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A B S T R A C T 

We present the first detection of the baryon acoustic oscillations (BAOs) signal obtained using unblinded data collected during 

the initial 2 months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). From a selected 

sample of 261 291 luminous red galaxies spanning the redshift interval 0.4 < z < 1.1 and co v ering 1651 square degrees with a 
57.9 per cent completeness level, we report a ∼5 σ level BAO detection and the measurement of the BAO location at a precision 

of 1.7 per cent. Using a bright galaxy sample of 109 523 galaxies in the redshift range 0.1 < z < 0.5, o v er 3677 square degrees 
with a 50.0 per cent completeness, we also detect the BAO feature at ∼3 σ significance with a 2.6 per cent precision. These first 
BAO measurements represent an important milestone, acting as a quality control on the optimal performance of the complex 

robotically actuated, fibre-fed DESI spectrograph, as well as an early validation of the DESI spectroscopic pipeline and data 
management system. Based on these first promising results, we forecast that DESI is on target to achieve a high-significance 
BAO detection at sub-per cent precision with the completed 5-yr surv e y data, meeting the top-level science requirements on BAO 

measurements. This e xquisite lev el of precision will set new standards in cosmology and confirm DESI as the most competitive 
BAO experiment for the remainder of this decade. 

Key words: galaxies: statistics – cosmology: large-scale structure of Uni verse, observ ations, dark energy – methods: data 
analysis, statistical. 
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 I N T RO D U C T I O N  

he precise measurement of the expansion history of the Universe
emains one of the key challenges in modern cosmology, and
epresents a compelling probe of the nature of dark energy (DE). The
istance–redshift relation o v er a wide redshift range tests whether the
ccelerated expansion is consistent with a cosmological constant ( � )
r requires a dynamical explanation. It is also an important constraint
n the growth rate of structures, allowing precise probes of gravity
 E-mail: graziano@sejong.ac.kr (GR); jmoon@mpe.mpg.de (JM) 
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Pub
n cosmological scales, and on the Hubble constant, shedding light
n the source of the ‘Hubble tension’ as coming either from as-
et unappreciated astrophysical systematics or new physics. Finally,
t breaks cosmological parameter degeneracies in, e.g. neutrino

ass measurements. Recent results from state-of-the-art experiments
av e pro vided highly accurate constraints on the basic parameters
f the standard spatially flat Lambda cold dark matter ( � CDM)
osmological model, dominated by collisionless CDM and a DE
omponent in the form of � (Planck Collaboration VI 2020 ; eBOSS
ollaboration 2021 ; Dark Energy Surv e y Collaboration 2022 ). 
The baryon acoustic oscillation (BAO) method is one of the most
ature and robust probes of expansion history. Acoustic oscillations
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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n the early pre-recombination Universe imprint a feature in the 
alaxy distribution at a scale ( r d ) set by the sound horizon e v aluated
t the drag epoch. The physics of these oscillations and the scale
f this feature (which constitutes a fundamental standard ruler) are 
xquisitely calibrated by cosmic microwave background measure- 
ents. Furthermore, the scale of the sound horizon is much bigger 

han the scale of physics of non-linear structure formation and galaxy 
iasing, making it robust to the subsequent evolution of the Universe; 
or a re vie w on BAO, see Weinberg et al. ( 2013 ) and references
herein. The apparent size of this standard ruler across and along 
he line of sight (LOS) characterizes the angular diameter distance 
 D A ) and the Hubble parameter ( H ) as a function of redshift. Previous
urv e ys hav e successfully measured these quantities directly from the
AO feature at different redshifts. Examples of first BAO detections 
btained from multiple tracers include Eisenstein et al. ( 2005 ), 
ole et al. ( 2005 ), Blake et al. ( 2012 ), and du Mas des Bourboux
t al. ( 2020 ), while the most recent results are reported in eBOSS
ollaboration ( 2021 ) and in Dark Energy Surv e y Collaboration
 2022 ). 

BAO measurements at sub-per cent precision are considered pri- 
ary science targets for the Dark Energy Spectroscopic Instrument 

DESI; DESI Collaboration 2016 ), along with no v el constraints on
heories of modified gravity and inflation, and on neutrino masses. 
ESI, the only Stage-IV DE experiment that is currently taking 
ata, aims to provide multiple sub-per cent distance measurements 
 v er a broad 0 < z < 3.5 redshift range. DESI represents an
rder-of-magnitude impro v ement both in the volume surv e yed and
n the number of galaxies measured o v er previous experiments, 
.g. extended Baryon Oscillation Spectroscopic Survey (eBOSS; 
awson et al. 2016 ), a key component of the fourth generation

SDSS-IV; Blanton et al. 2017 ) of the Sloan Digital Sky Survey
SDSS; York et al. 2000 ). In addition, DESI builds in a number
f internal systematics checks using multiple tracer populations to 
robe common volumes. 
Given the exquisite precision achie v able by the DESI survey, 

he DESI collaboration decided to blind the redshift data to a v oid
ny confirmation biases that can potentially impact all of the 
osmological analyses. A general procedure to blind a modern 
edshift surv e y has been discussed in Brieden et al. ( 2020 ), and
he exact implementation into the DESI framework will be described 
lse where. Ho we ver, for early quality assurance tests and in order to
alidate the data processing and analysis pipelines, the first 2 months 
f DESI observations (hereafter referred to as DESI-M2) have been 
ept intentionally unblinded. 

In this work, we use the DESI-M2 data set and report the first
igh-significance detection of the BAO signal from the initial 2 
onths of DESI operations. As part of testing these early data, 
e integrate the eBOSS BAO pipeline into the DESI analysis 

ramework, and apply such pipeline to measure the BAO scale 
ith updates to accommodate all of the DESI specifics. While the 
ESI surv e y has four primary galaxy tracer populations to measure

lustering, 1 the surv e y strate gy implies that not all tracers will
ave the same completeness in the very early data. The two most
omplete samples are the DESI Bright Galaxy Sample (BGS) and 
he Luminous Red Galaxies (LRGs). We focus on these two samples 
ere for the BAO measurement, since our simulations suggest that 
e would not expect a BAO detection in the emission-line galaxy 

ELG) and quasar (QSO) samples gi ven the number density, the lo w
ompleteness, and the volume of these early data. A similar signal-
 The DESI surv e y also has a fifth tracer, i.e. the L yman α (L y α) forest. 

D
 

1  
o-noise (SN) consideration led us to concentrate on the isotropic 
istance measurements α ≡ D 

2 / 3 
A H 

−1 / 3 /r d , probed by the angle- 
veraged galaxy correlation function (the ‘monopole’). Future DESI 
nalyses will present measurements using all four tracer populations, 
s well as measurements of D A H from the Alcock–Paczynski effect
Alcock & Paczynski 1979 ). 

As we will show in our analysis, even these early data yield a
recision in distance comparable to measurements from previously 
ompleted surv e ys (i.e. Anderson et al. 2012 ; Bautista et al. 2021 ),
ighlighting the remarkable statistical power of the DESI data. In the
pirit of the DESI blinding policy, we restrict ourselves to providing
ust the statistical precision of the measurements rather than the 
ctual distance values, which will be presented instead in a series
f DESI Year 1 (Y1) forthcoming cosmological papers. This work 
herefore should be seen as an end-to-end quality assurance of the
ESI data management system, as well as an early validation of the
ESI spectroscopic pipeline. 
The layout of the paper is organized as follows. In Section 2 ,

e briefly describe the main aspects of the DESI-M2 sample used
n this work, along with the procedure to build the corresponding
arge-scale structure (LSS) data catalogues. In Section 3 , we present
he approximate and N -body-based mocks adopted in the core 
nalysis, and explain how such synthetic catalogues are constructed 
n order to mimic the complex footprint and characteristics of the
ESI-M2. In Section 4 , we illustrate all of the analysis tools,
amely the chosen two-point clustering estimator, the density field 
econstruction technique, and the BAO fitting methodology. Section 5 
ddresses covariance matrices, and in particular the construction, 
alibration, and validation on mock data of semi-analytical semi- 
mpirical covariances for the BAO fitting procedure. More details on 
he covariance matrices adopted here are reported in a companion 
aper (Rashko v etsk yi et al. 2023 ). The main results are detailed in
ection 6 , where we assess the precision and detection statistics of the
AO feature in the LRG and BGS samples. We then briefly address

he expected precision of the final Year 5 (Y5) DESI LRG sample
n Section 7 , in terms of the BAO detection level, based on forecasts
btained from our promising early results. Finally, we conclude in 
ection 8 , where we summarize the main findings and highlight the
ele v ance for the upcoming Y1 DESI data set. We also leave some
dditional material in Appendix A . 

 DESI  MAI N  SURV EY  DATA :  FIRST  TWO  

O N T H S  

n this section, we provide a concise description of the DESI-M2 data
et, along with several specifics on the LSS catalogue construction. 
 number of additional technical details can be found in the quoted

upporting papers, many of which are still in a preparatory phase and
ill be available at the time of the official Y1 DESI data release. 

.1 DESI early data: general aspects 

ESI began its main program on 2021 May 17. Its commissioning
nd ‘Surv e y Validation’ (SV) phases (DESI Collaboration 2023a )
ad pro v ed the instrument (Abareshi et al. 2022 ) and operations
trategy (Schlafly et al. 2023 ) to be efficient. The DESI collaboration
ecided that the first 2 months of the observations of DESI main
urv e y data (i.e. DESI-M2) could be analysed without the blinding
estrictions imposed on the rest of the sample that will be used for
ESI Y1 Key Projects. 
The DESI-M2 data were observed on nights in 2021 from May

4 through July 9 on 304 dark time and 342 bright time ‘tiles’.
MNRAS 525, 5406–5422 (2023) 
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M

Table 1. Statistics of the four primary DESI targets from the DESI-M2 data set, including completeness information. 

