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BRIEF REPORT

DNA methylation profiles in pneumonia patients reflect changes in cell types 
and pneumonia severity
Marco Morselli a,*, Colin Farrell b, Dennis Montoya c, Tarık Gören d, Ramazan Sabırlı e, 
İbrahim Türkçüer d, Özgür Kurt f, Aylin Köseler g, and Matteo Pellegrini a

aDepartment of Molecular, Cell, and Developmental Biology, Institute for Genomics and Proteomics; University of California Los Angeles, Los 
Angeles, CA, USA; bDepartment of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA; 
cDepartment of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, CA, USA; dDepartment of 
Emergency Medicine, Pamukkale University Faculty of Medicine, Denizli, Turkey; eDepartment of Emergency Medicine, Bakircay University 
School of Medicine, Cigli Training and Research Hospital, İzmir, Turkey; fDepartment of Medical Microbiology, Acibadem Mehmet Ali Aydinlar 
University School of Medicine, Istanbul, Turkey; gDepartment of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey

ABSTRACT
Immune cell-type composition changes with age, potentially weakening the response to infec
tious diseases. Profiling epigenetics marks of immune cells can help us understand the relation
ship with disease severity. We therefore leveraged a targeted DNA methylation method to study 
the differences in a cohort of pneumonia patients (both COVID-19 positive and negative) and 
unaffected individuals from peripheral blood.
This approach allowed us to predict the pneumonia diagnosis with high accuracy (AUC = 0.92), 
and the PCR positivity to the SARS-CoV-2 viral genome with moderate, albeit lower, accuracy 
(AUC = 0.77). We were also able to predict the severity of pneumonia (PORT score) with an 
R2 = 0.69. By estimating immune cellular frequency from DNA methylation data, patients under 
the age of 65 positive to the SARS-CoV-2 genome (as revealed by PCR) showed an increase in 
T cells, and specifically in CD8+ cells, compared to the negative control group. Conversely, we 
observed a decreased frequency of neutrophils in the positive compared to the negative group. 
No significant difference was found in patients over the age of 65. The results suggest that this 
DNA methylation-based approach can be used as a cost-effective and clinically useful biomarker 
platform for predicting pneumonias and their severity.
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Introduction

Covid-19 infection was declared a global pandemic 
by WHO on 11 March 2020 [1]. It is transmitted 
from person to person through droplets and pro
gresses asymptomatically in 70% of the infected 
individuals. By contrast, in the symptomatic 
group it may manifest itself with mild or severe 
symptoms [2]. In cases with mild symptoms, 
upper respiratory tract symptoms such as fever, 
dry cough, and fatigue may develop, and abnormal 
chest CT findings may also be present. In cases 
with severe symptoms, dyspnoea, diarrhoea, severe 
pneumonia, acute respiratory distress syndrome 
(ARDS) or multiple-organ failure develop, and 
mortality rates vary between 4.3% and 15% 
according to different reports [3,4].

The most widely reported risk factor for developing 
severe COVID-19 symptoms is chronological age [5]. 
Immune cell composition changes with age, and it can 
potentially compromise the immune response, includ
ing the adaptive immune response, to infectious dis
ease [6]. Cell type composition is reflected in 
epigenetic studies that have elucidated molecular 
changes underlying cancer and infectious diseases 
[7,8]. Evaluating the DNA methylation of immune 
cells during and after infection can help explain how 
the epigenome reflects disease severity. Previous work 
has suggested the vulnerability of the elderly to severe 
Covid-19 may be related to the effect of the epigenome 
on viral entry [5]. Epigenetic profiling might help 
elucidate molecular changes induced by viruses as 
well as host–virus interactions, including genetic 
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factors that contribute to the protective or pathogenic 
host responses [9].

To date, only a few studies have assessed the 
DNA methylation levels in COVID-19 infected 
subjects [10–13]. All the studies used array-based 
genome-wide approaches (Infinium 
MethylationEPIC Array) to identify the DNA 
methylation sites associated with COVID-19 disease 
or susceptibility to it. In these studies, all of the 
significantly different DNA methylation sites iden
tified between COVID-19 positive and the control 
group are directly or indirectly associated with the 
interferon signalling pathway and the viral response.

