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Abstract 

 

 

Complex 3D biological-physical models are becoming widely used in marine and 

freshwater ecology.  These models are highly valued synthesizing tools because they 

provide insights into complex dynamics that are difficult to understand using purely 

empirical methods or theoretical analytical models.  A particular interest has been 

incorporation of concentration-based copepod population dynamics into 3D physical 

transport models.  These physical models typically have large numbers of grid points and 

therefore require a simplified biological model.  However, concentration-based copepod 

models have used a fine resolution age-stage structure to prevent artificially short 

generation times, known as numerical “diffusion”.  This increased resolution has 

precluded use of age-stage structured copepod models in 3D physical models due to 

computational constraints.  In this paper, we describe a new method, which tracks the 

mean-age of each life stage instead of using age-classes within each stage.  We then 

compare this model to previous age-stage structured models. A probability model is 

developed with the molting rate derived from the mean age of the population and the 

probability density function (PDF) of molting. The effects of temperature and mortality 

on copepod population dynamics are also discussed. The mean-age method effectively 

removes the numerical diffusion problem and reproduces observed median development 

times (MDTs) without the need for a high-resolution age-stage structure.   Thus it is well-

suited for finding solutions of concentration-based zooplankton models in complex 

biological-physical models.  
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INTRODUCTION: 

 

Copepods are the dominant mesozooplankton in the ocean, accounting on average for 

75% of the numbers and biomass collected in a 0.333 mm mesh plankton net (Longhurst 

et al. 1966).  Copepods also are often dominant in freshwater systems, competing with 

cladocera for resources.  These organisms are well-known consumers of primary 

production and of protozoa in the microbial food web and are the dominant prey of many 

important animals including fish larvae. 

 

In order to quantify the complex underlying biological-physical mechanisms controlling 

abundance and distribution of copepods in aquatic environments, numerical modeling has 

proven to be an excellent tool (Runge et al. 2004).  A large number of models have been 

developed for quantifying copepod population dynamics, including stage-structured 

models (e.g.,Wroblewski, 1980; Gaedke, 1990; Plaganyi et al., 1999).  A well known 

problem with these simplified structured copepod population models is “temporal 

numerical diffusion”.  This problem is due to insufficient resolution of the population 

structure on time-scales of the temporal forcing, leading to artificially short generation 

times (Davis, 1984a).  To overcome this numerical diffusion problem, copepod 

population models have been developed that contain numerous age-classes within each 

life stage (Davis, 1984a, b; Sciandra, 1986; Carlott & Sciandra, 1989; Miller & Tande, 

1993; Souissi & Nival, 1997).   

 

Although the age-within-stage models significantly reduce or eliminate the numerical 

diffusion problem, the price paid is relatively high. The number of age-classes within 

each developmental stages needs to be matched to the laboratory experiment results. The 

model is not likely transportable from one species to another. The number of age-classes 

is depended on the time-step used in the model, thus it cannot be greatly reduced without 

losing the biological resolution of the model.  More recently, Gurney et al. (2001) 

proposed an alternative approach. They divided the whole life cycle into normalized 

classes. All the physiological stages are then made up by multiple classes (2-10). They 

showed that their model can effectively eliminate the numerical diffusion with less 
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number of classes (~100). Unfortunately, their approach is only a special case of the age-

within-stage model. It is thus not as novel as they claimed. The ability to reduce the 

number of classes for their approach comes from ignoring the individual variability.  

If we disregard the individual variability in age-within-stage model, lots of the age-

classes will never to use thus can be discarded. When we stack the age-class into one age 

vector, we end up the same model as Gurney et al. (2001) described.   
 

Speirs et al. (2004, 2005) successfully applied Gurney’s model to Calanus finmarchicus. 

They showed that they could further reduce the number of classes in their model by 

integrating the physical model.  However decreasing the number of state variables to 

reduce computational time comes from a reduction of the spatial and temporal resolution.  

Nevertheless, their modeling results indirectly supported that the spatial numerical 

diffusion due to mixing and advection is less important than the temporal numerical 

diffusion.  

