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respond to expectations. The first chapter examines the formation of expectations
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Chapter 1

Does Validity Fall from the Sky?

Observant Farmers and the

Endogeneity of Rainfall

1



2

1.1 Introduction

Weather, particularly rainfall, is a popular source of identifying variation in

many areas of empirical economics. With few exceptions, researchers have treated

deviations from mean rainfall as an exogenous and unpredictable shock. Yet the

prevalence of 10-day weather forecasts and longer-range seasonal forecasts suggest

plenty of information about future weather events is available. Once information

about future rainfall deviations becomes available, rainfall’s impacts on income,

prices, health, and other factors also become predictable. When possible, utility

maximizing agents should use this predictability to adapt to rainfall deviations

before they occur in order to optimize future consumption, production, and other

outcomes. Anticipatory adaptation makes the eventual impact of rainfall devia-

tions on consumption and other outcomes of interest an endogenous functions of

agents’ behavioral choices.

The use of rainfall deviations as a source of exogenous and unpredictable

shocks is neither new nor outdated. Explicit description of rainfall as “exogenous”

goes at least as far back as Koopmans (1949). At present rainfall is commonly used

as an exogenous shock to household consumption, aggregate consumption, and

income. That said, other concerns about rainfall-based identification strategies are

not new. Rosenzweig and Wolpin (2000) criticize treating rainfall as a exogenous

shock to income through crop yields, citing evidence that rainfall also alters relative

prices. Kochar (1999) and Rose (2001) discuss rainfall impacting the productivity
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of own-farm production relative to labor market production. Rainfall may have

other direct effects as well. Residual soil moisture may impact future yields, or

standing water may spread disease. Because these types of direct effects violate the

exclusion restriction necessary in an instrumental variables setting, recent papers

more commonly pursue reduced form estimation.

The main contribution of this paper is to empirically document that rain-

fall deviations are not an unexpected shock at the time they occur, as evidenced

by farmers adapting their crop choices at the beginning of the agricultural season

in advance of seasonal weather realizations. The resulting endogeneity of income

provides another reason why the exclusion restriction for IV is unlikely hold. This

also means reduced form estimates using rainfall deviations require further reinter-

pretation. While the extent to which adaptation alters estimates depends on the

outcome of interest, a variety of cases are examined to show the role of adaptation

is far from trivial. In some cases, removing as much adaptive behavior as possible

causes standard estimates of income elasticities to be cut in half.

If economists could control for agents’ expectations at a given period of time,

then it would be possible to remove the endogenous impacts of earlier adaptation

by using rainfall which was unexpected at the given period. Subsequent changes

in expectations were by definition unexpected at this given period. Adaptations

driven by these updates to expectations were also unexpected and exogenous at

this period. Deviations from expected rainfall should be interpreted as an un-
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expected shock which occurs not at the time of precipitation, but before more

nuanced expectations are formed. After this point, the rainfall deviation is no

longer unexpected. Reduced form estimates should be interpreted as reflecting not

only the impact of the physical rainfall event through income and relative prices,

but also all impacts of anticipatory adaptation. Deviations from mean rainfall

should then be interpreted as a shock which occurs before agents are able to form

expectations more nuanced than the mean. This paper empirically shows that at

least as early as the start of the agricultural season, farmers have accurate rainfall

expectations more nuanced than a long-run mean.

India is a popular location among papers using rainfall for identifying vari-

ation. This paper examines multiple data sets on Indian agriculture which are

popular sources of data both in general and among papers using rainfall for iden-

tifying variation.1 The crop selections of Indian farmers are found to be strongly

correlated with the season’s upcoming rainfall in an agronomically efficient manner.

In years where rainfall is one standard deviation below the mean, the district-wide

acreage of sorghum (a relatively drought resistant crop) increases by almost 3%,

while the district-wide acreage of rice (a relatively water-intensive crops) decreases

by over 1%. The response of average farming households from a popular survey

of rural villages are larger than the average response of aggregate acreage. These

1Prominent examples using the ICRISAT data examined here include Jacoby and Skoufias
(1998), Kochar (1999), Mazzocco and Saini (2012), and Rosenzweig and Udry (2013). Jayachan-
dran (2006) uses IAC data. Other papers using Indian rainfall for identifying variation include
Wolpin (1982), Rose (1999), Rose (2001), and Taraz (2012).
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farmers alter acreage devoted to drought-resistant and water-intensive crops by as

much as 10% per crop, consistent with poorer, smaller-scale farmers being more

risk averse. The temporal order for these correlations is incorrect for identifying

a causal relationship. Farmers must make decisions about how much acreage to

sow before observing rainfall outcomes. The response of crop acreage to the up-

coming season’s rainfall is not a delayed response to early-season rain, nor is it

a response to medium-run regime shifts in average rainfall as suggested in Taraz

(2012). Such apparent anticipation of weather variation should not be possible

when the variation is unpredictable at the time of planting.

This paper suggests farmers observe signals about future rainfall outcomes

and respond appropriately. While the idea of short-run weather expectations in-

fluencing crop choices has been occasionally speculated, this paper’s broad-based

empirical evidence of such adaptation is new. Indeed, repeated adaptation to an-

nual expectations offers an important mechanism through which cropping patterns

may adapt to long-run climate change. Beyond agriculture, such predictability

would be of obvious value in any situation where returns on investments depend

in part on weather outcomes, including fishing, tourism, and retail. When adap-

tive behaviors are available, agents should use available information to form and

respond to expectations over future weather events in economically meaningful

ways. Concurrent and complementary research by Rosenzweig and Udry (2013)

finds early-season investments respond to seasonal government forecasts, and re-
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spond more strongly in areas where forecasts are more accurate. Rosenzweig and

Udry (2013) focus on the returns to forecast accuracy, while this paper focuses on

how the predictability of rainfall deviations impacts the interpretation of rainfall-

based identification and whether the econometrician’s information set can serve as

a sufficient statistic for expectations.

As noted above, controlling for agents’ expectations at a given time would

make it possible to remove some of the endogenous impacts of rainfall-specific adap-

tation. The response of aggregate crop acreage within a district appears to be en-

tirely driven by rainfall variation which is predictable at the time of planting given

the econometrician’s information set. This supports the interpretation of crop se-

lection as anticipatory adaptation, and suggests researchers may be able to isolate

unexpected rainfall shocks. However, uncertainty over the information and adap-

tations available to the agent makes isolating an unexpected rainfall shock rather

complex. First, the agent may engage in adaptation using important location-

specific information which is unobserved by the econometrician. Crop selections

of individual farmers exhibit strong anticipatory adaptation to future demeaned

rainfall, and continue to anticipate rainfall variation which was unpredicted by

the econometrician. Second, failure to find evidence of adaptation in one behavior

does not imply the rainfall deviation was unexpected, or that there is no adapta-

tion in other unobserved behaviors. While the acreage individual farmers devote to

sorghum and rice does not respond to unpredicted rainfall variation, the acreages
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of many other crops do respond to unpredicted rainfall variation. Nevertheless,

this paper examines the extent to which removing as much adaptive behavior as

possible alters popular estimates.

Taken together, these results make it clear that the ability to predict rain-

fall drives a much broader set of adaptive behaviors than would be observed if

farmers were simply responding to the shocks that occur during the course of the

planting season. These adaptive behaviors alter income and other outcomes which

result from weather events. Anticipatory adaptation further limits the extend to

which reduced form estimates are informative about more general responses to un-

expected income shocks. Of first order concern is that adaptations may be specific

to rainfall. Further, if individuals non-randomly face heterogeneous restrictions

in their ability to engage in adaptive behavior, the resulting incomes and other

outcomes influenced by rainfall are not randomly assigned. Even outcomes be-

tween agents with homogeneous choice sets of adaptive behavior will suffer from

selection bias if different types of agents choose to engage in different adaptive be-

haviors. These issues may make the impacts of rainfall shocks difficult to compare

across regions. They also mean reduced form estimates may in part reflect capital

constraints, information constraints, or even risk preferences.

The rest of the paper is organized as follows. Section 2 discusses the stan-

dard use of rainfall as a source of identifying variation, presents the two-period

optimization model, and discusses how information availability impacts empirical
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estimation. Section 3 covers background information on seasonal weather fore-

casts, agriculture in India, and the broader literature on crop selection. Section 4

discusses empirical evidence of anticipatory adaptation through crop choices. Sec-

tion 5 investigates issues resulting from agents observing more local information

than the econometrician. Section 6 compares traditional rainfall-based estimates

to those using the methodology described in this paper. Section 7 concludes.

1.2 Modeling Rainfall Expectations

1.2.1 How Economists Think About Rainfall

Ever in search of exogenous variation for identification, economists have had

a long and flirtatious relationship with rainfall. Explicit description of rainfall as

“exogenous” goes at least as far back as Koopmans (1949). Even earlier, Working

(1927) suggests tracing a demand curve for agricultural commodities by using

weather as a factor which shifts supply more than demand. Rainfall has been

employed in many high-quality papers of enduring popularity.2 Today rainfall

continues to a be popular source of identifying variation. Table 1.1 presents a

comprehensive review of all papers published in ten top economics journals over

2A selection of popular papers which instrument a form of income with a form of rainfall
include Wolpin (1982), Paxson (1992),Jacoby and Skoufias (1997), Jacoby and Skoufias (1998),
Kochar (1999), Jensen (2000), Miguel et al. (2004), Newhouse (2005), Jayachandran (2006), Yang
and Choi (2007), and Hidalgo et al. (2010). For a few popular examples of papers using variation
for direct or reduced-form variation, see Roll (1984), Cramer et al. (1997), Rose (1999), Miguel
(2005), Conlin et al. (2007), Connolly (2008), and Maccini and Yang (2009). Even the number of
overview articles is large and growing quickly. For examples, see Rosenzweig and Wolpin (2000),
Auffhammer et al. (2013), and Dell et al. (2014)
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three recent years which use rainfall-driven variation of annual or finer frequency

for identification of main results.3 Table 1.1 finds 19 such papers, which span a

wide variety of topics and are generally well-cited for young papers.

Why is rainfall such a popular source of identifying variation? This is

perhaps due to the perception of weather outcomes as random i.i.d. draws which

cannot be altered by human behavior. Sovey and Green (2011) state the reason

using rainfall as an instrument is intuitively appealing is that we think of rainfall

as patternless.” As economists, we often want to know how a shock to income or

more aggregate production measures such as GDP impacts some future economic

behavior or outcome. Rainfall appears to provide a convenient source of variation

which impacts agricultural productivity but is exogenous with respect to agents’

behavior and unobservables. Rainfall is most commonly treated as a shock to

various measures of consumption or production. Despite concerns with changes

in relative prices, even reduced form impacts of rainfall are often explicit that

rainfall is a proxy for income variation. For example, Björkman-Nyqvist (2013)

states “In an ideal setting, I would use rainfall as an instrument for household

income in a first-stage regression and income as a determinant of investment in

education in a second-stage regression. Unfortunately, district-specific income data

over time are not available and I will therefore study the reduced form relationship

between rainfall shocks and investment in boys’ and girls’ education.” Rainfall is

also used for other purposes, such as a shock to political behavior or variation in

3Papers which use rainfall only as a control or only in robustness checks are not included.
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the desirability of attending an event.

Criticism over the use of rainfall for identification in specific cases is not new.

Trombley (1997), Ciccone (2011), and Sovey and Green (2011) all worry about

spurious relations resulting in incorrect estimates. As discussed above, Rosen-

zweig and Wolpin (2000) criticize rainfall’s use in estimating income effects, citing

evidence that rainfall also alters relative prices. Rainfall may have other direct

effects as well. Residual soil moisture may impact future yields, or standing water

may spread disease. These types of direct effects violate the exclusion restriction

necessary in an instrumental variables setting, and Table 1.1 shows recent papers

more commonly pursue reduced form estimation. While year-by-region fixed ef-

fects would also capture average expectations for that year and region, these are

rarely if ever used. In most cases, they would eliminate all identifying variation

and are hence infeasible. Broad geographic fixed effects or year fixed effects over

many regions will also not capture important local variation in expectations. The

contribution of this paper is to document adaptation due to expectations signifi-

cantly alters the interpretation of reduced form estimates in a way which makes

them much less informative about exogenous shocks to income. The reason is that

rainfall is not an unpredictable shock, as evidenced by farmers adapting their crop

choice in advance of weather realizations.

In economists’ standard conceptual model, “climate” refers to the known

distribution of rainfall and “weather” refers to the unpredictable draw from that
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distribution. Rainfall in a given time period, Rt, is drawn from an arbitrary dis-

tribution with finite mean and variance, such that Rt = R + ξt and ξt ∼ (0, σ2).

When ξt is viewed as a random i.i.d. draw, it seems like a reasonable candidate for

satisfying the weak exogeneity and Granger non-causality conditions necessary for

strong exogeneity. Meeting Granger non-causality is generally regarded as rather

intuitive and will not be discussed in this paper.4 Weak Exogeneity states the

production function of rainfall does not need to be known in order to estimate

unbaised parameters on ξt. As documented in Table 1.1, research papers com-

monly cite exogeneity or unpredictability to justify their identification strategy.

Assumption 1 is the standard assumption providing sufficient conditions for weak

exogeneity.

Assumption 1 (Unpredictability). R and the distribution of ξt may be known,

but ξt is an unpredictable i.i.d draw from an underlying climatic distribution.

Usually this assumption is implicit within the identification strategy, al-

though a few papers explicitly model rainfall as unpredictable.5 Rosenzweig and

Wolpin (2000) models rainfall as follows. Weather is random and iid over time. A

weather realization is drawn each period independently from a known distribution

4Successful attempts to manipulate weather would obviously violate strong exogeneity. At
present this risk to identification seems small. Hail cannons, while popular in areas, have not
been proven statistically effective. Evidence on the effectiveness of cloud seeding is mixed at
best.

5One rare exception is Kochar (1999), who explicitly interacts rainfall with crop acreage to
remove the expected portion of income shocks. Conversely, papers such as Jacoby and Skoufias
(1997) interact ξt with farm characteristic to identify “unanticipated income changes”. A very
small number of paper including Roll (1984) and Rosenzweig and Udry (2013) examine the impact
of predictable rather than unpredictable rainfall variation.
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with finite moments. Similarly, Rose (2001) states “In period 1, the household does

not know what the value of [rainfall] will be, but it knows its distribution. It knows

the average over time (µ), and it knows the variability of the distribution.” Even

in examining daily rainfall, Connolly (2008) is clear that “the model tested here

is not interested in the effect of the climate on time allocation but rather on the

impact of an exogenous weather shock, which cannot be predicted.” Brückner and

Gradstein (2013) are clear that they “use detailed year-to-year rainfall data as a

transitory, unanticipated, and exogenous shock.” Adhvaryu et al. (2013) are also

particularly explicit that rainfall shocks are ideal for a number of reasons:... (2)

they are unpredictable in nature and therefore not likely to induce anticipatory

smoothing of employment.”

Occasionally concerns are voiced about serial correlation, which would im-

ply predictability. Paxson (1992) explicitly tests for serial correlation in rainfall,

and is indeed “unable to reject the hypothesis that rainfall follows a white-noise

process.” Newhouse (2005) includes levels of rainfall in subsequent years as a con-

trol for serial correlation. The extent of serial correlation in rainfall data may

depend on location and time period.Testing for serial correlation in rainfall data

is simple, although Table 1.1 documents that it is rarely done. When used, such

tests or controls for serial correlation are often touted as tests of predictability.6

6“To construct a transitory rainfall variable, it should also be known how current rainfall
deviates from its expected value, Rdt. If rainfall were serially correlated across years, one would
have to forecast the expected value of rainfall for each region in each year. However, rainfall does
not appear to be serially correlated: I am unable to reject the hypothesis that rainfall follows
a white-noise process. Thus, I can set Rdt = Rd, historical rainfall over time in district d.”
(Björkman-Nyqvist, 2013)
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While a lack of serial correlation is a necessary for being unpredictable by agents

with memory, it is not a sufficient condition for unpredictability.

There is little consensus on the proper functional form of rainfall to use

as a shock. Admittedly, if ξt is truly exogenous with respect to behavior, then

transformations of ξt should also be exogenous with respect to behavior. Given

this, some authors explicitly select a functional form with desirable qualities, such

as a strong correlation with income.7 Others choose a functional form which has

been used by past researchers. There is certainly some risk that authors may

try several functional forms and return the one that yields the most preferred

results, in line with concerns noted by Brodeur et al. (2013). As a source of

transitory shocks, Table 1.1 shows various functions of total rainfall over a fixed

period are most common, such as demeaned annual rainfall or the natural log

of rainfall. Indicators for amounts of rainfall above or below an arbitrary cut-

off are also prevalent, such as indicators for a given year’s rainfall being drawn

from the tail of the rainfall distribution or number of days when more than a set

amount of rainfall occurs. Other functions such as first-differenced rainfall appear

occasionally, although without further controls, these functions draw identification

from one or both of ξt and ξt−1.
8 Outside of transitory shocks, some papers use

7Jensen (2000), Miguel et al. (2004), and Hidalgo et al. (2010) are all explicit that they tested
a variety of functional forms for rainfall, and ultimately chose the one most strongly correlated
with their measure of income.

8For a few examples, Rose (1999) uses “deviation of rainfall from its 21-year mean for each
district” as ξt. Paxson (1992) uses “deviations from average values of regional rainfall in each
of four seasons (plus deviations from averages squared)”. Maccini and Yang (2009) use ln(Rt)−
ln(R), and like many papers they exclude year t in calculating the mean rainfall. Grimard
and Hamilton (1999) and Jensen (2000) interact an indicator for observations greater than one
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regional or even temporal variance in R as a source of variation in permanent

income or agricultural fertility.9 This paper focuses on identification from ξt due

to its prevalence as a source of transitory shocks and the concerns presented below

about how the failure of Assumption 1 significantly alters how economists think

about rainfall-based identification strategies.

1.2.2 A Simple Model

The following two-period model isolates the concerns presented in this pa-

per.10 A utility-maximizing agent optimizes by engaging in various economic be-

haviors. Let Bi represent a single economic behavior over which the agent may

optimize, such as the hours invested in a particular type of labor or the amount of

land devoted to a particular crop. All behavioral choices made by the agent in a

discrete time period, t = {1, 2}, are represented by the vector Bt = (B1
t , B

2
t , . . . ).

The aggregate utility function, U(B1,B2), may be such that agents are required

to obtain some minimum level of utility in each period. The time periods in mind

here are agricultural seasons or years, although t could represent any duration of

time.

standard deviation from mean rainfall with the absolute value of the deviation from mean rainfall.
Miguel et al. (2004) examine economic growth, and choose their shock to be “the proportional
change in rainfall from the previous year, (Rit −Ri,t−1)/Ri,t−1.”

9For examples, see Wolpin (1982), Hornbeck (2012), Burke and Emerick (2013), and others.
10This model could easily incorporate additional generalizations which are not necessary for

this setting. I1 could represent a vector of constraints, such as time and health constraints.
Here ξ is treated as a scalar measure of a rainfall outcome which occurs between periods, but it
could easily represent a more general vector of weather outcomes and external shocks. B1 could
include borrowing or savings behaviors, altering future resources and current costs. The entire
optimization problem could be extended over a larger or infinite number of periods.
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Behavioral choices face an income constraint, such that the costs of be-

havior this period must be less than income earned in the prior period. Income

earned in the first period is a function of first period behavior and a mean-zero

rainfall outcome, ξ, such that I1 = F (B1, ξ). Initial income is normalized such that

I0 = 1. Following commonly cited examples discussed below, the cost of behavior

is permitted to be a function of current and past behavior choices. The cost func-

tion for behavior is expressed as c1(B1) and c2(B1,B2) for periods one and two,

respectively. In the second period, the agent chooses a utility-maximizing vector

of behaviors, B2, as a function of past behaviors, B1, and the rainfall shock, ξ.

Let the value function, V (B1, ξ), represent the optimal obtainable utility given B1

and ξ, which are both known to the agent in the second period.

V (B1, ξ) ≡ max
B2

{U(B1,B2) s.t. c2(B1,B2) ≤ F (B1, ξ)} (1.1)

The agent does not know the amount of rainfall, ξ, when choosing first

period behavior, B1. However, the agent does observe a vector of signals, X,

which may contain information about the value of ξ. In the first period, the agent

chooses the vector of behaviors, B1 which is expected to maximize aggregate utility,

U(B1,B2).

max
B1

{EX [V (B1, ξ)] s.t. c1(B1) ≤ 1} (1.2)

It will be convenient to decompose the rainfall shock as the sum of expected and
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unexpected components, conditional on X.

ξ = E[ξ|X] + ξ̃ (1.3)

Where E[ξ|X] 6= 0, this represents a violation of Assumption 1. ξ̃ represents

the component of rainfall which is unexpected conditional on X. Notice that in

this model rainfall only directly impacts utility through altering income. This is

chosen not because rainfall is unlikely to have non-income impacts, but to highlight

the extent to which using ξ for identifying variation alters interpretation even

when rainfall only directly impacts income. This highlighted concern is new to the

literature.

Without further assumptions, optimal behavior in the first period is a

function of other first period behavior and expectations over rainfall. A risk-

neutral agent optimizes based on the expected value of ξ conditional on avail-

able information, such that optimal behavior is defined by Bi∗
1 (B−i1 , E[ξ|X]) where

B−it = (. . . , Bi−2
t , Bi−1

t , Bi+1
t , Bi+2

t ). A risk averse agent’s optimal behavior may

also consider further details about the distributions of E[ξ|X] and ξ̃, such as their

variance. In the second period, optimal behavior is a function of all other behavior

and second-period income, or Bi∗
2 (I1,B

−i
2 ,B1).

1.2.3 What do rainfall estimates actually identify?

As discussed above, economists would like to use transitory rainfall events,

ξ, to estimate how unexpected income shocks alter behavior, or
∂Bi

2

∂I1
. Due to worries
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that ξ directly impacts outcomes other than income, many researchers now examine

the reduced form impacts. For example, Maccini and Yang (2009) speculate about

impacts to both income and the relative cost of food consumption. Yet even in this

model where there are no other direct impacts, ξ does not provide an unexpected

shock. So what is actually identifying when using rainfall for identifying variation?

Consider the reduced form impact of a predicted increase in rainfall on income

dI1
dE[ξ|X]

.

dI1
dE[ξ|X]

=
∂I1
∂ξ

+
∑
i

(
∂I1
∂Bi

1

∂Bi
1

∂E[ξ|X]

)
(1.4)

The first portion of Equation 1.4, ∂I1
∂ξ

, is the standard the impact researchers

are interested in estimating. This term reflects the reduced form impact of one

more unit of rain on income, because dξ
dE[ξ|X]

= 1.

The second portion of Equation 1.4,
∑

i

(
∂I1
∂Bi

1

∂Bi
1

∂E[ξ|X]

)
, refers to changes

in income caused by first-period behavior re-optimizing over changes in expected

future rainfall. This paper presents evidence of such behavior in farmers planting

different crops to maximize future income when drought is expected. This portion

of the income change is not a shock. Agents expected this income change, and

indeed altered their first period behavior in order to obtain it. Hence this portion

of the change in income is an endogenous function of behaviors chosen by the

agent.