Target N North N South N Total z range Area (deg 2 ) Completeness 

BGS Bright 239 492 390 988 630 480 0.1–0.5 3677 0.500 
BGS Bright, M r < −21.5 38 472 71 051 109 523 0.1–0.5 3677 0.500 
LRG 80 651 180 640 261 291 0.4–1.1 1651 0.579 
ELG 55 383 117 145 172 528 0.8–1.6 976 0.297 
QSO 70 337 153 453 223 790 0.8–3.5 2906 0.778 

Figure 1. Redshift distribution of the four primary DESI tracers, from the 
DESI-M2 clustering catalogues. 
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ach tile represents a specific sky location pointing of the telescope
nd specific target selection for each of the 5000 robotic positioners
opulating the DESI focal plane (Silber et al. 2022 ) determined by
he DESI FIBERASSIGN software (Raichoor et al. in preparation).The
pectra extracted from these observations were reduced by the
ESI spectroscopic pipeline (Guy et al. 2023 ) and released to the
ESI collaboration as the Guadalupe spectroscopic product. The

edshift measurements in these Guadalupe data are used in this
aper and will be made public with the DESI Y1 data release (DR1),
.e. they are not available in the DESI early data release (EDR; DESI
ollaboration 2023b ). 2 

The DESI-M2 tiles are primarily first pass tiles that do not o v erlap
ach other. In dark time, the full DESI surv e y observ es tiles in
ev en o v erlapping passes, with a median o v erlap of 5 (Schlafly et al.
023 ). Thus, the DESI-M2 data are substantially less complete in
he area observed than they will be when the survey is finished. This
ncompleteness affects all samples, but is most extreme for the target
lasses that are given the lowest priority during the assignment of
bres on a tile (DESI fibre assignment is reported in Raichoor et al.

n preparation). We describe this further next, when discussing the
ifferent DESI target classes. 

.2 DESI targets 

ESI divides its observing time into a ‘bright’ and a ‘dark’ time
rogram, for which the targeting is done independently (Myers et al.
022 ). During dark time, in order of priority for fibre assignment,
NRAS 525, 5406–5422 (2023) 

 The analogous spectroscopic data reductions and redshift fits for the EDR 

re Fuji and will be publicly available on NERSC here: https://data.desi.lb 
.gov/public/edr /spectro/r edux/fuji 

f  

d  

o  

d  

r  
SOs (Chaussidon et al. 2022 ), LRGs (Zhou et al. 2022 ), and ELGs
Raichoor et al. 2022 ) are observed. QSOs with redshifts greater
han 2.1 are selected for follow-up in order to increase the SN of the
pectra in the Ly α forest region. During bright time, a BGS (Hahn
t al. 2022 ) is observed, which has a ‘bright’ and ‘faint’ component,
s well as Milky Way stars (Cooper et al. 2023 ). In this work, we
nly consider the higher priority BGS Bright sample. 
For detailed discussions of how these target samples were chosen,

e refer the reader to the individual selection papers previously
ited. Table 1 summarizes key properties of the samples and Fig. 1
hows the redshift distribution of each sample. Combined, they will
llow measurements of large-scale clustering modes at better than
he sample variance limit to z < 1.6 (DESI Collaboration 2023a ).
he QSO sample provides this information at a lower sampling

ate all the way to redshifts greater than 3 and further samples
ensity fluctuations via the variance of Ly α forest absorption in each
pectrum. The BGS sample is approximately flux-limited and thus
as a spatial density that rapidly increases as the redshift gets lower
nd is approximately sample variance limited to z < 0.5. There is also
ubstantial o v erlap between the LRG and ELG catalogues, which will
llow comparison between results obtained from the most massive
nd passive galaxies (LRG) and those that are actively star-forming
ELG). 

.3 LSS catalogue construction 

he construction of the LSS catalogues involves determining the area
n the sky where good observations were possible for each tracer,
pplying criteria on the DESI data to select reliable redshifts within a
iven redshift range, and providing weights that correct for variations
n observing completeness, target density due to changes in imaging
onditions, and relative redshift success due to variations in DESI
bserving. The o v erall process is similar to that applied to SDSS
most recently eBOSS; Ross et al. 2020 ), with the specific details of
ESI observations accounted for as we describe here. The pipeline

hat was applied to the DESI-M2 sample represents an early version
f the DESI LSS catalogue pipeline, which will be fully described
and considerably impro v ed) in Y1 publications. Many aspects of
he pipeline match that applied to the DESI ‘One Percent Surv e y’,
hich is detailed in the o v erall description of the DESI EDR (DESI
ollaboration 2023b ). In what follows, we provide details on the

pecific choices applied for DESI-M2. 
The ‘randoms’ that populate the sky area where good observations

ere possible were produced using the same procedures as applied
o the DESI One Percent Surv e y LSS catalogues. DESI randoms
re produced using a standard such that each individual (and
ndependent) set has a density of 2500 deg −2 . We use 10 such sets
or the DESI-M2 clustering measurements and thus the total sky
ensity of the random samples used is 25 000 deg −2 . The process
f creating DESI randoms produces significantly different areas for
ifferent tracer types due to the priority masking (e.g. we have no
andoms in areas where LRGs could not have been observed because

https://data.desi.lbl.gov/public/edr/spectro/redux/fuji
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Figure 2. Footprints of the DESI-M2 BGS Bright (top) and LRG (bottom) 
clustering samples, colour-coded by completeness weights. The total areas 
highlighted by the pink colour represent the final DESI Y5 expected footprint. 
The specific DESI-M2 areas co v ered by the BGS Bright and LRG samples 
are, respectively, 3677 and 1651 deg 2 . 
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 higher priority QSO target was assigned to the fibre positioner 
ssociated with that sky location). In order to determine the ef fecti ve
rea occupied by each sample, we simply count the number of
andoms in one of the final LSS random catalogues sets and divide by
500 deg −2 . These areas are given in Table 1 . While the total ef fecti ve
rea is considerably different per tracer, the footprint of tiles is the
ame for all dark/bright time tracers. Fig. 2 shows the footprint of
iles for BGS (bright time; top panel) and LRG (dark time; bottom
anel) tracers. The plot is constructed via a web interface provided 
y David Kirkby, 3 and it is colour-coded by the completeness in each
ile grouping. 

For the data samples, we follow the same procedures as applied 
o the One Percent Surv e y LSS catalogues (described with the EDR)
n order to select targets of the given type that could have been
bserv ed. An y unobserv ed targets at this stage were not observ ed
ecause a target of the same type was instead observed at the given
ky location. Each observed target is given a completeness weight, 

EIGHT COMP, equal to the total number of targets (of the given
ype) at the location of the observed target (with unique ‘locations’ 
etermined by the combination observed tile and fibre positioner; see 
ESI Collaboration 2023b for more details). In particular, we note 

hat the fibre patrol radius is at most 89 arcsec: it depends on e.g. the
ocal plane position due to the optics. 

The criteria for the BGS and LRG samples we focus this study on
re: 

(i) LRG: 0.4 < z < 1.1, ZWARN = 0, DELTACHI2 > 15 
 https:// observablehq.com/@dkirkby/ skymap/ 

a

4

(ii) BGS: 0.1 < z < 0.5, ZWARN = 0, DELTACHI2 > 40. 

ZWARN is a bitmask generated by the redshift pipeline (Guy 
t al. 2022 ), where any non-zero value indicates a problem. The
riteria on DELTACHI2, which is the difference in χ2 between the 
wo best-fitting redshift solutions, were shown to provide pure and 
omplete samples in the respective targeting papers (Hahn et al. 
022 ; Zhou et al. 2022 ). For LRGs, the choice of redshift range
s moti v ated by the fact that the number density is approximately
onstant at 5 × 10 −4 ( h 

−1 Mpc ) 3 in the range 0.4 < z < 0.8. At
 > 0.8, the LRG density decreases mostly due to the sample’s
inimum flux threshold and is less than 1 × 10 −4 ( h 

−1 Mpc ) 3 for z >
.1. Similarly, the density of the BGS sample decreases to less than
 × 10 −4 ( h 

−1 Mpc ) 3 for z > 0.5. For the BGS sample, we also apply
n absolute magnitude cut in the r -band M r < −21.5. When obtaining
he absolute magnitude, we simply apply the distance modulus, 
.e. we do not apply any corrections for evolution (‘e’ correction)
r the shape of the spectrum (‘k’ correction). The cut provides a
ample with roughly constant number density at ∼8 × 10 −4 h 3 Mpc −3 

nd clustering amplitude for z < 0.4 and is thus sufficient for our
reliminary study. Future DESI studies will likely include k + e
orrections, especially for the selection of BGS samples. 

We then add two more weights in order to account for variations in
he selection of the data. The first corrects for fluctuations in the target
ata that are due to variation in the imaging data quality. To do so, we
pply the random forest regression method (Chaussidon et al. 2021 )
vailable as an option in the REGRESSIS package, 4 given maps of
maging properties compiled by the DESI targeting team. The data 
after redshift cuts) and randoms are combined to produce a map of
he projected density of the sample at HEALPIX (G ́orski et al. 2005 )
 side = 256 and is compared to maps of the depth and PSF size in the
 , r , z, and W 1 bands, the E ( B − V ) Galactic extinction according
he Schlegel, Finkbeiner & Davis ( 1998 ) dust maps, and the stellar
ensity observed in the Gaia second data release (Gaia Collaboration 
018 ). The REGRESSIS random forest method is used to determine
 model of the projected density fluctuations as a function of those
ap quantities and the inverse of the model is included in the

atalogues as a weight, ‘WEIGHT SYS’. For our LRG and BGS
amples, very similar clustering results are obtained when instead 
btaining the weights using the linear regression method applied to 
BOSS, described in Ross et al. ( 2020 ). 