In contrast to the abovementioned studies that 
utilized DNA methylation arrays (testing the methyla
tion levels of approximately 850ʹ000 CpG sites) for de 
novo discovery purposes, we decided to leverage 
a cost-effective targeted DNA methylation approach 
[14] to provide insights into the epigenetic effects that 
distinguish patients with respiratory diseases in com
parison to unaffected individuals based on a custom 
panel. We first constructed a panel of sites that were 
likely to be impacted by viral infection based on pre
vious literature (mostly based on transcriptomic stu
dies). Moreover, we included sites able to discriminate 
between immune cell types and epigenetic-age predic
tors, based on DNA methylation data present in the 
literature. We then used this panel to perform targeted 
bisulfite sequencing allowing us to measure the 
methylation with high accuracy at approximately 
5000 regions. Among our most interesting findings, 
we show that the changes in methylation at these 
regions are associated with the variability of immune 
cell composition across our cohort, as well as the 
severity of pneumonia. In this study, we demonstrate 
that our approach informs about the changes related 
to respiratory diseases and it can be used to predict 
disease state, despite not interrogating comprehen
sively the CpG methylation levels in the genome. 
Thus, DNA methylation profiling provides insights 
into immune responses and enables the creation of 
clinically useful biomarkers.

Results

Demographic and clinical features

Demographic and clinical features of our study 
cohort are shown in Table 1.

The individuals that participated in our study can 
be further stratified in five groups depending on the 
positivity to the PCR test for SARS-CoV-2 genome 
(positive or negative), or the CT scan (COVID-19 
compatible, atypical, bacterial, normal) 
(Supplementary Figure 1). In this study, we tested 
the ability of our assay to discriminate positive and 
negative individuals in three main comparisons:

- Respiratory Diagnosis (Figure 1a): either posi
tive to the PCR test or abnormal CT scan (viral, 
bacterial, atypical), or both (groups I, II, III, IV) vs. 
PCR test negative and normal CT scan (group V);

- Pneumonia COVID ± (Figure 1b, d): non- 
COVID pneumonia (group IV) vs. COVID-19 
clinical diagnosis (either positive to the PCR test 
or COVID-19-compatible CT scan) (groups I, II, 
III). In this comparison, individuals from the con
trol group (group V) were not included;

- PCR test positivity (Figures 1c, 2e and 3): PCR 
test positive (groups II, III) vs. PCR test negative 
individuals (groups I, IV, V). In this comparison, 
the grouping of individuals is independent of the 
CT scan results.

Targeted bisulfite Sequencing (TBS-seq) panel 
design

The TBS-seq panel targets a total of 4426 regions 
selected from sites that are used as DNA methyla
tion-based age predictors; sites that are present in 
the promoters of viral-response genes or in the 
exons of COVID-19-associated infection (ACE2 
and TMPRSS2); immune cell type specific methy
lation sites. The criteria for the selection of the 
regions are listed in the Material and Methods 
section and their coordinates in Supplementary 
Table 2. We carried out targeted bisulfite sequen
cing (TBS-seq) of these regions using a previously 
described protocol [14,15].

TBS-seq can predict pneumonia-related traits

Initially, we asked whether DNA methylation cov
ering the targeted regions could be used to distin
guish healthy controls and patients with 
respiratory diseases by training Leave One Out 
Cross Validated (LOOCV) penalized logistic 
regression models. In a cohort of 130 samples, 
122 samples were correctly predicted as healthy 
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or diagnosed with COVID-19 or non-COVID-19 
pneumonia (27 and 95, respectively), while only 8 
samples (6%) were mis-predicted, with an AUC of 
0.92 (Figure 1a).

We then tried to differentiate between patients 
diagnosed with COVID-19 vs. non-COVID-19 
pneumonia (n = 68, and 29, respectively). An 
individual is diagnosed with COVID-19 based 
on the results of the CT scan, positivity using 
the PCR molecular test, and levels of ferritin 
and D-Dimer. The classification showed 
a reduced AUC (0.66) compared to the prediction 
of healthy vs. pneumonia-diagnosed individuals 
(Figure 1b). The 28 mis-classified individuals 
were equally distributed between false positives 
and false negatives (14 and 14, respectively). The 
individuals in the false-negative group (predicted 
negative but diagnosed COVID-19 positive) are 
all negative for the PCR molecular test, whereas 
the false-positive group (predicted positive, but 
diagnosed with non-COVID-19 pneumonia) 
shows an equal distribution of PCR positive and 
PCR negative patients (Supplementary Table 3). 
Given these results, we also attempted to predict 
the PCR positivity status of the cohort. We were 
able to predict the PCR positivity with 
a moderate degree of accuracy (AUC = 0.77, 
Figure 1c). We therefore focused on this PCR 
positivity-based classification for the rest of the 
study.

