
UC Berkeley
UC Berkeley Previously Published Works

Title
Customizing Mems Designs via Conditional Generative Adversarial Networks

Permalink
https://escholarship.org/uc/item/7fz1x178

Authors
Sui, Fanping
Guo, Ruiqi
Yue, Wei
et al.

Publication Date
2022-01-13

DOI
10.1109/mems51670.2022.9699476

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fz1x178
https://escholarship.org/uc/item/7fz1x178#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


CUSTOMIZING MEMS DESIGNS VIA CONDITIONAL GENERATIVE 

ADVERSARIAL NETWORKS 

Fanping Sui†, Ruiqi Guo†, Wei Yue, Kamyar Behrouzi, and Liwei Lin 

Department of Mechanical Engineering, University of California, Berkeley, USA  
†Fanping Sui and Ruiqi Guo contributed equally to this work. 

 

ABSTRACT 

We present a novel systematic MEMS structure design 

approach based on a “deep conditional generative model”. 

Utilizing the conditional generative adversarial network 

(CGAN) on a case study of circular-shaped MEMS 

resonators, three major advancements have been 

demonstrated: 1) a high-throughput vectorized MEMS 

design generation scheme that satisfies the geometric 

constraints; 2) MEMS structural customization toward 

tunable, desired physical properties with excellent 

generation accuracy; and 3) experience-free design space 

explorations to achieve extreme physical properties, such 

as low anchor loss of micro resonators. Excellent 

agreements with experimental data, numerical simulations, 

and a previously reported machine learning-based analyzer 

are achieved for validation of our methodology. As such, 

the proposed scheme could open up a new class of data-

driven, intelligent design systems for a wide range of 

MEMS applications. 
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INTRODUCTION 

The modern machine learning (ML) technology has 

become a scientific endeavor in the past decades and has 

been profoundly changing many sectors of society, 

including science, technology, and commerce [1]. The ML 

algorithms are designed to automatically improve themself 

with experience. In this regard, the ML tools can be applied 

to the field of design and enable the intelligent, data-driven 

design space exploration techniques. In the past few years, 

ML-based design approaches have demonstrated great 

potentials in automating design processes without the 

strong dependence on the human intuition or expertise in 

the related areas [2, 3].  

In the field of MEMS, ML algorithms have been used 

to significantly accelerate the computation speed of MEMS 

structure properties with decent accuracy as a potential 

alternative to common computational tools such as the 

finite element analysis (FEA) [4]. Such supervised 

learning-based methods enable the low-cost design 

screening in large and complex design spaces. Although 

these methods have demonstrated the capability in 

analyzing the essential properties of MEMS structures and 

have shown some pioneering results in the data-driven 

design field, there is still a gap between fitting the design-

property trends for prediction and creating new high-

performance designs. Recently, a topic that merits more 

attention is how to generate new MEMS structures 

autonomously and efficiently with desired (or extreme) 

properties under the direct guidance of ML.  

On the other hand, the generative networks based 

inverse design methods [5-10], which directly suggest the 

candidate structures based on desired physical properties, 

have become an emerging field of study in recent years. 

Generative adversarial network (GAN) is one of the most 

commonly used generative models, which is good at 

proposing candidate designs similar to the training dataset. 

However, the standard GAN approach has no control over 

the modes of the patterns, which results in low sample 

efficiency or separate specialized training when generating 

structures with different targeted properties [11].  

Here, a new deep learning framework - conditional 

generative adversarial network (CGAN) is developed to 

generate MEMS designs with customizable properties 

without the additional training procedures. As shown in 

Figure 1, by providing the targeted physical properties such 

as frequency and anchor loss as inputs, the CGAN can 

propose the pixelated images of candidate designs as 

outputs, which can be translated to the desired MEMS 

device designs. The proposed system shows a remarkable 

generation accuracy (~93.1%) in terms of target 

frequencies and significant design optimization 

performances by lowering the anchor losses. We envision 

that similar data-driven inverse design methods can be 

applied to other types of MEMS designs such as energy 

harvesters, accelerometers, and gyroscopes in the future. 