Next, we obtain a weight to account for variations in redshift
uccess based on the particulars of DESI observations. Zhou et al.
 2022 ) showed that the LRG redshift success can be modelled as a
unction of the ef fecti ve observing time and the target’s fibre flux in
he z band. A similar dependency exists for BGS, with the r -band
bre flux the rele v ant photometric quantity. The inverse of the best-
tting model for the failure rate is used as ‘WEIGHT ZFAIL’. We
nd that applying these redshift failure weights has very little impact
n the clustering measurements used in this work. 
Next, we determine ‘FKP’ weights (Feldman, Kaiser & Peacock 

994 ) in order to properly weight each volume element with respect
o how each sample’s number density changes with redshift. This is
imply given by 

 FKP = 

1 

1 + n ( z) CP 0 
, (1) 

here n ( z) is the weighted number per volume, C is the mean
ompleteness for the sample, and P 0 is a fiducial power-spectrum 

mplitude. We use P 0 = 10 4 ( h 

−1 Mpc ) 3 for LRGs and P 0 = 7 ×
MNRAS 525, 5406–5422 (2023) 

 https://github.com/echaussidon/r egressis/r eleases/tag/1.0.0 

https://observablehq.com/@dkirkby/skymap/
https://github.com/echaussidon/regressis/releases/tag/1.0.0
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0 3 ( h 

−1 Mpc ) 3 for BGS. These values approximately match the
onopole of the power spectrum at k = 0 . 15 h Mpc −1 for the

espective samples. 
The redshifts and all four weights are then randomly sampled from

he data catalogue and attached to the random catalogues in order
o match the radial selection function. Finally, the catalogues are
ormalized separately (and all weights are fit for separately) in the
orth and South photometric regions. 

 M O C K  C ATA L O G U E S  

n our analysis, we utilize DESI mock galaxy catalogues for sta-
istically testing the performance of the BAO fits, as well as for
alidating the adopted covariance matrices in terms of BAO fitting.
ere, we briefly describe the main characteristics of the various sets
f mocks, along with the DESI customization procedure to include
urv e y realism. 

.1 DESI mocks: general description 

e use two different sets of DESI mock galaxy catalogues for
he LRG sample: one type is directly constructed from N -body
imulations (i.e. AbacusSummit ; Maksimova et al. 2021 ), while
 second type is based on approximated methods (i.e. EZmocks ;
hao et al. 2021 ). 
The N -body-based realizations are part of the first official set

f DESI mock galaxy catalogues (Alam et al. in preparation) which
ere calibrated based on an early reduction of the One Percent Surv e y

pectroscopic data for LRG (see Section 3.3 ). 5 This set is made
f 25 cutsky simulations based on the 2 h 

−1 Gpc AbacusSummit
uns. 6 The halo occupation distribution model for LRGs is calibrated
sing small-scale (below 5 h 

−1 Mpc ) wedges in combination with
arge-scale bias evolution where available. The LRG mocks are
urther subsampled to approximately match the n ( z) distribution
f the specific LRG sample (called ‘main’) considered in this
aper (see fig. 16 of Zhou et al. 2022 , for the ‘main’ selection
n the One Percent Surv e y). The mocks implementing the DESI
urv e y geometry and specifics (denoted as ‘cutsky’ mocks) are
enerated using the simulation output near the primary redshift
f LRGs that we do not report in this paper. The 2 h 

−1 Gpc
ox is repeated and then the coordinates are converted to sky
oordinates. 7 

The approximate mock realizations consist of 1000 EZmocks
or LRGs, and are built with an elaborated procedure centred on
he Zel’dovich approximation (Zel’dovich 1970 ). They do account
or stochastic scale-dependent, non-local, and non-linear biasing
ontributions: e xtensiv e details on the production methodology can
e found in the original release paper by Chuang et al. ( 2015 ). The
Zmocks have accurate clustering properties consistent with the
reviously described N -body-based AbacusSummit realizations –
nd nearly indistinguishable from actual N -body solutions – in terms
f one-point, two-point, and three-point statistics. 
We note that we have decided not to use any mocks for the BGS

ample, primarily for reasons related to a calibration performed with
n earlier DESI data set than the one considered in this study. 
NRAS 525, 5406–5422 (2023) 

 The matching data in the final reductions are publicly released as part of the 
ESI EDR. 
 ht tps://abacussummit .readt hedocs.io/en/lat est/
 The code used to create the cutsky/light-cones can be found at https://gith 
b.com/Andrei-EPFL/gener ate sur vey mocks/
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.2 DESI mocks: masking and customization 

n important step in the mock-making pipeline is the incorporation
f surv e y realism, namely the characteristics of the various synthetic
ealizations need to accurately match the properties of the DESI-M2
ample. This is achieved via the application of a succession of masks,
s we schematically describe in what follows. 

.2.1 Survey masks 

e subsample the mocks using a tile mask matching the footprint
f DESI-M2 and match the redshift distribution of each target: for
RGs, the n ( z) distribution is based on DESI-M2 results (Fig. 2 ),
hile for BGS on the One Percent Surv e y distribution. This tile
ask cuts the data and random to the circular region around each tile

entre. 

.2.2 Intra-tile geometry 

he geometrical area where DESI targets could have been observed
s obtained for the data catalogues following the procedure described
n Section 2.3 . In order to analyse all 1000 mocks, we approximate
he results of the procedure run on the data using a HEALPIX (G ́orski
t al. 2005 ) map built from the random catalogues. As a reference, we
tilize the same random cuts to the target catalogue sky area that were
he inputs to the LSS catalogue process, additionally cutting them to
e within the tile area pre viously defined. In e very N side = 1024 pixel,
e count the number of randoms in both the LSS catalogue and in the

eference randoms. The ratio of these counts approximates the small-
cale holes in the observed footprint. We apply it by sub-sampling
he mock data and randoms by the fraction in each pixel. In this way,
he ef fecti ve area of the footprint, as determined by summing random
oints assumed to have a constant surface density, matches that of
he observed data. This is shown as an example in the top panel of
ig. 3 , to be compared with the bottom panel of Fig. 2 . 

.2.3 Incompleteness assignment 

t this stage, we still have more simulated galaxies than those
bserved in the actual DESI data. This is because, for most of the
ocations, only one fibre is available to observe multiple targets.
n order to approximate this effect in terms of number counts, we
imply take the o v erall assignment completeness of the data in
he LSS catalogues, i.e. N observed / N total , where N total is the number
f targets within the DESI-M2 footprint where observations were
ossible. This type of completeness should vary strongly as a function
f the number of o v erlapping DESI tiles, but we simply apply
 constant factor (an average of 0.51 for the 1000 realizations)
iven that over 90 per cent of the DESI-M2 area is co v ered by
nly a single tile. To this end, the bottom panel of Fig. 3 shows
hat the observed DESI-M2 LRG redshift counts per square degree

atch well those obtained from mock data, after applying the
ssignment incompleteness factor. This procedure is implemented
n the N -body-based AbacusSummit realization as well as in the
pproximate EZmocks. Finally, we note that the incompleteness
ill be modelled more rigorously for the forthcoming DESI Y1

nalysis. 

.3 DESI mocks: calibration 

n terms of clustering properties (see Section 4.1 ), the two sets of
ocks described here have been tuned via surv e y and completeness

https://abacussummit.readthedocs.io/en/latest/
https://github.com/Andrei-EPFL/generate_survey_mocks/
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Figure 3. (Top) Map of a single LRG EZmock realization with the pixel 
probability of the HEALPIX mask. (Bottom) Dispersion of 1000 LRG 

EZmocks , after application of the different masks described in Section 3.2 , 
compared with the actual LRG DESI-M2 redshift distribution. 
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Figure 4. Monopole of the LRG two-point correlation function before 
reconstruction, as measured from the DESI-M2 sample (blue dots) and from 

the average of 1000 EZmocks (orange dots). Data errorbars are obtained 
from a jackknife covariance directly inferred from DESI-M2 LRGs, while 
mock errorbars are drawn from the LRG EZmock sample covariance. As 
mentioned in the main text (Section 3.3 ), the ∼ 10 per cent difference near 
the ∼ 20 h −1 Mpc peak is not surprising, as these mocks were tuned with an 
earlier version of the DESI data. Hence, in this work mocks are only used for 
validation purposes. 
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asks with an earlier version of the DESI LRG clustering measure- 
ents (i.e. One Percent Surv e y data) having a 10 per cent lower am-

litude than the DESI-M2 LRG sample considered in this study. This
an be readily inferred from Fig. 4 , where we contrast the observed
RG clustering in the DESI-M2 sample at r ∼ 20 h 

−1 Mpc with the
verage clustering of 1000 LRG EZmocks . For this reason, in the
resent analysis mocks are only used for validation purposes, and we 
ill be adopting semi-analytical semi-empirical covariances rather 

han mock-based covariances for our primary BAO fits – as described 
n Section 5 . In fact, a calibration offset in the two-point clustering
although located outside of the BAO fitting range) would manifest 
n a substantial difference in the covariance between different scales, 
ausing a 17.6 per cent impact on the resulting BAO precision when
airing such a mock-based covariance matrix with the actual data 
lustering. 