 

 Numerical diffusion is a serious problem in copepod models and cannot be ignored 

(Souissi and Ban, 2001; Runge et al., 2004). Although age-within-stage models and their 

alternatives are able to reduce or eliminate the numerical diffusion problem, the use of 

such detailed age-stage structure is problematic when coupling it to 3D biological-

physical models, which typically have very large numbers of 3D grid points (Runge et 

al., 2004).  For example, combining a structured copepod model containing 200 age-stage 

classes (e.g., Davis 1984a) with a physical model containing 106 grid points and a time 

step of a few minutes (e.g., FVCOM, Chen et al., 2004) leads to serious computational 

limitations on present day computers.  We currently are modeling the 3D spatial patterns 

of dominant copepod species in the Gulf of Maine-Georges Bank region as part of the 

synthesis phase of the U.S. GLOBEC program (GLOBEC, 1994).  

 

 In testing various model formulations, we have created a new method for preventing 

artificial numerical diffusion in copepod models without the need to include age-classes 

within each stage.  This method simply uses the mean-age of each life stage and can be 

applied to 13-stage models as well as aggregated models (e.g., eggs-nauplii-copepodids-
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adults, ENCA).  The following sections describe the problem of the temporal numerical 

diffusion, the use of age-classes within stages to prevent it, the formulation of the mean-

age stage model, and a comparison of the new model with the previous age-within-stage 

models.  We also test the mean-age model with temperature-dependent molting and 

stage-dependent mortality. 

 

MODELS 

In this section, we define three kinds of population models that  will be compared. First, 

the full age-within-stage model has a very detailed representation of the biological 

structure, resolving both the stage structure and the age distribution within each stage. 

Second, simplified life-stage models are developed using a traditional approach to group 

the copepod life cycle into major stages (ENCA and 13-stage model). Third, a simplified 

mean-age model only utilizing the mean age within each stage is developed.  

 

 

Full age-within-stage model 

   We first describe the full age-within-stage model developed for the copepod 

Pseudocalanus in Davis (1984a, b). The state variables are ni,k, the number of individuals 

which have been in stage i for k days. It evolves according to the following governing 

equations,  

Molting, 

   (1a) 

Not Molting, 

  

  (1b)   

 

New eggs produced, 
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   (1c) 

 

 where t is time (model time step dt is 1 day), Mi,k is the probability of molting from stage 

i age k to stage i+1 age 0, determined from a cumulative normal distribution function 

with mean equal to the mean stage duration and standard deviation equal to 10% of the 

mean. Ki is the number of age classes in stage i and is 10 for each stage from 1 to 12 and 

80 for adult, giving a total of 200 age-stage classes. The survival rate Si is assumed to be 

stage-dependent, while the egg production rate Fk declines as the adults age. For 

demonstration purposes, the exact form of F or S is not critical, since we are focusing on 

the differences in the treatment of age-dependent molting rate between models.  In 

principle, all of these rates may vary with time, but again, for demonstration purposes, we 

shall keep them fixed. The number molting to adult (i.e., the right hand side of equation 1 

for i=13) was reduced by a factor of 1/2 to represent a rapid die-off of males in order to 

approximate the observed adult female to male ratio in Pseudocalanus of 10:1. 

 

  The full model given above can be rewritten into a population matrix form for any given 

age/stage: 

nt+1 = Lt nt  (2) 

  where the population structure n is a vector which concatenates the various ages and 

stages into one column, and Lt is a population transition matrix, which includes all the 

molting, mortality and fertility coefficients. 

 

 

Life-stage models: ENCA and 13-stage model 

Solutions to the full model were compared with two simplified models to show the 

problems of numerical diffusion. In the simplest model (ENCA), individuals are grouped 

into four stages: eggs, nauplii, copepodids, and adults. An intermediate model containing 

all 13 life stages but no ages within stages also was examined. These models have the 

basic population matrix form: 

å
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 (3) 

 

where Mi and Si are probabilities of molting and survival, respectively, from stage i to 

stage i+1, s is the total number of life stages in the model, and F is egg production rate 

per female (i.e., fertility) .  