 
Figure 1: Schematic diagram of procedures to customize 

MEMS designs by the proposed conditional generative 

adversarial network (CGAN). Customizable targeted 

properties are assigned to the pretrained model and 

pixelated images representing the desired MEMS designs 

are generated. 

 

SYSTEM ARCHITECTURE 

As illustrated in Figure 2A, disk-shaped polysilicon 

MEMS resonators with center supports are utilized as a 

case study. The geometric features and material properties 

of the resonators are identical to the previous works [4, 12], 

where the Young’s modulus of the material (polysilicon) � 

is 150 GPa , density 	  is 2.3 × 10� kg/m3
, and the 

Poisson’s ratio �  is 0.29 . The outer ring and inner ring 

diameters of the structural layer are set as 44 μm and 30.8 

μm, respectively, and the thickness of the structural layer 

is 2 μm. The anchor stem has a diameter of 2.64 μm and 

thickness of 0.7 μm. As shown in Figures 2B-E, the four 

modes of interest are the rotational mode, torsional mode 

along X-direction, torsional mode along Y-direction, and 

flexural mode, respectively. The physical properties, such 

978-1-6654-0911-7/22/$31.00 ©2022 IEEE 450 IEEE MEMS 2022, Tokyo, JAPAN
9 - 13 January 2022

20
22

 IE
EE

 3
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 M
ic

ro
 E

le
ct

ro
 M

ec
ha

ni
ca

l S
ys

te
m

s C
on

fe
re

nc
e 

(M
EM

S)
 |

 9
78

-1
-6

65
4-

09
11

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
M

EM
S5

16
70

.2
02

2.
96

99
47

6

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 02,2024 at 21:21:06 UTC from IEEE Xplore.  Restrictions apply. 



as frequency and anchor loss of the resonator structures for 

specific resonant modes are analyzed from the commercial 

FEA software ABAQUS and assumed as the ground truth 

for evaluations.  

 
Figure 2: A) Geometry and B-E) four vibrational modes of 

interest of a representative MEMS disk resonator. The 

color gradients indicate the magnitude of the relative 

displacements � of the four mode shapes. 

 

The data-driven inverse design of resonator structures 

faces two major challenges: 1) computer-generated designs 

need to satisfy the geometric validity, which ensures all the 

solid entities of structures to be connected together; 2) the 

physical properties of generated structures should be tuned 

conditioned upon input design parameters. As the core 

controlling unit of the system, the CGAN algorithm can 

generate candidate designs that satisfy both rubrics 

simultaneously. As shown in Figures 3A-C, the CGAN 

architecture has three basic modules with different 

functionalities: generator �, discriminator �, and predictor 

�. The generator and discriminator form a standard GAN 

and are updated alternately to ensure the geometrical 

similarities between training samples and newly generated 

candidates. The predictor is pretrained to map the 

geometries with physical properties. During the forward 

pattern generation process, the system takes a random 

vector �, and the targeted physical property requirement �� 

for the MEMS structure as inputs. The fully connected 

decoder   will decode �� into a higher dimensional vector 

c. Afterwards, the random vector � is concatenated with c 

to ensure the random variations are introduced in the 

generative model. Finally, the newly formed vector is 

transformed to a binary pixel-wise representation of the 

candidate patterns !" , while satisfying both the �� 

condition and geometrical validity through the 2D 

deconvolution process in the generator. 

 
Figure 3: The system architecture of the CGAN-based MEMS structure designer. A) Desired property �� is decoded to a 

higher dimensional vector # with the fully connected decoder  . The vector # is concatenated with a random vector � as 

a new vector and fed to the 2D deconvolution generator � to obtain the vectorized pattern !". B) The discriminator � takes 

!" as the input which is processed through 2D convolutional and fully connected layers, and the output would be a logical 

vector that indicates the geometrical validity of the structure. C) The predictor � has similar 2D convolutional layers to 

� and outputs the predicted property �$ through the architecturally different fully connected layers.  