Now consider a reduced form estimation, such as the impact of rainfall vari-

ation on future migration outcomes, BM
2 . As shown in the first two expressions
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of Equation 1.5 below, the same exogenous and endogenous income effects will

be captured in the reduced form estimate of rainfall on migration. In addition,

adaptive behaviors may directly impact migration outcomes through non-income

channels. For example, migration is a high cost and high return investment. If

credit-constrained households expecting a positive income shocks are more likely to

send migrants, then the learning about travel and migration opportunities which

occurs may reduce the costs of future migration. The third expression of Equa-

tion 1.5,
∑

i

(
BM

2

∂Bi
1

∂Bi
1

∂E[ξ|X]

)
, shows this non-income impact of predictable rainfall

variation captured by reduced-form estimates.

dBM
2

dE[ξ|X]
=
BM

2

∂I1

∂I1
∂ξ

+
∑
i

(
BM

2

∂I1

∂I1
∂Bi

1

∂Bi
1

∂E[ξ|X]

)
+
∑
i

(
BM

2

∂Bi
1

∂Bi
1

∂E[ξ|X]

)
(1.5)

There are an unknown number of behaviors through which agents might

adjust in a way which alters income or other outcomes. As shown repeatedly in

results below, one behavior not appearing to respond to rainfall variation does not

imply other behaviors also do not respond. To be certain the desired estimate

has been isolated, econometricians face the difficult task of proving they have

either controlled for every behavior adaption, or that they have perfectly controlled

for rainfall expectations. Proving that either has been done successfully seems

infeasible.

Under what conditions might rainfall variation capture a purely unexpected

change in income? Assumption 1 tells us that there are no informative signals of

rainfall outcomes, or E[ξ|X] = 0 for any X. If Assumption 1 does not hold, as this
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paper suggests, the same estimate can be obtained if
∂Bi

1

∂E[ξ|X]
= 0 ∀i. The income

function being separable in rainfall is a sufficient alternative assumption to obtain

this result, because this ensures optimal first-period behavior is not a function of

rainfall expectations.

Assumption 2 (Separability). The income production function is such that

arg maxB1
F (B1, ξ) is not a function of ξ.

Whether income-maximizing behavior is independent of rainfall is a descrip-

tion of the agent’s ability to adapt to changes in weather expectations. Assumption

2 is quite a high bar, because it requires not one but all ex ante adaptations, such

as changes in crop acreage, to remain unchanged in the face of rainfall informa-

tion. In many cases, it should be expected that rational economic agents whose

utility depends on future weather outcomes do respond to weather expectations

in economically meaningful ways, violating Assumption 2. Further, the absence of

adaptation does not mean the income shock is unexpected. Predictability alone

could alter estimates, as Jappelli and Pistaferri (2010) shows that consumption

responses to expected income changes are different from unexpected shocks.

Assumption 1 and Assumption 2 are jointly testable, in that if behavior re-

sponds to rainfall variation, this implies rainfall is at least partially predictable and

behavior adaptations are optimal. Assumption 1 and Assumption 2 would both

be rejected, and ξ would not return the desired impact of transitory, unpredicted

shocks to income, prices, or anything else.
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Suppose ξ̃ could be measured and used in place of ξ. Because ξ̃ is an un-

expected rainfall shock, it is orthogonal to first period behavior, or
dBi

1

dξ̃
= 0 ∀i,

eliminating concerns about adaptive behavior. 11 Further, because ξ̃ is by defini-

tion uncorrelated with E[ξ|X], by Equation 1.3 we know dξ

dξ̃
= 1. So long as ξ̃ only

impacts only impacts I1 through ξ, this estimate isolates the desired estimate of

the response of an economic behavior to an unexpected, transitory income shock,

dI1
dξ̃

= ∂I1
∂ξ

.

Below, the difficulty of obtaining estimates of ξ̃ is discussed. As a reminder,

this model has explicitly assumed neither ξ nor ξ̃ have non-income impacts on

behavior or other outcomes of interest. If ξ̃ were obtainable, one would still need

to worry about a variety of potential exclusion restriction violations, such as rainfall

directly impacts health outcomes in rural areas through supporting the spread of

malaria and other diseases. As discussed later in the paper, even admirably creative

attempts to estimate ξ̃ are likely to encounter prohibitory data limitations.

1.2.4 Attempting to Estimate ξ̃

Imagine a panel of I agents each receive a set of signals, Xi,t, during each of

T periods. The values of the signals are known and observed for each individual,

and X represents the full set of signals received by all agents over all time peri-

11Examples of such papers are rare given the ubiquity of Assumption 1. One example is Kochar
(1999), who explicitly interacts rainfall with crop acreage to remove the expected portion of
income shocks. Other papers, including Roll (1984) and Rosenzweig and Udry (2013) examine
the impact of predictable rather than unpredictable rainfall variation.
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ods. Assume agents correctly understand correlations between signals and future

rainfall, and that these correlations are identical across individuals. Issues such as

changes in correlations over time can be captured by appropriate choice of func-

tional forms within Xi,t. In this admittedly unrealistic case, a large enough sample

would enable estimates of the correlations between observed variables and future

rainfall, and hence enable estimates of predicted and unpredicted rainfall for each

individual.

ξi,t = βXi,t + ξ̃i,t (1.6)

The fitted value β̂Xi,t is the ideal prediction of deviation from mean rainfall given

Xi,t, and the residual converges to unpredicted rainfall, ξ̃i,t.

Of course, econometricians do not face such an ideal environment. The main

issue is that the econometrician does not observe X. Instead, the econometrician

may observe some subset of the signals XII ⊆ X, as well as additional signals,

XIII, which are unobserved to the agents. How might econometricians use their

set of signals, W = {XII,XIII}? One approach would be to estimate expectations

using only information available to both the individual and the econometrician

(XII). There are several issues with this. First, definitively determining whether

an econometrician’s variable falls in XII or XIII is difficult. Which variables are

available to and used by individuals to form weather expectations remains a widely

unanswered research question which this paper does not directly address. That

issue aside, let XI = X\W represent the set of signals available to the agent and
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not the econometrician. If there are variables in XI which can be used to form

more accurate expectations, then individual are still able for form expectations

over residual unpredicted rainfall, when predictions are estimated using only XII.

This can be conceptualized in the framework of omitted variable bias. The

econometrician estimates

ξi,t = β̂IIXII
i,t + ei,t (1.7)

β̂II is biased from the corresponding coefficient in Equation 1.6. Instead of the

ideal prediction, βIXI
t−k,i + βIIXII

t−k,i, the predicted rainfall deviation is

β̂IIXII
i,t =

(
βII + βI

cov(XI
i,t,X

II
i,t)

var(XII
i,t)

)
XII
i,t (1.8)

Because accurate estimate of coefficients in Equation 1.6 is not the goal, the issue

is not that β̂II is biased. Instead, the problem is that the estimate of unpredicted

rainfall deviations, the residual ei,t, still contains information which is predictable

to the individual. In other words, rational expectations could still be formed over

ei,t because both XI and XII still appear in the estimate of unpredicted rainfall.

ei,t =ξ̃i,t + βI

(
XI
i,t −

cov(XI
i,t,X

II
i,t)

var(XII
i,t)

XII
i,t

)
(1.9)

So long as XI contains signals with predictive power (βI 6= 0), individuals who

observe and respond to information in Xi,t will have behaviors correlated with ei,t.

The econometrician has access to a additional set of signals, XIII, which

may be correlated with XI.12 We can express XI as a function of XII and XIII

X I
i,t = βI,IIXII

i,t + βI,IIIXIII
i,t + ηi,t (1.10)

12It is immaterial whether or not this correlation is causal. Regardless, the empirical method-
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ηi,t captures other factors which influence XI
i,t. Because individuals observe XI

directly, correlations between ηi,t and rainfall are not exogenous. Hence there

remains potential for individuals to form expectations using information which is

simply not observable to the econometrician. A regression of XII and XIII on ξi,t

yields

ξi,t = ̂(βII + βIβI,II)XII
i,t + ̂(βIII + βIβI,III)XIII

i,t + βIηi,t + εi,t (1.11)

The residual from the regressing the econometrician’s set of signals W on

rainfall shocks ξi,t in Equation 1.11 is ε̃i,t = βIηi,t + εi.t, even if the econometrician

cannot distinguish XII from XIII. The econometrician can attempt to minimize

or eliminate ηi,t by adding variables which are strongly correlated with XI, while

hopefully still retaining unpredicted rainfall variation, εi,t. In the idealistic case

where W = X, then ε̃i,t = ξ̃i,t. If W ⊃ X, the additional information can reduce

the variance of ε̃i,t, biasing estimates of ξ̃i,t towards zero. This is particularly

troublesome in reduced-form settings, as it will inflate coefficients on ε̃i,t. In an IV

setting this particular issue is less troubling, as the first-stage coefficients are less

often of direct interest. Additionally, it is not obvious how one would conclusively

prove βIηi,t = 0. Even if a number of behaviors appear orthogonal to ε̃i,t, there are

always additional unobserved behaviors. Results presented in this paper suggest a

large amount of location-specific information is contained in XI.

ology presented in the next section will use measures of ENSO as candidate XIII signals. It is
argued below in Section 3.1 that ENSO is strongly and causally correlated with potentially unob-
served signals in XI. Measures of ENSO are also explicit components of potential XII variables
such as government forecasts, although this does not imply either is a sufficient statistic for the
other.
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If researchers are instead interested in using the fitted value as an estimate of

predicted rainfall, removing unpredicted variance from the residual implies adding

unpredicted variance to the predicted value of rainfall, with corresponding estima-

tion problems. Ideally W should be chosen in a way which minimizes ηi,t relative

to εi,t with minimal reduction in the variance of εi,t. For analysis using ε̃i,t, it is

far more important that the residual only contain unpredicted variation than have

the fitted value contain only predicted variation.

To reiterate a key distinction, this paper refers to ξ̃ ≡ ξ − E[ξ|XI,XII] as

an unexpected rainfall shock which is useful for the theoretical model above but

is often unobservable in practice. ε̃ ≡ ξ − E[ξ|XII,XIII] refers to the unpredicted

rainfall shock used as an estimate of the unobserved ξ̃ in the empirical examination

below.

1.3 Background Information

1.3.1 Weather and Climate Systems

Although meteorologists can forecast this week’s weather with general accu-

racy, the idea of longer-range forecasts is sometimes viewed as the meteorological

equivalent to selling snake oil. Palmer (1993) acknowledges that “At first sight

it might appear rather contradictory to suppose that the atmosphere is at all

predictable beyond this deterministic limit.” Yet over the past twenty years, mete-
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orologists and physicists have made significant progress in describing the “coupled

monsoon system” of oceanic and atmospheric factors which drive the El Niño

Southern Oscillation (ENSO), as well as other global weather and climate sys-

tems.13

ENSO is of particularly importance in driving India’s monsoon rainfall.14

ENSO is a quasi-cyclical system of ocean surface temperatures and air surface

pressures across the Southern Pacific Ocean which manifest themselves as the

commonly known seasonal weather outcomes, El Niño and La Niña. In El Niño

years countries in the Southwestern Pacific region (Indonesia, India, Australia, etc.)

experience warmer temperatures and less rainfall, while areas in the Southeastern

Pacific region (such as Peru) experience cooler temperatures and more rainfall.

In La Niña years the global climatic teeter-totter reverses, with the Southwestern

Pacific receiving cooler temperatures and more rainfall while the Southeastern

Pacific receives warmer temperatures and less rainfall.

Academic meteorologists and physicists are well aware of the correlations

between seasonal rainfall levels and the ENSO system. Yet it may still seem to

be a huge leap of faith to believe farmers can form seasonal rainfall expectations

more nuanced than a long-run mean. If the local weatherman armed with fancy

13See Wang, ed (2006) for a detailed description of recent advances in understanding this
system.

14Rasmusson and Carpenter (1983) note correlation between below average monsoon rain-
fall and El Niño events. The percentage of variations in rainfall levels which ENSO models
can account for varies over time, although it is always quite significant. On the upper end,
Parthasarathy et al. (1988) develop statistical models which account between 70 to 83 per-
cent of inter-annual rainfall variance for all of India, although some variables included ex post
information.
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satellite images and computer analysis can’t perfectly predict the weather next

weekend, how can illiterate farmers predict seasonal rainfall? The answer should

begin by highlighting the distinction between deterministic prediction and simple

correlations. Even if farmers cannot predict exactly how much rain will occur on

any given day, they may still have reasons to believe that this year’s summer will

experience more or less rain than average.

There are also plenty of proxies for ENSO available to farmers. Many

governments’ meteorological agencies issue formal seasonal weather forecasts, in-

cluding the United States, Peru, Australia, Brazil, Ethiopia and India.. Literature

on informal proxies is sparse but suggestive. Moran et al. (2006) find that rural

Amazonian farmers are reliant on personal experiences over official forecasts, and

have accurate memory of ENSO events. They report that “Farmers monitor the

behavior of the animals living on their farms, or wild animals living in the forests

surrounding their farms; they learn to predict weather changes through monitor-

ing cloud shapes, flowering or leaf dropping events in the local flora.” Roncoli et

al. (2002) report the use of similar forecasting techniques by farmers and herders

in Burkina Faso, although these farmers perceive such traditional forecasts as be-

coming less reliable due to climate change. Orlove et al. (2000) investigate the

mechanisms behind Andean farmers’ centuries-old practice of using the visibility

of the Pleiades star cluster to accurately forecast ENSO events. In El Nino years,

an increase in subvisual high cirrus clouds reduces the number of visible stars, a
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recognizable signal farmers rely upon in determining when to plant their crops.

Empirically pinning down the particular mechanisms by which individuals

form weather expectations is difficult. Yet one might hope that measures of ENSO

could form a sufficient statistic for farmers’ ENSO-related information, enabling re-

searchers to control for weather expectations. Conveniently for the econometrician,

El Niño and La Niña events are measured in practice by several highly correlated

single-dimensional summary statistics. The Oceanic Niño Index (ONI) measures

the difference between western and eastern ocean temperatures. The Southern

Oscillation Index (SOI) measures the differences between western and eastern air

pressures. Warmer ocean temperatures correspond with low air pressure, while

cooler ocean temperatures come with high air pressure. There are also aggregate

measures such as the Multivariate ENSO Index (MEI). Any of these measures

seem plausible candidates for capturing the ENSO-related information available

to rural farmers. While results will show this approach appears promising at ag-

gregate levels, agents ultimately possess too much location-specific information for

this approach to be successful.
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1.3.2 Crop Selection, Weather Adaptation, and Agricul-

ture in India

India has two major growing seasons, kharif and rabi, with specific crops

grown in each season.15 Across the districts of Madhya Pradesh, rice, sorghum,

and maize are the most widely grown crops during the kharif season, while wheat

is the main crop grown during the rabi season.16 There is significant variance at

the village level; the main crops grown in the villages examined in this setting

also include cotton, pigeon pea, and castor bean. However, rice and sorghum are

grown in almost all districts of Madhya Pradesh. This analysis focuses on the

kharif season for several reasons. First, the meteorology literature suggests that

monsoon seasons may be easier to generate seasonal rainfall expectations than dry

seasons.17 Second, the kharif season also exhibits greater variability in rainfall

for potential identifying variation, as seen in Figure 2.1. It is also important to

note that although both rice and sorghum perform best under similar aggregate

water requirements, sorghum is relatively drought resistant while rice is relatively

sensitive to drought.18 Hence when farmers expect a dry season there should be

less rice and more sorghum planted. Maize is neither as water-intensive as rice

nor as drought-resistant as sorghum. For the crops prevalent among the ICRISAT

15These seasons can be roughly thought of as summer and winter season, respectively, but are
more accurately monsoon season and dry season.

16Some varieties of sorghum can be grown during the rabi season as well. Some of the data
sets examined in this paper separately measure rabi sorghum and kharif sorghum.

17Rodó et al. (1997), Stockdale et al. (1998).
18Brouwer and Heibloem (1986).
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villages, both pigeon pea and castor bean are relatively drought resistant.

In 1966, high yield variety (HYV) crops were introduced in India, spark-

ing India’s “Green Revolution”. Before the introduction of HYV crops, India was

a major agricultural importer.19 Thanks in large part to the increased yields of

HYV crops, India turned the tables to become one of the worlds leading agricul-

tural exporters. The requirement for HYV crops to realize these greatly increased

yields was larger, more consistent supplies of water. HYV crops increased the

marginal benefit of irrigation, and became most prevalent in areas which already

had or subsequently introduced irrigation. One might expect farmers with access

to irrigation to be less responsive to short run weather fluctuations.

There is a long and rich literature on farmers’ crop choices. Agricultural

economists, development economists, historical economists, agronomists, and even

agricultural and biomechanical engineers have been writing on the subject for

many decades. Many of these are not studies of human behavior or preferences,

but rather attempts to suggest a profit-maximizing selection given a set of observ-

able variables. The literature examining behavioral adaptation has largely focused

on adaptation to long run climate change. There are many long-run estimates of

new equilibria under climate scenarios, and few reliable methods of analyzing how

these transitions occur over time. Prior research relied on long-run cross-sectional

19A major policy debate of the time was whether to continue researching India-specific high
yield varieties, or to more quickly import varieties from other countries. Ultimately high yield
wheat and rice were imported from Mexico in 1966. For an interesting discussion of this back-
ground, see Abler et al. (1994).
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comparisons to estimate equilibria, and interest in other methodology is only be-

ginning. The results presented here suggest that adaptation to annual rainfall

expectations may be a major mechanism in driving long run adaptation to climate

change.20

The list of research considering response to weather expectations is fairly

short. In their text on the ICRISAT villages, Walker and Ryan (1990) note that

“When the monsoon “plays-truant” or is initially erratic, the planned cropping

strategy may no longer be optimal; farmers adapt to emerging information on

rainfall events by changing crops or by fallowing land.” Wallace and Vogel (1994)

speculates that “a forecast of El Niño weather might induce farmers to sow more

rice and less cotton than in a year without El Ni no.” Kochar (1999) examines the

ability of labor supply adjustments smooth unexpected income shocks. Concurrent

research such as Rosenzweig and Udry (2013) find early-season agricultural invest-

ments respond to government forecasts. Their focus is on returns to early-season

investment rather than general identification concerns.

20For examples of profit-maximizing selection, see Mohan and Arumugam (1994), Mjelde et al.
(1996), or Cabrera et al. (2007). Examples of papers estimating long-run crop equilibria include
Rosenzweig and Perry (1994), Mendelsohn and Dinar (1999), O’Brein et al. (2004), Tubiello et
al. (2007), Seo and Mendelsohn (2008), and Kurukulasuriya and Mendelsohn (2008). Examples
of papers seeking identification other than long-run cross sections include Taraz (2012), Burke
and Emerick (2013), and others.
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Figure 1.1: Madhya Pradesh Monthly Rainfall Distribution

1.4 Anticipatory Adaptation to Rainfall

1.4.1 Data

Given the common usage of rainfall as a shock to income through agricul-

tural yields, rainfall is more commonly used for variation in countries with large

populations of low-income farmers. Because Table 1.1shows India is the most

common single-country setting in recent papers, this paper looks for evidence of

adaptive behavior by Indian farmers. Results are confirmed across two district-

level data sets. These data sets are commonly used by many researchers, including
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among papers using rainfall for identifying variation.

This paper combines many sources of agricultural and meteorological data.

The International Crops Research Institute for the Semi-Arid Tropics Meso Level

Database (ICRISAT Meso) contains annual district-level observations on the sown

acreage of various crops, as well as yields and prices, over the years 1966-1999.

ICRISAT Meso also includes useful measures of soil type, irrigation and land use.

As a robustness check, district-level results are replicated using the World Bank

India Agriculture and Climate Data Set (IAC). Similar in format to the ICRISAT

Meso data, this data set contains annual district-level observations on the sown

acreage of various crops, as well as yields, over the years 1957-1987. District-level

analysis focuses on the state of Madhya Pradesh because rice and sorghum are

major crops grown in almost every district of this state. For both ICRISAT Meso

and IAC data sets, year refers to agricultural year, not calendar year. This means

that the 1970-1971 rabi season is included in the 1970 data. This is potentially

problematic because if a crop is also grown in the rabi season, changes in annually

summed crop acreage could response ex post to kharif rainfall. Hence analysis is

focused on crops which are typically grown only in one specific season or cases

where data separately identifies kharif and rabi acreage. ICRISAT Meso data

separates kharif sorghum from rabi sorghum, and indeed almost all sorghum is

planted in the kharif season. Summary statistics for the ICRISAT Meso data and

IAC data employed in this paper can be found in Table 1.2.
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Historic weather data is obtained from India Water Portal’s Meteorological

Dataset (Met Data), in the form of monthly district-level observations.21 Although

observations are available for as early as 1901, the initial district-level analysis

follows begins by following the standard practice of using mean rainfall over the

observed period, 1956-1999. Later analysis also examines expectations over rolling

means from the prior 20 years. Other than a gap in data availability for 2003,

monthly district-level rainfall data is available through 2011.

District boundaries are defined by ICRISAT using 1966 parent boundaries,

and IAC and Met Data appear to follow similar methodology. If for any reason

the geography for rainfall data does not perfectly match the geography for the

agricultural data, the impacts of rainfall and rainfall expectations on agricultural

activity should be biased towards 0. India Water Portal excludes districts which

are missing data on over 25% of district area. This would impact external validity

if this exclusion is correlated with farmers’ ability to form and respond to weather

expectations.

Since 1886 the India Meteorological Department (IMD) has issued annual

seasonal forecasts for the upcoming monsoon season. The India Meteorological

Department, Pune provides historical forecasts dating back to 1932.22 These fore-

21Met Data converts long-lat data to district-level observations. The underlying weather ob-
servations for 1901-2002 come from the Climate Research Unit (CRU) TS2.1 dataset, out of the
Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of
East Anglia in Norwich, UK. The underlying data for 2004-2011 rainfall comes from the India
Meteorological Department (IMD).

22A short and intriguing history behind these forecasts, as well
as the raw data, is available at the website of IMD, Pune,
http://www.imdpune.gov.in/research/ncc/longrange/longrange index.html.
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casts take a variety of forms, and were hence recoded to indicators for predictions

of above normal, below normal, and normal rainfall for the corresponding geo-

graphic area. Where possible, above normal corresponds to a forecast of total

monsoon rainfall being 110% or more of the long run average, while below normal

corresponds to a forecast of 90% or less of long-run average. For the period 1950-

2010 period, this makes 15.7% of forecasts for above average monsoon rainfall,

and 15.6% of the forecasts for below average monsoon rainfall. Historical IMD

forecasts might easily be perceived as an obvious indicator of the prevailing best

expectations of the time, but are very geographically general and hence likely do

not accurately reflect more geographically precise expectations.23

Finally, several common measures of ENSO are used. Results presented be-

low use the Oceanic Niño Index (ONI), although adding or substituting the highly

correlated Southern Oscillation Index (SOI) or Multivariate ENSO Index (MEI)

makes little empirical difference. All ENSO measures are obtained directly from

the NOAA Climate Prediction Center.24 Summary statistics for IMD forecasts

and monthly ONI measures can be found in Table 1.3.