 

Mean-age model 

Simplification of the full model to the mean-age model involves two major steps. First, 

instead of tracking numerous age-classes within each stage, only the mean age of the 

population within each stage is used. Then, probabilistic density functions are developed 

to model molting process, and mean age of each stage is used to index these probabilistic 

molting functions. The mean age of the population in each stage, i, is updated as follows.  

If i=1,  

,    (4a) 

else, 

.    (4b) 

 

Here ki,t is the mean age of the population in the ith  stage at time t, et+dt  is the number of 

new eggs produced at time t+dt, ni,t is the number of individuals in the ith stage at time t, 

and Mi(ki,t) is the molting rate of the individuals from the stage i, mean age ki,t  to stage 

i+1, mean age 0. The molting rate Mi( ki,t ) is obtained from a simplified probability 

model. Assume the probability density function (PDF) of molting at stage i is pi(k), and 

its cumulative function is Pi(k), the corrected molting rate Mi(k) can be calculated as (Hu 

et al. submitted),  
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.     (5) 

 

This corrected molting rate Mi(k) is a function of age k, and is monotonically increasing. 

The mean age ki,t is used to index the molting rate Mi(k) to obtain the molting rate of 

individuals in the ith stage of mean-age k at time t.  We approximated the PDFs, pi(k), 

with a piece-wise linear functions, which allowed us to easily and quickly calculate the 

corrected molting rate function Mi(k). The only parameters used to model the PDFs were 

the mean stage durations and theirs standard deviations.  

 

SIMULATIONS 

  

The numerical diffusion problem: an example 

The effect of numerical diffusion in copepod models is easily seen by comparing 

numerical solutions of a 4-stage model (ENCA), a 13-stage model, and a 200-age-stage 

model, each having the same mean stage durations (Fig. 1). All the models were started 

with 100 eggs at t=1 and evolved according to the molting rates calculated from the mean 

stage durations. The molting rates of both the ENCA and the 13-stage models were fixed 

for each stage, and they were inversely proportional to the mean stage duration. The 

molting rate formulation in the 200 age-within-stage model is given in Equations 1a, b. 

 

This type numerical diffusion is due to that the biological model has no metric to keep 

track the age of cohort. The molting rate is set constant and it is usually one over the 

median stage duration time. As a result, a small portion of animals will be molted much 

earlier than biologically possible. On the other hand, a significant portion will remain in 

one stage much longer than median stage duration time. The artificially shorten duration 

time portion of the animals has been paid more attention because they will greatly shorten 

the turn over time in the multiple generations. The effect of lagged animals has not paid 

too much attention because most of these animals cannot make to adult due to mortality.  

 

Both the ENCA and the 13-stage models had substantial early molting, which is seen in 

the leading edge of the curve for each life stage compared to the corresponding curves 

))(1/()()( kPkpkM iii -=



 9 

forthe 200 age-within-stage model (Fig. 1). There also is significant delayed molting in 

the  simpler models as evidenced by the trailing edge of the curves for each life stage 

(Fig. 1). These effects are the result of the numerical diffusion caused by insufficient 

resolution in the age-stage structure.   

 

Grouping the life stages as a process of convolution    

 

Soussi and Ban (2001) examined the effect of aggregating life stages in copepod 

population dynamics models. They suggested the difference between the aggregated 

stage model and a finer resolution stage model was due to the difference in mortality 

among stages. We found, however, such a discrepancy can be explained by molting 

alone. Since the effect of grouping two life stages into one life stage in a model is 

equivalent to the convolution of the PDFs of these two stages, the resulting PDF can be 

used as the molting function for the combined stage (Bertsekas & Tsitsiklis 2002).  

We examined the PDFs from Soussi and Ban (2001, their Table I, EXP1) and computed 

the convolutions.  Ideally, the convolution of the two PDFs for N1-N3 and N4-N6 should 

be equal to the experimentally observed PDF for n1-n6, because they describe the same 

random process. In practice, these curves can differ for two reasons. First, due to the 

small number of individuals monitored in the laboratory experiments, both sampling error 

and parameter fitting error could cause the difference between these two PDFs.  Second, 

due to the nature of experiments in which copepods are individually reared, all the PDFs 

of molting for different stages are estimated from the same individuals raised from eggs 

to adults. Thus the PDFs of the different stages are not independent.  However, in the 

population model, the PDFs are assumed to be independent.  