 ANA LY SIS  M E T H O D S  

n this section, we illustrate all of the analysis tools adopted in our
ork, from the two-point clustering estimator to the density field 

econstruction, until the BAO fitting methodology. In particular, the 
ESI team is currently studying all aspects of the BAO pipeline 
iven the stringent requirements on theoretical and observational 
ystematics that will be imposed by a data set as powerful as we
xpect by the end of the surv e y. F or the inv estigation of this prelim-
nary DESI-M2 data, and to make contact with earlier work on the
ubject, we choose to largely follow the analysis choices made by the
OSS/eBOSS surv e ys. We highlight these choices in what follows,
hile referring the reader to the original papers for more e xtensiv e
etails. 

.1 Two-point correlation function estimator 

e compute all of the anisotropic redshift–space correlation func- 
ions ̂  ξ ’s with the well-known Landy–Szalay estimator (LS; Landy & 

zalay 1993 ), namely, 

ˆ ( s, μ) = 

D D ( s, μ) − 2 D R ( s, μ) + R R ( s, μ) 

R R ( s, μ) 
, (2) 

here DD ( s , μ) and RR ( s , μ) are the normalized weighted number
f pairs in the data and random catalogues, respectively, binned 
s a function of the separation s between two galaxies, μ ∈ [ −1,
] is the cosine angle between the galaxy pair and the LOS, and
R ( s , μ) denotes pair counts between data ( D ) and randoms ( R ).
he LS estimator gets modified when the reconstruction proce- 
ure (described in Section 4.2 ) is applied. In essence, a shifted
andom catalogue (termed S ) should be used in the numerator
f equation ( 2 ) in substitution of R , and one needs to replace
R with DS and RR with SS , respectively. We use 200 μ-bins

panning the interval [ −1, 1] and 4 h 

−1 Mpc s -bins for BGS and
RGs. 
The anisotropic correlation function ̂  ξ ( s, μ) is then integrated over

he Legendre polynomials L � ( μ) to obtain the various multipoles; in
he current analysis, we only use the monopole, i.e. � = 0: 

ˆ 
� ( s) = 

2 � + 1 
2 

∫ 1 
−1 d μ ˆ ξ ( s, μ) L � ( μ) (3) 

� 

2 � + 1 
2 

∑ 

i 
ˆ ξ ( s, μi ) 

∫ 
	μi 

d μL � ( μ) . (4) 
MNRAS 525, 5406–5422 (2023) 
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Figure 5. Two-point correlation function measurements of the four DESI tracers, obtained from the DESI-M2 sample. Errorbars are derived from the diagonal 
of the corresponding covariance matrices, although we caution the reader of a significant bin-to-bin correlation in these measurements. Model curves are simple 
damped linear theory predictions that indicate the expected overall clustering amplitude and BAO damping typical at the mean redshift of the target samples. 
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n the last equality, we have made explicit the discrete sum o v er
-bins, weighted by the analytic integral of L � ( μ) o v er each μ-bin
aving width 	μi . 8 

All of the two-point correlation function calculations are per-
ormed with the Python package PYCORR , 9 which wraps a modified
ersion 10 of the CORRFUNC package (Sinha & Garrison 2019 ;
inha & Garrison 2020 ). 11 

Fig. 5 shows the observed two-point correlation functions of the
our tracers discussed in Section 2.2 , contrasted with simple damped
inear theory models that indicate the e xpected o v erall clustering
mplitude and BAO damping typical at the mean redshift of the
arget samples. From LRGs and BGS, we observe a local bump
ear the expected location of the BAO peak. Moreo v er, while BGS
bservations appear to lie systematically below the model curve
t scales greater than 120 h 

−1 Mpc , this is simply because there are
ewer modes at larger separations in these early DESI data. Therefore,
hey are highly correlated and thus the amplitude of the two-point
NRAS 525, 5406–5422 (2023) 

 Such a summation scheme, contrary to weighting ˆ ξ ( s, μi ) by L � ( μi ) 	μi , 
nsures that the � > 0 multipoles are exactly zero if ̂  ξ ( s, μ) remains constant 
s a function of μ. 
 https://github.com/cosmodesi/pycor r 
0 ht tps://github.com/adematt i/Corrfunc 
1 https:// github.com/manodeep/ Corrfunc 
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orrelation function decreases at those scales. 12 For ELGs and QSOs,
he amplitude of the observed clustering appears consistent with the
heoretical expectations (within errors), although it is challenging
o identify a clear BAO-like signature. Indeed, we do not expect a
AO detection from ELGs and QSOs of the DESI-M2 sample, given

he small surv e y volume in combination with the low completeness
ELGs) and high shot noise (QSOs). 

.2 Density field reconstruction 

e apply the density field reconstruction technique (Eisenstein et al.
007 ) on the observed galaxy density fields in order to partially
eco v er the BAO feature that has been degraded due to structure
rowth and redshift–space distortions (RSD). To do so, we follow the
terative procedure described in Burden, Percival & Howlett ( 2015 ),
s implemented in the ITERATIVE FFTR ECONSTRUCTION algorithm of
he PYRECON package 13 with the R ECISO convention. 14 The density
2 In addition, note that we only fit up to 150 h −1 Mpc for the BAO analysis, 
here the corresponding linear theory prediction is still consistent with 
bservations – within errorbars. 
3 https://github.com/cosmodesi/pyrecon 
4 RecIso is a choice to remo v e the large-scale anisotropy due to redshift–
pace distortions in the process of reconstruction (Padmanabhan et al. 2012 ; 
eo et al. 2016 ). 

ry 2024
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ontrast field is smoothed by a Gaussian kernel of width 15 h 

−1 Mpc
nd three iterations are performed, assuming an approximate growth 
ate and the expected bias for each sample. The choice of these
econstruction conditions along with the assumed fiducial cosmology 
ere shown to have a very marginal impact on BAO measurements 

n earlier galaxy surv e y samples – see Varg as-Mag a ̃ na et al. ( 2018 )
nd Carter et al. ( 2020 ). 

.3 BAO fitting methodology 

e employ the same BAO fitting pipeline that has been previously 
pplied to a large number of BOSS and eBOSS analyses (Ross et al.
017 ; Ata et al. 2018 ; Hou et al. 2020 ; Raichoor et al. 2020 ). 15 The
ccuracy of such methodology was demonstrated to be sufficient at 
he precision demanded by BOSS/eBOSS data, especially for de- 
ermining the isotropic BAO scale. Ho we ver, adv ances are expected
o be necessary in order to meet the exquisite precision expected 
or DESI Y5, and thus an impro v ed DESI pipeline is currently
nder development and will be presented along with the DESI Y1 
nalyses. 

In this study, we only fit for the monopole of the correlation
unction, hence for the isotropic scaling parameter α. Our BAO 

ipeline is ‘template-based’, and it essentially coincides with the 
lgorithm introduced by Xu et al. ( 2012 ). Ho we ver, the BAO
emplates are generated via the formulae defined by equations (9)–
13) of Ross et al. ( 2017 ), where the linear power spectrum is split
nto a BAO and a no-BAO components, and damping is added solely
o the BAO that depends on the LOS angle. 

The templates require a choice of four parameters that are kept 
xed during the fitting process, namely, β, � s , � || , and � ⊥ 

. These
etermine, respectively, the degree of anisotropy with respect to the 
OS in linear RSD (Kaiser 1987 ), the de gree of streaming v elocity,

he degree of radial BAO damping, and the degree of transverse
AO damping. Such parameters are fixed separately for different 
amples and the pre- or post-reconstruction fits. For galaxy velocities, 
e set β = 0.4, � s = 3 h 

−1 Mpc for both samples; such choices
uarantee an approximate match to the anisotropic clustering as 
easured from the DESI-M2 data, although their impact in the 
tting process is essentially negligible since we only fit for the 
onopole. The BAO damping parameters for post-reconstruction 

re fixed to � || , � ⊥ 

= 3, 5 h 

−1 Mpc for both samples, roughly
onsistent with those used/determined in previous studies (e.g. Seo 
t al. 2016 ; Ross et al. 2017 ; Varg as-Mag a ̃ na et al. 2018 ; Bautista et al.
021 ). For pre-reconstruction, we set these to 6, 10 h 

−1 Mpc for the
GS sample (again, roughly consistent with the pre-reconstruction 

esults from Seo et al. 2016 ) and reduce them to 4, 8 h 

−1 Mpc for
re-reconstruction LRGs. This evolution in the pre-reconstruction 
alues roughly corresponds to the change in the linear growth factor 
etween the ef fecti ve redshifts z eff of the two samples, noting that
he BAO damping is expected to scale with the amount of non-
inear structure growth, which approximately scales with the linear 
rowth factor (Seo et al. 2016 ). The post-reconstruction values are 
maller and constant as reconstruction helps to reduce the effect 
f non-linearities (hence, smaller damping values), and the degree 
f remaining non-linearity does not depend strongly on the initial 
egree (hence the independence of redshift). The impact of fixing 
hese choices was already shown to be negligible at the precision of
OSS DR12 (Ross et al. 2017 ), and therefore is also not a concern

n this work. 
5 ht tps://github.com/ashleyjross/BAOfit 

1

1

i

The procedure just described produces a theory template, ξ 0 . 
ubsequently, the data are fit against this template e v aluated with
 scaling parameter α, a free amplitude, and a polynomial with three
uisance terms: 

mod ( s) = Bξ0 , t ( sα) + A 0 + A 1 /s + A 2 /s 
2 . (5) 

he polynomial has been shown to account for any difference 
etween the broad-band shape of the template ξ0 , t and the measured 