In addition to classification models, we fit 
a LOOCV-penalized regression model to predict 
PORT score, a continuous index used for mortality 
prediction in community-acquired pneumonia 
(CAP) patients. The PORT score is calculated 
using age, gender, chronic diseases, mental status, 
in addition to several vitals and blood test results. 
A DNA methylation-based model (epiPORT) can 
predict the PORT score with high accuracy 
(R2 = 0.69; Figure 1d). The PORT score values 
are only calculated for patients with COVID-19 or 
non-COVID-19 pneumonia (respiratory diseases) 
and we don’t find any significant differences 
between predicted and actual PORT scores 
between COVID-19 and non-COVID-19 indivi
duals for both PCR test positivity (groups II, III 
vs. I, IV, V) and respiratory diagnosis (groups I, II, 
III vs. IV, V) classifications (Supplementary 
Figure 2). We constructed an epigenetic clock 

using penalized regression that predicts the age 
of each individual based on their DNA methyla
tion profiles. However, we don’t observe 
a significant difference in the epigenetic age accel
eration (i.e., difference between predicted and 
expected epigenetic age) between PCR positive 
and PCR negative individuals (Supplementary 
Figure 3).

We define the ‘predictive CpG’ sites for each 
model as the CpG sites that have non-zero coeffi
cients in 90% of the models (see Materials and 
Methods). We then compared the ‘predictive 
CpG’ sites used to build the various models 
described above to measure the overlap among 
the predictions (Supplementary Table 4). 
Figure 1e shows the overlap among the sites used 
to build each model. The number of shared sites is 
modest in general, with only one CpG site in 
common among three predictions (age, COVID 
vs. other respiratory diseases, and respiratory diag
nosis) (Supplementary Table 5). The higher num
ber of overlapping sites is seen between the age 
and PORT score prediction (n = 11). This is 
expected, since age plays a substantial role in the 
PORT score calculation. Not surprisingly, 
the second highest number of sites shared between 
predictions (n = 10) is between COVID-19 PCR 
test positivity (positivity criteria as in Figure 1c) 
and COVID-19 vs. non COVID-19 pneumonia 
diagnosis (positivity criteria as in Figure 1b). 
A better overlap among the models is seen if the 
CpG-associated genes are tested for shared mem
bers (Supplementary Table 6).

In addition to our multivariate models, we also 
identified differentially methylated regions 
(DMRs, Supplementary Table 7) within the loci 
covered by our assay (Supplementary Table 8). In 
the majority of the comparisons evaluated, the 
hypomethylated regions are enriched in immune 
response terms such as lymphocyte, leukocytes 
and T cell activation (Supplementary Table 9). 
For the hypermethylated regions, only one com
parison (positive vs. negative respiratory diagno
sis) shows enriched terms related to metabolic 
processes. The overlap of the DMRs obtained by 
pairwise comparisons is more extensive (n = 327 
of 3232 metilene-defined regions) than the one 
observed by the CpG sites used for the predictions 
(n = 28 of 393 total predictive CpG sites, or of 
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6268 total variable CpG sites) (Supplementary 
Table 10, and Supplementary Table 5, 
respectively).

Cell type differences are associated with COVID 
positivity

DNA methylation patterns are affected by both 
epigenetic changes within specific cell types, as 
well as changes in the relative abundance of cell 
types. In addition, the observed enrichment of 
leukocyte-related genes in the DMR analysis 
prompted us to investigate the changes in cell 
type abundance across our cohort. We did not 
observe differences in white-blood cell counts 
(WBC) between PCR positive and negative sub
jects, but there is a significant difference for 
both neutrophils and lymphocytes counts 
(Supplementary Figure 4). We were able to esti
mate additional cell type percentages of each 
type of lymphocyte (B cells, CD4 + T cells, 
CD8 + T cells, and NK cells) as well as mono
cytes in each sample by using cell-specific DNA 
methylation loci as previously described (see 
Methods, Supplementary Table 12, 
Supplementary Table 13, and Supplementary 
Table 14). The methylation estimated percen
tages are well correlated with the clinical cell 
count data for lymphocytes and neutrophils per
centages (r = 0.65, r = 0.65, respectively, 
Supplementary Figure 5). The fact that the pre
dicted cell type abundances are highly correlated 
with the measured values in this study further 
demonstrates the robustness of our previously 
validated deconvolution approach. We then 
asked whether the cell type percentages could 
be used to predict the PCR test positivity status. 
As seen in Supplementary Figure 6, the predic
tion using methylation-estimated cell types 
(AUC = 0.65) is better than the one using clin
ical cell counts data (AUC = 0.60), although not 
as accurate as the one based solely on DNA 
methylation levels.

To study changes in cell-type percentage due 
to COVID infection we clustered the samples 
using the methylation-estimated cell-type dis
tributions for neutrophils, B cells, NK cells, 
CD4+, CD8+, and monocytes, and grouped 
the samples in 3 distinct clusters (Figure 2a). 