 In order to explain the disagreement in the two model results in Soussi and Ban 

(2001, their Fig. 7), we compared the difference between two PDFs derived from their 

data (Fig. 2A, B). The solid and dot-dashed lines in Fig. 2A, B correspond to the solid 

and circled abundance curves, respectively, in Fig. 7B of Soussi and Ban (2001).  The 

leading edges of the PDFs for N1-N6 and C1-C5 rise earlier in the aggregated models 

than in the more detailed ones (Figs. 2A, B), explaining why the abundances of nauplii 

and copepodids in the more detailed model of Soussi and Ban (2001 Fig. 7B circled 
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curves SG1, SG2) decrease later than in their aggregated model (their solid curves). This 

causes the abundance of copepodids and adults in their more detailed model to rise later 

than in their aggregated model.     

The difference in copepod molting PDFs between aggregated and detailed models can 

therefore explain the difference in the model results of Soussi and Ban (2001), without 

the need for including a stage-specific mortality effect.   Mortality can also contribute to 

disagreement between detailed and aggregate models, but we found this effect was small 

(see below). 

 

Molting PDFs in the population model 

Although there have been numerous laboratory experiments conducted on different 

copepod species at different temperatures and food conditions, the correct formulation of 

the molting rate for use in population models has only recently been found (Hu et al., 

submitted).  The main problem has been in applying the molting PDF estimated from 

laboratory experiments to population models.  Models require probabilities of molting for 

the remaining population, while laboratory-derived molting PDFs are based on the initial 

population. Hu et al. proposed the following formula for the molting rate in the 

population model.  

,     (8) 

where  is the PDF from the laboratory experiments, and is the probability of 

molting for animals remaining in a given life stage at time t  (termed PMR in Hu et al., 

submitted) 

 

Mean-age model  

The main problem with stage-structured population models (e.g., ENCA or 13-stage) has 

been that age-within-stage was not considered. Without age information, the PDF cannot 

be used to correctly model copepod molting rate.  Instead, a fixed molting rate has been 

used, which causes numerical diffusion, resulting in artificially rapid development. The 

full age-within-stage model, on the other hand, requires so many state variables that it is 

not suitable for use in large 2D or 3D physical models.  We solved this dilemma by 
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developing a model that tracks the mean age of animals in each stage without the need for 

age-classes within the stages.  The mean-age of each stage enabled us to use a simple 

PDF to compute the molting rate for each stage.  We applied this approach to both ENCA 

and 13-stage models and present a comparison of the 4-stage (ENCA) mean-age model 

with the 200 age-within-stage model. 

 

As discussed above, the molting PDF in the 200 age-within-stage model was the normal 

distribution with a standard deviation of 10% of the mean.  For simplicity, the molting 

PDF in the ENCA-mean-age model was the uniform distribution. Both models used the 

corrected molting function, PMR, in Hu et al. (submitted).  The age-structure in the full 

model and the mean age in the ENCA-mean-age model were used as indices in their 

corresponding PMRs to calculate the appropriate molting rate at each time step.  

 

The life-stage curves for the ENCA-mean-age model were very similar to those produced 

by the 200 age-within-stage model (Fig. 3).  Comparing the solution of the mean-age-

ENCA model with that of the ENCA model (Fig. 1A) reveals that the mean-age 

formulation removes the effects of numerical diffusion almost entirely.  This result is 

remarkable considering that the ENCA-mean-age model only has 8 state variables 

(number of individuals and mean-age in each of the 4 stages) compared with the 200 state 

variables in the age-within-stage model.  The mean-age model had a slightly shorter 

median development time (MDT) than the age-within-stage model.  However, this 

difference is well within natural variation or laboratory experimental error. Table I 

summarizes the MDT of the model input (estimated from laboratory data) and the MDT 

of the model output. The difference in the MDT from egg to adult was less than 3.5 days 

among different models. Moreover, this error in MDT estimation by mean-age model 

came mainly from the fairly large time-step used (1 day). We show later in this section 

that, with a smaller time step in the model, the MDT can be predicted even more 

precisely (Table I). 