ˆ 0 ; e.g. due either to cosmology or to observational systematics. The
odel is e v aluated at the s of the data bin assuming a spherically

ymmetric distribution. 16 The χ2 ( α) is computed on a grid of spacing
.001 in α, where the minimum χ2 at each grid point is determined
y varying B , A 0 , A 1 , and A 2 . We note that the various χ2 are inferred
rom the data vector � D and covariance matrix C via χ2 = 

� D C 

−1 � D 

t , 
s routinely done. Our data vectors are al w ays selected to have
0 < s < 150 h 

−1 Mpc . 
Finally, the derived likelihood on the value of α can be used to

onstrain cosmological models via 

= 

D V ( z) r fid 
d 

D 

fid 
V ( z) r d 

(6) 

nd 

 V ( z) = 

[
cz(1 + z) 2 H ( z) −1 D 

2 
A ( z) 

]1 / 3 
, (7) 

here H ( z) and D A ( z) are e v aluated at an ef fecti ve redshift of the
ata sample being tested. 
In closing this part, we highlight that while the methodology 

dopted here is largely equi v alent to the one exploited in previous
OSS/eBOSS analyses, the version of the BAO pipeline used in 

his work has been fully updated to be compatible with DESI
ode packages assuming generic cosmological backgrounds and 
rimordial/linear power spectrum calculations: such effort is carried 
ut within the COSMODESI framework. 17 To this end, the most 
ignificant change specific to the BAO fitting procedure is how we
solate the BAO feature, namely by splitting the input linear power
pectrum into a smooth function with no-BAO and another one that
s pure BAO. To achieve such splitting, we apply the technique de-
cribed in Wallisch ( 2018 ) and coded in the bao filter module 18 

f the COSMOPRIMO package. The impact of this change in filtering
he BAO feature is less than ∼ 0 . 1 per cent on the measured value
f α. 

 C OVA R I A N C E  MATRI CES  

n this section, we briefly address covariance matrices, and in partic-
lar the construction, calibration, and validation of semi-analytical 
emi-empirical covariances on mock data, eventually adopted for the 
AO fitting procedure. 

.1 Co v ariance matrices: types and conventions 

he primary BAO fits performed in our main analysis are obtained
ith semi-analytical semi-empirical covariance matrices, generated 
y the R ASCALC code (Philcox et al. 2020 ). As mentioned in
ection 3.3 , this choice is mainly driven by the fact that the galaxy
MNRAS 525, 5406–5422 (2023) 

7 https:// github.com/cosmodesi/BAOfit xs/ 
8 https:// github.com/cosmodesi/cosmoprimo/ blob/main/ cosmoprimo/bao f 
lter.py 

https://github.com/ashleyjross/BAOfit
https://github.com/cosmodesi/BAOfit_xs/
https://github.com/cosmodesi/cosmoprimo/blob/main/cosmoprimo/bao_filter.py
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Table 2. Covariance matrices utilized in this work. 

Name Tracer Notes 

DESI-M2-EZ LRG Constructed from EZmock clustering 
R ASCALC -EZ LRG R ASCALC calibrated on EZmock clustering 
R ASCALC -LRG LRG R ASCALC calibrated on DESI-M2 LRG clustering 
R ASCALC -BGS BGS R ASCALC calibrated on DESI-M2 BGS clustering 
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ocks available at the time of this study – implementing all of
he DESI-M2 surv e y characteristics – have been calibrated with an
arlier version of the DESI LRG clustering (i.e. the One Percent
urv e y), rather than with the LRG clustering as measured directly
rom the DESI-M2 data set considered here. Nevertheless, we also
onstruct a numerical covariance from 1000 LRG EZmocks (termed
DESI-M2-EZ’), and use it for validating the LRG R ASCALC semi-
nalytical covariance in terms of BAO fitting. In order to calibrate
he R ASCALC covariance matrix for LRGs, besides the previous nu-
erical covariance, we also utilize a covariance directly constructed

rom the jackknife estimates of the LRG sample under consideration.
nce the R ASCALC semi-analytical covariance is validated (in terms
f BAO fits) for the LRG sample, we build a similar semi-empirical
ovariance for BGS galaxies and calibrate it using jackknife estimates
btained from the corresponding BGS data set. Table 2 reports all
f the covariance matrices utilized in this work. Specifically, in
erms of name conventions, we indicate with ‘R ASCALC -EZ’ the
emi-analytical covariance based on the EZmocks LRG clustering,
ith ‘R ASCALC -LRG’ the semi-empirical covariance calibrated on

he DESI-M2 LRG clustering measurements (including jackknife),
nd with ‘R ASCALC -BGS’ the one based on the DESI-M2 BGS
lustering. 

Ne xt, we pro vide some additional information on R ASCALC -
ased covariances, and then present the BAO fitting validation tests
erformed on the mock LRG sample. 

.2 RascalC co v ariances 

he semi-analytical semi-empirical covariance matrices used in
ur analysis are obtained via the publicly available code R ASCALC
Philcox et al. 2020 ; Rashko v etsk yi et al. 2023 ). 19 The procedure
o construct such covariances only requires a two-point correlation
unction as input (along with its optional jackknife estimates), and a
andom catalogue. The R ASCALC algorithm integrates the Gaussian
erms for the covariance matrix using importance sampling from the
et of random points. It then progressively changes the amount of
hot noise, which has the effect of empirically rescaling those terms.
he optimization of the shot noise level is performed on separate

ackknife covariance estimates. Once the optimal shot noise level is
etermined (i.e. its best-fitting value), a rescaling based on such best
t is applied to finally obtain the full covariance matrix terms. 
For the construction of the R ASCALC -LRG and R ASCALC -BGS

o variances (i.e. the co variances calibrated on the DESI-M2 data
et), the input correlation functions are measured directly from
he DESI-M2 LRG and BGS samples, respectively. In addition, 60
ackknife regions are assigned based on data points with a K-means
ubsampler. For the pre-reconstruction case, the R ASCALC code is
un on 10 random catalogues separately, and the integration results
re finally averaged. Building the post-reconstruction covariances
alibrated on the DESI-M2 data set requires some additional steps,
NRAS 525, 5406–5422 (2023) 

9 https://github.com/oliverphilcox/RascalC 
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escribed in detail in Rashko v etsk yi et al. ( 2023 ). In essence, such
rocedure depends upon the usage of non-shifted random catalogues
or normalization, shifted random catalogues for sampling, and a
lightly different two-point correlation function than the familiar LS
stimator (i.e. equation 2 ). In this latter case, the code is run on 20
andom catalogues separately, and integration results are eventually
veraged. 

In order to build the R ASCALC -EZ covariance, we use instead the
veraged pre- and post-reconstructed LRG EZmock correlation func-
ions obtained from 1000 EZmocks , without jackknife estimates,
nd with no shot-noise rescaling (Gaussian). We run the RASCALC
ode on 10 concatenated random catalogues in pre-reconstrution,
nd on 20 randoms for the post-reconstruction case. 

As concluding remarks for this section, we note that, by construc-
ion, the LRG R ASCALC data covariance (i.e. R ASCALC -LRG) gives
arger error bars than the DESI-M2-EZ sample covariance, while
he R ASCALC covariance based on the EZmock clustering (i.e. R
SCALC -EZ) is consistent with the DESI-M2-EZ sample covariance.
 more detailed assessment on the performance of R ASCALC -based

ovariances is presented in Rashkovetskyi et al. ( 2023 ). 

.3 Validation of RascalC co v ariances for BAO fitting 

efore performing BAO fits on the DESI-M2 data set, we validate
ur LRG R ASCALC covariance against a set of approximate LRG
Zmocks and N -body-based AbacusSummit realizations. While

he following tests are performed on LRGs, we note that the
alidation procedure is general and would apply to any tracers. 

Specifically, we first compute the two-point clustering statistics
f 1000 LRG EZmocks and 25 AbacusSummit LRG realizations
ith the estimator presented in Section 4.1 , adopting default FKP
eights. We then apply the reconstruction algorithm detailed in
ection 4.2 to all of the mocks, assuming a smoothing scale of
5 h 

−1 Mpc . Next, we build the pre- and post-reconstruction EZmock
ovariance (i.e. DESI-M2-EZ; Table 2 ), and a R ASCALC covariance
i.e. R ASCALC -EZ; Table 2 ), which is based on the exact
verage clustering inferred from the entire set of pre- and post-
econstruction LRG EZmocks . Finally, we use both covariances to fit
000 individual EZmocks as well as 25 individual AbacusSummit
ealizations with the fitting procedure explained in Section 4.3 , within
he spatial range 50 –150 h 

−1 Mpc . 20 In essence, we quantify the BAO
est fits and relative errors on a mock-by-mock basis. 
Fig. 6 shows the results of such a validation test. The top panels

efer to pre-reconstruction measurements, while the bottom panels
isplay post-reconstruction quantities. From left to right, we report
he BAO detection significances in units of standard deviations,
nd the α and σα values for all of the individual fits performed
o the two sets of mocks using the R ASCALC -EZ covariance ( x -
xes), against the corresponding values obtained with the DESI-
0 Note that the Perci v al factor (Perci v al et al. 2014 ) has been applied to the 
Zmocks . 

https://github.com/oliverphilcox/RascalC
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Figure 6. Scatter plots showing the BAO detection significance in units of standard deviations (left panels), the α’s (middle panels), and the σα values (right 
panels) related to the validation procedure of the R ASCALC -based covariance. BAO best fits are performed on a mock-by-mock basis, using 1000 LRG EZmocks 
(open green dots) and 25 AbacusSummit LRG realizations (filled yellow points). Stars of the same colour are averages over the corresponding entire set 
of realizations. The top panels refer to pre-reconstruction measurements, while the bottom panels display post-reconstruction quantities. Individual BAO fits 
using the R ASCALC covariance calibrated on EZmocks (i.e. R ASCALC -EZ; x -axes) are contrasted with those performed adopting the EZmock covariance (i.e. 
DESI-M2-EZ; y -axes). As evident from the figure, the narrow scatter along the diagonal implies that both covariances produce compatible results, validating 
the usage of R ASCALC -based covariances for our primary DESI-M2 BAO fits. 
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2-EZ co variance ( y -ax es). The open green dots display LRG
Zmocks measurements, while the filled yellow dots are for Aba- 
usSummit LRG synthetic catalogues. Stars of the same colour 

epresent av erages o v er the corresponding entire set of realizations.
s evident from the figure, the scatter along the diagonal is quite
arrow (both for the pre- and post-reconstruction cases), implying 
hat the two covariances produce compatible results. Moreover, the 
verage values in the various panels are almost o v erlapping, strongly
onfirming the consistency between R ASCALC and mock sample 
ovariances. 

