point are precisely the same as for regular
SPIHT. Thus, no bit rate penalty is paid relative to SPIHT
for the spatial scalability.

3. Evaluation with Human Observers

Evaluation of image coders using PSNR is not useful for
algorithms with spatially scalable decoders. It is not ob-
vious how to compare two images of different sizes using
PSNR. However, the human observer evaluation framework
described in [1], in which coders are compared on the basis
of recognition bit rates, is well suited to this type of evalua-
tion.

Two experiments were performed. The objective of ex-
periment 1 was to compare SPIHT with MSPIHT, and to
determine a scale schedule for MSPIHT which performed
well. The goal of experiment 2 was to gain some under-
standing of the causes for MSPIHT s improved recognition
performance, noted during experiment 1.
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3.1 Comparison of Scale Schedules

For experiment 1, three MSPIHT scale schedules (A, B,
C) were prepared (see Figure 3). The experimental proce-
dure for comparing algorithms was similar to [1]. A series
of 120 images were displayed progressively to each of 20
observers. Before each image was shown, a question about
the image was displayed. While watching the progression,
as soon as the observer was reasonably confident that she
could correctly answer the question, she hit a key to halt the
progression. The bit rate was recorded for each response, as
well as whether the correct answer was given.

MSPIHT-A MSPIHT-B MSPIHT-C
Starting scale 1/4 scale 1/2 scale 1/4 scale
Jump to 1/2 scale 0.04 bpp 0 bpp skipped
Jump to full scale 0.10 bpp 0.10 bpp 0.06 bpp

Figure 3. Scale schedules used for testing
MSPIHT.

Two recognition tasks were included in the experiment.
In the first, the observer was asked, “Do you see ani-
mals or vehicles in the image?” These images contained
a wide range of animals and vehicles in various settings,
e.g., forests, underwater, and urban surroundings. The task
was intended to represent natural image recognition tasks,
particularly those answerable in the lower bit rate ranges. In
the second task, each image contained a single lower-case
letter in a common font, partially concealed in a variety of
noisy and smooth artificial backgrounds. The letters were
in three sizes. The observer was asked to identify the letter.
This simplified stimulus set was intended to limit the recog-
nition cues available to the observer, and allow comparison
of recognition bit rates for stimuli of different sizes.

The images were presented in a different random or-
der for each observer, and each observer saw a given im-
age only once. The algorithm used to compress image j
for observer ¢ was selected randomly, subject to the con-
straint that, for the entire experiment, an equal number of
images were compressed by each algorithm. Images were
displayed on a 20” moniter, in a single window against a
solid background. In order to simulate natural office view-
ing conditions, the viewing distance was not constrained.

Response bit rates averaged over all observers are pre-
sented in Figure 4. Averages were computed for each al-
gorithm over the sets of 1) all images, 2) animal/vehicle
images and 3) letter images. In all cases, SPIHT aver-
aged the slowest recognition (highest bit rates). For the



animal/vehicle set, MSPIHT-C yielded an average recog-
nition bit rate 27.9% lower than SPIHT. For the letter set,
MSPIHT-C yielded an average recognition bit rate 25.3%
lower than SPIHT. For both sets together, MSPIHT-C per-
formed 26.3% better than SPIHT.

MSPIHT-A MSPIHT-B MSPIHT-C SPIHT
All images 0.0671 0.0751
Animals/Vehicles 0.0603 0.0607
Letters 0.0740 0.0896

Figure 4. Arithmetic mean of recognition bit
rates for each algorithm, in bpp. Best perfor-
mance for each image type is shaded.

3.2 Comparison of MSPIHT, SPIHT and down-
sampled SPTHT

The results of experiment 1 indicate that MSPIHT allows
earlier recognition than SPIHT for several types of images.
The amount of improvement depends on the scale schedule
employed. We now focus on the potential causes for this
improvement. Did observers recognize objects earlier using
MSPIHT because MSPIHT defers visually unusable fine-
scale information until later, allowing more precise coarse-
scale information to be transmitted first? Or was it instead
because the objects in the images were seen first at a small
size, more suited for rapid recognition by the eye? For ex-
ample, images contained within the 5.2 degree foveal field
might require little eye movement, allowing earlier recogni-
tion. Whereas for a large image, the eye has to scan around
over the image field, which might slow recognition. If a
combination of both effects was responsible, which effect
predominated?

A second experiment was performed to investigate these
questions. For this experiment, the image sequences pro-
cessed by SPIHT were downsampled by block averag-
ing to match the image sizes produced by the MSPIHT-C
scale schedule (judged to be the best schedule tested for
MSPIHT). These sequences of downsampled SPIHT im-
ages allowed us to test the psychovisual hypothesis de-
scribed above. Since the transmitted bitstream for these im-
ages was not reordered to defer high frequency information,
any advantage the images might yield in recognition bit rate
was likely to be due primarily to psychophysical effects re-
lated to the size of the objects displayed.