 

Mean-age model with mortality and varying temperature 
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We tested the robustness of the ENCA-mean-age model to variations in internal 

parameters by allowing temperature to vary in time and mortality to vary with life-stage 

(Fig. 4).  Again the numerical solutions of the ENCA-mean-age model were compared to 

the age-within-stage model, using stage-dependent mortality and an annual sinusoidal 

variation in temperature, 

.   (9) 

Mortality of eggs, nauplii, copepodites I-V, and adults were chosen as 0.1%, 5%, 1% and 

0.1% respectively (Davis 1984a, b).  The ENCA-mean-age model was found to 

successfully approximate the 200 age-within-stage model, even with addition of stage-

specific mortality and time-varying temperature (Fig. 4). The maximum difference of 

MDT between these two models was less than 1 day. At day 50, the proportion of adults 

was 36.38% and 36.82% for ENCA-mean age and full age-stage models, respectively.  

The relative difference in population size over one generation between the two models is 

only 1.2%.  

 

Effect of variable egg input 

We examined the response of the ENCA-mean-age model to a gradual input of the initial 

population of eggs (instead of starting with 100 eggs at t=0).  The input of eggs was 

normally distributed according to the following functions, 

 ,     (10a) 

  (10b) 

where t is time in days. The maximum rate of egg input in 1 day was 15 eggs/day at day 8 

in Eq. 10a . There were two peaks from 30 days apart in Eq. 10b. Each peak had a 

maximum rate of egg input in 1day of 15 eggs/day at day 8 and day 38 respectively. The 

responses of the ENCA-mean-age model and the age-within-stage model were very close 

to each other (Fig. 5a,b).  For the single peak of egg input (Fig. 5a), the maximal 

difference in MDT is less than 2.5 days. Although the maximal difference in MDT is 

more than 10 days for the two peak of egg input case (Fig. 5b), the mean-age model still 

captures two cohorts very well. Because the abundance curve of age-within-stage model 

around MDT is rather flat, we believe the MDT is not the best indicator to compare these 
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two models. The ENCA-mean-age model had a much longer  duration time compared to 

single egg input (Fig. 4), which was caused by mixing new eggs into the older than to 

reduce the mean-age of eggs. It is more evident that the time of first molting was delayed 

substantially in the mean-age model, which could be seen from much higher of maximum 

egg abundance and much later time of the first naplii (cf. Fig.4 and Figs 5a,b). 

Nevertheless, this mixing effect on the overall performance of mean-age model was not 

significant.For the simple peak egg input, at day 72, the adults were 35.39 and 37.52 for 

ENCA-mean age and full age-stage models respectively. The relative difference in 

population size over one generation between the two models is less than 6% (Fig. 5a).  If 

this holds for multiple generations, the relative difference over 5 generations is less than 

27%.  Likely wise, for the double peak egg input, at day, the relative difference in the 

population size at day 110 between these two models is 7.4% (Fig. 5b). If this holds for 

mulyiple generations, the relative difference over 3 generations is less than 22%.  

 

More complicated PDFs 

We also investigated the difference between a simple PDF (uniform) and a complex PDF 

(normal) in the ENCA-mean-age model (Fig. 6). The time step used in these models was 

1 day. We can see clearly that the MDT predicted from the models was very close to 

estimates from laboratory experiments (cf. Table I).  There were only subtle differences 

between the normal distribution and the uniform distribution models at the leading and 

trailing edge of the moving cohort (Fig. 6).  For the purpose of modeling population 

dynamics, we found a simple PDF was sufficient and much faster to compute. 