A further validation test is reported in Fig. 7 , where we show
he histograms of ( α − 〈 α〉 )/ σα , with 〈 α〉 the mean of the scaling
arameter, measured from the ξ ( s )’s of the pre- (top panel) and post-
econstruction (bottom panel) LRG mocks. This quantity represents 
n approximation for the signal-to-noise ratio (SNR) of the BAO 

easurement. Here, we use the χ2 test to assess the validity of the
ovariances. In essence, we compare the observed scatter in the best-
tting α for the 1000 LRG EZmocks to the σα estimated in each 

ndividual fit from the 	χ2 ( α) curve. The red lines and histograms
efer to measurements performed on the EZmock set using the 
 ASCALC -EZ covariance, while the blue lines and histograms 
orrespond to analogous measurements done assuming the 
umerically based DESI-M2-EZ covariance. Results are compared 
ith Gaussian distributions, showing good agreement, as confirmed 
y near-zero Kolmogoro v–Smirno v (K-S) D n tests. Moreo v er, the
orresponding p -values imply that our values are drawn from a
aussian distribution, and that the values of σα we measure from the
2 distribution are faithful descriptors of the error on α measured 
y fitting ξ ( s ). Once again, this test represents another confirmation
f the validity of our semi-analytical semi-empirical R ASCALC -EZ 

ovariance, which produces results compatible with the numerical 
ase. 

In summary, the tests performed in this section clearly pro v e
hat using a R ASCALC -based covariance returns unbiased and con-
istent estimates when compared to results obtained with the 
umerical EZmock covariance. We can then safely proceed to 
une our R ASCALC covariance to match the clustering inferred 
rom the DESI-M2 data sets, and perform the key BAO fits
n the LRG and BGS samples, as we describe in the next
ection. 

 K E Y  RESULTS:  BAO  S I G NA L  DETECT IO N  

n this section, we present the main results of our DESI-M2 analysis,
nd assess the precision and detection statistics of the BAO feature
oth in the LRG and BGS samples. We do not report here the
est-fitting BAO scales as inferred from actual data, since the 
osmology is intentionally kept blinded. Our focus is primarily on 
RGs, as they are characterized by the highest SNR among the four
ESI-M2 tracers. 
MNRAS 525, 5406–5422 (2023) 



5416 J. Moon et al. 

M

Figure 7. Histograms of ( α − 〈 α〉 )/ σα , with 〈 α〉 the mean of the scaling 
parameter, measured from the ξ ( s )’s of the pre- (top panel) and post- 
reconstruction (bottom panel) LRG mocks. Measurements are performed on 
1000 LRG EZmocks , assuming the R ASCALC -EZ covariance (red lines and 
histograms), or a numerically based DESI-M2-EZ covariance (blue lines and 
histograms). Results are then compared with Gaussian distributions, showing 
good agreement, and indicating that the values of σα we measure from the χ2 

distribution are faithful descriptors of the error on α measured by fitting ξ ( s ). 
This test represents a further validation of our semi-analytical R ASCALC -EZ 

covariance, which produces results compatible with the numerical one. 
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.1 BAO reconstruction efficiency 

efore performing BAO fits to the DESI-M2 data set, we first address
he effect of BAO reconstruction on the BAO fitting procedure,
ocusing on the LRG sample. In Fig. 8 , we report the BAO detection
ignificances expressed in units of standard deviations, as well as
he α and σα values from all of the individual correlation function
ts performed to the two sets of LRG mocks previously considered.
pecifically, we compare pre- ( x -axes) and post-reconstruction ( y -
xes) measurements, obtained by adopting the R ASCALC -EZ covari-
nce. The open purple dots display EZmocks LRG results, while the
lled orange dots are for the AbacusSummit LRG synthetic cata-

ogues. Similarly to Fig. 6 , stars of identical colour represent averages
 v er the corresponding entire set of realizations. As evident from the
catter plot, the BAO detection significance (reported in the left panel)
ncreases considerably after reconstruction, and the α’s of the mocks
re closer to unity after reconstruction (central panel), as expected. 21 

oreo v er, the errors tend to impro v e significantly after reconstruc-
ion for about 90 per cent of the cases (i.e. right panel). Hence, the
econstruction procedure appears to be efficient on the mocks. 

Reconstruction applied to LRG data appears instead to produce
nly marginal effects. To this end, in Fig. 8 we o v erplot the DESI-M2
RG measurements (cyan stars in the left and right panels), obtained
NRAS 525, 5406–5422 (2023) 

1 See also Table A1 for additional BAO fitting details. 
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c
l

sing the R ASCALC -LRG covariance calibrated directly on LRGs. As
vident from the figure, the DESI-M2 LRG measurements are located
n the upper right corner of the significance scatter plot (left panel),
nd in the lower left corner of the σα plot (right panel), respectively:
ence, we are in a similarly ‘lucky’ situation as those reported for
he BOSS CMASS LRG sample by Anderson et al. ( 2012 ), and
lso for eBOSS LRGs (Bautista et al. 2021 ). Table A1 provides a
uantification of the ‘lucky’ realization of the observational data
oint, showing that both its detection significance and precision
re consistent with those obtained via mock averages. In particular,
ocusing on post-reconstruction results, the detection significance
f the data point is 5.050 (in units of standard deviations) with a
recision of 1.7 per cent, while the average EZmocks results yield
 detection significance of 4.138 with a precision of 2.1 per cent,
nd from the average of the AbacusSummit mocks we obtain
.242 with a 2.0 per cent precision. Note that a small σα implies a
etter BAO detection, thus a higher significance. In essence, while
enerally reconstruction impro v es errors on α, this may not happen if
he starting (pre-reconstruction) point already has a low error to begin
ith (i.e. a ‘lucky’ realization). In such a situation, reconstruction
oes not tend to produce much impro v ement, as shown in the

10 per cent of the mocks in our analysis. This seems to be the
ase for the DESI-M2 LRG sample data volume: our reco v ered σα

or data is much smaller than the mean expected from the mocks
right panel), and our BAO detection significance is high (left panel),
howing a strong and well-defined acoustic peak. 

.2 BAO detection from the LRG sample 

ig. 9 displays the BAO fit to the DESI-M2 LRG two-point
orrelation function, along with its significance: this measurement
epresents one of the key results of our analysis. The left panel shows
he pre- and post-reconstruction clustering statistics computed with
he LS estimator (points with errorbars), and the best-fitting model
curv es). The gre y and black curv es are respectiv ely pre- and post-
econstruction fits to ξ ( s ) in the spatial range 50 –150 h 

−1 Mpc , 22 

btained with the procedure detailed in Section 4.3 and using the
 ASCALC -LRG covariance matrix: errorbars in the plot show the
quare root of its diagonal elements. The BAO peak is clearly de-
ected, and well matched to the best-fitting model. This is confirmed
uantitatively: we find χ2 

min = 15 . 6 and χ2 
min = 13 . 5 for the pre-

nd post-reconstruction cases assuming 20 dof, respectively. Table 3
eports the specifics of these BAO fits. 

The right panel of Fig. 9 displays the likelihood for the DESI-M2
RG BAO scale, as represented by 	χ2 = χ2 − χ2 

min , before and
fter reconstruction (solid curves). The dotted lines having identical
olours represent corresponding fits to the data using a model without
AO. This provides two crucial results: the uncertainty on the
easurement, and the significance of the BAO feature. Assuming
 Gaussian likelihood, the 1 σ confidence region is represented
y the width of the curve with 	χ2 < 1. We estimate the 1 σ
ncertainty to be 0.016 in pre-reconstruction and 0.017 in post-
econstruction, respectively. The BAO detection significance can
e simply determined by comparing results obtained from a fit to
he data using a model without BAO (displayed via dotted lines in
he figure), and once again subtracting the χ2 

min from the BAO fit.
his indicates how much better a model containing BAO fits the LRG
2 Since we assume a bin size of 4 h −1 Mpc for characterizing the ξ ( s ) 
lustering statistics, we therefore fit o v er 25 points using five parameters, 
eaving us 20 degrees-of-freedom (dof). 
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Figure 8. Scatter plots for the BAO detection significance in units of standard deviations (left panel), α’s (middle panel), and σα’s (right panel), addressing 
the effect of reconstruction on the BAO fitting procedure for the LRG sample. Results are obtained from individual correlation function fits performed to 1000 
LRG EZmocks (open purple dots) and 25 AbacusSummit LRG synthetic catalogues (filled orange dots). Stars of identical colour represent averages over 
the corresponding entire set of realizations. Pre- ( x -axes) and post-reconstruction ( y -axes) measurements are compared, adopting the R ASCALC -EZ covariance. 
While reconstruction increases considerably the BAO detection significance for the mocks, the same procedure applied to the DESI-M2 LRG sample produces 
only marginal effects: the cyan stars in the left and right panels are DESI-M2 LRG measurements obtained via a R ASCALC covariance calibrated directly on 
LRGs, pointing to a ‘lucky’ realization in the upper right corner of the significance scatter plot (left panel), and in the lower left corner of the σα plot (right 
panel), respectively. This situation is similar to those reported for BOSS CMASS LRGs (Anderson et al. 2012 ), and for the eBOSS LRG sample (Bautista et al. 
2021 ). 