23From 1932-1988 were issued for Northwest India and the Peninsula. From 1989-1998 forecasts
were only issued for India as a whole. From 1999-2003 forecasts are issued for the country as
a whole as well as Northwest India, Northeast India, and the Peninsula. From 2003-present
Peninsula forecasts were replaced with separate forecasts for Central India and the Southern
Peninsula.

24These and a variety of other climate indices useful for constructing expectations can be found
at http://www.esrl.noaa.gov/psd/data/climateindices/list/.
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1.4.2 Analysis

The main empirical analysis in this paper shows that individuals are able to

form rainfall expectations and respond by altering the acreage sown with drought-

resistant and water-intensive crops. Following the model described in Section 2.4,

kharif rainfall is then decomposed into variation which is predictable and unpre-

dictable given information available to the econometrician.25 The response of crop

acreage to these predicted and unpredicted estimates of rainfall is then examined.

Because this hypothesis conflicts with the standard treatment of rainfall as an un-

predictable exogenous shock, these results are replicated in a second separate and

commonly used data set.

Predicted and unpredicted estimates of kharif rainfall are constructed us-

ing IMD forecasts, district-level deviations from mean rainfall over the past five

years, and both monthly levels and squared monthly levels of ONI.26 District fixed

effects (αi) and district-specific quadratic time trends (θiYt) capture local climate

trends of which local farmers are likely aware. Li,t represents a vector of interac-

tions between lagged rainfall and soil type as a control for residual soil moisture.

Removing Li,t from the information set does not significantly alter results, but is

included because accurate Murphy-Topel standard errors require all second-stage

25Kharif rainfall is defined throughout this paper as the sum of June, July, August, and
September rainfall. A robustness check shows excluding June rainfall from this calculation does
not alter conclusions.

26May is used as the cut-off for ONI measures because kharif planting occurs subsequently
in June, although as discussed above one could in theory add later ENSO measures. Lags of
January through May of the observed year and January through December of the previous year
are employed.
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controls correlated with future rainfall be included in the first stage information

set. The first stage regression can hence be written as

ξi,t = βWWi,t + αi + θiYt + γLi,t + ε̃i,t (1.12)

Deviations from mean rainfall, ξi,t, are standardized for clear interpretation of

second-stage results. For initial results, ξi,t is defined following the standard ap-

proach in the literature of ξi,t− ξi where ξi is the mean in region i over the sample

period, 1956-1999. Later, defining rainfall shocks as the deviation from a rolling

mean will be discussed and implemented.

The particular coefficients from the first stage regression are not of interest

in the context of this paper. More important is understanding how much variation

in rainfall is explained. If the amount of predictable variation is negligible and

there is no evidence of behavioral responses to rainfall, it becomes easier to believe

that rainfall may indeed be unpredictable. To a researcher attempting to isolate

unpredicted rainfall, if almost all of the variation is predictable then it is diffi-

cult to argue that an remaining unpredictable rainfall provides enough identifying

variation to recovers coefficients of interest. While it is not clear what consti-

tutes “enough” variation in either direction, Figure 1.2 provides a visualization of

the available variation by plotting ξi,t and ε̃i,t for the Raisen District of Madhya

Pradesh under a variety of information sets, W. Across all districts of Madhya

Pradesh, R2 is only .1336 when W = {IMD forecasts, ξi,t−1, . . . , ξi,t−5, residual

soil moisture, district fixed effects, district-specific time trends}. The continued
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responsiveness of acreage decisions to rainfall shocks which are unpredicted given

this information set is consistent with farmers observing some XI which includes

additional information. Adding two years of monthly ONI levels and squares to

W leaves no average response of rice, sorghum, or maize acreage and increases the

R2 value to 0.6720.
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Figure 1.2: An Example of Expected Rainfall Data

To examine whether individuals are able to form and respond to rainfall

expectations, hectares planted to a given crop in year t and district i are regressed

on demeaned (ξi,t), predicted (ξi,t − ε̃i,t), and unpredicted rainfall (ε̃i,t).

Hectares of Cropi,t =βa(ξi,t) + αi + θiYt + γLi,t + ei,t (1.13)
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Hectares of Cropi,t =Γa(ξi,t − ε̃i,t) + αi + θiYt + γLi,t + ei,t (1.14)

Hectares of Cropi,t =Γb(ξi,t − ε̃i,t) + βb(ε̃i,t) + αi + θiYt + γLi,t + ei,t (1.15)

Temporally fixed variables are captured by district fixed effects, αi, while θiYt con-

trols for district-specific quadratic time trends. Rainfall for the upcoming season is

strongly correlated with last year’s rainfall (violating the i.i.d portion of Assump-

tion 1), so last year’s rainfall deviations and residual soil moisture are important

controls to ensure the coefficients on current rainfall shocks do not reflect income

constraints from the prior year’s rainfall.

Because demeaned rainfall shocks, ξi,t, are standardized before first and

second stage estimation, βa can be interpreted as the correlation between a stan-

dard deviation increase in future or expected rainfall on crop acreage. If rainfall

is unpredictable, βa should be both statistically and economically insignificant. If

βa 6= 0, this is consistent with anticipatory adaptation, particularly if the sign of

βa is consistent with agronomic practices.

Because predicted and unpredicted rainfall sum to total rainfall, a unit

increase in either is associated with more than a one standard deviation increase

in overall rainfall. If ε̃i,t truly gives no more information about economic behaviors

than random noise, it should be the case that Γa = Γb (henceforth referred to as Γ).

The introduction of unpredicted variation into ξi,t− ε̃i,t will reduce Γ towards 0 as

with classical measurement error. βa represents the extreme example of this effect,

including both predictable and unpredictable variation. If predictions perfectly
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estimate expectations, Γ would be interpreted as a causal estimate of the sensitivity

of crop acreage to expectations over the pending season’s rainfall. If all variation

expected by farmers is removed from ε̃i,t, it should be that βb = 0. As discussed

below, if βb = 0 for one crop, this does not necessarily imply βb = 0 for all crops

or that farmers have no information over over ε̃i,t.

Due to their importance and complexity in this setting, a few words on

the proper standard errors when using generated regressors is worthwhile. The

examinations of acreage response to both predicted and unpredicted rainfall in-

volve both generated regressors and generated residuals. This paper employs the

analytical standard error correction described by Murphy and Topel (1985) fol-

lowing the methods of Hole (2006). Confirming whether fitted regressors are sig-

nificantly different from zero while fitted residuals are statistically insignificant

does require care. Fitted regressors and other covariates require standard error

corrections while generated regressors do not, so long as any second-stage covari-

ates are also included in the first stage.27 When OLS standard errors are smaller

than Murphy-Topel standard errors, applying the Murphy-Topel correction to all

variables except generated residuals is is also the most conservative approach for

all hypotheses tested here. Particularly in linear models, certain conditions on the

score functions of the first and second stages can result in the correction decreasing

standard errors. To be as conservative as possible, the larger of corrected or uncor-

rected standard errors is applied to all variables except the generated residual. In

27See Pagan (1984)
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all stages, the variance-covariance matrix is clustered at the district or household

level as appropriate.

1.4.3 Results

Table 1.5 shows the response of the main crops in Madhya Pradesh to

demeaned rainfall, as well as to the econometrician’s estimates of predictable and

unpredictable rainfall. In columns (1) and (4), βa shows the response of crop

acreage to the future rainfall is both statistically and economically significant for

rice and sorghum. The interpretation is that rainfall one standard deviation below

the mean is correlated with a 495 hectare decrease rice acreage and a 1,305 hectare

increase in sorghum. As discussed above, these acreage changes are consistent with

those a profit-maximizing farmer with information about future rainfall would

make, since sorghum is relatively drought-resistant and rice is relatively water-

intensive. The magnitudes are plausible and economically significant, representing

a roughly 1-3% shift in total district-level acreage planted. However, the temporal

order for these correlations is incorrect for a causal relationship – farmers must

make decisions about how many hectares to sow before observing rainfall outcomes.

An identical exercise using IAC data yields similar results (Table 1.6).

In column (7) of Table 1.5, the response of a third major crop, maize, show

no acreage response to rainfall variation. If examined in isolation, a researcher

might be tempted to conclude that the lack of a change in average maize acreage
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suggests no anticipatory adaptation of any sort occurs, and that rainfall is un-

predictable. When examined in conjunction with rice and sorghum results, the

coefficient on maize is consistent with maize lying between rice and sorghum in

drought sensitivity. Indeed, the identical exercise using IAC data in Table 1.6 finds

a small but significant response of maize acreage to rainfall variation. Because the

econometrician will never observe all behaviors through which an individual may

engage in anticipatory adaptation, this reinforces that a lack of adaptive behavior

in one case implies a lack of adaptive behavior in all cases.

Columns (2), (5), and (8) of both Table 1.5 and Table 1.6 show that the

response to the predictable portion of rainfall is always of larger magnitude than

the response to the total rainfall shock. This is consistent with having removed

attenuation bias caused by unpredictable variance. While the monotonicity of the

change is compelling, a unit increase in predicted rainfall may also be associated

with more than a one-standard deviation in total rainfall, so the two magnitudes

are not directly comparable. It is also not surprising that a function of rainfall de-

viation has the same correlation structure as rainfall deviation itself. A better test

is whether there is behavioral response to the unpredictable portion of rainfall. If

the correlation is driven by something other than rainfall expectations, there does

not appear to be an obvious reason why it would not also exist in unpredicted rain-

fall. Columns (3), (6), and (9) find no significant correlation between crop acreage

and unpredictable rainfall variation, supporting the interpretation of response to
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rainfall expectations. Again, robustness checks using IAC data offers the same

interpretation (Table 1.6).

Other results also also consistent follow the model’s predictions. In Ta-

ble 1.5 and Table 1.6, Γa is effectively identical to Γb, consistent with the idea

that adding a variable containing unexpected variation should not influence other

coefficients. In these tables, it also appears promising that the econometrician’s

information set may indeed be a sufficient statistic for the individual’s informa-

tion set. As discussed in the next section, this conclusion is premature because

average responses at the district level may hide significant heterogeneity in local

information.

Table 1.7 and Table 1.8 replicate Table 1.5 and Table 1.6, except they

exclude ENSO measures from vector of information of rainfall information, W.

Columns (3), (6), and (9) now show that when sufficient information is not included

in W, individuals remain able to form and respond to expectations over ε̃i,t. This

is consistent with the story of ENSO measures residing in the XIII information set

and serving as a proxy for unobserved XI. When ENSO measures were included

in W, the coefficients on ε̃i,t are economically and statistically insignificant.

One alternative explanation of the sensitivity of farmer crop acreage to

rainfall outcomes is that farmers respond to medium-run expectations driven by

meridional rainfall regimes, as described by Taraz (2012). These 30-40 year cycles

of above or below average rainfall do influence rainfall deviations. Simply using



43

deviation from a rolling mean over a shorter time period instead of a fixed mean

over long periods removes the ability to form expectations based on such medium-

run regimes or cycles, so that under such a model the remaining deviations should

again be random shocks. Table 1.9 replicates the main analysis using deviations

from 20-year rolling means rather than fixed means across the time period of crop

acreage data. Coefficients decrease by only trivial amounts and the conclusions

described above all remain robust. IAC data again provide similar results.This

provides strong suggestive evidence that, at least in this setting, short run expec-

tations are the driving force of any response to any such medium-run expectations.

A skeptical reader might be concerned that if crop acreage data is backed

out from yields and not directly observed, then the district-level results will be

biased in favor of finding response to predicted weather. There are a variety of

reasons to believe this is not an issue. First, if this were entirely true, then it should

not be found that unpredicted rainfall is uncorrelated with acreage planted. Sec-

ond, acreage planted is still sensitive to rainfall shocks after adding controls for

yields. Another concern might be that farmers are delaying planting and respond-

ing to early June rains. Again, if this were true then it should not be found that

unpredicted rainfall is uncorrelated with acreage planted. Because Walker and

Ryan (1990) discuss some farmers delaying or altering planting into late May, Ta-

ble 1.10 addresses this concern by showing results when June rains are excluded

from the analysis. Response to July-September rain remains consistent with the
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results presented above. Again, IAC data provides similar results.

The notion that farmers adjust their acreage decisions in anticipation of

rainfall shocks contradicts common identification assumptions.28 It should be

noted that these results do not contain information about whether the occur-

ring adaptation is within or between farmers. Regardless, the occurrence of any

adaptive behavior implies that rainfall is not an unpredictable shock. Adaptation

of crop selection to future rainfall implies the impact rainfall has on income is a

function of adaptive behaviors made by observant farmers, and is hence neither

unexpected nor exogenous.

1.5 Local Information Issues

The above results presented strong evidence of adaptation to expectations

over future rainfall events. This means rainfall is not an unpredictable shock,

implying the changes in income and other outcomes which result from rainfall are

also not unpredicted. Because farmers are clearly adapting in ways which change

their subsequent income outcomes, the changes in income resulting from rainfall

are not an exogenous shock.

Given the insignificant response to rainfall unpredicted given the econo-

metrician’s data set, it is tempting to conclude that the econometrician’s infor-

28For example, in examining take-up of high-yield crops, Suri (2011) is clear that “Central
to identification is the fact that the hybrid seed choice is made before the farmer experiences
most of the agricultural shocks to yields,” or that transitory shocks to yields “do not affect the
farmer’s decision to use hybrid and, crucially, the farmer’s switching behavior.”
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mation set may be a sufficient statistic for the information to which individuals

respond. If that were the case, the econometrician could simply control for rainfall

expectations, and use unexpected shocks for identification. The estimation and

interpretation issues surrounding such an attempt are detailed in Section 2. It

was noted in throughout this paper that an econometrician will never observe all

potential adaptive behaviors, nor does the lack of a behavioral response imply the

rainfall was unexpected. Because it seems almost impossible to every completely

allay such concerns, they may appear overly cautious. Hence this section presents

evidence of a third and very significant data concern faced by the econometrician.

The rainfall data observed by the econometrician, be it satellite data, gauge

data, forecasts, or something else is almost always from a different or geograph-

ically broader area than the farmer. This issue is a familiar topic when working

with rainfall index insurance, where basis risk refers to the uninsured risk due to

difference between rainfall at the farmer’s field and rainfall measured at the site

used for determining insurance payouts. In using rainfall for identifying variation,

econometricians face a similar problem.

Suppose farmers have location-specific knowledge (XI) about how rainfall

on their particular farm is correlated with the rainfall which is unpredicted at the

district level given W.These farmers would adjust their planting behavior based on

information unobserved by the econometrician. The econometrician can ensure W

contains enough information so that the average farmer does not expected rainfall
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above or below the predicted predicted rainfall outcome. But this average can

continue to hide important heterogeneity. The econometrician can only decrease

this concern by obtaining increasingly fine-grained data.29

In other words, local information may result in farmers adapting differently

to what the econometrician perceives as a uniform rainfall expectation but local

farmers correctly perceive as a heterogeneous expectation. It is possible to test

whether households adapt at a local level over information which is appeared un-

expected on average at the district level. If such behavior exists, it presents two

problems for identification. First, it reiterates that the econometrician is unable

to correctly estimate expectations as would be necessary to form an unexpected

shock useful for identification. Second, it suggests suggests not only that adapta-

tions vary over fine-grained geographic areas with different location and climate

characteristics, but also that because such differences are known farmers may have

sorted non-randomly over these areas.

1.5.1 Data

To examine this issue, “Generation II” ICRISAT Micro Level Data (ICRISAT

Micro) is used for household-level analysis. In 1975, ICRISAT began a commonly

used household-level surveys following 40 households in each of six villages from

three districts in the semi-arid tropical parts of India. In 1980 four additional vil-

lages were added including two villages in the Raisen District of Madhya Pradesh.

29Note that Indian districts are on average slightly larger than U.S. counties.
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Households are stratified on farm size, and detailed interviews record household de-

mographics and the timing and value of various farming and economic activities.30

In 2001 through 2008, a follow-up series of surveys, “Generation II,” was targeted

at household surveyed earlier and spin-off households, with additional households

surveyed to fill gaps in farm size stratification due to attrition.31 ICRISAT Micro

data involves includes detailed time data which permits separate identification of

kharif and rabi activities. The “Generation II” data is particularly useful because

it provides detailed records of the amount of acreage farmers devote to each par-

ticular crop. Summary statistics for the ICRISAT Micro data can be found in

Table 1.4.

1.5.2 Analysis

The cropping decisions of individual farmers can be examined in a similar

fashion to the aggregate district-level acreage responses. The same set of infor-

mation, W, is used to predict rainfall outcomes.32 Here, it is important to note

that the most geographically precise information in W is at the district level. This

means that at best, W can be used to estimate average district-level expectations.

30The ICRISAT Micro data interviews 10 households from each category of labor, small farm,
medium farm, and large farm. The analysis presented below focuses on the farming households,
following the standard story of rainfall impacting income through crop yields.

31Due to data limitations in linking households across all survey years, the households in the
first and second rounds of the Generation II survey (2001-2004 and 2005-2008) are conservatively
treated as new households in the assignment of household fixed effects. This is equivalent to the
equally reasonable approach of interacting a dummy for changes in the survey instrument with
the household fixed effects.

32Because ICRISAT Micro data includes villages from multiple states, the coefficients on W
are allowed to vary at the state level.
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Do these district-level expectations still appear to yield a sufficient statistic for

anticipatory adaptation?

Percentage of Acreage Devoted to Cropi,t =βc(ξi,t) + αi + θiYt

+ γLi,t + ei,t (1.16)

Percentage of Acreage Devoted to Cropi,t =Γc(ξi,t − ε̃i,t) + αi + θiYt

+ γLi,t + ei,t (1.17)

Percentage of Acreage Devoted to Cropi,t =Γd(ξi,t − ε̃i,t) + βd(ε̃i,t) + αi + θiYt

+ γLi,t + ei,t (1.18)

Because different farmers with different crop preferences may own different amounts

of land, the outcome variable of interest is percentage of sown crop acreage de-

voted to a particular crop rather than total hectares devoted to a particular crop.

Coefficients should be interpreted as the additional percentage of sown acreage

devoted to the given crop. Because fallow lands are not well-recorded in some

years, the impact of demeaned rainfall shocks on the percentage of land devoted

to a given crop would be biased if households are more likely to report fallow

fields (mechanically increasing their total field area) in years with rainfall shocks.

The reported acreage of fallow fields is indeed very strongly correlated with future

rainfall shocks.To avoid this bias, the outcome variable is percentage of each year’s

total planted acreage devoted to a given crop. This identifies only the intensive

margin of switching between crops, and not extensive margin of planting more or

less area entirely. ξi,t is defined as deviation from a rolling mean over the past 20
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years.

As before, if rainfall is unpredictable, βc should be both statistically and

economically insignificant. If βc 6= 0, this is consistent with anticipatory adap-

tation, particularly if the sign of βc is consistent with agronomic practices. If

all variation expected by farmers is removed from ε̃i,t, it should be that βd = 0.

However, if farmers have additional information about rainfall which is unknown

to the econometrician, the sign of βd is unclear. On one hand, expectations of

lower rainfall could result in a increase of drought-resistant crops and decrease in

water-intensive crops. On the other hand, if farmers expect rainfall to be low but

better in their area than other nearby areas, expectations of increased prices due

to scarcity may encourage an increase rather than decrease in prices. This issue

is less of a concern at broader geographic levels if increasing transportation costs

reduce the benefits of arbitrage.

When the first and second stages do not involve one-to-one mappings of

observations, standard error adjustments for generated regressors are potentially

infeasible. The intuition is simplest in the logic of bootstrapping. An alternative to

Murphy-Topel corrections would be a double-bootstrapping procedure which cor-

rectly accounts for sampling error by drawing a subsample of districts, estimating

rainfall expectations, applying these expectations to the district or household-level

data, and repeating this procedure a large number of times. However, in cases

where the level of the panel variable in the second stage (households) is drawn from
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a small number of panel variables in the first stage (districts), block bootstrapping

at the district level fails to generate regressors for large groups of second-stage

observations on most re-samplings. While this means the standard errors on Γc

and Γd may be slightly too small, the standard errors on βc and βd remain correct.

Standard errors are clustered at the household level.

1.5.3 Results

Table 1.11 and Table 1.12 show household level results for the six most

prominent crops in the ICRISAT Micro villages (cotton, pigeon pea, castor beans,

soybeans, sorghum, and rice).33 Again results show evidence that at the individual

household level, farmers alter the acreage devoted to various crops in anticipation of

future weather outcomes. When district-level measures of rainfall are one standard

deviation lower than the mean, the acreage devoted to pigeon pea and castor bean,

both drought-resistant crops, increase by 12% and 13% respectively. At the same

time, rice yields decrease by over 11%. Changes in sorghum are not significant,

perhaps because other drought resistant crops are more popular in these villages,

but the sign of βc remains consistent with sorghum being a drought-resistant crop.

These magnitudes are larger than found at the district level as a whole, suggesting

that farmers with less acreage may be disproportionately sensitive to seasonal

weather expectations. This is consistent with the well-documented conclusion that

33Results from additional crop as well as decisions to rent out or fallow fields display similar
signs of anticipatory adaptation and local information.
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poor, small-scale farmers are quite risk averse.

Those crops which individuals adjust in anticipation of future rainfall also

show significant response to predicted rainfall. Again, the magnitudes are not com-

parable because a one unit increase in predicted rainfall is not equal to a one unit

increase in total rainfall. The main difference between these results and district

level results is that at the individual farm level the acreage devoted the three most

common crops exhibits significant response to variation which is unpredictable

given the econometrician’s information set, W. This is consistent with farmers

possessing location-specific information about how rainfall outcomes are correlated

within the district. While the magnitude of βd is difficult to interpret, standard

errors on this key variable are correct and show a significant and agronomically

sensible response to rainfall variation unpredicted by the econometrician. Both

pigeon pea and castor bean are drought-resist crops, while cotton is comparatively

water-intensive.

The important take-away from Table 1.11 and Table 1.12 is that individual

farmers significantly alter their crop selections in response to location-specific infor-

mation. While there is less evidence of response to local information in soybeans,

sorghum, or rice, the response of any crop is troubling. Additional crops choices

beyond these six most common crops also show evidence of anticipatory adaptation

based on local information, including other pulses, sugarcane, sunflowers, onions,

and even fallowing.34 Looking at only a limited selection of potential behavior

34For conciseness, these results are available upon request.



52

adaptations, such as rice and sorghum acreage, could mistakenly cause researchers

to mistakenly assume expectations have been completely captured. The researcher

will never observe all possible adaptive behaviors, and hence can never be certain

that unobserved adaptation has not occurred. These results further re-affirm that

income and other outcomes which result from rainfall are not random, but are

endogenous functions of decisions made by heterogeneous farmers. Further, they

suggest that location-specific information unobserved by the econometrician is an

important part of the endogenous crop selections made by farmers.

1.6 Measuring the Impacts of Adaptation

1.6.1 Methodology

Given that individuals engage in anticipatory adaptation, a practical con-

cern is the extent to which adaptation alters rainfall-based identification strategies.