Time step of the mean-age model 

The time step in the mean-age model plays an important role in modeling development in 

the population dynamics model. We cannot use a fine time step in the difference equation 

for the full age-within-age model, because it will introduce too many state variables. For 

example, halving the time step in the 200 age-within-stage model yields 400 age-stage 

classes.  However, in the mean-age model, since we only tracked the mean age of each 

stage, using a fine time step did not introduce any extra state variables. The time step 

problem is more pronounced in a model with more life stages than it is in an aggregated 

model, because the difference between the median stage duration (MSD) and time step 
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becomes smaller.  In an extreme case, when the MSD is less than or close to the time 

step, the error in MSD is unavoidable.  Usually, the error in MSD is less than 1 time step 

for each developmental stage. We compared the 13-stage mean-age model with a time 

step of 1 day to the same model with a time step of 0.1 day (Fig. 7).  We found the fine 

time step model had a more accurate MDT (cf., Table I).  Since the time-step in coupled 

biological-physical models is usually <<1 d, the mean-age model provides an excellent 

approximation to the age-within-stage model without the associated memory and 

computational cost. 

 

DISCUSSION 

 

We developed a mean-age formulation that largely eliminates the effect of numerical 

diffusion in copepod population models, while increasing the number of state variables 

only by a factor of 2 over stage-only models.  The mean-age formulation is significant, 

because it allows concentration-based copepod models to be used in 3D physical models, 

without the large inaccuracies caused by numerical diffusion.  Previously, age-within-

stage models have been used to prevent numerical diffusion, but the number of state 

variables in these models is over an order of magnitude greater than in the corresponding 

stage-only models, precluding their use in 3D physical models for computational reasons.  

 

In this paper, we assumed that the median stage duration or MSD was known from the 

laboratory experiments and that they were accurate. Our model was able to predict these 

times using a very simple molting PDF.  It was previously thought that a more 

complicated PDF was necessary to model the molting rate (e.g., gamma distribution).  A 

simple uniform PDF, in combination with the mean-age formulation, yields an accurate 

yet simplified concentration-based copepod population model.  

 

We found that the grouping of intermediate stages was equivalent to the mathematical 

convolution of their molting PDFs .  We demonstrated that such a model was not 

sensitive to important variations in the population dynamics, such as temperature-

dependent development, stage-specific mortality, and temporally varying input to the 
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population.  Moreover, by tracking the mean-age of each stage, it is possible to 

incorporate age-dependent mortality into the model instead of using fixed stage-specific 

mortality as previous stage-only models have done. 

 

The final result is an accurate copepod population model that is simple enough to use in 

spatially complex 3D biological-physical models.  We presently are incorporating this 

model into a 3D biological-physical model of dominant copepod species in the Georges 

Bank-Gulf of Maine region as part of the U.S. GLOBEC Northwest Atlantic program.  

More generally, the simple formulation presented here will allow broader use of 

concentration-based copepod models and their incorporation into physical models. 

 

The main error source of mean-age model compared to age-within-stage model comes 

from mixing of two different population structures. Due to the nature of mean-age model, 

only mean age of each developmental stage is recorded. When two populations with very 

different age structure get mixed, the mean-age model will make the younger group older 

than it is and old group younger than it is.  Figs. 5a, b clearly illustrates such an effect. 

The performance of mean-age model in these cases is not as good as that of in the cases 

of a single cohort example in rest of the paper. Fortunately, the mixing problem will not 

be so severe in the real ocean environment for the following two reasons: 1) the 

population structures being mixed in the neighboring water are very similar; 2) or, the 

populations being mixed are totally unbalanced.  The modeling work by Gurney et al. 

(2001) supports our argument because they showed that they could integrate the physical 

model into very coarse grid but still get a reasonable approximation. We are coupling this 

mean-age biological model with a 3-D physical model. We did not find that the mixing 

and advection were causing any problem in the coupled model. The detailed analysis of 

error due to mixing and advection in coupled model is likely to include in our next paper.  