Cluster A, which is enriched in patients diag
nosed with COVID-19 (Figure 2d, top panel), 
shows a high level of lymphocytes (mainly 
CD4, CD8, and NK cells) and the lowest level 
of neutrophils. Two-thirds of the samples in 
cluster A are COVID positive based on the 
PCR test (Figure 2b, top panel). By contrast, 
cluster B, shows the highest level of neutrophils 
and the lowest level of lymphocytes 
(Figure 2a). The vast majority of the samples 
in this cluster are negative to the PCR test 
(Figure 2b, middle panel), a third of which 
are diagnosed as COVID-19 positive because 
of a positive CT scan (Figures 2c and 2d, mid
dle panel). Samples in cluster C have inter
mediate neutrophil and lymphocyte levels with 
the majority of the samples being PCR negative 
(Figure 2b, bottom panel). This cluster also has 
the majority of non-pneumonia samples (e.g., 
CTRL; Figures 2c, 2d, bottom panel). Although 
there are no significant age differences within 
each cluster between PCR positive and negative 
individuals (Figure 2e), there is a significant 
difference between clusters (Kruskal-Wallis, 
p = 1.35 x 10−5), with group B having the 
older population, followed by C, then A with 
the youngest.

Differences in cell type distributions between PCR 
positive and negative individuals are age 
dependent

To study the interdependence of cell-type percen
tages, COVID positivity and age, samples were 
divided into three age groups with a similar num
ber of individuals: young (0–40 years; n = 46), 
mid (41–63 years; n = 40), and old (older than 64; 
n = 41). We first examined the distribution of 
5meC-derived neutrophils in the three age groups 
and found that, although the young group shows 
significant differences from the mid and old 
groups, the difference between the mid and old 
age groups was not significant (Figure 3a). 
Although the neutrophil clinical counts do not 
show any statistically significant difference, the 
clinical neutrophil percentage shows significant 
differences among age groups (Supplementary 
Figure 7A, 7B). Similar results were obtained for 
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the distribution of T-cells and their subtypes CD4 
+ and CD8+ (Figures 3b, 3c, and 3d). We 
observed significant differences in both the neu
trophils and the T-cell percentages within the 
young and the mid-age groups between PCR posi
tive and PCR negative individuals (Figures 3a, and 
3b). In particular, the CD8 + T-cell population 
shows significant differences in both the young 
and mid-age groups, while CD4+ distribution is 
significant only in the mid-age group (Figures 3c, 
and 3d). By contrast, the older group doesn’t 
show any significant difference. Clinical leukocyte 
counts show differences among age groups, but 

not within age groups (based on PCR positivity) 
(Supplementary Figure 7C). Clinical lymphocyte 
percentage shows a significant difference in the 
mid-age group between PCR positive and nega
tive patients, in addition to age-related differences 
(Supplementary Figure 7D). When performing 
the same analysis restricted to COVID-19 and 
non-COVID-19 pneumonia patients, significant 
differences are only seen in the mid-age group 
for the cell types examined (Supplementary 
Figure 8). Differences in the PORT score or the 
epiPORT score are statistically significant 
between age groups, but not between PCR 

Figure 3. Violin plots showing the distribution of 5meC-calculated neutrophils (a), T-cells (b, sum of CD4+, and CD8+), CD4 + T cells 
(c), CD8 + T cells (d) in three different age groups split by the PCR positivity test. Teal: PCR test negative; red: PCR test positive. 
Wilcoxon rank sum test was used to compare the means. Top bars are comparing age groups (ns = p-val >0.05; * = p-val <0.05; 
** = p-val <0.01; *** = p-val <0.001; **** = p-val <0.0001), while the bottom bars are comparing PCR positive and negative within 
each group (ns = p-val >0.05; if the p-val <0.05, the value is indicated).

EPIGENETICS 1653



positive or negative individuals (Supplementary 
Figure 9).

Discussion

In this study, we explore the relationship between 
DNA methylation and clinical features of Covid- 
19 infection. Our study population included sev
eral groups: those that were PCR positive and 
negative for Sars-Cov-2, and within each of these 
two groups, individuals that were positive or nega
tive for pneumonia. This allowed us to test 
whether Covid-19 pneumonia led to a different 
epigenetic profile than pneumonia caused by 
other infections. The average age of our patient 
group was 53.9, but the ages ranged across five 
decades, allowing us to test the effect of age on the 
epigenetic response.