Do the impacts of adaptation represent a trivial part of the correlation between

rainfall and any outcomes of interest? If so, concerns about the interpretation of

rainfall-based identification strategies are largely semantic. To what extent has

adaptive behavior altered our understanding of these estimates?

To answer this question, this paper uses ICRISAT Micro data to compare

estimates based on demeaned rainfall to estimates using unpredicted rainfall. This

paper examines both reduced form estimates and IV approaches which instrument
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income with rainfall deviations. The particular outcomes examined here are chosen

from popular topics in the literature which are available in the ICRISAT Micro

data, in particular schooling, migration outcomes, and birth and death rates.35

Equation 1.19 through Equation 1.23 show the explicit empirical approach. In

each equation, βi represents the coefficient of interest.

OLS

Outcomeh,t = β1Incomeh,t−1 + θai Yt + ψCh,t + θbDh,t + eh,t (1.19)

Reduced Form with de-meaned rainfall

Outcomeh,t = β2ξi,t−1 + θai Yt + ψCh,t + θbDh,t + eh,t (1.20)

Reduced Form with unpredicted rainfall

Outcomeh,t = β3ε̃h,t−1 + θai Yt + ψCh,t + θbDh,t + eh,t (1.21)

ξh,t = βWW + ψCh,t + ε̃h,t

IV with de-meaned rainfall

Outcomeh,t = β4 ̂Incomeh,t−1 + θai Yt + ψCh,t + θbDh,t + eh,t (1.22)

Incomeh,t = γf(ξi,t) + θai Yt + ψCh,t + θbDh,t + νh,t

35Papers using rainfall variation to examine education include Jensen (2000), Maccini and
Yang (2009), and Björkman-Nyqvist (2013). Papers using rainfall variation to examine migration-
related outcomes include Munshi (2003), Yang and Choi (2007), and Beegle et al. (2011). Rainfall
and mortality are examined by Rose (1999) and Burgess and Donaldson (2010). The impacts of
rainfall shocks on both birth rates and infant mortality are examined by Bhalotra (2010)
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IV with unpredicted rainfall

Outcomeh,t = β5 ̂Incomeh,t−1 + θai Yt + ψCh,t + θbDh,t + eh,t (1.23)

Incomeh,t = γf(ε̃i,t) + θai Yt + ψCh,t + θbDh,t + νh,t

ξh,t = βWW + ψCh,t + ε̃h,t

β1 is the OLS estimate of the correlation between income and the outcome.

Endogeneity issues with such a regression are common knowledge. β2 and β3

are reduced form estimates of ξi,t and ε̃i,t, respectively. Recall that the unknown

difference between the variance of ε̃ and ξ̃ should temper the temptation to compare

the magnitudes of β2 and β3. Cases where the sign of β2 andβ3 differ remains

suggestive of potential bias. The magnitudes of IV results from demeaned and

unpredictable rainfall shocks, β4 and β5, can be directly compared.

Although alternative functions to f(·) are discussed for unpredicted rainfall

shocks, in comparing IV estimates identical functions are used in order to isolate

differences driven by expectations. As discussed above, there is no consistent

choice of functional form, f(ξi,t), for a rainfall shock in literature. Some papers

force positive and negative rainfall shocks to have identical impacts on income,

while others force opposite effects.36 The main results presented in this paper tests

follow popular variants in using the levels and squares of rainfall shocks. Similar

results are obtained using another popular approach of indicators for rainfall events

36For examples, Jensen (2000) and Hidalgo et al. (2010) use identical impacts of positive and
negative shocks. Jayachandran (2006) tests for and rejects similar impacts in her data. Paxson
(1992) permits such differences. The differences between positive and negative shocks on income
in ICRISAT data are significant, so this paper permits them.
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beyond cutoffs in standard deviation. Kharif season agricultural income itself is

defined as the value of the household’s kharif season output less the cost of kharif

season inputs.37 Explicitly, the income shock examined here is defined as deviation

from mean household income, or Income Shockh,t ≡ Ih − Ih,t.

Ch,t is a vector of the percent of utilized land devoted to each crop. While

this is helpful in isolating individual’s rainfall expectations, it would serve as a

poor instrument for income and hence needs to be carried through each stage of

the IV estimates. This crop mix vector is also included in non-IV regressions

for comparability. In an ideal setting, no additional controls would be necessary.

Yet small samples either may differentially risk picking up time trends in income.

District-level time trends, θiYt, should account for differences driven by spurious

correlation with time trends rather than adaptation-based differences.38 A second

issue is the presence of serial correlation in rainfall shocks. For households with

few observations to calculate mean income, estimates may also capture correlation

between mean income and a rainfall shock in another year. This is problematic

because it causes the instrumented income measure to be mechanically correlated

with rainfall-induced behavior in other periods. For this reason, households with

37Such a measure of income may be biased if input-values include the cost of expensive long-
term investments. If long-term investments are more likely following good harvest years and
good harvest years are more likely when rainfall is near expected values, then this should bias
income to be lower in years following rainfall near expected values and higher in years where
rainfall departs significantly from expected values.

38Data limitations mean that rainfall data is still measured at the district level. Hence rain-
fall should be viewed as a potentially noisy proxy for actual rainfall received by the individual
household. As a silver lining, this means district level trends are sufficient to control for biases
from small-sample trends in rainfall.



56

only two or three income observations have controls for rainfall in other observed

income periods, denoted as the vector Dh,t.

As discussed in Section 5, isolating an unpredictable rainfall shocks which

is uncorrelated with average adaptive behavior is far easier at more geographically

general levels. It was shown that the set of W variables sufficient at the district

level are likely unable to capture all local information.While one could add an in-

creasing number variables to the information set W, such an approach is poorly

founded and over-fitting predicted rainfall risks leaving little remaining identifying

variation for unpredicted rainfall shocks. At the same time, because there is not

household level data for most districts, some elements of W correlated with be-

havior at the district level may not be correlated with behavior in the micro data

available in this setting.

Instead, the reduced form of potential W variables on adaptive behavior

such as crop choice can help inform which predictors contain utilized information.

Hierarchical stepwise analysis of potential W variables on the proportion of sown

acreage devoted to each of the ten most popular household-level crops as adap-

tive behaviors confirms intuition that large numbers of lags and powers of ENSO

measures are unnecessary in the micro data. Eliminating excess proxies which

have no significant correlation with adaptive behavior reduces concerns of over-

fitting. The household level analysis uses quadratic district-specific time trends,

last period’s rainshock, government forecasts, and January-May ONI levels (each
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interacted with the village’s state) as elements of W. If these are insufficient to

eliminate correlation between rainfall and adaptive behavior, the adaptive behav-

ior itself can be used a final proxy for rainfall information. At the individual farm

level, the chosen crop mix itself can be used as a proxy for XI information, as

used by Kochar (1999) as a proxy for predictable profits. But note that using only

the adaptive behavior as a predictor of rainfall expectations creates far too weak

a proxy for this setting.

1.6.2 Results

Given the focus on the use of rainfall for identifying variation in agricul-

tural income, comparisons between results based on demeaned rainfall, ξi,t, and

unpredicted rainfall, ε̃i,t, should begin with an examination of first-stage results.

Table 1.13 shows the first stage results for the impact of rainfall on income. Results

both with and without controls for crop portfolio are shown, because this control

is not necessary for correct interpretation of first stage results but rather maintains

consistent functional form across OLS, reduced form, and IV estimates. Above-

mean rainfall is found to be associated with higher levels of income, although at

a decreasing rate. The view that more rain uniformly increases income appears

to be incorrect, as rainfall above predicted levels is not associated with increased

levels of income. Further, Table 1.14 separates above and below mean rainfall by

whether predicted rainfall was also above or below the mean. Consistent with in-
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come increases being driven by adaptation, above mean rainfall is only associated

with increased income when above mean rainfall was also predicted.

Returning to Table 1.13, the main income impact of unpredicted rainfall

is rainfall below predicted levels causing decreases in income, potentially at a

decreasing rate. Reported F-statistics are for the four rainfall variables and exclude

other controls which do not serve as instruments in the IV settings. Deviations from

mean rainfall appear to be a slightly stronger instrument. This raises an important

caveat that because unpredicted rainfall is a weaker instrument, there may be more

measurement error in those generated income measures. This would also result in

less significant, smaller IV estimates. However, the standard errors found on IV

estimates using unpredicted rainfall are often smaller, suggesting measurement

error may not be a larger issue in the unpredicted estimates than the tradional

demeaned estimates. Additionally, unpredicted rainfall explains slightly more of

household’s variation in agricultural income.

Table 1.15 presents the main results of this section. Each cell represents

a separate regression. Each row represents a different outcome variable. The

first column shows the endogenous OLS estimate of income elasticity, β1 from

Equation 1.19. The second and third column examine the reduced form impact of

demeaned and unpredicted rainfall on the same outcome, β2 from Equation 1.20

and β3 from Equation 1.21. The magnitudes of β2 and β3 are not comparable

because a one-unit change in unpredicted rainfall does not necessarily correspond
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to a one-unit change in unexpected rainfall. The fourth and fifth columns show the

IV estimates of β4 from Equation 1.22 and β5 from Equation 1.23. The magnitudes

of β4 and β5 are comparable, and column 6 shows the p-value for the null hypothesis

that the two IV estimates are equal.

For four of the the nine outcomes presented here, β4 and β5 are statistically

different at standard confidence levels. This ratio of significant differences should

not be taken as averages across all possible outcomes. Instead, researchers should

consider potential types of adaptation and whether the expressions presented in

Equation 1.4 and Equation 1.5 may be non-zero in their particular setting. Exam-

ples of such considerations are discussed below.

Migration seems to be a promising place to look for impacts of anticipatory

adaptation. Matching the literature on migration, demeaned rainfall instruments

find positive income shocks improve migration outcomes. These estimates find

households are more likely to have a migrant, have more off them, have them

travel farther, and make more money. Yet estimates of how income shocks affect

the number of migrants in a household and the net income from those migrants

are significantly different at standard confidence levels when based on unpredicted

rainfall variation. In each case both estimates are positive and significant, but the

estimates on predictable income shocks are larger.

These results are consistent with the possibility that expectations of higher

future income at the end of year t − 1 caused credit-constrained households to
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increase migration in year t − 1, while unexpected rainfall shocks did not. Both

rainfall shocks provided increased agricultural income enabling increases in migra-

tion in year t. Under this story, demeaned rainfall shocks would also be correlated

with non-agricultural income shocks from migration in year t− 1. This is compa-

rable to the endogenous income effect discussed in Section Equation 1.4. Further,

migration in year t− 1 may be complementary to future migration through chan-

nels such as information about migration opportunities. Lowered costs of migration

due to past migration would be a direct, non-income impact of adaptive behavior

as described in Equation 1.5. It would also mean variation based on de-meaned

rainfall is correlated with non-income impacts, violating the exclusion restriction

of IV estimates. Further research would be necessary to isolate the extent to which

differences are driven by complementary behavior versus expectable income shocks

enabling further investment.

For another example of how predictability alters estimation, consider the

example of the impact of income shocks in period t − 1 on births which occur

between period t − 1 and t. Although it is not surprising for household size to

increase in the face of positive income shocks, the length of gestation suggests that

most births in this period were conceived before the income shock occurs. Hence

increases in birth rate during this period correlated with positive income shocks

can likely be assigned to expectations of increased income rather the realization

of the income shock. Indeed, the third row of Table 1.15 shows positive expected
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income shocks cause a rise in births, while unexpected income shocks do not.

Whether outcomes are significantly different depends on whether adaptive

behavior alters the outcome of interest, either directly or through endogenous in-

come effects. Many estimates do not find significant differences. This does not

imply no adaptation is occurring. Rather, it is learned that neither the adaptive

behaviors nor the endogenous factors associated with these adaptations are corre-

lated with the outcome of interest. Hence even similar estimates are informative

about the type of adaptive behavior occurring, and the factors which drive these

adaptations.

1.7 Conclusion

Rainfall and other weather events have long been employed as sources of

exogenous and unpredictable identifying variation. Rainfall is most popularly used

for variation in agricultural income, although rainfall’s direct impacts on relative

prices, health, and other outcomes are known to make it an imperfect instrumental

variable. This paper’s contribution is to document that even in a reduced form

setting, estimates of the effect of rainfall deviations require significant reinterpre-

tation. This is due to rainfall outcomes being partially predictable, meaning that

anticipatory adaptation makes the subsequent impacts of rainfall endogenous.

Evidence of anticipatory adaption was presented in the form of Indian

farmers adjusting their crop selections efficiently in advance of seasonal rainfall
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outcomes. When seasonal rainfall was one standard deviation below the mean,

district-wide acreage of drought-resistant sorghum increased by almost 3%, while

acreage of water-intensive rice decreased by over 1%. The average farmer among

ICRISAT villages increasing their sown acreage of drought-resistant and water-

intensive crops by as much as 10% each, consistent with poorer, smaller-scale

farmers being more risk averse. If rainfall were unpredictable at the time of plant-

ing, farmers would not be able to make such anticipatory decisions about how

much acreage to sow with various crops before observing rainfall outcomes. The

interpretation of this behavior as due to seasonal weather expectations was robust

to a variety of tests and alternative explanations.

Once such anticipatory adaptation has occurred, the impacts of rainfall on

income and other outcomes become an endogenous function of agents’ anticipa-

tory adaptations, and may then be correlated with a wide variety of heterogeneous

capital constraints, information constraints, or even risk preferences. Results show

that attempts to reduce these issues by controlling for individuals’ expectations

require more detailed location-specific data than is likely available to the econome-

trician. Reduced form estimates should be interpreted as reflecting not only the

impact of the physical rainfall event through income and relative prices, but also

all impacts of anticipatory adaptation.

The impacts of anticipatory adaptation on estimates are not trivial. Be-

cause anticipatory adaptation begins at least as early as the start of the agricultural
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season, there is a large window of time for heterogeneous constraints or preferences

to influence outcomes. Removing as much anticipatory adaptation as possible may

result in significantly altered point estimates, reducing some estimates of income

elasticity to half their previous size. The extent to which estimates are significantly

altered depends on whether the adaptation or endogenous constraints associated

with it are correlated with the outcome variable of interest. Hence examining

differences between standard estimates and estimates which remove anticipatory

adaptation is informative about the types of adaptation which occur.
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1.9 Tables

Table 1.1: Survey of Papers Using Rainfall for Identifying Variation
2011-2013

Estimation Strategy Number
IV 6
Reduce Form 10
Other 3

Most Common Outcome Variables Number
Household Consumption/Investment 6
Political Behavior 5
Aggregate Consumption/Revenue/Growth 3

Most Commonly Instrumented Variables Number
Income Shock 3
Attendance 2

Most Commonly Studied Regions Number
One or more African countries 10
India 5

Most Commonly Used Form of Rainfall Number
Total or De-meaned Rainfall 10
Indicator for Above\Below Cutoff 6
First Difference 1

Additional Information Number
Cites exogeneity or unpredictability to justify identification 8
Acknowledges non-mean expectations are possible 1
Tests or controls for serial correlation in rainfall 3
Includes Year-by-region FE 0
Includes Year FE 11
Includes Region FE 12

All papers published in 2011-2013 in the following 10 journals containing the phrase “rain”
or “rainfall” or “precipitation” were examined: American Economic Journal: Applied Eco-
nomics, American Economic Review (excluding P&P), Econometrica, International Economic
Review, Journal of Development Economics, Journal of International Economics, Journal of
Labor Economics, Journal of Political Economy, Quarterly Journal of Economics, Review of
Economics and Statistics. Papers which used rainfall-driven variation of annual or finer fre-
quency for identification of main results were included. Papers using mean rainfall over longer
periods, using rainfall as a control, or only using rainfall variation for robustness checks are
not included. Comment papers are not included. Fixed effects numbers only reflect papers
with multiple time periods and/or regions.



65

Table 1.1: Survey of Papers Using Rainfall for Identifying Variation
2011-2013, continued

Common JEL Codes and Citations Number
D - Microeconomics 9
E - Macroeconomics and Monetary Economics 2
F - International Economics 3
H - Public Economics 3
J - Labor and Demographic Economics 2
O - Economic Development, Technological Change, 13

and Growth
Q - Agricultural and Natural Resource Economics; 2

Environmental and Ecological Economics
“h-index”: maximum number of papers h each 13

with h or more citations
All papers published in 2011-2013 in the following 10 journals containing the phrase “rain”

or “rainfall” or “precipitation” were examined: American Economic Journal: Applied Eco-
nomics, American Economic Review (excluding P&P), Econometrica, International Economic
Review, Journal of Development Economics, Journal of International Economics, Journal of
Labor Economics, Journal of Political Economy, Quarterly Journal of Economics, Review of
Economics and Statistics. Papers which used rainfall-driven variation of annual or finer fre-
quency for identification of main results were included. Papers using mean rainfall over longer
periods, using rainfall as a control, or only using rainfall variation for robustness checks are
not included. Comment papers are not included. Fixed effects numbers only reflect papers
with multiple time periods and/or regions.
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iñ

o
In

d
ex

,
S
ep

te
m

b
er

L
ev

el
.0

40
98

36
.7

22
58

26
-1

.2
1.

8
O

ce
an

ic
N

iñ
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iñ
o

In
d
ex

,
D

ec
em

b
er

L
ev

el
.0

39
34

43
1.

05
88

17
-1

.9
2.

4
A

n
n
u
al

O
b
se

rv
at

io
n
s

61



68

T
a
b
le

1
.4

:
IC

R
IS

A
T

M
ic

ro
S
u
m

m
ar

y
S
ta

ti
st

ic
s

IC
R

IS
A

T
M

ic
ro

,
G

en
I

19
75

-1
98

5,
G

en
II

20
01

-2
00

8
m

ea
n

sd
m

in
m

ax
co

u
n
t

P
er

ce
n
t

of
so

w
n

ac
re

ag
e

d
ev

ot
ed

to
C

ot
to

n
16

.9
27

62
27

.4
25

56
0

10
0

28
64

P
er

ce
n
t

of
so

w
n

ac
re

ag
e

d
ev

ot
ed

to
P

ig
eo

n
P

ea
14

.2
20

2
19

.9
68

24
0

10
0

28
64

P
er

ce
n
t

of
so

w
n

ac
re

ag
e

d
ev

ot
ed

to
C

as
to

r
8.

40
54

48
19

.2
11

92
0

10
0

28
64

P
er

ce
n
t

of
so

w
n

ac
re

ag
e

d
ev

ot
ed

to
S
oy

b
ea

n
2.

33
37

35
11

.9
87

98
0

10
0

28
64

P
er

ce
n
t

of
so

w
n

ac
re

ag
e

d
ev

ot
ed

to
S
or

gh
u
m

14
.6

36
62

20
.6

91
64

0
10

0
28

64
P

er
ce

n
t

of
so

w
n

ac
re

ag
e

d
ev

ot
ed

to
R

ic
e

8.
30

67
33

21
.2

98
19

0
10

0
28

64
S
tu

d
en

t
in

h
ou

se
h
ol

d
st

ar
ts

sc
h
o
ol

(I
n
d
ic

at
or

)
.0

40
73

24
.1

97
70

66
0

1
26

76
S
tu

d
en

t
in

h
ou

se
h
ol

d
st

op
s

sc
h
o
ol

(I
n
d
ic

at
or

)
.0

42
97

46
.2

02
83

77
0

1
26

76
B

ir
th

in
h
ou

se
h
ol

d
(I

n
d
ic

at
or

)
.1

05
75

49
.3

07
58

11
0

1
26

76
D

ea
th

in
h
ou

se
h
ol

d
(I

n
d
ic

at
or

)
.0

47
85

55
.2

13
50

87
0

1
22

15
H

ou
se

h
ol

d
re

p
or

ts
m

ig
ra

n
t

w
or

ke
r

(I
n
d
ic

at
or

)
.2

17
91

77
.4

13
08

13
0

1
82

6
N

u
m

b
er

of
m

ig
ra

n
t

w
or

ke
rs

re
p

or
te

d
.3

83
77

72
.8

83
06

81
0

6
82

6
M

ea
n

d
is

ta
n
ce

m
ig

ra
te

d
(k

m
)

37
.2

11
55

11
3.

55
88

0
15

05
82

4
T

ot
al

d
ay

s
of

m
ig

ra
n
t

la
b

or
26

7.
01

72
23

7.
60

22
0

13
55

34
8

N
et

In
co

m
e

fr
om

M
ig

ra
n
ts

(R
u
p

ee
s)

13
74

7.
65

14
84

3.
7

30
2.

5
10

43
10

14
93

S
m

al
l

F
ar

m
H

ou
se

h
ol

d
s

(I
n
d
ic

at
or

)
.3

52
65

36
.4

77
87

95
0

1
28

64
M

ed
iu

m
F

ar
m

H
ou

se
h
ol

d
s

(I
n
d
ic

at
or

)
.3

15
99

16
.4

64
99

08
0

1
28

64
L

ar
ge

F
ar

m
H

ou
se

h
ol

d
s

(I
n
d
ic

at
or

)
.3

31
35

47
.4

70
78

25
0

1
28

64
K

h
ar

if
S
ea

so
n

In
co

m
e

(O
u
tp

u
t

-
In

p
u
t,

R
u
p

ee
s)

11
53

6.
7

58
51

6.
84

-9
77

46
.7

23
44

83
0

28
64

K
h
ar

if
S
ea

so
n

R
ai

n
fa

ll
(m

m
)

59
2.

15
35

17
2.

99
35

2.
03

5
93

8.
7

28
64

T
h

e
n
u

m
b

er
of

ob
se

rv
at

io
n

s
va

ry
d

u
e

to
n

o
n

-r
es

p
o
n

se
a
n

d
d

iff
er

en
ce

s
in

su
rv

ey
st

ru
ct

u
re

b
et

w
ee

n
a
n

d
w

it
h
in

G
en

er
a
ti

o
n

I
a
n

d
G

en
er

a
ti

o
n

II
of

th
e

IC
R

IS
A

T
M

ic
ro

d
at

a.
M

ig
ra

ti
o
n

d
a
ta

co
m

es
p

u
re

ly
fr

o
m

G
en

er
a
ti

o
n

II
.



69

T
a
b
le

1
.5

:
E

v
id

en
ce

of
A

n
ti

ci
p
at

or
y

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
M

ai
n

R
es

u
lt

s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

R
ic

e
R

ic
e

R
ic

e
S

or
gh

u
m

S
or

gh
u

m
S

or
gh

u
m

M
ai

ze
M

ai
ze

M
ai

ze
R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

49
5.

0∗
-1

30
5.

4∗
∗∗

-2
17

.2
(2

10
.0

)
(3

18
.1

)
(1

54
.7

)

P
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

73
8.

8∗
∗

73
8.

8∗
∗

-1
87

3.
1∗
∗∗

-1
87

2.
4∗
∗∗

-2
54

.3
-2

53
.7

(2
72

.4
)

(2
72

.2
)

(5
14

.2
)

(5
29

.0
)

(1
59

.3
)

(1
30

.8
)

U
n

p
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

12
.0

4
-1

82
.2

-1
44

.7
(1

86
.2

)
(2

94
.0

)
(2

43
.6

)

L
.R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

12
62

.1
∗∗
∗

13
13

.6
∗∗
∗

13
12

.8
∗∗
∗

72
4.

