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ABSTRACT 

A simple, but realistic, model is used to theoretically investigate the 
longitudinal stability of a non-relativistic bunch in the limit of small wall 
resistivity compared to self-reactance. It is shown that to lowest order -­
and in contrast with an infinitely long beam -- that an intense bunch is 
stable against longitudinal' collective modes. It is concluded that an 
induction linac remains a viable option as a driver for heavy ion inertial 
fusion. 

PACS numbers: 41.70 +t, 29.15 Ot, 52.35 Py, 52.60 +h 
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Heavy ion inertial fusion is envisioned as having either an rf linac or an 
induction linac as a driver. The rf linac has its major current 
multiplication in storage rings and a short induction section at top energy, 
so as to reach the requisite power level. The manipulation of beams of 
particles in and, out of the storage rings, and their behavi6r while in the' 

, ' 

storage rings poses problems which must be overcome for this approach to prove 
practical. (See Reference 1, and references cited therein.) 

The induction linac, on the other hand, is envisioned as accelerating 
significant current (many hundreds of amperes) for lengths requisite to attain 
10 GeV (many kilometers). In this approach stability of an intense bunch of 
particles is essential; much effort has been de~ote~ to this subject. 2,1 

The requirement of transverse sta~ility puts restrictions on th~ linac which 
appears tolerable, but a significant question has surrounded the )ongitudinal 
motion. 

For a very long bunch it is easy to take the analysis which has been 
presented for circular machines and apply it to a linear, longitudinally 
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uniform structure. 3 Firstly, one notes that one is "below transition" or in 
a positive mass regime so that only in the presence of resistivity is there 
instability. One finds, for above threshold, that the e-folding length, 1, is 

given ~y: 

1-1 = (Rill ) [~4";':"Tr2~gL-2--r.-...,...........~ N 
o . (1+2 in (b/a») M • r • r p 

]

1/2 

where, 

II _ RI + iX I = the impedence per unit length 

NIL = line density of ions 

rp = classical proton radius 

lo = free-space impedence (or 377 ohms) 

q = degree of ionization of the ions 
. ~, 

Mp/M = mass of the ions in units of the proton mass 

Putting in RI = 200 ohmslmeter, q = 2, M 1M = 1/200,- NIL = 1015 /20 p I 

meters, bla = 1.5. Eq. (1) yields a length, 1, of 300 meters which is 
\ 

(1) 

uncomfortably short for a linac of the length required. Of course, one should 
not use the theory for long bunches. Nev~rtheless, the calculation just 
presented gives one pa~se about the use of an induction linac for heavy ion 
fusion. 

On the other hand, Kwang Je Kim has given a calculation for a finite bunch 
of uniform charge and wit'h a step-function distribution in momentum. 4 Here 
the modes are exactly the same as for an infinitely long beam; namely, for any 
wavenumber there is a growing wave going backwards (1n the beam frame) and a 
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damping wave going forward. The bunch provides boundary conditions which 
exactly match these'waves together so that there is no net growth •. 

Naturally 'a 'real bunch does not have uniform density up to sharp ends, and 
hence the optimistic results of Kim may be considerably modified. Just how much 
has been the subject of theoretical work and numerical simulation studies. 5 

Unfortunately, neither the analytic or numerical studies have yet answered the 
" 

question as to what growth to expect in a realistic bunch. 
In the work described here we prove that in lowest order in a variety of 

things, but for any finite bunch there is no net growth of a resistive 
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instability. In short, the result of Kim is very general. We shall detail 
the meaning of higher order, but clearly it implies a considerable increase of 
1. We conclude that a practical linear induction accelerator for fusion will 
not subject intense particle bunches to significant longitudinal instability 
and, hence, from this very important theoretical point of view the driver 
remains a viable and interesting possibility. 

The ions, which are collisionless, are described by the non-relativistic 
(it is possible to remove this restriction) non-linear Vlasov equation 

(h- + v :z + ~ E :v ) f(z, v, t) = 0 , (2 ) 

where z is the longitudinal coordinate, v is the velocity associated with the 
z coordinate, e is the proton charge, t is the time and the ion distribution 
function is the unknown f. The longitudinal electric field consists of an 
applied field, EA, and a functional Es{n] of the line charge density 
n(z,t) where 

n(z, t) = /f(Z, v, t)dv , (3 ) 

We shall obtain an integral equation for the perturbed charge density and, 
finally after a number of assumptions, a differential equation for the Laplace 

transform (in time) of the perturbed charge density. 
First we see that a stationary distribution fo(Z' v) satisfies 