All samples in our cohort were collected in 
the first wave of the Covid-19 pandemic, in the 
spring of 2020. At the onset of the pandemic, 
CT results were used for the diagnosis of Covid- 
19. Bilateral, lobular, peripherally localized, 
widespread patched ground glass opacities are 
reported as the characteristic thoracic CT find
ing of COVID-19 pneumonia. In addition, high 
levels of ferritin and D-Dimer were also used in 
the diagnosis. D-dimer levels increase in severe 
cases. Patients with a low total lymphocyte count 
at the onset of the disease usually have a poor 
prognosis. In severe patients, the number of 
peripheral blood lymphocytes gradually 
decreases. For COVID-19 cases, blood lympho
cyte count <800/μl, serum CRP> 40 mg/l, ferri
tin> 500 ng/ml, D-Dimer> 1000 ng/ml can be 
summarized as poor prognostic factors. Later 
during the course of the pandemic, Covid-19 
was diagnosed exclusively with RT-PCR tests 
and CT results.

Previous studies found that in COVID-19 
patients the total blood lymphocyte count, and in 
particular that of T cells, is lower than in healthy 
controls [16]. In severe cases, both CD4+ and 
CD8 + T cell blood counts are further decreased 
compared with moderate cases [17–23][–]. 
Notably, a lower lymphocyte count was found to 
be a clinical predictor of mortality due to Covid-19 
infection [24,25]. By contrast, in our cohort we 

don’t observe lymphopenia in COVID-19 (PCR) 
positive patients.

Using this approach, we were able to delineate 
one of our most interesting findings: that blood 
cell type relative abundances vary based on age 
and positivity to the PCR test. Specifically, we 
divided our cohort into three clusters based on 
the abundance of their cell types: the first cluster 
has the highest number of PCR test positive 
individuals and it shows a high percentage of 
lymphocytes (mainly CD4, CD8, and NK cells) 
and the lowest level of neutrophils. The other 
two clusters show higher levels of neutrophils 
and lower levels of lymphocytes and are 
enriched in patients negative to the PCR test 
and controls.

These results suggest that the PCR-based assess
ment is more strongly associated with cell-type 
differences than the clinical diagnosis based on 
multiple parameters.

Several studies have shown that both CD4+ and 
CD8 + T cells from severe COVID-19 patients 
present a dysregulated status of activation and 
function [26–30]. Thus, our findings that T cell 
percentages are strongly associated with disease 
status and age, support the critical role of these 
cells in effective immune response to the virus.

Similar observations were made in a recent 
multi-omic study [11] in which cellular deconvo
lution analysis identified granulocytes, B cells, NK 
cells, and monocytes as important cell types 
involved in the COVID-19 DNA methylation sig
nature. Finally, in our dataset we see a significant 
difference between the group positive and negative 
to the PCR test for B cell (Kruskal-Wallis, p = 1.79 
x 10−2), but not for the distribution of NK cells 
(Kruskal-Wallis, p = 0.261).

Despite being covered by our assay, neither ACE2 
nor TMPRSS2 genes, identified in the literature as 
key players for COVID-19 infection, showed differ
entially methylated regions in their proximity if 
comparing cases vs. controls. The same conclusion 
was reached in a study by Misra et al., despite 
a different tissue being interrogated [31].

Our approach is able to predict the respiratory 
diagnosis and PCR positivity status with a high 
degree of accuracy (AUC = 0.92 – Figures 1a, 
and 0.77 – Figure 1c, respectively). The sites used 
for most of the iterations to build the various 
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models (‘predictive CpG sites’) do not show 
enrichment for any particular sets of genes, but 
some of them are involved in immune and anti
viral functions, such as the leukocyte immunoglo
bulin-like receptors LILRB2, and LILRB1; IFNLR1 
which is a class II cytokine receptor that binds 
cytokines (IL28A, IL28B, IL29) which expression 
is induced by viral infection; the cytidine deami
nase APOBEC3D and interferon-mediated 
response genes SLC15A4 and PARP9; and the 
T-cell receptor regulators CUX1 and UBASH3A.

Genes associated with differentially methylated 
regions are significantly enriched in terms of the 
immune response, and specifically to T-cell activ
ity, which supports our findings that T cells play 
a significant role in the age and disease dependent 
immune response to COVID.

Other genes have been identified in previously 
published methylation-based screenings of COVID- 
19 positive patients [10,11,13][,, such as:

- Interferon-related genes are not covered 
extensively by our assay, but some are selected in 
the logistic regression models (e.g., IFNLR1, 
SLC15A4, PARP9). Select genes that are not cov
ered by our assay but are reported in the literature 
include IRF7 (interferon regulatory factor 7), 
OAS1 (interferon-induced 2’-5’-Oligoadenylate 
Synthetase 1 that activates the viral RNA nuclease 
RNaseL), MX1 (MX Dynamin Like GTPase 1, and 
involved in the cellular antiviral response), DTX3L 
(a E3 ubiquitin ligase that works in association 
with PARP-9), and IFIT3 (an interferon-induced 
protein that inhibits cellular and viral processes)

- AIM2, which expression is induced by inter
feron gamma, is a protein that recognizes cytosolic 
dsDNA that was identified from an EWAS study 
[12], and that we find it to be associated with the 
epiPORT score prediction.