6
59

4.
9

60
6.

7
25

0.
2

23
3.

2
24

2.
6

(2
05

.0
)

(2
13

.9
)

(2
07

.0
)

(8
21

.2
)

(7
90

.2
)

(8
00

.2
)

(1
57

.6
)

(1
69

.7
)

(1
61

.2
)

D
is

tr
ic

t
F

E
X

X
X

X
X

X
X

X
X

D
is

tr
ic

t-
S

p
ec

ifi
c

Q
u

ad
ra

ti
c

Y
ea

r
T

re
n

d
X

X
X

X
X

X
X

X
X

R
es

id
u

al
S

oi
l

M
oi

st
u

re
X

X
X

X
X

X
X

X
X

N
12

58
12

58
12

58
12

58
12

58
12

58
12

58
12

58
12

58
r2

0.
99

5
0.

99
5

0.
99

5
0.

96
9

0.
96

9
0.

96
9

0.
98

6
0.

98
6

0.
98

6

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
h

ec
ta

re
s

of
n

on
-H

Y
V

ri
ce

o
r

n
o
n

-H
Y

V
so

rg
h
u

m
.

E
x
p

ec
te

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
st

a
n

d
a
rd

iz
ed

ex
p

ec
te

d
d

ev
ia

ti
on

of
k
h

ar
if

se
as

on
ra

in
fa

ll
fr

om
m

ea
n

ra
in

fa
ll

ov
er

1
9
5
6
-1

9
9
9
.

R
ea

li
ze

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
a
ct

u
a
l

d
ev

ia
ti

o
n

th
a
t

o
cc

u
rs

.
K

h
ar

if
se

as
on

is
th

e
w

et
or

m
o
n

so
o
n

se
a
so

n
,

d
efi

n
ed

h
er

e
a
s

J
u

n
e

th
ro

u
g
h

S
ep

te
m

b
er

.
M

u
rp

h
y
-T

o
p

el
st

a
n

d
a
rd

er
ro

rs
cl

u
st

er
ed

a
t

th
e

d
is

tr
ic

t
le

ve
l.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



70

T
a
b
le

1
.6

:
E

v
id

en
ce

of
A

n
ti

ci
p
at

or
y

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
S
ec

on
d
ar

y
D

at
a

S
et

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

R
ic

e
R

ic
e

R
ic

e
S

or
gh

u
m

S
or

gh
u

m
S

or
gh

u
m

M
ai

ze
M

ai
ze

M
ai

ze
R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

72
2.

3∗
∗

-1
17

0.
3∗
∗∗

-7
1.

52
∗

(2
53

.3
)

(2
58

.0
)

(2
9.

33
)

P
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

12
19

.8
∗∗

12
19

.5
∗∗

-1
41

7.
0∗
∗∗

-1
41

6.
9∗
∗∗

-1
02

.5
-1

02
.5

(4
32

.8
)

(3
91

.6
)

(3
81

.9
)

(3
96

.1
)

(6
0.

82
)

(6
1.

52
)

U
n

p
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

14
8.

4
-4

9.
22

-3
9.

35
(2

73
.8

)
(4

81
.4

)
(4

8.
22

)

L
.R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

66
9.

1∗
∗∗

82
8.

1∗
∗

83
2.

9∗
∗∗

-1
81

9.
0∗
∗∗

-2
08

4.
8∗
∗∗

-2
08

6.
3∗
∗∗

-8
0.

63
∗∗

-1
05

.1
∗∗

-1
06

.3
∗∗

(1
81

.6
)

(2
61

.0
)

(2
36

.0
)

(2
75

.3
)

(3
36

.8
)

(3
36

.9
)

(2
8.

31
)

(3
6.

50
)

(3
7.

06
)

D
is

tr
ic

t
F

E
X

X
X

X
X

X
X

X
X

D
is

tr
ic

t-
S

p
ec

ifi
c

Q
u

ad
ra

ti
c

Y
ea

r
T

re
n

d
X

X
X

X
X

X
X

X
X

N
11

47
99

9
99

9
11

47
99

9
99

9
11

47
99

9
99

9
r2

0.
99

5
0.

99
5

0.
99

5
0.

97
4

0.
97

5
0.

97
5

0.
99

6
0.

99
6

0.
99

6

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
h

ec
ta

re
s

of
n

on
-H

Y
V

ri
ce

o
r

n
o
n

-H
Y

V
so

rg
h
u

m
.

E
x
p

ec
te

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
st

a
n

d
a
rd

iz
ed

ex
p

ec
te

d
d

ev
ia

ti
on

of
k
h

ar
if

se
as

on
ra

in
fa

ll
fr

om
m

ea
n

ra
in

fa
ll

ov
er

1
9
5
6
-1

9
9
9
.

R
ea

li
ze

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
a
ct

u
a
l
d

ev
ia

ti
o
n

th
a
t

o
cc

u
rs

.
K

h
ar

if
se

as
on

is
th

e
w

et
or

m
on

so
on

se
a
so

n
,

d
efi

n
ed

h
er

e
a
s

J
u

n
e

th
ro

u
g
h

S
ep

te
m

b
er

.
A

ll
re

g
re

ss
io

n
s

in
cl

u
d

e
d

is
tr

ic
t

fi
x
ed

eff
ec

ts
a
n

d
d

is
tr

ic
t-

sp
ec

ifi
c

q
u

ad
ra

ti
c

ti
m

e
tr

en
d

s
to

co
n
tr

o
l

fo
r

cr
o
ss

-s
ec

ti
o
n

a
l

d
iff

er
en

ce
s

a
n

d
tr

en
d
s

in
cr

o
p

ch
o
ic

es
.

N
o
te

th
a
t

IA
C

d
a
ta

co
m

es
fr

o
m

an
ov

er
la

p
p

in
g

b
u

t
sl

ig
h
tl

y
ea

rl
ie

r
ti

m
e

p
er

io
d

th
a
n

IC
R

IS
A

T
d

a
ta

,
d

o
es

n
o
t

co
n
ta

in
so

il
×

la
g
g
ed

ra
in

fa
ll

co
n
tr

o
ls

,
a
n

d
so

rg
h
u

m
g
ro

w
n

in
th

e
k
h

ar
if

se
as

on
ca

n
n

ot
b

e
se

p
ar

at
ed

fr
o
m

so
rg

h
u

m
g
ro

w
n

in
th

e
ra

b
i

se
a
so

n
.

M
u

rp
h
y
-T

o
p

el
st

a
n

d
a
rd

er
ro

rs
cl

u
st

er
ed

a
t

th
e

d
is

tr
ic

t
le

ve
l.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



71

T
a
b
le

1
.7

:
E

v
id

en
ce

of
A

n
ti

ci
p
at

or
y

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
IC

R
IS

A
T

,
W

ea
ke

r
P

re
d
ic

ti
on

s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

R
ic

e
R

ic
e

R
ic

e
S
or

gh
u
m

S
or

gh
u
m

S
or

gh
u
m

M
ai

ze
M

ai
ze

M
ai

ze
R

ea
li
ze

d
K

h
ar

if
R

ai
n
fa

ll
D

ev
ia

ti
on

49
5.

0∗
-1

30
5.

4∗
∗∗

-2
17

.2
(2

10
.0

)
(3

18
.1

)
(1

54
.7

)

P
re

d
ic

te
d

K
h
ar

if
R

ai
n
fa

ll
D

ev
ia

ti
on

42
3.

2
39

6.
5

18
10

.1
18

99
.8

80
1.

7
81

9.
9

(3
09

.2
)

(3
10

.6
)

(1
30

6.
3)

(1
11

7.
6)

(2
75

3.
6)

(3
20

2.
3)

U
n
p
re

d
ic

te
d

K
h
ar

if
R

ai
n
fa

ll
D

ev
ia

ti
on

50
7.

2∗
-1

70
0.

9∗
∗∗

-3
45

.1
(2

15
.0

)
(4

63
.7

)
(1

09
9.

3)

L
.R

ea
li
ze

d
K

h
ar

if
R

ai
n
fa

ll
D

ev
ia

ti
on

12
62

.1
∗∗
∗

12
87

.8
∗∗
∗

12
53

.7
∗∗
∗

72
4.

6
88

5.
8

10
00

.2
25

0.
2

31
6.

1
33

9.
3

(2
05

.0
)

(2
18

.5
)

(2
02

.2
)

(8
21

.2
)

(7
83

.8
)

(8
15

.1
)

(1
57

.6
)

(6
75

.9
)

(8
50

.6
)

D
is

tr
ic

t
F

E
X

X
X

X
X

X
X

X
X

D
is

tr
ic

t-
S
p

ec
ifi

c
Q

u
ad

ra
ti

c
Y

ea
r

T
re

n
d

X
X

X
X

X
X

X
X

X

R
es

id
u
al

S
oi

l
M

oi
st

u
re

X
X

X
X

X
X

X
X

X
N

12
58

12
58

12
58

12
58

12
58

12
58

12
58

12
58

12
58

r2
0.

99
5

0.
99

5
0.

99
5

0.
96

9
0.

96
8

0.
96

9
0.

98
6

0.
98

6
0.

98
7

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
h

ec
ta

re
s

of
n

on
-H

Y
V

ri
ce

o
r

n
o
n

-H
Y

V
so

rg
h
u

m
.

E
x
p

ec
te

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
st

a
n

d
a
rd

iz
ed

ex
p

ec
te

d
d

ev
ia

ti
on

of
k
h

ar
if

se
as

on
ra

in
fa

ll
fr

om
m

ea
n

ra
in

fa
ll

ov
er

1
9
5
6
-1

9
9
9
.

R
ea

li
ze

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
a
ct

u
a
l

d
ev

ia
ti

o
n

th
a
t

o
cc

u
rs

.
K

h
ar

if
se

as
on

is
th

e
w

et
or

m
o
n

so
o
n

se
a
so

n
,

d
efi

n
ed

h
er

e
a
s

J
u

n
e

th
ro

u
g
h

S
ep

te
m

b
er

.
M

u
rp

h
y
-T

o
p

el
st

a
n

d
a
rd

er
ro

rs
cl

u
st

er
ed

a
t

th
e

d
is

tr
ic

t
le

ve
l.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



72

T
a
b
le

1
.8

:
E

v
id

en
ce

of
A

n
ti

ci
p
at

or
y

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
S
ec

on
d
ar

y
D

at
a

S
et

,
W

ea
ke

r
P

re
d
ic

ti
on

s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

R
ic

e
R

ic
e

R
ic

e
S

or
gh

u
m

S
or

gh
u

m
S

or
gh

u
m

M
ai

ze
M

ai
ze

M
ai

ze
R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

72
2.

3∗
∗

-1
17

0.
3∗
∗∗

-7
1.

52
∗

(2
53

.3
)

(2
58

.0
)

(2
9.

33
)

P
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

53
7.

1
66

9.
1∗

93
7.

1
76

0.
7

-1
8.

14
-3

1.
75

(2
77

.6
)

(3
13

.4
)

(8
66

.9
)

(8
42

.1
)

(8
6.

42
)

(8
6.

38
)

U
n

p
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

80
3.

8∗
∗

-1
07

4.
5∗
∗∗

-8
2.

86
∗

(2
95

.8
)

(2
28

.0
)

(4
0.

75
)

L
.R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

66
9.

1∗
∗∗

79
6.

3∗
∗∗

80
8.

0∗
∗∗

-1
81

9.
0∗
∗∗

-1
87

5.
8∗
∗∗

-1
89

1.
4∗
∗∗

-8
0.

63
∗∗

-9
9.

45
∗∗

-1
00

.6
∗∗

(1
81

.6
)

(2
15

.1
)

(2
28

.1
)

(2
75

.3
)

(2
99

.0
)

(3
12

.2
)

(2
8.

31
)

(3
1.

94
)

(3
4.

05
)

D
is

tr
ic

t
F

E
X

X
X

X
X

X
X

X
X

D
is

tr
ic

t-
S

p
ec

ifi
c

Q
u

ad
ra

ti
c

Y
ea

r
T

re
n

d
X

X
X

X
X

X
X

X
X

N
11

47
99

9
99

9
11

47
99

9
99

9
11

47
99

9
99

9
r2

0.
99

5
0.

99
4

0.
99

5
0.

97
4

0.
97

4
0.

97
5

0.
99

6
0.

99
6

0.
99

6

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
h

ec
ta

re
s

of
n

on
-H

Y
V

ri
ce

o
r

n
o
n

-H
Y

V
so

rg
h
u

m
.

E
x
p

ec
te

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
st

a
n

d
a
rd

iz
ed

ex
p

ec
te

d
d

ev
ia

ti
on

of
k
h

ar
if

se
as

on
ra

in
fa

ll
fr

om
m

ea
n

ra
in

fa
ll

ov
er

1
9
5
6
-1

9
9
9
.

R
ea

li
ze

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
a
ct

u
a
l
d

ev
ia

ti
o
n

th
a
t

o
cc

u
rs

.
K

h
ar

if
se

as
on

is
th

e
w

et
or

m
on

so
on

se
a
so

n
,

d
efi

n
ed

h
er

e
a
s

J
u

n
e

th
ro

u
g
h

S
ep

te
m

b
er

.
A

ll
re

g
re

ss
io

n
s

in
cl

u
d

e
d

is
tr

ic
t

fi
x
ed

eff
ec

ts
a
n

d
d

is
tr

ic
t-

sp
ec

ifi
c

q
u

ad
ra

ti
c

ti
m

e
tr

en
d

s
to

co
n
tr

o
l

fo
r

cr
o
ss

-s
ec

ti
o
n

a
l

d
iff

er
en

ce
s

a
n

d
tr

en
d
s

in
cr

o
p

ch
o
ic

es
.

N
o
te

th
a
t

IA
C

d
a
ta

co
m

es
fr

o
m

an
ov

er
la

p
p

in
g

b
u

t
sl

ig
h
tl

y
ea

rl
ie

r
ti

m
e

p
er

io
d

th
a
n

IC
R

IS
A

T
d

a
ta

,
d

o
es

n
o
t

co
n
ta

in
so

il
×

la
g
g
ed

ra
in

fa
ll

co
n
tr

o
ls

,
a
n

d
so

rg
h
u

m
g
ro

w
n

in
th

e
k
h

ar
if

se
as

on
ca

n
n

ot
b

e
se

p
ar

at
ed

fr
o
m

so
rg

h
u

m
g
ro

w
n

in
th

e
ra

b
i

se
a
so

n
.

M
u

rp
h
y
-T

o
p

el
st

a
n

d
a
rd

er
ro

rs
cl

u
st

er
ed

a
t

th
e

d
is

tr
ic

t
le

ve
l.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



73

T
a
b
le

1
.9

:
E

v
id

en
ce

of
A

n
ti

ci
p
at

or
y

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
R

ol
li
n
g

M
ea

n
s

O
ve

r
S
h
or

te
r

T
im

e
P

er
io

d
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

R
ic

e
R

ic
e

R
ic

e
S

or
gh

u
m

S
or

gh
u

m
S

or
gh

u
m

M
ai

ze
M

ai
ze

M
ai

ze
R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

48
8.

9∗
-1

11
8.

9∗
∗∗

-1
83

.7
(2

18
.8

)
(2

95
.1

)
(1

31
.1

)

P
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

69
6.

3∗
∗

69
6.

1∗
∗

-1
71

3.
2∗
∗∗

-1
71

3.
4∗
∗∗

-2
38

.4
-2

38
.1

(2
60

.7
)

(2
60

.1
)

(5
06

.6
)

(5
03

.5
)

(1
48

.9
)

(1
33

.1
)

U
n

p
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

81
.3

5
50

.9
3

-7
6.

63
(2

16
.0

)
(2

70
.1

)
(1

91
.0

)

L
.R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

14
02

.4
∗∗
∗

14
47

.3
∗∗
∗

14
41

.7
∗∗
∗

71
6.

8
60

7.
5

60
4.

0
27

8.
5

26
2.

8
26

8.
1

(2
28

.9
)

(2
35

.2
)

(2
27

.0
)

(8
07

.1
)

(7
88

.1
)

(7
85

.9
)

(1
41

.3
)

(1
54

.5
)

(1
42

.3
)

D
is

tr
ic

t
F

E
X

X
X

X
X

X
X

X
X

D
is

tr
ic

t-
S

p
ec

ifi
c

Q
u

ad
ra

ti
c

Y
ea

r
T

re
n

d
X

X
X

X
X

X
X

X
X

R
es

id
u

al
S

oi
l

M
oi

st
u

re
X

X
X

X
X

X
X

X
X

N
12

58
12

58
12

58
12

58
12

58
12

58
12

58
12

58
12

58
r2

0.
99

5
0.

99
5

0.
99

5
0.

96
8

0.
96

9
0.

96
9

0.
98

6
0.

98
6

0.
98

6

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
h

ec
ta

re
s

of
n

on
-H

Y
V

ri
ce

o
r

n
o
n

-H
Y

V
so

rg
h
u

m
.

E
x
p

ec
te

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
st

a
n

d
a
rd

iz
ed

ex
p

ec
te

d
d

ev
ia

ti
on

of
k
h

ar
if

se
as

on
ra

in
fa

ll
fr

om
a

2
0
-y

ea
r

ro
ll

in
g

m
ea

n
o
f

ra
in

fa
ll

.
R

ea
li

ze
d

K
h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
a
ct

u
a
l

d
ev

ia
ti

o
n

th
a
t

o
cc

u
rs

.
K

h
ar

if
se

as
on

is
th

e
w

et
or

m
o
n

so
o
n

se
a
so

n
,

d
efi

n
ed

h
er

e
a
s

J
u

n
e

th
ro

u
g
h

S
ep

te
m

b
er

.
M

u
rp

h
y
-T

o
p

el
st

a
n

d
a
rd

er
ro

rs
cl

u
st

er
ed

a
t

th
e

d
is

tr
ic

t
le

ve
l.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



74

T
a
b
le

1
.1

0
:

E
v
id

en
ce

of
A

n
ti

ci
p
at

or
y

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
R

ob
u
st

to
D

el
ay

ed
P

la
n
ti

n
g

D
ec

is
io

n
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

R
ic

e
R

ic
e

R
ic

e
S

or
gh

u
m

S
or

gh
u

m
S

or
gh

u
m

M
ai

ze
M

ai
ze

M
ai

ze
R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

35
6.

6∗
-1

02
8.

5∗
∗∗

-1
82

.3
(1

70
.6

)
(2

77
.6

)
(1

22
.3

)

P
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

60
4.

6∗
∗

60
4.

8∗
∗

-1
56

5.
2∗
∗

-1
56

4.
5∗
∗

-2
66

.1
-2

65
.9

(2
34

.0
)

(2
33

.9
)

(5
04

.2
)

(5
16

.3
)

(1
68

.0
)

(1
47

.2
)

U
n

p
re

d
ic

te
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

-3
7.

04
-1

78
.0

-4
9.

56
(1

68
.0

)
(2

47
.6

)
(1

63
.5

)

L
.R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

18
49

.0
17

67
.2

17
62

.1
49

28
.1
∗

51
40

.4
51

15
.9
∗

93
3.

1
96

9.
3

96
2.

4
(1

82
3.

8)
(1

91
8.

9)
(1

93
9.

9)
(2

14
0.

3)
(2

62
5.

5)
(2

60
6.

8)
(6

78
.5

)
(9

35
.3

)
(7

07
.1

)

D
is

tr
ic

t
F

E
X

X
X

X
X

X
X

X
X

D
is

tr
ic

t-
S

p
ec

ifi
c

Q
u

ad
ra

ti
c

Y
ea

r
T

re
n

d
X

X
X

X
X

X
X

X
X

R
es

id
u

al
S

oi
l

M
oi

st
u

re
X

X
X

X
X

X
X

X
X

N
12

58
12

58
12

58
12

58
12

58
12

58
12

58
12

58
12

58
r2

0.
99

5
0.

99
5

0.
99

5
0.

96
8

0.
96

8
0.

96
8

0.
98

6
0.

98
6

0.
98

6

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
h

ec
ta

re
s

of
n

on
-H

Y
V

ri
ce

o
r

n
o
n

-H
Y

V
so

rg
h
u

m
.

E
x
p

ec
te

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
st

a
n

d
a
rd

iz
ed

ex
p

ec
te

d
d

ev
ia

ti
on

of
J
u

ly
-S

ep
te

m
b

er
ra

in
fa

ll
fr

o
m

it
s

m
ea

n
ov

er
1
9
5
6
-1

9
9
9
.

R
ea

li
ze

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
a
ct

u
a
l

d
ev

ia
ti

o
n

th
a
t

o
cc

u
rs

.
M

u
rp

h
y
-T

op
el

st
an

d
ar

d
er

ro
rs

ap
p

li
ed

to
a
ll

b
u

t
re

si
d

u
a
l

re
g
re

ss
o
rs

.
M

u
rp

h
y
-T

o
p

el
st

a
n

d
a
rd

er
ro

rs
cl

u
st

er
ed

a
t

th
e

d
is

tr
ic

t
le

ve
l.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



75

T
a
b
le

1
.1

1
:

H
ou

se
h
ol

d
-L

ev
el

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
M

ai
n

R
es

u
lt

s
1

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

C
ot

to
n

C
ot

to
n

C
ot

to
n

P
ig

eo
n
P

ea
P

ig
eo

n
P

ea
P

ig
eo

n
P

ea
C

as
to

r
C

as
to

r
C

as
to

r
R

ea
li
ze

d
K

h
ar

if
R

ai
n
fa

ll
D

ev
ia

ti
on

5.
29

4
-1

2.
39
∗∗
∗

-1
3.

12
∗∗

(5
.2

85
)

(3
.5

80
)

(4
.8

40
)

P
re

d
ic

te
d

R
ai

n
fa

ll
D

ev
ia

ti
on

3.
68

0
3.

99
6

-6
.2

67
∗

-7
.3

37
∗

-1
4.

42
∗∗

-1
4.

46
∗∗

(5
.9

72
)

(5
.9

52
)

(3
.0

02
)

(3
.0

63
)

(5
.3

10
)

(5
.3

26
)

U
n
p
re

d
ic

te
d

R
ai

n
fa

ll
D

ev
ia

ti
on

16
.0

6∗
-5

4.
31
∗∗
∗

-2
.0

05
∗

(6
.9

38
)

(1
5.

41
)

(0
.9

51
)

H
H

F
E

X
X

X
X

X
X

X
X

X

V
il
la

ge
-S

p
ec

ifi
c

Q
u
ad

ra
ti

c
Y

ea
r

T
re

n
d

X
X

X
X

X
X

X
X

X

V
il
la

ge
-S

p
ec

ifi
c

L
.R

ea
li
ze

d
R

ai
n
sh

o
ck

X
X

X
X

X
X

X
X

X
N

18
67

18
67

18
67

18
67

18
67

18
67

18
67

18
67

18
67

r2
0.

34
6

0.
34

5
0.

34
6

0.
11

3
0.

10
7

0.
12

6
0.

38
9

0.
38

9
0.