(v :z +~ (EA + Es (nol):v) fo (z, v) = 0 

where n is the charge density associated with f. We linearize the o 0 
Vlasov equation, Eq. (2), and obtain for the perturbed distribution function 
f l , and its associated charge density n~: 

af l af l ne 
-. +V-+..::L::. at az M ( ~

afl e afo 
E + E {n } - = - ~ E {n }-A s 0 av M slav 

We can formally integrate Eq. (3) over unperturbed orbits gi vi ng 

f1(z, v, t) = J - qFi /~t'//dZ'dV' G(z', v', t', z, v, t) 
o 

Es{n l (Zll, tll)}~V fo (Zl, Vi) , 
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(4 ) 

(5 ) 

(6 ) 



where Es is evaluated at z' and t', J is the initial value term and G is 

G(z', v', t', z, v, t) =. (z - zorbit (t'))' (v - VOrbit(t')) • (7) 

The unperturbed orbits are described by zorbit and sati~fy the boundary 
conditions that zorbit is z' at t' = t. Laplace transforming in time and 
then integrating over velocity we obtain an equation for the eigenmodes once 
we drop the initial value term. Thus we obtain 

"l(z, s) = - ~ !dZ'dV'dV S(z', v', z, v, ,S) [sj"l(Z-, S")rfo(:~; z') 

where we have indicated Laplace transform quantities with a tilde and we have 
used the fact that G and E are functions only of time differences. Eq. (8) ,s . 
is the desired integral equation for the perturbed line charge density. 

We now assume that the ions are unaffected by the unperturbed E field, 
which is true to'first approximation, but not generally. This is equivalent 
to ignoring synchrotron motion in fo and is a valid approximation in 
practice. That is, we take 

G(z', v', t'; z, v, t) = 6(V - v') 6(Z - z' - v'(t - t')) (9 ) 

We also ignore thermal velocities in the equilibrium distribution; i.e. we take 

(10 ) 

In addition we specify the form o,f E. We take, with E = EA + Es ' firstly, 

( 11) 

where Vo is the synchrotron oscillation frequency in the absence of space 
charge and the constant c is related to a phase shift in the applied voltage 
taken so that in the presence of resistivity the bunch moves at constant 
speed. Secondly, we take3 

an E = -q e g -- - R' VB n q e s· az (12) 

4 

(8 ) 
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where the geometrical factors, g, is approximately, given a beam of radius a 
in a conducting tube of radius b: 

g= (l +2R.n b/a). (13) 

The term in n is due to resistivity, and VB is the bunch average speed. 
This form for Es is only valid, for complicated finite bunch modes, 

under special circumstances. In general our analysis must be done in the 
bunch frame (so as to obtain a dispersion relation), while boundary conditions 
relating E and I are only simple for oscillatory in time modes in the 
laboratory frame (Leontovich boundary conditions). The transformations back 
and forth bring corrections to Eq. (12). 

With these forms for E, and the assumptions of Eqs. (9) and (lO), Eq. (8) 
, 

takes the form: 

(qe)2 ( dno{z) 
+ ~ g dz + R' 

s) = 0 (14) 

Eq. (14) is our desired differential equation for the Laplace transformed 
- 6 perturbed charge density nl (z, s). For abeam of uniform charge we can 

immediately solve Eq. (14) and find that 

- ikz nl{z,s)-e , (15) 

with a quadratic to be solved for s. The real part of s is, for (R'/X ' ) « 1, 

R'V ' ~n 
Re s·= -' _B (qe) ....Q; 

, 2 Mg 

in agreement with Eq. (1) when it is recalled that the impedance per unit 
length is defined throu~h E = -Z'I so that for ~l given by Eq. (15) the 
reactance per unit length, XI, is given by XI = kg/VB. 

(16) 

We are now in· a position to do a perturbation analysis for (R'/X ' ) « 1 on 
Eq. (14) and Eq. (4). Expanding these two equations leads to a form for 
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Eq. (14) which can be written as 

( 17) 

where the operators Mo and Ml are: 

(18) 

(19 ) 

and n is the correction in the equilibrium n(z), given by Eq. (4), due 
01 . 0 

to R I. 

Since Mo is of self-adjoint form we obtain from perturbation theory that 

(20) 

where "n is the n!h mode of 

(21 ) 

It is easy to see that from Eq. (20) we r~-derive Eq. (16), and hence Eq. (1),· 
with a bunch that is infinite in extent. We can show, employing perturbation 
theory, that if no is even then no1 is odd and hence that Ml is odd. For 
non-degenerate eigenvalues sand n (z) zero outside, but not inside, a no· 
finite domain it is clear that nn is of definite parity. It follows,from 
Eq. (20), that 6Sn is zero. 

This completes our proof. It is also possible ~- and this will be 
described elsewhere (along with details of the work reported here) -~ to 
explore corrections to the theorem. We have computed them explicitly and find 
as. expected that the growth distance is greatly increased over that given by 

Eq. (1). 
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