 

 

One reason individual based models (IBMs) of copepods have been so widely used is that 

they can be easily coupled to a 3D transport model with minimal computational cost, 

whereas the concentration-based models (CBMs) for copepods could not.  The simple 
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mean-age copepod CBM developed here will allow wider use. CBMs of copepods can be 

naturally coupled with standard CBMs of food webs, such as the nutrient-phytoplankton-

zooplankton-detritus (NPZD) class of models, since both CBMs exist at the same model 

grid points.  In addition CBMs of copepods allow for reproduction, whereas IBMs have 

to reproduce more particles, which can cause computational limitations.  IBMs on the 

other hand can include important details that cannot be easily be incorporated in CBMs 

(e.g., weight, lipid content, genetics).  IBMs are necessarily sparse, with significant gaps 

developing during model runs, whereas the CBMs are continuous and can be better for 

computing budgets and determining for example whether a population is self-sustaining 

in a given region.  The combination of these two kinds of modeling tools provides a nice 

complementary approach for studying the processes controlling copepod species in the 

ocean. 
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Table and Fig. legends 

Table I MDTs of copepodite Pseudocalanus The expected values were obtained from 

laboratory-based estimates in Davis (1984a, b).TS – Time step used in the model.  

Uniform PDFs were used in all of mean-age models. The MDTs were estimated as the 

time when 50% of the cumulative population had past a given stage. 

  

 

Fig. 1 Simulated populations using (A) an ENCA model, (B) a 13-stage model and (C) a 

full age-within-stage model that were grouped into eggs (solid), nauplii (dash), 

copepodites I-V (dotted), and adults (dot-dash) stages for plotting. 

  

Fig. 2 The molting PDFs of nauplii (A) and copepodite (B). With the exception of the 

derived PDF, the data were taken from Soussi and Ban (2001). The dash dotted line and 

dotted line are the molting PDFs of life stages N1-N3 / C1-C3 and N4-N6 /C4-C5, 

respectively, from the laboratory experiment. The convolution of these two PDFs is 

shown as the dashed line at right. The solid line is the PDF for copepod stage N1-N6 / 

C1-C5 from the laboratory experiment. 

 

Fig. 3 Comparison results from the age-within-stage model (solid lines) and the ENCA-

mean-age model (dashed lines and diamonds). The time step is 1 d, temperature T 

=7.5°C, and mortality=0.  The curve for the age-within-stage model is identical to Fig. 

1C, with the 4 peaks corresponding to eggs, nauplii, copepodites, and adults. 

 

Fig. 4 Comparison of ENCA-mean-age (dashed lines and diamonds) and age-within-

stage (solid lines) models, with varying temperature and stage specific mortality. The 

time step is 1 d, temperature varies as sinusoidal function (Eqn. 9). The mortalities are 

0.001,0.05, 0.01 and 0.001 for eggs, nauplii, copepodites, and adults respectively. 
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Fig. 5 Comparison of ENCA-mean-age (dashed lines and diamonds) and age-within-

stage (solid lines) models, with varying temperature, stage specific mortality, and egg 

production turned on. The time step is 1 d, temperature and mortalities  used are same as 

Fig. 4. A) The egg production varies as a Gaussian function (Eqn. 10a, and B) The egg 

production varies as mixture of two Gaussian functions 10b).  

 

Fig. 6 Simulated populations using the ENCA-mean-age model with uniform (solid) and 

normal (dashed) PDFs for the molting rates. The time step was 1 d. 

 
Fig. 7 Simulated populations using the 13-stage mean-age model with time steps of 0.1 d 

(solid) and 1 d (dashed). 
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Table I  
 
Life stage MDT (Days) 

Expected Age-within-

stage model 

(TS = 1d) 

ENCA-mean-

age model  

(TS =1 d) 

13-stage mean-

age model  

(TS=1 d) 

13-stage mean-

age model 

(TS=0.1 d) 

Egg 4.34 4.58 4.53 4.66 4.37 

N1-N6 20.99 21.48 20.71 19.74 21.85 

C1-C5 42.71 43.08 41.21 39.71 42.48 
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Fig. 1A 
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Fig. 1B 
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Fig. 1C 
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Fig. 2A 
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Fig. 2B 
 

  
 
 
 
 
 

 



 26 

 
Fig. 3 
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Fig. 4 
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Fig. 5a 
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Fig. 5b 
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Fig. 6 
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Fig. 7 
 

 
 