 

During the training process, the randomly generated 

resonator patterns from random Brownian motion 

processes similar to the previous work [4] have been 

prepared as the training dataset, where those geometries are 

connected regions. The patterns from the entire training 

dataset are labeled as logical true while the generated 

patterns from the generator are labeled as logical false. The 

discriminator takes a mixed dataset of sample inputs and 

justifies whether it is from the training dataset or CGAN-

generated dataset, which is realized by a dimensionality 

reduction process via the 2D convolution layers and fully 

connected layers. The classification results from the 

discriminator are compared with the labels and the 

resulting loss gradients are backpropagated to update the 

network weights of both the generator and discriminator. 

The adversarial behavior of the generator-discriminator set 

promotes the geometrical validity of generated patterns, as 

the generator can capture the identical geometric features 

shared among the training dataset. The desired physical 

properties of generated samples can be achieved by the 

second trail of the training thread for the fully connected 

decoder, which is synchronized with the training process of 

generator-discriminator set. On this thread, the predicted 

physical properties �$  of the generated patterns are 

obtained from the pretrained high-throughput predictor. 

Next, by comparing �$ with ��, the network weights for 

the fully connected decoder are updated based on the 

corresponding loss gradients. After sufficient iterations, the 

generator would be ready for deployment with all the 

optimized neural network weights frozen. 
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RESULTS AND DISCUSSION 

The training process of the CGAN framework is 

illustrated in Figure 4, which takes a total number of 2,500 

epochs. The loss curves of the generator-discriminator set 

are shown in Figure 4A. As the generator and discriminator 

are competing against each other, their losses are 

converging to some constants. Figure 4B shows the loss 

curves of the predictor and decoder and both are 

converging to zero, indicating that CGAN is realizing the 

forward interpretation of geometrical designs and inverse 

translation of physical properties with increasing accuracy. 

The snapshots of the generator output design patterns with 

the epoch numbers of 2, 77, 477, 1364, 2020, 2438 are 

shown in the stages of I-VI of Figure 4C, respectively. It is 

found that the number of isolated islands in the design 

configuration is reduced during the training process, 

indicating that the geometrical validity is progressively 

enhanced.  

 
Figure 4: Training process of the CGAN architecture. A) 

The loss curves of the generator and discriminator. B) The 

loss curves of the decoder and predictor. C) The design 

patterns proposed at different numbers of epochs with 

geometrical validity enhancements progressively. 

 

The experimental validations of the proposed CGAN 

are implemented for the predictive and generative 

components of the framework. We utilize the identical 

dataset to the previous work [4] as the training set for the 

predictor. The prediction results from the properly trained 

model have exhibited great agreements with experimental 

data [12], FEA simulations, and the ML-based analyzer [4] 

as shown in the lower portion of Figure 5. The generative 

function of CGAN is validated by demonstrating the 

capability of recovering the original designs with their 

physical properties as inputs. As shown in the dashed blue 

boxes in Figure 5, some proposed designs that are highly 

similar to the original are found in the CGAN-generated 

design sets.  

 
Figure 5: Two MEMS resonator designs with 121.8 μm 

(left) and 44 μm (right) in diameter from the experimental 

work [12] for validating the predictive and generative 

functions of the proposed CGAN. %&'$, %(&), %*+, and %$(& 

are results from references [12], [4], the FEA simulation 

and the predictor in this work, respectively. The design 

patterns in the dashed blue boxes are several 

representative designs from the generative model that are 

very similar to the original designs. 