- the major histocompatibility complex HLA-C 
that is not covered by our assay, but it is bound by 
the leukocyte immunoglobulin-like receptors 
LILRB1/2, that we see as both differentially methy
lated and associated with predictive CpG sites in 
our models.

- the ADP-ribosyltransferase PARP-9 that, 
together with DTX3L, plays an important role in 
interferon-mediated antiviral defence. In our 
assay, PARP-9 is associated with a CpG site 

selected for PCR positivity and COVID-19 diag
nosis prediction.

We believe that the addition of probes capturing 
these genes-associated CpG sites/regions could 
improve our assay in its accuracy and overall per
formance with only a minimal increase of the 
assay associated costs.

Even though we can use our methylation data 
to build an accurate epigenetic clock, we do not 
see evidence of age acceleration in patients posi
tive for the PCR test. This may be due to the 
fact that the sample collection occurred relatively 
early in the COVID-19 disease progression and 
the effects are not yet visible, or that an 
increased epigenetic age might correlate with 
the severity of the disease (not tested in our 
dataset) [32]. Future longitudinal studies may 
also reveal that the epigenetic ageing conse
quences of COVID infection appear later in the 
disease progression.

In conclusion, our approach based on 
a customizable and cost-effective platform to 
assess the DNA methylation levels of a few thou
sand loci is able to distinguish between pneumonia 
and control individuals with high accuracy and, 
with slightly less accuracy, COVID-19 vs. non- 
COVID-19 pneumonia patients. The reduced abil
ity to distinguish individuals within the pneumo
nia class can be due to the heterogeneous nature of 
non-COVID-19 pneumonia, to the limited num
ber of patients analysed and to the relatively low 
number of CpG sites assayed. Our approach is also 
able to calculate the epiPORT score to assess the 
severity of community-acquired pneumonia. This 
suggests that disease severity does impact epigen
omes, and can therefore be used for the develop
ment of biomarkers. Our data also shows that 
neutrophils and T cells vary significantly between 
COVID-19 positive and negative individuals, par
ticularly in young and middle-aged subjects. T-cell 
and leukocyte terms are enriched in differentially 
methylated regions and interferon-related genes 
are associated with the CpG sites used by the 
logistic regression models built in this study. 
Thus, the epigenome allows us to capture the age- 
related decline in the adaptive immune response, 
which likely underlies the increase in disease 
severity with age [33].
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Limitations of the study

This study has a few limitations. First, it is a non- 
longitudinal and single-centre study. Moreover, 
the samples are labelled positive or negative 
(based on either the diagnosis or the PCR test), 
but not based on the severity. Nonetheless, we can 
predict with high accuracy the PORT score that 
can be considered a risk factor for community- 
acquired pneumonia (CAP). The control patients 
are not healthy individuals, but they were admitted 
to the emergency room with a different pathology 
than pulmonary-related diseases.

Material and methods

The present study is a prospective case-control 
study, and the required approval was obtained 
from the Ethics Committee of Pamukkale 
University (60,116,787–020/31,834).

RT-PCR assay

SARS CoV-2 Double Gene RT-qPCR Kit (BS-SY- 
WCOR-307-1000, Bio-Speedy) was used for diag
nosis of the Covid-19 positivity.

Study population

After the required information concerning the 
study was provided both to the patient group and 
to the healthy control group, the written consent 
forms were obtained from all the subjects who 
agreed to participate in the study.

These subjects were assessed in accordance with 
the inclusion and exclusion criteria. Patients who 
were diagnosed with SARS-CoV-2 infection accord
ing to WHO (https://www.who.int/publications/i/ 
item/clinical-management-of-SARS-CoV-2) guide
line as a result of clinical evaluation in the emer
gency department and whose diagnosis was 
confirmed by RT-PCR were included in the study. 
The grouping of the patients is detailed in the 
Supplementary Figure 1. 67 patients were diagnosed 
with COVID-19: 31 patients CT (-) SARS-CoV-2 
(+) infection (group III); 19 patients CT(+) SARS- 
CoV- (+) pneumonia (group II); 18 patients with 
RT-PCR (-) detected although thorax CT findings 
were compatible with suspected COVID-19 

pneumonia (group I). The RSNAEC (Radiological 
Society of North America Expert Consensus) guide
lines were followed to evaluate the CT scans. 29 
patients were negative (-) to the RT-PCR test, but 
the CT scan results were not compatible with 
COVID-19 pneumonia (group IV). 30 healthy 
volunteers were included in the study as the control 
group (group V). The exclusion criteria for this 
group consisted of recent history of infection, diag
nosis of kidney and liver failure, acute pulmonary 
embolism, chronic inflammatory disease history 
(rheumatological disease, autoimmune disease), 
pregnancy, presence of any cancer diagnosis, 
chronic obstructive pulmonary disease, asthma dis
ease, and history of cerebrovascular disease.