39
0

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
p

er
ce

n
ta

ge
of

h
o
u

se
h

o
ld

’s
fa

rm
in

g
a
cr

ea
g
e

d
ev

o
te

d
to

th
e

g
iv

en
cr

o
p

.
P

re
d

ic
te

d
K

h
a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
ex

p
ec

te
d

d
ev

ia
ti

on
of

k
h

ar
if

se
as

o
n

ra
in

fa
ll

fr
o
m

th
e

ro
ll

in
g

m
ea

n
o
f

th
e

p
ri

o
r

2
0

ye
a
rs

.
R

ea
li

ze
d

K
h

ar
if

R
a
in

fa
ll

D
ev

ia
ti

o
n

is
th

e
ac

tu
al

d
ev

ia
ti

on
th

at
o
cc

u
rs

.
K

h
ar

if
se

a
so

n
is

th
e

w
et

o
r

m
o
n

so
o
n

se
a
so

n
,

d
efi

n
ed

h
er

e
a
s

J
u

n
e

th
ro

u
g
h

S
ep

te
m

b
er

.
A

ll
re

g
re

ss
io

n
s

in
cl

u
d

e
h

ou
se

h
ol

d
fi

x
ed

eff
ec

ts
an

d
v
il

la
g
e-

sp
ec

ifi
c

q
u

a
d

ra
ti

c
ti

m
e

tr
en

d
s

to
co

n
tr

o
l

fo
r

cr
o
ss

-s
ec

ti
o
n

a
l

d
iff

er
en

ce
s

a
n

d
tr

en
d

s
in

cr
o
p

ch
o
ic

es
.

S
ta

n
d

ar
d

er
ro

rs
ar

e
cl

u
st

er
ed

at
th

e
h

o
u

se
h

o
ld

le
ve

l. ∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



76

T
a
b
le

1
.1

2
:

H
ou

se
h
ol

d
-L

ev
el

A
d
ap

ta
ti

on
an

d
R

es
p

on
se

to
E

co
n
om

et
ri

ci
an

’s
R

ai
n
fa

ll
P

re
d
ic

ti
on

s:
M

ai
n

R
es

u
lt

s
2

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

S
oy

b
ea

n
S

oy
b

ea
n

S
oy

b
ea

n
S

or
gh

u
m

S
or

gh
u

m
S

or
gh

u
m

R
ic

e
R

ic
e

R
ic

e
R

ea
li

ze
d

K
h

ar
if

R
ai

n
fa

ll
D

ev
ia

ti
on

0.
09

24
-2

.4
39

11
.3

9∗
∗

(1
.0

22
)

(2
.9

48
)

(3
.9

43
)

P
re

d
ic

te
d

R
ai

n
fa

ll
D

ev
ia

ti
on

1.
52

4
1.

32
4

0.
37

0
-0

.0
65

5
13

.0
2∗
∗

12
.9

8∗
∗

(1
.5

82
)

(1
.4

98
)

(2
.7

56
)

(2
.7

78
)

(4
.3

10
)

(4
.3

24
)

U
n

p
re

d
ic

te
d

R
ai

n
fa

ll
D

ev
ia

ti
on

-1
0.

13
-2

2.
12

-1
.7

81
(5

.7
05

)
(1

2.
24

)
(2

.1
91

)

H
H

F
E

X
X

X
X

X
X

X
X

X

V
il

la
ge

-S
p

ec
ifi

c
Q

u
ad

ra
ti

c
Y

ea
r

T
re

n
d

X
X

X
X

X
X

X
X

X

V
il

la
ge

-S
p

ec
ifi

c
L

.R
ea

li
ze

d
R

ai
n

sh
o
ck

X
X

X
X

X
X

X
X

X
N

18
67

18
67

18
67

18
67

18
67

18
67

18
67

18
67

18
67

r2
0.

67
7

0.
67

7
0.

67
8

0.
04

4
0.

04
4

0.
04

9
0.

30
3

0.
30

5
0.

30
5

D
ep

en
d

en
t

va
ri

ab
le

is
th

e
p

er
ce

n
ta

ge
of

h
o
u

se
h

o
ld

’s
a
cr

ea
g
e

a
ct

iv
el

y
fa

rm
ed

th
a
t

ye
a
r

w
h

ic
h

w
a
s

d
ev

o
te

d
to

th
e

g
iv

en
cr

o
p

.
P

re
d

ic
te

d
K

h
a
ri

f
R

ai
n

fa
ll

D
ev

ia
ti

on
is

th
e

ex
p

ec
te

d
d

ev
ia

ti
o
n

o
f

k
h

a
ri

f
se

a
so

n
ra

in
fa

ll
fr

o
m

th
e

ro
ll

in
g

m
ea

n
o
f

th
e

p
ri

o
r

2
0

ye
a
rs

.
R

ea
li

ze
d

K
h

a
ri

f
R

a
in

fa
ll

D
ev

ia
ti

on
is

th
e

ac
tu

al
d

ev
ia

ti
on

th
at

o
cc

u
rs

.
K

h
a
ri

f
se

a
so

n
is

th
e

w
et

o
r

m
o
n

so
o
n

se
a
so

n
,

d
efi

n
ed

h
er

e
a
s

J
u

n
e

th
ro

u
g
h

S
ep

te
m

b
er

.
A

ll
re

gr
es

si
on

s
in

cl
u

d
e

h
ou

se
h

ol
d

fi
x
ed

eff
ec

ts
a
n

d
v
il

la
g
e-

sp
ec

ifi
c

q
u

a
d

ra
ti

c
ti

m
e

tr
en

d
s

to
co

n
tr

o
l

fo
r

cr
o
ss

-s
ec

ti
on

a
l

d
iff

er
en

ce
s

a
n

d
tr

en
d

s
in

cr
op

ch
oi

ce
s.

S
ta

n
d

ar
d

er
ro

rs
ar

e
cl

u
st

er
ed

a
t

th
e

h
o
u

se
h

o
ld

le
ve

l.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



77

Table 1.13: First Stage: The Impact of Rainfall on Income

De-meaned Rainfall, ξ Unpredicted Rainfall, ε̃
(1) (2) (3) (4)

Income Shock Income Shock Income Shock Income Shock
Rainfall Shock (+) 18.59∗∗∗ 27.53∗∗∗ -8.284 -9.500

(6.721) (7.020) (16.98) (13.46)

Rainfall Shock2 (+) -13.62∗∗∗ -23.59∗∗∗ -18.17 -21.29∗

(5.205) (6.013) (13.43) (11.99)

Rainfall Shock (-) 5.967 -1.363 -25.25∗ -33.05∗∗

(4.304) (4.054) (15.33) (12.98)

Rainfall Shock2 (-) 6.611 17.72∗∗∗ 30.55 53.45∗∗∗

(5.208) (5.641) (22.59) (20.28)

District Time Trend X X X X

Serial Correlation Controls X X X X

Crop Portfolio X X
Observations 2305 2305 2305 2305
R2 0.00589 0.0176 0.0111 0.0233
F-Statistic 7.507 8.075 4.958 5.086

Dependent variable is deviation from mean household income. The first two columns examine
deviation from mean rainfall, while the second two columns examine deviation from predicted
rainfall. Deviations from mean rainfall are standardized so that a one unit change is asso-
ciated with a one standard deviation change in total rainfall. Unpredicted rainfall is the
residual from the first stage regression described in Equation 1.21. Hence a one-unit change
in unpredicted rainfall may be associated with more than a one standard deviation change in
total rainfall, so the magnitudes are not directly comparable. (·) indicates positive or negative
rainfall deviations. Reported F-statistics are for the four rainfall variables, and do not include
controls.

∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 1.14: First Stage: The Impact of Rainfall on Income, by Prediction

(1) (2)
Income Shock Income Shock

De-meaned Rainfall (+) 3.875 4.231
Predicted Rainfall (-) (12.51) (12.05)

De-meaned Rainfall (+) 38.31∗∗∗ 70.24∗∗

Predicted Rainfall (+) (10.87) (28.31)

De-meaned Rainfall2 (+) 4.214 0.723
Predicted Rainfall (-) (12.85) (12.03)

De-meaned Rainfall2 (+) -33.77∗∗∗ -57.70∗∗∗

Predicted Rainfall (+) (8.106) (20.02)

De-meaned Rainfall (-) 13.29∗ -8.169
Predicted Rainfall (-) (7.315) (6.886)

De-meaned Rainfall (-) 17.14∗∗ 10.24
Predicted Rainfall (+) (8.460) (8.153)

De-meaned Rainfall2 (-) 2.917 31.48∗∗∗

Predicted Rainfall (-) (8.743) (11.47)

De-meaned Rainfall2 (-) -12.58 -2.284
Predicted Rainfall (+) (14.29) (14.44)

District Time Trend X X

Serial Correlation Controls X X

Crop Portfolio X
Observations 2305 2305
R2 0.00860 0.0213

Dependent variable is deviation from mean household income. Both columns examine deviation
from mean rainfall, and are standardized so that a one unit change is associated with a one
standard deviation change in total rainfall. Each measure of deviation from mean rainfall has
been interacted with an indicator for whether predicted rainfall was above or below 0.

∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 1.15: Comparison of Reduced Form & Instrumental Variable Estimates

(1) (2) (3) (4) (5)
OLS Reduced Form Reduced Form IV IV p(IV(ξ) = IV(ε̃))

Demeaned Unpredicted Demeaned Unpredicted
Enroll Student -0.00468 0.971 0.650 -0.161 -0.207 0.7867

(0.0140) (0.877) (1.413) (0.174) (0.140)

Withdraw Student 0.0108 0.984 -0.778 -0.0512 0.0732 0.4482
(0.0114) (0.902) (1.485) (0.173) (0.117)

Birth -0.00596 0.377 2.849 1.074∗∗ -0.0475 0.0119
(0.00569) (1.268) (1.807) (0.417) (0.117)

Death 0.0170 0.395 -2.318 0.289 0.260 0.9225
(0.0170) (1.030) (1.526) (0.256) (0.272)

Has Migrant 0.0190 28.65∗∗∗ 14.96∗∗∗ 0.831∗∗∗ 0.420∗∗ 0.0526
(0.0138) (3.334) (5.779) (0.271) (0.210)

Number of Migrants 0.000598∗∗ 0.380∗∗∗ 0.186∗∗ 0.0123∗∗∗ 0.00489 0.0923
(0.000268) (0.0808) (0.0941) (0.00423) (0.00434)

Mean Distance 0.0188 40.55∗∗∗ -3.123 2.272∗∗∗ 1.615∗∗ 0.2953
Migrated (0.0422) (11.64) (16.19) (0.875) (0.776)

Days of Migrant Labor 0.371 60.35∗∗ 109.1∗∗ 2.802 0.560 0.2270
(0.296) (23.64) (44.18) (2.075) (0.854)

Net Migrant Income 6.911 16804.6∗∗∗ -5021.9 922.0∗∗∗ 288.7∗∗ 0.0046
(25.19) (5354.9) (5966.7) (289.4) (133.6)

District Time Trend X X X X X
Serial Correlation X X X X X
Crop Portfolio X X X X X

Each cell represents βi from Equation 1.19 through Equation 1.23. The dependent variable
is listed on the far left of each row. The first column represents OLS estimates, the next
two columns represent reduced form estimates, the next two represent IV estimates, and the
final column shows the p-value for the null hypothesis that the two IV estimates are equal.
Because a one-unit change in unpredicted rainfall is not necessarily equivalent to a one-unit
change in demeaned rainfall, the magnitudes are not directly comparable.

∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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2.1 Introduction

Preparing a U.S. personal income tax return can be complicated and time

consuming. The IRS reports that 56 percent of taxpayers hired a paid tax pro-

fessional to complete their federal personal income tax return in 2012.1 Slemrod

and Bakija (2008) estimate that taxpayers spend an average of 26 hours per year

performing the recordkeeping and paperwork to complete their federal and state

personal income tax returns. The complexity of the tax code makes it difficult for

taxpayers to understand the tax implications of their economic choices.

The literature on tax salience, including papers by Duflo et al. (2006), Gal-

lagher and Muehlegger (2011), Finkelstein (2009), and Chetty et al. (2009), con-

cludes that when the financial incentives of a tax change are not highly salient, the

tax change induces a smaller response than an otherwise equivalent price change.

This paper adds some nuance to this literature by considering a complex tax change

that consists of both a direct tax impact and indirect tax interactions. We propose

a simple behavioral model in which taxpayers respond to the direct impact of a

complex tax change and do not respond to the less salient interactions with other

elements of the tax code. We then examine evidence of such behavior in taxpayers

response to the 2003 expansion of the Child and Dependent Care Credit (CDCC).

The CDCC is an important child-care subsidy that likely influences the

amount many families choose to spend on child care through both the quantity

1See the IRS Statistics of Income Bulletin Winter 2015, Selected Historical and Other Data
Tables 1 and 22a.
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and quality margins.2 For taxpayers focusing only on the 2003 change to the credit

itself (the direct impact), the expansion of the CDCC would have appeared as an

unambiguous decrease in the after-tax price of child care. However, other tax

changes, particularly the simultaneous expansion of the Child Tax Credit (CTC),

interacted with the CDCC expansion to often reduce or even eliminate the child-

care subsidy. Using individual-level survey data from before and after the CDCC

expansion to employ a difference-in-differences estimation strategy, we present evi-

dence showing that taxpayers increased their expenditure on child care in response

to the expansion of the CDCC regardless of whether the actual after-tax price of

child care increased or decreased.

Taxpayers in the model we present in Section II have limited attention and

may choose to only focus on the direct impact of a change to a single tax provision

rather than the actual financial implications of the change when the full tax code is

considered in its entirety. Focusing on a part of the tax code rather than the whole

is similar to what Liebman and Zeckhauser (2004) call spotlighting.3 Whether

individuals consider interactions between provisions of the tax code is distinct

but complementary to the literature on whether individuals respond to average

or marginal tax rates, such as De Bartolome (1995) and Ito (2014). Acquiring

information about the change to the CDCC is low cost; figuring out how the

2See Blau and Robins (1988), Connelly (1992), Averett et al. (1997), Blau (2003), and Herbst
(2010).

3Liebman and Zeckhauser (2004) define spotlighting as responding to the instantaneous payoff
in the current period without considering the effects for the remainder of the accounting period.
Here, we are using this term to describe taxpayers who respond to the direct implications of a
single provision of the tax code without considering how their behavior affects total tax liability.
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CDCC interacts with the rest of the tax code is far more costly. Taxpayers have

access to all required information, but the effort needed to compute after-tax prices

may lead rational taxpayers to adopt spotlighting behavior.

The rest of the paper proceeds as follows. Section II presents a model

of spotlighting behavior with respect to the personal income tax. Section III

provides a description of the Child and Dependent Care Credit, its 2003 expansion,

and interaction with the Child Tax Credit. Section IV describes the data and

methodology. Section V describes the results.

2.2 Model

Many deductions and credits have been introduced into the personal in-

come tax code by lawmakers interested in encouraging certain activities. If the

government wants to provide a subsidy for some activity it may be easier and

more administratively efficient to introduce a targeted deduction or credit into

the personal income tax system than to create an entirely new system to provide

the subsidy.4 But, as more targeted deductions and credits piggyback on the per-

sonal income tax, these tax provisions interact with each other and at times cause

incentives to diverge from what was originally intended.

For taxpayers to make consumption decisions optimally, they must know

what after-tax prices they face. Taxpayers who gather only the information re-

4Piggybacking a proposed subsidy or transfer payment onto the personal income tax system
may not be efficient if the targeted beneficiaries of the proposed subsidy do not generally file
tax returns. For example, the tax system would probably not be a good delivery mechanism for
disability benefits.
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quired to claim the relevant deductions and credits, but do not understand how

they interact, may calculate a “naive” after-tax price that is far different than a

“nuanced” after-tax price which considers the interactions.

We model the personal income tax as a function

Tax = f(y,X, τ1(y,X, Z), . . . , τn(y,X, Z)) (2.1)

which depends on the taxpayers income, y, family size and other taxpayer char-

acteristics, X, and n credits or deductions given by τi(y,X, Z), where Z denotes

other taxpayer characteristics that influence the value of specific credits or deduc-

tions. The complexity of the function f(·) is primarily due to the fact that the

credits and deductions interact with each other as well as with y and X. However,

each of the individual credits and deductions are generally simple functions with

few inputs.

Suppose that to encourage a specific action or to reduce the tax burden

for a group of taxpayers, a particular tax credit is increased from τi(y,X, Z) to

τ ′i(y,X, Z). The literature gives two explanations for why we observe a smaller

aggregate response to a tax change than to an equivalent price change. First,

some taxpayers are inattentive and may not realize that the particular tax provision

has changed (a type of price misperception) and thus will not respond. Second,

taxpayers who observe the change may believe that calculation and adjustment

costs will be greater than the utility gain from the optimal response and thus

choose to not respond to the tax change. We offer a third explanation which we
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call spotlighting behavior.

Taxpayers engaged in spotlighting behavior use an easy (low utility cost)

way to approximate the effect of the tax change, holding all other factors constant:

∆TaxS ≈ −τ ′i(y,X, Z) + τi(y,X, Z) (2.2)

where the s subscript denotes the use of the spotlighting approximation. An in-

crease in the tax credit from τi(y,X, Z) to τ ′i(y,X, Z) often causes a proportional

reduction in the tax liability which provides justification for spotlighting behavior.

However, this is not always the case. The change in tax liability depends on a more

nuanced understanding of how the tax credit interacts with the other arguments of

the tax function. Given full information including end of year income, the change

in tax liability from a change to tax provision i is given by:

∆Tax = f(y,X, . . . , τ ′i(y,X, Z), . . . )− f(y,X, . . . , τi(y,X, Z), . . . ). (2.3)

For example, suppose that τi(y,X, z) is a tax credit that provides partial reim-

bursement of expenditure on a specific good where z denotes expenditure on that

good. Taxpayers using spotlighting would approximate the after-tax price of this

good as:

After-tax priceS ≈ p

(
1− ∂τi(y,X, z)

∂z
|z=z∗

)
(2.4)

where p is the pre-tax price of the good and z∗ is the chosen level of expenditure.

However, the actual after-tax price of the good is expressed as:

After-tax price = p

(
1 +

∂f(y,X, . . . , τi(y,X, Z), . . . )

∂z
|z=z∗

)
. (2.5)
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Spotlighting may generally provide a good approximation of the after-tax

price. It is likely that small deviations from the frictionless (no price misperception)

optimum due to spotlighting cause only a small reduction in utility as in Chetty

(2012). However, in situations with important interactions like the 2003 expansion

of the CDCC, spotlighting can lead to a large misperception of the after-tax price.

The low salience of interactions can lead to a large deviation from the frictionless

optimum even when the direct financial implications are salient.

2.3 Child and Dependent Care Credit

2.3.1 Historical Background

The Child and Dependent Care Credit (CDCC) began in 1954 as an item-

ized deduction for work-related child-care expenses. Prior to this tax provision, the

courts had ruled that child-care expenses were not deductible (Smith v. Commis-

sioner, 1940). The itemized deduction was limited to households making less than

$4,500 annually and was limited to $600 in total child-care expenses. An update

to the deduction in 1964 increased these limits, but the value of the deduction

was still quite small given the low marginal tax rates in this range of the income

distribution. In practice, few households claimed the deduction as only those that

itemized their deductions were eligible.

In 1971, the deduction’s income ceiling tripled and the maximum allowable

deduction increased to $4,800. However, this did little to increase the number of

households that benefited, so in 1976, Congress replaced the child-care deduction
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with a credit. The credit value was set at 20 percent of qualified expenses, up

to $2,000 per child, and the income cap was removed. As a credit, the benefits

were no longer linked to itemizing, so in theory, households at any income level

could receive the subsidy. But as a non-refundable credit, CDCC benefits remained

limited to households with tax liability, excluding many low-income households.

In 1981, the 20 percent rate was changed to a schedule starting at 30 percent

and then moving down to 20 percent in steps occurring at specific income levels.

The limit was increased to $2,400 of qualified child-care expenses per child.5 There

were no changes to the CDCC from 1981 until 2003, which, because it is not

inflation indexed, caused its value to taxpayers to decline substantially.

In 2001, Congress increased the qualifying expenses limit to $3,000 per child

and increased the credit rate schedule for low-income families.6 Though passed in

2001, the CDCC expansion was not scheduled to take effect until the beginning

of 2003. As shown in Panel (a) of Figure 1, the CDCC credit rate schedule only

increased for taxpayers with an adjusted gross income (AGI) below $43,000.7

5To qualify, the child care must enable parents in the household to work or look for work. The
care provider cannot be a parent or an older sibling of the child. Taxpayers who participate in a
dependent care assistance plan (childcare flexible spending account plan) through their employer
are only eligible to claim child-care expenditure for the CDCC that is not paid out of the flex
spending account, and this is limited to the CDCC max. A flex spending plan allows an employee
to place up to $5,000 of pre-tax income into an account for child care expenses.

6The Economic Growth and Tax Relief Reconciliation Act of 2001 increase the maximum
Child and Dependent Care Credit to 35 percent of child-care expenditure (from 30 percent) of
up to $3,000 (from $2,400) for one child and of up to $6,000 (from $4,800) for two or more
children. The phase-out of the credit rate was moved to begin at $15,000 of adjusted gross
income (from $10,000).

7Married couples can only claim the CDCC if both spouses are working (or if the non-working
spouse is a student or disabled) and the amount of child care expenses used in calculating the
credit is limited to the amount of earned income of the lesser-earning spouse.
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2.3.2 Interaction with the Child Tax Credit

The Child Tax Credit (CTC) is best described as a lump-sum transfer to

taxpayers with children, while the Child and Dependent Care Credit (CDCC) is

a partial reimbursement of child-care expenses. As mentioned above, the CDCC

is a non-refundable credit, meaning that only taxpayers with tax liability benefit.

In contrast, the CTC is refundable, meaning that taxpayers without remaining

tax liability can still benefit. The refundable portion of the Child Tax Credit is

called the Additional Child Tax Credit (ACTC). Taxpayers with no remaining

tax liability who have not yet claimed the full value of the CTC can claim the

remaining amount through the ACTC. However, prior to 2008, the ACTC was

limited for low-income taxpayers.8 For example, in 2003 the refund was limited to

10 percent of the taxpayers earned income in excess of $10,500. When this ACTC

constraint binds, the taxpayer is not able to claim the full value of the CTC.

In 2002, the year before the CDCC expansion, the CTC provided a credit of

$600 per child to taxpayers with children. At the time, the U.S. was experiencing a

mild recession. With the primary motivation of stimulating the economy through

advanced tax refunds, the Jobs Growth and Tax Relief Reconciliation Act of 2003

increased the CTC to $1,000 per child and provided advance tax refund checks of

$400 per child (the amount of the increase in the CTC).