 

Figure 6 shows several representative designs 

generated from the proposed CGAN conditioned on the 

different targeted frequencies of the torsional mode along 

X-direction. The true frequencies of the output designs are 

closely matched with targeted frequencies as the generator 

has learned the underlying regularities to generate designs 

with the right targeted frequency by manipulating the 

corresponding pixels. 

 
Figure 6: Designs generated from the proposed framework 

with the true frequencies %-&.  conditioned on various 

targeted frequencies %/0(. 

 

The generation performance of the proposed CGAN 

framework is evaluated by calculating how accurately the 

conditional generative model outputs designs for achieving 

the varied input targeted physical properties. The accuracy 

is defined as 12�� 3 �$41/�� , where ��  is the targeted 

physical value and �$ is the corresponding outcome of the 

generated design calculated by FEA. As a case study, the 

FEA validated frequencies of the CGAN-generated 

structures are compared with the corresponding targeted 

frequency values for the four vibrational modes of the disk-

shaped resonators. The targeted frequency values are 

assigned according to the normal distributions fitted by the 

training dataset. As shown in Figures 7A-D, all newly 

created sample points are located very close to the 45-

degree red dashed lines, which represent the fully correct 

matching results in each case. The corresponding 

generation accuracy for the four modes are 95.8 ± 3.2 %, 

95.1 ± 5.1 %, 87.5 ± 4.0 %, 93.9 ± 5.6 %, respectively.  

 
Figure 7: The targeted frequencies input to the proposed 

CGAN model with respect to the true frequencies of the 

generated designs from the FEA simulations for the disk-

shaped resonator in A) rotational mode, B) flexural mode, 

C) the torsional mode along X-direction, D) the torsional 
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mode along Y-direction. The red dashed lines in each plot 

represent 100% accuracy. 

 

The performance variations would largely depend on 

the range of the targeted frequencies, which can be 

reflected from the boundary values in the figures. For 

example, Figure 7C shows the true frequency of torsional 

mode along X-direction has an upper bound of 2.6 MHz 

and a lower bound of 0.6 MHz. Once these outliers are 

removed, the corresponding generation accuracy can be 

improved to as high as 94.8 ± 5.6 %. Similar observations 

can be found for other vibrational modes. The reason is that 

the geometries with such extreme frequencies are rare, 

which results in insufficient corresponding training data 

from the random generation processes. 

Design configurations with possible extreme physical 

properties are also investigated by the proposed CGAN 

model. For example, the selected physical property of 

interest is the anchor loss for the resonator devices in the 

flexural mode 567&' , which is desirable to be minimized for 

various applications. As illustrated in Figure 8, the 

probability distribution of normalized 1/567&'  of generated 

samples is compared against that of designs from the 

training dataset. It is found that CGAN can effectively learn 

the underlying mechanism of the anchor loss and propose 

new designs with low anchor losses for higher 

performances. The key step that facilitates this remarkable 

optimization performance is by setting an out-of-

distribution 1/567&'  value as the ��  parameter of CGAN 

framework. As such, the distribution of the CGAN-

generated designs is shifted toward the desired direction to 

achieve ~34% higher performance than the best value from 

the training dataset. 

 
Figure 8: Distribution comparison between the training 

dataset (blue color) and CGAN outputs (orange color) for 

normalized 1/ 567&'  , where 567&'  is the anchor loss of the 

MEMS resonator in the flexural mode. The CGAN-

generated designs are not in the distribution of the training 

dataset and can achieve ~34% improved performance than 

the best value from the training dataset. 

 

CONCLUSION 

In this work, we have proposed a novel conditional 

generative adversarial network framework for the MEMS 

structural design customizations. The adversarial behavior 

between the generator and the discriminator enables the 

generated designs to satisfy the geometrical validity while 

the decoding and predicting components of the framework 

secure the desired designs based on the targeted physical 

properties. High-accuracy design generations and 

experience-free design space explorations are 

demonstrated. As a future direction, we will apply this 

framework to other complicated MEMS design problems 

targeting specific functionalities. 
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