Figure 9. BAO feature and its significance, as detected in the large-scale correlation function of DESI-M2 LRGs. [Left] Pre- (lighter pink dots with errorbars) 
and post- (red dots with errorbars) reconstruction two-point clustering statistics inferred from the LRG sample, clearly displaying the BAO peak. The grey 
and black lines are, respectively, pre- and post-reconstruction fits to ξ ( s ) in the spatial range 50 –150 h −1 Mpc o v er 25 points with 20 dof, obtained using the 
R ASCALC -LRG covariance. Errorbars are the square root of its diagonal elements. [Right] Detection significance of the DESI-M2 LRG BAO feature before 
(lighter grey lines) and after (black lines) reconstruction. The dotted lines with similar colours are corresponding fits to the data using a model without BAO. 
We have shifted each value of α by 	α both in pre- and post-reconstruction, such that the minimum χ2 of the post-reconstruction result is at 1. We note that an 
identical 	α was introduced for post-reconstruction LRGs and BGS (Fig. 10 ), to demonstrate the coherence in terms of cosmological implications from the two 
tracers at the two different redshifts, while being blinded. The BAO peak is detected at ∼5 σ confidence with a 1 . 6 per cent and 1 . 7 per cent precision in the 
pre- and post-reconstruction DESI-M2 LRG sample, respectively, with the reconstruction procedure playing only a marginal role. Such a remarkable detection 
level, obtained with just 2 months of DESI operations, is comparable to the one reported for the BOSS CMASS sample (Anderson et al. 2012 ), and it is quite 
reassuring, given the high complexity of the DESI instrument and of the DESI spectroscopic reduction pipeline. 

Table 3. BAO key fitting results for DESI-M2 LRGs and BGS. 

Sample Reconstruction BAO detection significance α + 	α min( χ2 )/dof 

DESI-M2 LRG Pre-recon 5.170 0.987 ± 0.016 15.619/20 
Post-recon 5.050 1.000 ± 0.017 13.463/20 

DESI-M2 BGS Pre-recon 2.337 0.980 ± 0.040 13.172/20 
Post-recon 2.963 1.001 ± 0.026 16.724/20 
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Figure 10. BAO feature and its significance, as detected in the large-scale correlation function of DESI-M2 BGS. Line styles and conventions same as in 
Fig. 9 . [Left] Pre- and post-reconstruction two-point clustering statistics inferred from the BGS sample. BAO fits to ξ ( s ) are performed in the spatial range 
50 –150 h −1 Mpc , adopting the R ASCALC -BGS covariance. Errorbars are the square root of its diagonal elements. [Right] Detection significance of the DESI-M2 
BGS BAO feature before (lighter grey lines) and after (black lines) reconstruction. The dotted lines with identical colours are corresponding fits to the data 
using a model without BAO. We have shifted each value of α by the same 	α both in pre- and post-reconstruction, as done for the LRG analysis. The acoustic 
feature is detected at ∼2.5 σ significance with a 4.0 per cent precision in pre-reconstruction, and at ∼3.0 σ with a 2 . 6 per cent precision in post-reconstruction. 
Clearly, for this galaxy sample, reconstruction plays a more substantial effect in sharpening the acoustic peak. This BAO detection represents another rele v ant 
milestone of our DESI-M2 analysis. 
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ata (i.e. actual existence of the BAO peak in the galaxy sample). The
χ2 

min , noBAO is greater than 25 both in pre- and post-reconstruction.
ence, we report a detection of the BAO feature in the DESI-M2
RG sample at a significance greater than 5 σ . 
We note that we have shifted each α by the corresponding

alue of 	α in the right panel of Fig. 9 , such that the mini-
um χ2 is at 1 for the post-reconstruction case. The magnitude

f the required shift for the post-reconstruction result was less
han 1 σ . Thus, while we do not reveal the precise value of the
AO scale in this analysis, we are consistent with the fiducial
osmology. 

As illustrated in Fig. 9 , the BAO detection in the DESI-M2 LRG
ample is highly significant. Such a remarkable detection level,
btained with only 2 months of DESI operations, is comparable to
he one reported for the BOSS high- z LRG sample (i.e. CMASS;
nderson et al. 2012 ), comprised of 264 283 galaxies in the

edshift interval 0.43 < z < 0.7. Notice also that the reconstruction
rocedure has practically no impact on the BAO peak inferred from
he DESI-M2 LRG clustering, as evident from the right panel of
ig. 9 (compare the grey and black curves). As pointed out in

he previous section, this is due to the ‘lucky’ starting point of
he pre-reconstruction LRG measurement, which happens to be
ocated in the lower left corner of the σα plot in Fig. 8 , yielding
lready a very low error to begin with, and hence carrying a high
AO detection significance (i.e. left panel of the same figure, see

he cyan star in the upper right corner of the significance scatter
lot). 
In closing this section, we emphasize that the first BAO mea-

urement obtained with DESI-M2 LRGs represents an important
ilestone, and its high detection level is quite reassuring, considering

he complexity of the DESI instrument and of the spectroscopic
eduction pipeline. It also constitutes an important early validation
nd quality-control of the data management system, as well as a
onfirmation of the successful surv e y design strate gy adopted for
ESI targets. Ne xt, we mo v e to the BGS sample and carry out a

imilar BAO analysis. 
NRAS 525, 5406–5422 (2023) 

f

.3 BAO detection from the BGS 

ig. 10 contains another central result of our analysis. Here, we report
he BAO feature as detected in the large-scale clustering of the DESI-

2 BGS BRIGHT sample characterized by a magnitude cut of −21.5
see Section 2 ), together with its significance. In detail, the left panel
isplays two-point correlation function measurements from those
alaxies. Following similar conventions as in Fig. 9 , the grey and
lack curves are, respectively, the pre- and post-reconstruction best-
tting models to ξ ( s ) in the spatial range 50 –150 h 

−1 Mpc , obtained
sing the R ASCALC -BGS covariance matrix. Errorbars in the plot
how the square root of its diagonal elements. Also in this case, the
AO peak is clearly detected and well matched to the best-fitting
odel. Specifically, χ2 

min = 13 . 2 / 20 dof in pre-reconstruction, and
2 
min = 16 . 7 / 20 dof in post-reconstruction. See again Table 3 for
etails on these BAO fits. 
The right panel of Fig. 10 shows the likelihood for the DESI-
2 BGS BRIGHT BAO scale before and after reconstruction

solid lines). The dotted lines with identical colours represent the
orresponding fits to the data using a model without BAO. Similarly
o the LRG analysis, we determine the 1 σ confidence region of
he measurements based on the width of the curve with 	χ2 < 1.
his yields an uncertainty of 0.040 in pre-reconstruction, and of
.026 in post-reconstruction. As evident by comparing the grey and
lack curves from both panels of Fig. 10 , here reconstruction plays
 more substantial effect in sharpening the acoustic peak and in
artially removing the BAO smearing caused by non-linear structure
rowth. By comparing the χ2 of the data fits against a model without
AO, we determine the significance of the BAO feature. We find
χ2 to be 5.5 in pre-reconstruction and 8.8 in post-reconstruction,

orresponding to a BAO detection significance of ∼2.3 σ and ∼3.0 σ ,
espectively. 

Even for the DESI-M2 BGS sample, we have shifted the individual
’s by the same 	α factor applied to the LRG sample, both in pre- and
ost-reconstruction. Since the BGS minimum χ2 values are within
 σ of α + 	α = 1, we can conclude that the BGS BAO results are
ully consistent with the LRG ones. 
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Along with the first BAO measurement from the DESI-M2 LRG 

ample, this first BAO detection obtained using the DESI-M2 BGS 

epresents another rele v ant milestone, as well as an additional early
alidation of the DESI pipeline and data management system for the 
right time surv e y. 

 O U T L O O K  F O R  F U T U R E  DATA  RELEASES  

ased on the promising BAO results presented in Section 6 , obtained
ith the DESI-M2 data set collected o v er just 2 months of operations,
e now proceed to forecast the expected BAO detection significance 

nd accuracy with the completed survey data, focusing on the final 
5 DESI LRG sample. 
To this end, we compute Fisher matrix forecasts of the LRG

sotropic BAO scale. We perform such calculations by adopting co- 
ariance matrices constructed using post-reconstruction EZmocks 
or the two surv e y configurations (i.e. DESI-M2 LRGs and DESI
5 LRGs, respectively) and the best-fitting monopole model for 
ESI-M2, while marginalizing o v er the same free parameters as

n the actual data fit. We then take the ratio of the two Fisher
stimates to rescale the DESI-M2 constraint, in order to account 
or the specific calibration of the LRG EZmocks , tuned on the
ne Percent Surv e y clustering rather than on DESI-M2 (see again
ection 3.3 for details). These Fisher estimates return a factor of ∼5.8
etween the BAO SN inferred from Y5 LRGs and that of DESI-M2
RGs. When we rescale our data best-fitting LRG estimate of 1.7 
er cent accounting for this factor, we then predict a ∼ 0 . 29 per cent
recision on the BAO scale from the final Y5 LRG sample o v er
.4 < z < 1.1. 
We note that such estimate should be taken as an approximate 

rojection for DESI Y5, since we have simply assumed the same 
AO signal from DESI-M2 while only changing the covariance. 
evertheless, the projected BAO precision for DESI Y5 LRGs agrees 
ell with the more accurate DESI LRG Y5 forecasts based on 
OFISH 23 i.e. 0.25 per cent precision for the DESI Y5 LRG sample,
resented in DESI Collaboration ( 2023a ). This exquisite level of
ub-per cent precision on the BAO scale (even from a single tracer)
ill confirm DESI as the most competitive BAO experiment for the 

emainder of this decade. 