The timing of the CTC increase happened to coincide with the expansion

8Prior to 2001, only taxpayers with three or more children could receive the ACTC, and the
ACTC was limited to their payroll tax liability.
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of the CDCC, even though the CDCC expansion had been passed two years ear-

lier. Taxpayers with children first appear to have received both a decrease in the

marginal cost of child care through the CDCC and a lump sum transfer from the

increase of the Child Tax Credit. However, taxpayers with insufficient tax liability

did not fully benefit from the CDCC and CTC increases. The CDCC appears

before the CTC on the tax form (see Figure 2). As a result, for some, the in-

crease in the CDCC reduced the amount of tax that was left to be claimed for the

CTC, which in turn shifted CTC benefits to the ACTC. But as soon as the income

constraint on the ACTC became binding, any benefits from claiming additional

child-care expenses through the CDCC were offset by an equivalent decrease in the

CTC value and no change in ACTC value. In addition, the Economic Growth and

Tax Relief Reconciliation Act of 2001 reduced tax rates and increased the standard

deduction causing there to be even less tax liability for the non-refundable CDCC

to soak up.

As soon as the income constraint on the ACTC becomes binding, any bene-

fits from claiming additional child-care expenses through the CDCC were offset by

an equivalent decrease the CTC value and no change in ACTC value. Because the

final tax liability and refunds for these taxpayers were not affected by the amount

of child-care expenditure claimed, the marginal subsidy on child care became zero.

This is illustrated in Panel (b) of Figure 1 for a single-parent household with two

children. This particular issue affects few taxpayers today, as the ACTCs income
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constraint has been significantly relaxed.9

The CDCC interaction with the CTC was not obvious to taxpayers. Using

tax preparation software could help the taxpayer figure out the subsidy rate, but

only if the taxpayer entered the information several times with different levels of

child-care expenditure, and then compared the resulting tax liability or refund.

Performing this type of hypothetical calculation is probably not common. While

using tax preparation software was unlikely to result in taxpayers gaining a more

nuanced understanding of the subsidy rate, it may have increased awareness of

the change to the CDCC as several leading brands of tax preparation software ask

specifically about child-care expenditure and give the value of the CDCC reported

on the 1040 form. Because it focuses attention on the value reported on the

1040 form, tax preparation software may have increased the use of spotlighting by

taxpayers.10

We are not aware of any evidence regarding the extent to which members

of Congress understood that other changes in the tax code after 2001, including

the CTC increase, would reduce the value of the CDCC expansion for low-income

taxpayer. The extent of Congress awareness is not important to the identification

strategy in this paper, and we do not wish to suggest it was the intention of

Congress to leave low-income taxpayers with a reduced child-care subsidy rather

9The income constraint was partially relaxed in 2008. By 2009, the ACTC reached its present
constraint of being limited to 15 percent of income in excess of $3,000.

10In 2003, 43 percent of personal income tax returns were filed electronically and most of these
returns were prepared using tax preparation software (some were prepared by tax professionals).
By 2008, 67 percent of returns were filed electronically (see the IRS Statistics of Income Bulletin
Winter 2015, Table 1).
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than the legislated increase.

2.3.3 Response of Child Care to Child-Care Subsidies

The literature shows that taxpayers respond to a reduction in the price of

child care by purchasing more child care. Blau and Robins (1988) provide direct

evidence in a model of labor supply, fertility, and child-care expenditure where the

price variation comes from a child-care subsidy. Other papers including Connelly

(1992), Averett et al. (1997), and Herbst (2010) examine the responsiveness in-

directly through a change in the labor force participation of mothers with young

children, under the assumption that these working mothers are consumers of child

care. Blau (2003) surveys the literature on the elasticity of employment with

respect to the price of child care and finds estimates ranging from 0.06 to -1.26.

How taxpayers respond to the 2003 expansion of the CDCC depends on

their perception of how the after-tax cost of child care was affected. All else equal,

the child-care expenditure decisions of taxpayers who are primarily ignorant of the

2003 CDCC expansion should remain unchanged. Taxpayers who primarily use

the spotlighting method should increase their child-care expenditure in response

to an increase in the “naive” measure of the value of the CDCC. Taxpayers who ac-

count for interactions between elements of the tax code should increase or decrease

their child-care expenditure in response to a “nuanced” measure which considers

interactions between the CDCC and other elements of the tax code. If there are a

substantial number of both fully-informed taxpayers and those who are spotlight-
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ing, then we would expect to see a response to both the naive and the nuanced

change in the value of the CDCC.

2.4 Data and Empirical Strategy

2.4.1 Data

We use data from the diary portion of the U.S. Bureau of Labor Statistics

Consumer Expenditure Survey (CES). Each survey participant records all house-

hold expenditures for a one-week period in a provided diary. This diary is collected

at the end of the week and an interview is conducted to obtain demographic and

income information. The participant then records all household expenditure for a

second one-week period. Note that because each household is surveyed only once,

the data is a series of cross sections rather than a true panel. We select three years,

2000-2002, to represent the pre-CDCC expansion period and the following three

years, 2003-2005, to represent the post-CDCC expansion period.

Only households with at least one child under age 13 are included in the

analysis.11 The tax interaction between the CDCC and the CTC was generally

limited to taxpayers with $10,000 to $50,000 of family income, thus we only include

families within this income range.12 Married taxpayers with only one earner are

not eligible for the CDCC and have much lower rates of using child care, so these

11This matches requirements to claim the CDCC, as the dependent qualifying child must be
under age 13.

12We use the wage and salary income received by all household members in the past 12 months
as the measure of family income. The consumer expenditure survey began imputing some missing
income component values in 2004. To make the income measure comparable over the years of
our study we remove imputed incomes which makes the income measure comparable across all
years of the this study.
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taxpayers are also excluded from the analysis. In this sample of low-income house-

holds with children, 26.2 percent were subject to the ACTC income constraint and

thus were unable to claim their maximum CTC benefits through the ACTC. When

also considering the CDCC, 46.0 percent of the sample were unable to claim the

combined maximum value of the CDCC, CTC, and ACTC.

Summary statistics for our sample of households are given in Table 1. Our

sample contains 2,682 households with young children, 268 of which paid for child

care during the two-week survey. The child-care measure includes all expenditure

for daycare, nursery, and preschool, including any tuition payments for preschool.

The child-care measure does not include tuition payments for K-12 education, but

would include other forms of formal child care. Babysitting is not included in the

child-care measure as babysitting expenditure for non-work purposes cannot be

used to claim the CDCC. A limitation of the CES two-week diary data is that

some households that use child-care services pay for those services monthly, which

will cause us to incorrectly categorize some households as not having any child-

care expenditure. However, it should not do so in a way that is correlated with the

CDCC expansion. Tests for differences in the means reported in Table 1 show that

the pre and post periods are largely comparable, particularly for households with

expenditure on child care. Inflation likely plays a role in the increase in spending

over time as these figures are not inflation adjusted.

For each household, regardless of the year in which we observe them, we
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calculate a naive and nuanced measure of the value of the CDCC under both

the pre-expansion (we use 2001) and the post-expansion (we use 2005) tax rules.

Because we do not observe the chosen consumption level of each household under

both tax rules, we cannot directly observe the change in total claimed benefits or

marginal price. We can calculate two alternative measures, the change in maximum

claimable benefits and the change in the cent per dollar discount on first-dollar

marginal price. We refer to these measures respectively as the value of the CDCC

and the child-care discount.

For maximum claimable benefits, the naive value of the CDCC is calculated

as the statutory value of the credit if the taxpayer spent enough on childcare to

reach the qualifying expenses limit for their household income.13 This method

does not consider any tax interactions and is how a taxpayer using spotlighting

would approximate the value of the CDCC. The nuanced value of the CDCC is

calculated as the difference in final tax liability by changing child-care spending

from zero to the qualifying expense limit, holding all other factors constant. This

method allows for interactions with other tax provisions.

For the discount on first-dollar marginal child-care price, the naive discount

is calculated as the CDCC credit the taxpayer could claim if their spending changed

from zero to one dollar of expenditure on child care.14 In calculating the naive

13Spending levels of $3,000 for one young child and $6,000 for two or more young children are
sufficient for claiming maximum benefits in both periods.

14Using the discount amount (1 marginal price) rather than the marginal price makes the
interpretation of coefficients similar to the CDCC value approach.
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discount, only the marginal credit rate shown in Panel (a) of Figure 1 is considered.

Whether the taxpayer has any remaining tax liability is ignored. A taxpayer with

less than $10,000 of income would have a naive discount of 30 cents for the first

dollar of child-care expenditure before the tax change, and a naive discount of 35

cents after the tax change. This method does not consider any tax interactions and

is how a taxpayer using spotlighting would approximate the first-dollar marginal

cost of child care under the CDCC. The nuanced discount is calculated as the

total change in tax liability or refund for the taxpayer if their child-care spending

changed from zero to one dollar of expenditure. As shown in Panel (b) of Figure 1,

the nuanced discount is zero if the ACTC income constraint binds, as any benefits

from the CDCC would be offset by losses in the CTC.15

For both the pre- and post-expansion groups, the naive value of the CDCC

is about $400 larger on average (a 50 percent increase) when calculated using the

post-expansion tax rules as compared to the pre-expansion tax rules. The change

from pre- to post-expansion tax rules in the nuanced value of the CDCC was

significantly smaller than the naive value for both the pre- and post-expansion

groups (t-values of 42.12 and 33.68, respectively). Similarly, Table 1 shows that

the naive marginal price of child care decreased by a little less than five cents

for the first dollar of child-care expenditure. Again, the nuanced change in the

15We do not adjust for the minimum value of the ACTC which may apply to families with
three or more children. This means some households with binding minimums may be assigned
non-zero changes in the first-dollar discounts when their true change is zero. Our results are
robust to excluding all households with three or more children.
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discount was significantly smaller than the naive change for both the pre- and

post-expansion groups (t-values of 19.06 and 15.13, respectively).

Figure 3 shows the income distribution of households in our sample which

saw an increase or a decrease in the nuanced value of the CDCC in Panel (a) and

similarly in the nuanced child-care discount in Panel (b). As expected, households

with an increase in the nuanced CDCC value had higher incomes than households

which saw a decrease (t-value 36.54) and households with an increase in the nu-

anced child-care discount were also more likely to have higher incomes (t-value

18.17). Yet, there is extensive overlap in the income distributions in both Panels

(a) and (b).

Figure 4 plots the changes in the naive and nuanced CDCC values by family

income. Panel (a) shows that every household in our sample would have experi-

enced an increase in the naive CDCC value between the pre- and post-expansion

period with the largest increases concentrated among low-income households. The

lower grouping of data points in Panel (a) is for households with one young child

while those with more than one young child are in the higher grouping. Panel (b)

shows the change in the nuanced value of the CDCC for each household in our

sample and illustrates the heterogeneity of the change for households with similar

levels of income. In our sample, 22.7 percent of households experienced a decrease

in the nuanced value of the CDCC, 22.4 percent experienced no change, and 54

percent experienced an increase.
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Figure 5 plots the naive and nuanced change in the first-dollar discount by

family income. Panel (a) shows that the naive child-care discount increased for

every family in our sample with income below $43,000. Panel (b) shows the change

in the nuanced discount and illustrates that households with similar income can

experience very different changes in the nuanced after-tax price of child care. In

our sample, 7.5 percent of households experienced an increase in the first-dollar

marginal price of child care, 38.6 percent of households experienced no change, and

54.0 percent of households experienced a decrease.

Differences in both the value of the CDCC and the price of child care are

based only on change in the tax code and not on household differences over time.

These figures describe a tax change that appeared to provide (if spotlighting) a

large child-care subsidy to the low-income households in our sample. Yet for many

low-income taxpayers, the nuanced value of the CDCC and nuanced price of child

care remained unchanged or even moved in the opposite direction of the naive

change.

2.4.2 Empirical Specification

By estimating the response of child-care spending to changes in the naive

and nuanced value of the CDCC we are testing whether taxpayers are primarily

ignorant of the CDCC change, are engaging in spotlighting, or are well-informed

about the financial implications of the CDCC expansion. We estimate regression

models of the following form where the ∆CDCC term is defined as either the
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change in the naive value, as indicated by the V superscript, or the nuanced value,

as indicated by the U superscript:

Eit =β0 + β1(Postt ×∆CDCCV
it ) + β2∆CDCC

V
it + β3(Postt ×∆CDCCU

it )

+ β4∆CDCC
U
it + γXit + θt + εit (2.6)

Households are indexed by i and time is indexed by t. The dependent variable

is generally child-care expenditure or percentage of income spent on child care,

though we use other spending measures in robustness checks.

The ∆CDCC variables are calculated for households in both the pre- and

post-expansion periods holding all household characteristics constant. For those

households that we observe in 2000-2002, this variable measures how the CDCC

value would change if they faced the post-expansion tax rules. The variable Post

is an indicator for the household being observed in 2003-2005. The coefficient on

Post interacted with ∆CDCC is the difference-in-differences estimate of the causal

effect of the change in the value of the CDCC on the measure of spending.

The identification comes from the assumption that households observed in

2003-2005 would have had the same spending on average as those observed in

2000-2002 had it not been for the tax change. To control for differences in the

composition of the samples in the pre- and post-expansion periods we include

a vector of observable characteristics, X, including family income, race of the

parent(s), educational attainment of the parent(s), and number of children. To

account for inflation and trending we include a set of year fixed effects (given
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by θ). Reduced tax rates and the increased value of the CTC means taxpayers

in the post period had lower tax liability on average than those in the pre-2003

period. Year fixed effects should also account for this income effect. We also

include month fixed effects to control for seasonal variation such as differences in

child-care spending during the summer versus the school year.

We also estimate specifications in which the change in the value of the

Child and Dependent Care Credit, ∆CDCC, is replaced with ∆D, the change in

the discount on the first-dollar of child-care expenditure:

Eit =β0 + β1(Postt ×∆DV
it ) + β2∆D

V
it + β3(Postt ×∆DU

it )

+ β4∆D
U
it + γXit + θt + εit (2.7)

The naive change in the discount is indicated by the V superscript and the nuanced

change is indicated by the U superscript. This alternative specification relies on

the same identification assumptions, but allows us to estimate a response to a

change in the after-tax price of child care rather than a change in the maximum

credit value.

In both specifications, measurement error may impact both the naive and

nuanced parameter estimates. The nuanced measure may contain more measure-

ment error than the naive measure because the nuanced measure requires more

information. In addition to attenuation bias from classical measurement error

that may be present in both parameter estimates, correlation between the naive

and nuanced measures could result in the coefficient estimate for the less noisy
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measure capturing some of the impact of the noisier measure. Such bias caused by

the combination of measurement error and correlation between the naive and nu-

anced measures would make separating spotlighting behavior from fully-informed

responses difficult. While naive and nuanced measures of the change in CDCC

value have a sample correlation of -0.46, the measures of the change in child-care

discount have a sample correlation of only -0.02.16

2.5 Results

2.5.1 Evidence of Spotlighting

We find evidence of a large and statistically significant effect of the change

in the naive value of the CDCC on child-care expenditure and find little evidence

of any effect from the change in the nuanced value of the CDCC. These results are

reported in Table 2 and are consistent with spotlighting behavior. In the first three

columns the dependent variable is the dollar value of child-care expenditure during

the two-week survey period. In the last three columns the dependent variable is the

percentage of income spent on child care. While the specifications in columns (1)

and (4) include an indicator for family type, we also estimate the models separately

for married and single households.

Because the CDCC expansion was passed in 2001 and was advertised in

2002, it is possible that the response began before the 2003 implementation. If

16For both approaches, similar results can be obtained when running separate regressions
for naive and nuanced measures, suggesting that multicollinearity is not making the estimates
unstable.
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this is the case, our estimates of both the naive and the nuanced effect would be

biased downward. It is also possible that the full effect of the CDCC expansion is

realized with a lag as taxpayers realize that a change has taken place only when

doing their taxes the next year. This would also cause a downward bias in our

results. Therefore, Panel (b) of Table 2 reports results when the years 2002 and

2003 are excluded from the sample. This leaves us with a 2000-2001 pre-expansion

period and a 2004-2005 post-expansion period from which to estimate the naive and

nuanced effects. Estimates in Panel (b) of Table 2 are similar to those presented

in Panel (a).

Estimates of the parameter of interest for the naive change in the value of

the CDCC are large and often statistically significant for both the full sample and

the sample excluding the years 2002 and 2003. Because the dependent variable in

columns (1) through (3) is measured over a two-week period, an annual interpre-

tation requires multiplying by 26. For example, the coefficient estimate of 0.039

implies that a one dollar increase in the naive value of the CDCC causes a $1.01

(0.039 x 26) increase in annual child-care expenditure with a 95% confidence inter-

val of ($0.20, $1.83). Multiplying by 26 may not be appropriate if households pay

for child-care expenses monthly rather than every two-weeks. If all households are

reporting monthly expenditures paid during that two week period, the coefficient

estimate of 0.039 implies that a one dollar increase in the naive value of the CDCC

causes a $0.47 (0.039 x 12) increase in annual child-care expenditure with a 95%
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confidence interval of ($0.09, $0.84).

One possible explanation for the large magnitude of the estimated response

is that workers may choose from a limited number of options for hours of work.17

When workers face such labor supply constraints, even a slight increase in naive

child-care subsidy rates could persuade marginal families to make a large discrete

change in both work hours and child-care expenditure. Average child-care expendi-

ture may increase if lumpy adjustments exceed non-adjustments among households

unable to make continuous consumption choices.

Estimates of the effect of the nuanced change in the value of the CDCC

on child-care expenditure are not statistically different than zero. Importantly, in

most specifications, we are able to reject the hypothesis that the naive and nuanced

parameters are equal (p-value reported for each specification). We interpret the

results as providing strong evidence of an effect of the change in the naive value of

the CDCC on child-care expenditure and no evidence of an effect of the change in

the nuanced value of the CDCC.

This result is illustrated in Figure 6 which plots the average child-care

expenditure as a percentage of income by year for four groups of taxpayers (not

mutually exclusive groups). In Panel (a), the dashed line plots average child-care

expenditure for taxpayers with a larger than median change in the naive value of

the CDCC and the solid line is for those taxpayers with a smaller than median

17See, for example, Altonji and Paxson (1988) or Dickens and Lundberg (1993). Golden (2001)
notes female, non-white, and less educated workers (a group targeted by the CDCC expansion)
are less likely to have flexible work schedules.
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change in the naive value of the CDCC. Panel (b) is similar in that it groups

taxpayers by the change in the nuanced value of the CDCC. The econometric

model is not used in creating the figure as it simply reports the average child-care

expenditure as a percentage of income for the different groups.

Figure 6 suggests that those with a large increase in the naive value of the

CDCC increased their child-care expenditure, while those with a large increase in

the nuanced value of the CDCC did not increase their spending on child care.18

The increase in child-care expenditure for those with an above median naive CDCC

change may seem to have begun even before the implementation of the CDCC

expansion (indicated in the figure by the vertical line). This could simply be normal

variation in the series or it could be a response in advance of the implementation

given that the CDCC expansion was passed in 2001. The decline in child-care

expenditure in 2005 for those with an above-median change in the naive value of the

CDCC may indicate that spotlighting is a temporary behavior for some taxpayers.

Consistent with the regression results from Table 2, there is no corresponding

increase in child-care expenditure for those with an above-median change in the

nuanced value of the CDCC. Importantly, there are no obvious differences in child-

care expenditure for the different groups before 2003.

Table 3 reports the estimated effect of an increase in the first-dollar discount

as specified in Equation (8). The magnitudes reported in Panel (a) of Table 3 are

18Indeed, households with changes in naive values above the 75th percentile spent 16.6% more
in post-expansion period than households with changes in naive values below the 25th percentile
(p-value = 0.057).
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similar to the effect sizes reported in Panel (a) of Table 2, although the estimates

are noisier. The coefficient estimate of 1.909 suggests that each additional cent

per dollar decrease in the naive marginal price of child care causes expenditures

to increase by $49.63 (1.909 x 26) per year, with a 95% confidence interval of (-

$1.68, $100.95). Recall the average household with child-care expenditure spends

$3,796 per year on child care ($146 x 26), so a cent per dollar decrease in the

price of child care saves them almost $38. Hence Table 3 reports that a $1 “naive”

increase in government expenditure causes a $1.31 (49.63/38) increase in annual

child-care expenditure for this average household, with a 95% confidence interval of

(-$0.04, $2.66). This is very similar to the $1.01 estimate reported in Table 2. If all

households are reporting monthly expenditures paid during the two week period,

this suggests an increase in child-care expenditure of $22.91 per year (1.909 x 12),

with a 95% confidence interval of (-$0.78, $46.59). This would imply a $1 naive

increase in government expenditure causes a $0.60 (22.91/38) increase in annual

child-care expenditure, with a 95% confidence interval of (-$0.02, $1.23).

The responses to naive and nuanced measures of the marginal price of child-

care are not statistically different for the full sample in Panel (a) of Table 3. Panel

(b) excludes the year immediately before and the year immediately after the ex-

pansion. Estimates of the naive effect in Panel (b) are statistically significant and

larger than responses to nuanced estimates, consistent with concerns about down-

ward bias. In both panels, there remains no evidence that the nuanced change in
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the first-dollar discount has any effect on child-care expenditure.

Because available data does not pair expenditure on child care with a mea-

sure of the quantity or quality of child care, we do not know whether increased

expenditures on the intensive margin reflects a larger quantity of child care or

higher quality child care. It is possible to gain some insight about adjustment

along the extensive margin by replacing the dependent variable with a dummy for

non-zero child-care expenditure. Panel (a) of Table 4 shows there is little response

by any group to the naive or nuanced maximum value of the CDCC. This is un-

surprising, since the maximum value of the CDCC is unlikely to be the binding

constraint for the first-dollar consumption of child care. The first-dollar discount

more accurately reflects the binding constraint at the point of consumption for

this group. Panel B of Table 4 shows the full sample of single parents in particular

were 2.3% more likely to have non-zero child-care expenditure for each additional

cent per dollar increase in the naive first-dollar discount on child care, with a 95%

confidence interval of (0.5%, 4.1%). Similar estimates are obtained when excluding

2002 and 2003. For single parents, the response to the naive first-dollar discount is

significantly larger than the response to the nuanced first-dollar discount. Again,

we find no evidence that any group responded to the nuanced first-dollar discount.

2.5.2 Falsification Exercises

We perform two falsification exercises. The first is designed to see if the

naive CDCC expansion had any effect on expenditure for other goods. The second
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is designed to see if we find similar results when we apply the same methods to

a sample of households that were all in the pre-expansion period. We present

results for both tests for only the change in value of the CDCC; using discounts to

marginal price provides similar results.

If the change in the child-care subsidy affect expenditure on other unrelated

goods it would raise concern about the causal interpretation. We examine expen-

diture on babysitting, nondurables, and all eleven generic aggregations as defined

by the CES (food, alcoholic beverages, fuel, etc.) Table 5 reports the difference-in-

differences estimates from estimating the same specification as reported in Table

2 columns (1) and (4) of Panel (a) where only the dependent variable is changed.