Data collection

Demographic data, medical history, vital findings 
(fever, blood pressure, sPO2), laboratory findings 
(complete blood count; C-reactive protein (CRP), 
D-dimer, Ferritin and hsTnT parameters) and 
radiological findings, time to onset of symptoms, 
Comorbid diseases, hospitalization location of the 
patients (service or ICU), clinical scores, CT sever
ity scores were recorded in the data set.

CT evaluation

Chest CT performed at the time of admission of 
the patients to the ED was assessed under the 
criteria of the RSNAEC (Radiological Society of 
North America Expert Consensus) by an emer
gency physician who followed up the patient clini
cally. The pneumonia cases were classified in line 
with these criteria and recorded in the clinical 
classification dataset [34].

Clinical Evaluation

The clinical assessment of the subjects was performed 
in accordance with COVID-19 diagnosis and treat
ment guidelines of the Turkish Ministry of Health 
(https://covid19rehberi.com/wp-content/uploads/ 
2020/08/COVID-19_REHBERI_ERISKIN_HASTA_ 
TEDAVISI.pdf, Accessed August 26th). As this guide 
was updated, the patient management algorithm was 
also edited. The Pneumonia Severity Index and 
CURB-65 scores of the subjects were calculated as 
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suggested in the literature and then recorded in the 
dataset [35,36].

Blood samples and laboratory parameters

Complete blood count (CBC), C-reactive protein 
(CRP), creatinine, urea, d-dimer, and ferritin para
meters, which are routinely checked during admis
sion to the ED, were recorded in the dataset. In the 
control group, on the other hand, after 3 cc of 
blood was drawn into a dry tube, and another 3 
cc of blood was placed into the EDTA tube, was 
analysed through the same methods in the same 
laboratory. The laboratory parameters of the blood 
samples requested from the patients in the ED for 
examination were recorded in the dataset.

Targeted bisulfite Sequencing (TBS-seq)

Probe design
The design of the probe panel used in the Targeted 
bisulfite Sequencing (TBS-seq) is based on the 
selection of CpG sites meeting one or more of 
the following criteria:

• It is described in the literature as part of DNA 
methylation-based age estimators [37];

• It has blood cell-type specific DNA methyla
tion profiles (referred as CellFi sites);

• Present in the promoters (defined as −1000 
bp/+250 bp from the TSS) of viral-response 
genes and genes involved in SARS and influ
enza infections (response to virus 
GO:0009615) [38,39] and covered by the 
TruSeq Methyl Capture EPIC kit (Illumina, 
Inc.);

• Present in exons of genes previously associated 
with SARS-CoV2 infection: ACE2 and 
TMPRSS2.

Biotinylated probes covering the selected CpG 
sites have been synthesized by IDT (NGS 
Discovery Pools). The targeted region coordinates 
(GRCh38) are listed in Supplementary Table 2.

Library preparation and data generation
Genomic DNA was isolated from the individuals 
by standard phenol-chloroform extraction method 

[40]. 500 ng of extracted DNA were used for TBS- 
seq library preparation as described in Chang 
et al., with minor modifications [15]. Briefly, frag
mented DNA was subject to end repair, dA-tailing 
and adapter ligation using the NEBNext Ultra II 
Library prep kit using custom pre-methylated 
adapters (IDT) [14]. Purified libraries were hybri
dized to the biotinylated probes according to the 
manufacturer’s protocol. Captured DNA was trea
ted with bisulfite prior to PCR amplification using 
KAPA HiFi Uracil+ with the following conditions: 
2 min at 98°C; 14 cycles of (98°C for 20 sec; 60°C 
for 30 sec; 72°C for 30 sec); 72°C for 5 minutes; 
hold at 4°C. Library QC was performed using the 
High-Sensitivity D1000 Assay on a 2200 Agilent 
TapeStation. Libraries were sequenced on 
a NovaSeq6000 (S1 lane) as paired-end 150 bases.

Data processing
Demultiplexed Fastq files were subject to adapter 
removal using cutadapt (v2.10) [41] and aligned to 
the GRCh38 genome using BSBolt Align (v1.3.0) 
[42]. PCR duplicates were removed using samtools 
markdup function (samtools version 1.9) [43] 
before calling methylation using BSBolt 
CallMethylation function. A DNA methylation 
matrix containing all the common CpG sites cov
ered by at least 20 reads in all the samples is 
created using BSBolt AggregateMatrix.