 C O N C L U S I O N S  

he BAO scale represents a key standard ruler that provides a direct
ay to measure the expansion history of the Universe and infer

obust cosmological constraints. Hence, BAO measurements are 
onsidered primary DESI science targets, and a major deliverable 
t any stage of the survey. Precision on the expansion history of the
niverse constitutes a compelling probe of the nature of DE. DESI

s expected to deeply impact the current understanding of DE, along 
ith providing unprecedented constrain on theories of modified 
ravity and inflation, and on neutrino masses (DESI Collaboration 
016 ). In this respect, DESI plans to conduct a series of BAO analyses
hroughout its 5-yr surv e y time with blinded catalogues: the Y1
ample would be the first of such rigorously blinded BAO analyses. 

The remarkable complexity of the DESI instrument, along with 
he adopted surv e y design and the elaborated DESI spectroscopic 
ipeline and data management system, poses a potential challenge 
o all BAO analyses. It is then of utmost importance to test such
ipelines well in advance, and it has been the main goal of this study:
3 https:// github.com/ladosamushia/ GoFish 2
his is a crucial aspect in order to guarantee the success of future
AO investigations, and for confirming the optimal performance of 

he DESI spectrograph and the quality level of the data reduction
ipeline. Precisely for this reason, the first 2 months of DESI opera-
ions were intentionally kept unblinded (i.e. DESI-M2 sample). 24 

To this end, we have used the DESI-M2 data set and reported the
rst high-significance detection of the BAO signal from the LRG and
GS samples. Specifically, our primary results are: 

(i) ∼5 σ level BAO detection in the DESI-M2 LRG sample at a
recision of 1.7 per cent. 
(ii) ∼3 σ level BAO detection in the DESI-M2 BGS sample at a

recision of 2.6 per cent. 

In particular, our LRG BAO measurement is comparable to the 
 − 6 σ BAO detection obtained with the BOSS high- z LRG sample
i.e. CMASS; Anderson et al. 2012 ), comprised of 264 283 galaxies
n the redshift interval 0.43 < z < 0.7. Moreo v er, the BOSS and
BOSS BAO measurements made with LRGs in the range 0.4 <
 < 1.0 (with N gal = 1063 828) returned an aggregate precision of
.77 per cent on D V (Bautista et al. 2021 ), which is only a factor of
.2 times better (in terms of precision) than our quoted result with
ESI-M2 LRGs (having just N gal = 266 269). This latter aspect is

ather remarkable, considering that the DESI-M2 data set has been 
ollected simply during the initial 2 months of DESI operations. 

Based on these results, we forecasted that DESI is on target to
chieve a high-significance BAO detection at a ∼ 0 . 29 per cent
recision with the completed Y5 LRG sample o v er 0.4 < z <

.1, meeting the DESI top-level science requirements on BAO 

easurements. This exquisite level of precision will set novel 
tandards in cosmology and confirm DESI as a highly accurate and
recise Stage-IV BAO experiment. 
Additional rele v ant aspects of our investigation on these prelim-

nary DESI-M2 data that are worth highlighting are summarized as 
ollows: 

(i) Although the catalogues we used are unblinded, we presented 
 blinded cosmology analysis, in which we do not report here the
est-fitting BAO scale. In fact, we only presented the precision and
etection level of the BAO measurements. We plan to provide a
ull cosmological interpretation with the Y1 data release in the near
uture, after additional rigorous systematic tests. 

(ii) We focused on the isotropic BAO scale exploiting only the 
onopole of the LRG and BGS samples. 
(iii) We applied the nominal BAO pipeline that has been previ- 

usly well tested with BOSS and eBOSS data. In particular, we
tilized the early version of the pipeline package cosmodesi that 
he DESI collaboration team has been developing, which wraps both 
xisting and new cosmological galaxy survey analysis pipelines from 

he literature. 
(iv) We constructed, calibrated, and used semi-analytical semi- 

mpirical covariance matrices based on the R ASCALC code, and 
alidated those covariances in terms of BAO fitting procedures (in 
re- and post-reconstruction) using a set of mocks, as detailed in
ection 5 and in Rashko v etsk yi et al. ( 2023 ). 
(v) We also found that the LRG BAO signal from the DESI-
2 data is stronger than the typical BAO signal present in the LRG
ocks. Partly for this reason, the reconstruction procedure performed 

n actual LRG data is less ef fecti ve than the one performed on LRG
ocks. On the other hand, we found that the BGS sample shows
MNRAS 525, 5406–5422 (2023) 

4 Note that DESI-M2 is approximately 1/5 of the DESI Y1 sample. 

https://github.com/ladosamushia/GoFish
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 factor of ∼1.5 precision impro v ement after reconstruction. These
esults are consistent with the typical behaviour we find on DESI-M2
ocks; less scatter is expected for the more complete DESI Y1 and
5 samples. 

This work represents the first step towards the analysis techniques
hat will lead to the key cosmological results from DESI Y1 data.

hile the BAO results presented here constitute an important mile-
tone and are quite reassuring in terms of consistency in the clustering
mplitude (considering the complexity of the DESI instrument and
f the spectroscopic reduction pipeline), we anticipate that the DESI
1 analysis alone will surpass the cosmological information from

ll of the BAO analyses performed to date. This will require going
eyond the legacy BAO analysis setting that has been well tested
sing BOSS and eBOSS data (and also mainly adopted here), with
n unprecedented level of BAO systematic tests and by developing an
ptimal BAO pipeline, given the stringent requirements on theoretical
nd observational systematics that are imposed by a data set as
owerful as we expect by the end of the surv e y. The DESI team
s currently working in this direction, and presenting all these no v el
echnical aspects will be the subject of many forthcoming DESI Y1
osmology papers. 
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PPEN D IX  A :  SUPPORTING  MATERIAL  

n support of the primary BAO analysis carried out in the main
ext, in Table A1 we provide some further technical details related 
o the various BAO fits performed to the DESI-M2 LRG sample, 
able A1. BAO key fitting results for LRGs. For DESI-M2 LRGs, we use the R A
he R ASCALC -EZ covariance – see Section 5 and Table 2 for details. We do not sho

oreo v er, we do not report DESI-M2 fits with the EZmock numerical covariance, s
n Section 3.3 ). 

Reconstruction BAO r

Pre-recon Detection s
ESI-M2 LRG Preci

Post-recon Detection s
Preci

Detection s
Pre-recon α

Zmock LRG Preci
Detection s

Post-recon α

Preci
Detection s

Pre-recon α

bSmock LRG Preci
Detection s

Post-recon α

Preci
s well as to the corresponding LRG mocks adopted in this work,
amely, pre- an post-reconstruction results of the BAO detection 
ignificance and precision, along with the α values for the mock fits.
pecifically, as reported in the main text, the DESI-M2 LRG sample
rovides a ∼5 σ BAO detection significance at a 1.6 per cent and
.7 per cent precision in pre- and post-reconstruction, respectively. 
rom the two sets of mocks considered ( AbacusSummit and 
Zmocks ), we also find a significant BAO detection at more than
.4 σ in pre-reconstruction, and exceeding a 4.0 σ detection in 
ost-reconstruction, with a corresponding precision better than 2.8 
er cent (pre-reconstruction) or 2.3 per cent (post-reconstruction). 
emarkably, the α-values inferred from the mocks are close to 
nity, indicating that the fiducial cosmology is very well reco v ered.
his also implies that the mock production pipeline is working 
roperly . Additionally , from Table A1 one can readily infer that the
 ASCALC -based LRG covariance is compatible with the EZmock
RG covariance (as we also reported in Section 5 ), simply by
omparing all the corresponding fitting results obtained with the 
wo sets of covariances (i.e. last two columns). 
 Department of Physics and Astronomy, Sejong University, Seoul 143-747, 
orea 
 Department of Physics and Astronomy, Ohio University, Athens, OH 45701, 
SA 
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SCALC -LRG covariance, while for the two sets of mocks we applied instead 
w here the α values for the LRG data fits, as the cosmology is kept blinded. 
ince EZmocks are calibrated with the One Percent Surv e y data (as explained 

esults RascalC cov EZmock cov 

ignificance 5.170 –
sion 1.6 per cent –
ignificance 5.050 –
sion 1.7 per cent –
ignificance 3.423 3.597 

1.006 1.006 
sion 2.8 per cent 2.7 per cent 
ignificance 4.138 4.091 

1.000 1.001 
sion 2.1 per cent 2.3 per cent 
ignificance 3.623 3.801 

1.001 0.997 
sion 2.8 per cent 2.5 per cent 
ignificance 4.242 4.209 

0.992 0.994 
sion 2.0 per cent 2.1 per cent 
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