Experiment 2 compared SPIHT, MSPIHT-C, and down-
sampled SPIHT. The same 120 images were displayed pro-
gressively to each of 21 new observers, and the same ques-
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tions were posed as in experiment 1. The bit rate and cor-
rectness of each response were recorded. A preliminary
analysis of the response bit rates suggested they were drawn
from an approximately log-normal distribution. Accord-
ingly, the log of bit rates were used to allow normal the-
ory analysis. The geometric mean of response: bit rates
was determined for each of the three algorithms in exper-
iment 2. These means were determined by fitting the data
to a mixed effects-linear model with random effects given
by the images and observers, and a fixed effect recording
the algorithm used to compress each image. Model fit-
ting was carried out using the Splus function varcomp
[5]. A difference-of-means analysis was performed for each
pairing of the geometric means 7y sprgT—C, rsprgT and
TDownsampled_SPIHT- As seen in Figure 5, both MSPIHT-
C and downsampled SPIHT outperformed SPIHT with 5%
statistical significance in terms of mean response bit rates.
The difference between the mean bit rates of MSPIHT-
C and downsampled SPIHT, however, was not significant.
This was the case for all images taken together, as well as
for each of the subtypes tested, i.e., images of animals, ve-
hicles, and images of letters in three different sizes.
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Figure 5. Difference of mean log bit rate for
each pair of algorithms.

3.3 Analysis of Observer Mistakes

An analysis was performed to determine the relationship,
if any, of each of the compression algorithms with the inci-
dence of observer mistakes, i.e., responses for which the
answer given was incorrect. Two questions of interest were,
first, whether the incorrect responses could have influenced
the overail performance conclusion, and second, whether
any of the algorithms led observers to make more incorrect
responses than the others.

To answer the first question, the difference of means test
was repeated after removing from consideration all images



for which any observer had provided an incorrect response
(52 of the 120). This shifted the difference-of-means statis-
tics slightly for each algorithm pair, but did not alter the
overall conclusions as to relative performance of the algo-
rithms.

Next, the error rates for each algorithm — the percent of
total responses that were incorrect — were examined. The
error rate for SPIHT was 4.5%; it was 6.8% for MSPIHT-C,
and 8.5% for downsampled SPIHT. A two-tailed Wilcoxon
signed rank test on paired error counts revealed that both
MSPIHT-C and downsampled SPIHT yielded significantly
more errors than SPIHT, but the difference in error counts
between MSPIHT-C and downsampled SPIHT was not sig-
nificant. Finally, by including a fixed effect for response
correctness in the difference-of-means analysis described
above, it was seen that both MSPIHT-C and downsampled
SPIHT remained significantly faster than SPIHT in terms
of recognition performance, even when their greater error
rates were taken into account.

4. Conclusions

We note that the SPIHT algorithm can be made spa-
tially scalable without any loss in progressivity or in per-
formance, and that this spatially scalable version allows im-
age recognition at lower bit rates for the recognition tasks
we tested. Faster recognition was also obtained by down-
sampling the images produced by SPIHT to the same scales
as were chosen for MSPIHT-C’s scale schedule. No sig-
nificant difference in recognition performance or error rates
was found between MSPIHT-C and downsampled SPIHT.
This appears to indicate that the performance advantage en-
joyed by these two methods is primarily due to psychophys-
ical effects related to image size, rather than to the bitstream
reordering employed by MSPIHT.

The performance improvement for MSPIHT and down-
sampled SPIHT is substantial for the images and tasks stud-
ied: recognition bit rates averaged more than 26% lower for
MSPIHT-C than for SPIHT. This can translate directly into
an equivalent savings in storage space, or in transmission
bandwidth, given that the goal is content recognition rather
than maintaining perfect fidelity.

An embedded, spatially scalable image compression
method such as either MSPIHT-C or downsampled SPIHT
provides several important benefits:

o Since the algorithm is embedded, the information
needed to reconstruct a given scale is contained within
the bit stream for all finer scales. No information need
be stored or transmitted twice.

o Rather than being limited to a single thumbnail fol-
lowed by the full-scale version, the image may be dis-
played at several successive scales as more bits arrive.
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o When used with an appropriate scale schedule, a sub-
stantial improvement over traditional full-scale pro-
gressive methods, in terms of recognition bit rates, can
be realized.

Several questions present interesting targets for further
study. First, which specific psychophysical effects are re-
sponsible for the improved recognition performance of spa-
tially scalable algorithms? Such effects might include the
presence of the entire object to be recognized within the
foveal field, or the perceived sharpness or clarity of signif-
icant edges belonging to the recognized object. Second, is
there an optimal size at which objects should be displayed
first by an image coder in order to obtain maximum recog-
nition performance? Finally, why do the better-performing
scalable methods also appear to cause a higher incidence
of observer errors? Answers to this question might suggest
modifications to spatially scalable compression algorithms
which could mitigate this effect.
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