LOOCV models
The aggregate methylation matrix was filtered by 
removing sites that exhibited low variation 
between samples (≤0.00254) before model train
ing, resulting in a methylation matrix with 9,935 
CpG sites and 130 samples. The methylation 
values for each row were scaled to have a zero 
mean and unit variance using the scikit-learn 
[44] preprocessing.scale module. Using the pro
cessed methylation matrix Leave One Out Cross 
Validated (LOOCV) penalized logistic regression 
models and penalized linear regression models 
were trained against sample Covid-19 PCR testing 
status (n = 128) and PORT assessment score 
(n = 88) respectively. Briefly, for each sample 
a separate regression model was trained with the 
respective sample left out of model training, sam
ple data were then used to predict the sample 
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Covid-19 PCR status or PORT score. Identical 
model parameters were used between folds 
( h t t p s : / / g i t h u b . c o m / N u t t y L o g i c /  
EpigeneticAlterationsInCovid19Infections). 
Within folds 115 and 81 CpG sites had non-zero 
coefficients in 90% of the port and PCR status 
models representing 41.2% and 14.3% of the mod
elled CpG sites with non-zero coefficients among 
all folds.

DNA methylation-based cell composition 
estimation
A reference-based cell estimation approach was uti
lized to estimate proportions of six blood cell types: 
neutrophils, monocytes, CD4 + T cells, CD8 + T 
cells, B cells, and NK cells, as previously described 
[45–47]. In summary, whole genome bisulfite 
sequencing (WGBS) methylomes were obtained 
from the Blueprint Epigenome Project [48]. In 
total, 37 methylation profiles were analysed from 
venous blood-derived cell types (Supplementary 
Table 12). First, to process the reference dataset, we 
used a sliding window to aggregate the methylation 
values into regions composed of at least two CpG 
loci that have similar methylation (≤ 25% methyla
tion difference) and are within 500bp distance from 
each other. Second, cell-specific regions were 
selected that were uniquely hypomethylated in one 
cell type by at least 30% than all other cell types. An 
exception to these criteria were CD4+ and CD8 + T 
cells which because of their similarity led to a dearth 
of unique regions, therefore additional regions spe
cific to T cells as a whole and regions at least 30% 
methylation difference between CD4+ and CD8 + T 
cells were also included. As a result, over 100 cell- 
specific hypomethylated regions were selected repre
senting over 450 CpG loci (Supplementary Table 13). 
The validation of the deconvolution method was 
carried out using known cell mixtures in vitro, as 
described in Nadel et al. [49]. Briefly, combinations 
of 6 isolated immune cells (neutrophils, monocytes, 
NK cells, B cells, and CD4+ and CD8 + T cells) were 
mixed together and whole-genome bisulfite sequen
cing on the extracted DNA was performed. The 
results are shown in Supplementary Figure 10. 
Second, a non-negative least squares regression was 
performed on the methylation values of the cell- 

specific regions of the references and samples to 
estimate the proportion of each cell type within the 
samples. The resulting cell-type deconvolution data 
can be found in Supplementary Table 14.

Differentially Methylated Regions (DMRs)
Differentially methylated regions were identified 
using metilene [50] with the following parameters: 
-M 300 -m 2 -d 0.05; where -M = the allowed nt 
distance between two CpGs within a DMR; -m = the 
minimum # of CpGs in a DMR; -d = the minimum 
mean methylation difference for calling DMRs. Only 
regions with a q-value < 0.1 were considered for 
further analysis. DMRs are further divided into hyper
methylated or hypomethylated based on the Δ methy
lation value (condition positive – condition negative).

Gene association rules
Individual CpG sites and genomic regions 
(DMRs) were bookmarked with the nearest 
gene features up and downstream of the 
assessed site or region using custom python 
implementation and NCBI RefSeq annotations 
(hg38).

GO enrichment analysis
The enrichment analysis is performed using g: 
GOst Functional Profiling (g:Profiler) [51] with 
the following customizations: multiquery (genes 
associated with differentially methylated 
regions and divided in hyper-, and hypo- 
methylated); Custom domain over annotated 
genes (genes associated with the background 
regions defined by metilene); Significance: 
Benjamini-Hochberg FDR with a threshold of 
0.05; Gene Ontology sources: GO biological 
process, and No electronic GO annotations; 
Biological pathways: all; Regulatory motifs: all; 
Protein databases: all.

Data availability

The data is deposited to Gene Expression Omnibus (GEO) 
and assigned the accession GSE192702.
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