There is little evidence that changes in the naive or the nuanced value of the CDCC

affected expenditure. This suggests the causal effect on child-care expenditure is

not simply capturing an income effect.19

Our second falsification exercise uses an additional sample of households

from 1996 to 1999. In this exercise we assume that a hypothetical change in the

value of the CDCC occurs at the beginning of 1999. The households observed in

1999-2001 are “treated” while those in 1996-1998 are the “control” group. Our

measures of the naive and nuanced change in the value of the CDCC are still cal-

culated by comparing the 2001 to the 2005 tax code, even though we are only using

19Several papers, including Johnson et al. (2006), Shapiro and Slemrod (2003), and Agarwal et
al. (2007), have addressed how households respond to a sudden decrease in tax liability (like the
sudden increase in the Child Tax Credit in 2003). They focus on what fraction of a tax rebate
is spent rather than saved and find that households typically spend about 60 percent within the
next year.
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pre-expansion data. If a statistically significant response in child-care spending is

found, such a false positive would raise concern about the causal interpretation

of our main results. Table 6 reports no statistically significant response in child-

care spending to this hypothetical treatment, which increases our confidence in the

main results.

2.6 Conclusion

This paper examines how consumers respond to a change in a personal in-

come tax provision when interactions with other elements of the tax code obfuscate

the true impact of the changed provision. We use data from the Consumer Expen-

diture Survey to provide evidence that taxpayers engage in spotlighting behavior;

they respond to the change in the particular tax provision in isolation without

considering the interactions with other parts of the tax code. The evidence comes

from our examination of the 2003 change to the Child and Dependent Care Credit

(CDCC) which spotlighting taxpayers would have perceived as reducing the after-

tax price of child care. However, interactions with other elements of the tax code,

including the simultaneous change to the Child Tax Credit, reduced or even re-

versed this decrease in the after-tax price of child care for some taxpayers.

Using household data, we employ a difference-in-differences strategy which

exploits the heterogeneity in the size of naive and nuanced measures of the change

in value of the CDCC. We find strong evidence of a child-care expenditure response

to the naive measure of the change in the value of the CDCC, which does not
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consider interactions with other elements of the tax code. We find little evidence

of any response to the nuanced measure, which does account for interactions with

other elements of the tax code. Similar results are found exploiting heterogeneity

in the naive and nuanced marginal price of child care. Falsification exercises find

little evidence the CDCC expansion (either naive or nuanced) affected expenditure

on other goods. We also find no evidence of a response to a hypothetical CDCC

expansion using pre-expansion data. We interpret these results as evidence that

taxpayers were engaged in spotlighting behavior.

This paper supplements the existing tax salience literature by showing tax-

payers can misperceive after-tax prices due to important but low-salience inter-

actions, even when the direct financial implications are salient. Tax preparation

software may reinforce spotlighting in some instances by focusing attention on

each deduction or credit in isolation rather than on how different economic be-

havior affects final tax liability. This issue applies to any tax interactions that

taxpayers may ignore, including other non-refundable tax credits, deductions and

credits with phase-outs, and credits with income eligibility requirements.

Because available data does not pair expenditure on child care with a mea-

sure of the quantity or quality of child care, we do not always know whether

increased expenditures reflect a larger quantity of child care or higher quality child

care. There is some evidence that decreases in the naive measures of the marginal

price of child induced single parents to begin consuming child care, and this may
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have increased female labor force participation rates.

Despite any influence the naive measure of the CDCC had on taxpayers

child-care expenditures and labor decisions, the government did not bear the cost

associated with the naive value of the CDCC. Instead, the government bore the cost

of the nuanced value which in our sample of low-income families with children was

just 47 percent of what the government would have born had they paid the full cost

associated with the naive value. Our results indicate that taxpayers significantly

increased their expenditure on child care in response to the 2003 expansion of the

CDCC regardless of whether their after-tax price of child care decreased.
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(a) Naive Credit Value

(b) Nuanced Credit Value

Figure 2.1: Child and Dependent Care Credit Rate Increase

Notes: These figure illustrates the percent of the first dollar of child-care expenditure that
is refunded through the CDCC to a single-parent household with two children. Panel (a)
presents the naive value of the CDCC which does not consider interactions with other elements
of the tax code. Panel (b) presents the nuanced value of the CDCC where interactions with
all other elements of the tax code are considered. Because the CDCC is a non-refundable tax
credit, many low-income taxpayers do not benefit from this credit.
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Figure 2.2: IRS 1040 Form (2003)

Notes: This is the top portion of page 2 of the 1040 form for year 2003. Line 45 is the Child
and Dependent Care Credit (CDCC), line 49 is the Child Tax Credit (CTC), and Line 65 is
the Additional Child Tax Credit (ACTC). The stacking order of the credits on the 1040 form
has remained the same since 2003.
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(a) Income Distribution by Change in Nuanced CDCC Value

(b) Income Distribution by Change in Nuanced Price of Child-care

Figure 2.3: Income Distribution of Households by Group

Notes: Includes all CES households from 2000 to 2005 with at least one child under age 13 and
income between $10,000 and $50,000. The income distribution for the two groups (those with
a decrease in the nuanced price of child-care and those with an increase in the nuanced price
of childcare) were graphed separately and then combined into this figure. Households with
no change in the nuanced price of child-care do not appear on this figure.
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(a) Naive CDCC Change

(b) Nuanced CDCC Change

Figure 2.4: Change in the Naive and Nuanced Value of the CDCC and Income

Notes: Panel (a) and Panel (b) depict each family in the data as a circle with family income
on the x-axis. The y-axis in Panel (a) is the change in the maximum value of the child and
dependent care credit between 2000 and 2005 if it were a fully refundable credit. The y-axis
in Panel (b) is the change in the nuanced value of the child and dependent care credit (a
non-refundable credit) between 2000 and 2005.
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(a) Naive Change in Discount on Child-Care

(b) Nuanced Change in Discount on Child-Care

Figure 2.5: Change in the Naive and Nuanced Value of the CDCC and Income

Notes: Panel (a) and Panel (b) depict each family in the data as a circle with family income on
the x-axis. The y-axis in Panel (a) is the change between 2000 and 2005 in the value of the
Child and Dependent Care Credit in cents if the credit were fully refundable assuming one
dollar of child-care expenditure. The y-axis in Panel (b) is the change between 2000 and 2005
in the nuanced value of the CDCC in cents assuming one dollar of child-care expenditure.
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(a) By Naive CDCC Change

(b) By Nuanced CDCC Change

Figure 2.6: Average Child Care Expenditure by Year

Notes: Panel (a) and Panel (b) plot the average childcare expenditure as a percentage of
income by year for CES households with income between $10,000 & $50,000 for two groups.
The treated group is defined as those individuals with an above median change in naive or
nuanced value of the CDCC. The control group is defined as those individuals with a below
median change in naive or nuanced value of the CDCC. 90 percent confidence intervals are
indicated in gray for the treated group and black for the control group. Households with
a very large or small (top or bottom 5%) change (defined separately for each panel) are
excluded.
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Table 2.1: Summary Statistics

Full Sample
2000-2002 2003-2005 H0:

Variables Mean Std. Dev. Mean Std. Dev. Pre = Post
Expenditure on child care 15.89 92.47 13.50 53.55 0.4046
Expenditure on babysitting 10.59 46.58 8.90 41.95 0.3262
Expenditure on nondurables 445.50 279.73 473.42 304.55 0.0067
Expenditure on all categories 1,139.14 1,014.49 1,256.50 1,453.99 0.0231

Naive CDCC value pre 791.00 287.46 779.35 288.76 0.3314
Naive CDCC value post 1,206.92 470.81 1,185.16 473.03 0.2674
Naive CDCC value change 415.92 206.80 405.81 208.84 0.2414
Nuanced CDCC value pre 512.88 355.94 515.21 351.21 0.8732
Nuanced CDCC value post 551.00 463.70 575.41 456.18 0.2005
Nuanced CDCC value change 38.12 289.50 60.20 270.51 0.0525

Naive discount pre 22.22 3.04 22.12 3.00 0.4344
Naive discount post 27.12 5.22 26.91 5.22 0.3365
Naive discount change 4.90 2.91 4.79 2.96 0.3660
Nuanced discount pre 16.28 8.88 16.50 8.65 0.5434
Nuanced discount post 17.18 11.82 17.63 11.50 0.3534
Nuanced discount change 0.90 7.80 1.13 7.49 0.4721

Income 30,131.68 11,352.05 30,514.57 11,322.12 0.4207
Married (indicator variable) 0.59 0.49 0.50 0.50 0.0000
Number of Children 1.70 0.92 1.65 0.83 0.1428

Number of Observations 1573 1109

Notes: The data comes from the Consumer Expenditure Survey and only includes households
with at least one child under age 13 and self-reported family income between $10,000 and
$50,000. Married couples with only one working spouse are excluded from the data. Expendi-
ture values are from a two-week diary from years 2000-2005. Spending on nondurable goods
is defined as in Johnson, Parker, and Souleles (2006) as spending on goods and services which
can only be used once and last no more than 3 years at most. The final column reports the
p-values from the null hypothesis that the mean is the same in both the pre and post periods.
Sample weights used in calculations.
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Table 2.2: Summary Statistics

Households with Expenditure on Child Care
2000-2002 2003-2005 H0:

Variables Mean Std. Dev. Mean Std. Dev. Pre = Post
Expenditure on child care 146.38 244.89 145.79 108.53 .9788
Expenditure on babysitting 13.07 38.47 12.7 39.42 0.9413
Expenditure on nondurables 494.73 273.78 526.54 336.40 0.4236
Expenditure on all categories 1,485.19 1,086.08 1589.13 1,154.43 0.4850

Naive CDCC value pre 782.97 281.00 782.48 294.12 0.9900
Naive CDCC value post 1,178.13 470.15 1,186.78 475.59 0.8927
Naive CDCC value change 395.16 214.98 404.30 211.13 .7504
Nuanced CDCC value pre 586.50 335.68 536.77 352.85 .2924
Nuanced CDCC value post 663.34 453.58 625.14 447.48 0.5312
Nuanced CDCC value change 76.84 275.80 88.37 257.86 0.7313

Naive discount pre 21.67 2.70 22.01 2.83 0.3787
Naive discount post 26.00 5.18 26.83 5.28 0.2442
Naive discount change 4.33 3.13 4.82 3.16 0.2431
Nuanced discount pre 17.74 7.64 16.78 8.45 0.4018
Nuanced discount post 19.37 10.50 16.78 11.50 0.8795
Nuanced discount change 1.64 6.97 2.36 5.96 0.3944

Income 32,708.51 11,303.98 30,805.96 11,400.94 0.2166
Married (indicator variable) 0.55 0.50 0.53 0.50 0.8374
Number of Children 1.70 0.87 1.63 0.78 0.5259

Number of Observations 167 101

Notes: The data comes from the Consumer Expenditure Survey and only includes households
with at least one child under age 13 and self-reported family income between $10,000 and
$50,000. Married couples with only one working spouse are excluded from the data. Expendi-
ture values are from a two-week diary from years 2000-2005. Spending on nondurable goods
is defined as in Johnson, Parker, and Souleles (2006) as spending on goods and services which
can only be used once and last no more than 3 years at most. The final column reports the
p-values from the null hypothesis that the mean is the same in both the pre and post periods.
Sample weights used in calculations.
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Table 2.9: Effect on Other Expenditure

Dollars of Two-Week Expenditure Percent of Annual Income
Expenditure Category Naive Nuanced H0: Naive= Naive Nuanced H0: Naive=

diff-in-diff diff-in-diff Nuanced diff-in-diff diff-in-diff Nuanced
Babysitting -0.003 -0.005 0.793 -0.000 -0.000 0.851

(0.011) (0.005) (0.001) (0.001)
Nondurables -0.053 -0.046 0.902 0.000 -0.005 0.462

(0.065) (0.048) (0.008) (0.005)
Food -0.044 -0.031 0.663 -0.005 -0.004* 0.753

(0.031) (0.023) (0.004) (0.002)
Alcohol -0.005 0.001 0.242 -0.000 0.000 0.553

(0.005) (0.003) (0.001) (0.000)
Fuel -0.007 -0.008 0.988 0.002 -0.001 0.501

(0.036) (0.025) (0.004) (0.002)
Household Supplies -0.010 -0.002 0.139 -0.001 -0.000 0.253

(0.006) (0.005) (0.001) (0.001)
Household Furnishings -0.007 0.035 0.331 -0.001 0.003 0.208

(0.041) (0.037) (0.004) (0.003)
Apparel -0.032 -0.023 0.742 -0.005 -0.002 0.479

(0.030) (0.023) (0.004) (0.003)
Gasoline and Motor Oil 0.002 -0.003 0.635 0.002* -0.000 0.024

(0.011) (0.008) (0.001) (0.001)
Medical Supplies 0.005 0.004 0.784 0.001 0.000 0.910

(0.006) (0.003) (0.001) (0.000)
Entertainment 0.037 0.000 0.170 0.006 0.001 0.121

(0.030) (0.018) (0.004) (0.002)
Personal Care -0.005 -0.001 0.568 -0.001 -0.000 0.649

(0.006) (0.004) (0.001) (0.000)
Miscellaneous -0.034 0.040 0.051 -0.002 0.004 0.058

(0.022) (0.029) (0.002) (0.003)

Notes: All specifications are identical to the main results and include month and year fixed
effects as well as indicators for the race of the parent(s), education of the parents(s), family
type, number of young children, and the presence of a child age 13 or more (potential babysit-
ting by sibling). The data only includes households with young (under age 13) children and
an annual income between 10, 000and50,000 over the full sample of years 2000-2005. Both
parents must earn income in two-parent households to be included in the data. Child-care
expenditure as a percentage of annual income is calculated as 26 times the reported two-week
child-care expenditure divided by annual income and multiplied by 100. P-values from Wald
tests for the difference between Naive and Nuanced diff-in-diff estimates are reported. Robust
standard errors in parentheses: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01
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3.1 Introduction

From 2004-2013, weather-related hazards caused over 600 fatalities and

3,300 injuries per year in the United States. Tornadoes exceed hurricanes as the

leading cause of storm-related deaths and injuries in the U.S., accounting for 1,091

fatalities and 12,407 injuries over this window.1 Healy and Malhorta (2009) report

that from 1985-2004, the United States federal government spent $195 million

per year on disaster preparedness. It is often argued that disaster preparedness is

woefully underfunded in the sense that the number of deaths and injuries prevented

per dollar exceed the returns on many other government investments purportedly

targeted at saving lives. To date this claim has been largely speculative due to

the lack of robust statistical evidence regarding the benefits of weather warning

systems. The main contribution of this paper is to provide the first causal estimates

of the impacts of a weather warning system.

A large number of case studies and household surveys exists regarding how

individuals respond to various warnings. While this literature very useful for under-

standing how individuals responded to the situation being examined, the counter-

factual is not clear. How would people have fared without a particular warning

system? If warnings from a NOAA weather radio were not available, would indi-

viduals have received and responded to warnings from a siren, television, or phone?

Perhaps different warning systems convey different information which impacts how

1U.S. Natural Hazard Statistics, http://www.nws.noaa.gov/om/hazstats.shtml.
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effectively individuals protect themselves.

This paper addresses the difficulty in obtaining a reliable counter-factual by

exploiting variation in the initial broadcast dates of the radio transmitters for the

National Oceanic and Atmospheric Administration’s Weather Radio All Hazards

(NWR). Because the timing and location of these installations is non-random, two

different identification strategies are used to estimate the causal impact of NWR

broadcasts on tornado deaths and injuries. The first is a cross-sectional compari-

son of deaths and injuries across all tornadoes. Variation in the percentage of the

tornado’s path covered by NWR broadcasts is conditional on a large number of

controls including population, housing stock, and the order of transmitter instal-

lation. The second method is a county-level fixed-effects analysis which examines

how fatality and injury rates change after broadcasts begin.

Both methods estimate that NWR broadcasts causally reduce fatalities and

injuries by as much as 40% or more. Robustness checks confirm intuition that

NWR broadcasts do not reduce property damage. Note that these results reflect

the aggregate reduction in deaths and injuries due to the NWR broadcast and not

the risk reduction for a single individual. Receiving the NWR broadcast requires

the individual to own a NWR receiver.

Focusing the first impact evaluation of a weather warning system on NWR is

appropriate for several reasons. In addition to the availability of quality data and a

clear source of identifying variation, NWR has long been a flagship warning system
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of the National Weather Service. This research also points the way for further

revealed preference impact evaluations in the weather community. Such studies

are essential for enabling policy makers to choose optimal level of investment both

within and between warning systems. This paper and others like it can shed

objective light on hotly debated questions such as whether new types of warning

systems, such as warnings delivered directly to cellular phones, have made older

systems obsolete.

The rest of the paper proceeds as follows. Section II discusses the roll-

out of the NWR program and existing knowledge on the effectiveness of weather

warning systems. Section III discusses the data and methodology used in this

study. Section IV discusses results and robustness checks. Section V concludes.

3.2 Background

3.2.1 The History of NWR

Federal government involvement in weather forecasting in the United States

can be traced back to 1870 when a new national weather service was created within

the U.S. Army. Sergeant John P. Finley published the first investigations into

tornado forecasting, twice per day categorizing weather conditions across large

areas of the United States as favorable or unfavorable for tornadoes. 28% of the

favorable conditions in Finley (1884) produced confirmed tornadoes somewhere

within their broad geographic area. Due to concerns that incited panic would

outweigh the benefits of these forecasts, the use of the work tornado was banned
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from official forecasts from 1887 until 1938 (Coleman et al., 2011). Because of

this policy, the first successful forecast of a potential tornadic event at a more

precise location did not occur until a 1948 forecast by Major Ernest J. Fawbush

and Captain Robert C. Miller at Tinker Air Force Base in Oklahoma was made

possible by a “fortuitous series of events” (Grice et al., 1999). Following this much-

lauded forecast’s success, the Weather Bureau authorized public tornado alerts in

1950 and began issuing tornado forecasts in 1952.

The means of disseminating these warnings to the public has evolved over

time and is well documented. “During the 1950s and 1960s, tornado warnings were

disseminated to the public primarily by commercial television and radio stations.

The TV and radio stations received these warnings from the [U.S. Weather Bu-

reau] by telephone or teletype.” (Coleman et al., 2011). Outdoor warning sirens,

originally designed as World War II air-raid sirens, were re-purposed for weather

warnings. Operated by a local emergency manager, outdoor sirens have also been

used for tornado warnings since about 1970.

The National Oceanic and Atmospheric Administration’s Weather Radio

All Hazards (NWR) is a network of radio stations which broadcast weather infor-

mation from the nearest National Weather Service (NWS) office. The first NWR

transmitters were installed in New York City (Jan. 1, 1953) and Chicago (Apr. 1,

1953) to broadcast aviation weather. After aviation broadcasts moved to L/MF ra-

dio stations, the stations were became available for marine service. Over 1966 and
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1967, nine additional coastal stations were added to support the maritime commu-

nity. Partially in response to the 1974 “Super Outbreak” of 148 tornadoes in the

24 hours between 1:00pm EST, April 3rd and 1:00pm EST, April 4th, a January

1975 White House policy statement designated NOAA Weather Radio as the sole

government-operated radio system to provide direct warnings into private homes

for natural disasters. Figure 3.1 shows how the distribution of NWR transmitters

across the country has changed over time, starting immediately before this policy

change in 1975. The main concern in using initial broadcast dates as a source of

identifying variation is that the areas which receive transmitters first may be more

or less prone to fatalities and injuries from observably similar tornadoes.2 The

methodology section addresses this concern directly.

A special receiver is required to pick up the NWR signal, as the signal is

broadcast in the very high frequency range of the radio spectrum. These receivers,

which are produced by several private companies, are widely available in retail

stores, and online. At present receivers cost about $20 or more depending on

features. NWS does not manufacture, sell, or endorse any particular receivers.

NWS does recommend several common features, including a tone alarm which may

be activated even when the audio is turned off. Several important changes have

occurred over the years of NWR use. In 1998, NWR began incorporating Specific

2In addition to more populated areas receiving transmitters first, in some cases collective
action by concerned citizens was the impetus for transmitter installation. Following the Super
Outbreak in 1974, citizens of Huntsville, AL raised money to buy their own transmitter which
was then donate it to NWS. See http:www.srh.noaa.govhun?n=stationhistory.
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Area Message Encoding (SAME), which enables users to select the county(s) or

sub-county(s) for which they desired to receive warnings rather than receiving all

warnings issued by the transmitter. A 2002 FCC rule change declared that “All

existing and new models of EAS equipment manufactured after August 1, 2003

must be capable of selectively displaying and logging messages with state and

local event codes.” (FCC 02-64). This change enabled users to opt out of receiving

certain types of warnings. For example, an individual who lives on a high floor

of building many miles from the coast might choose to opt out of coastal flood

warnings. Both the introduction of SAME codes and the FCC rule change gave

individuals more control over which warnings they receive. If individuals opt out

of important warnings, this could decrease the effectiveness of the warning system.

But if individuals opt of less relevant warnings, they may pay more attention to

those warnings they do receive. The FCC expressed confidence that users “will

exercise good judgement in making these choices.”

Another common concern is that new warning systems will cause older

systems to become outdated. In 2006, Congress passed the “Warning, Alert, and

Response Network (WARN) Act” establishing a system of emergency alerts sent

to all phones using commercial cell phone towers. NWS began participation in

this service in late June of 2012. There is not yet enough data to determine if this

program has had altered the impact of NWR transmitters on tornado fatalities or

injuries. The recently created Integrated Public Alert and Warning System bring
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NWR, phone warnings, and other public alert systems under a single interface.

3.2.2 Current Literature

A large number of case studies and surveys examine how individuals re-

spond to warnings in various situations. Balluz et al. (2000) found that roughly

45% of those who responded to a random telephone survey following March 1,

1997 tornadoes in Arkansas reported seeking shelter after learning of the tornado

warning. Liu et al. (1996) survey in two Alabama areas after tornado warnings to

learn the type of warning respondents heard first. Dow and Cutter (1998) survey

residents about how they responded to repeated hurricane evacuation orders over

the course of a single season. Case studies such as these are immensely helpful in

determining what warnings individuals hear and how those warnings are perceived.

But they are not helpful for determining the causal impact of warning systems, be-

cause they often suffer from serious selection bias problems and the counter-factual

is unclear. Hence this paper answers a very different type of question: How would

people have fared without a particular warning system?

While there has been little writing on the causal impact of warning systems

directly, some papers have attempted to estimate the causal benefits of warnings

themselves. Doswell et al. (1999) show that shortly after the beginning of public

tornado forecasting there was a reduction in deaths relative to inflation-adjusted

damage from major tornadoes. Improvements in forecast ability also matter. Sim-

mons and Sutter (2008) find that longer lead times on tornado warnings reduce
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injuries, and Simmons and Sutter (2005) find that the installation of Doppler radar

in the 1990’s reduced fatalities and injuries by 45% and 40%, respectively. Sutter

and Simmons (2014) find no measurable impact of tornado watches (issued when

conditions are favorable for tornadoes) beyond the benefits already granted by

warnings.

Various types of mitigating infrastructure have also received much atten-

tion. Czajkowski and Simmons (2014) find that building codes reduce hail damage.

Merrell et al. (2002) perform a cost-benefit analysis of tornado shelters. Analysis of

the benefits of mitigation infrastructure extends outside the United States. Smyth

et al. (2004) discuss a variety of potential improvements in for a representative

Turkish apartment building’s earthquake resilience, each of which are found to be

cost-efficient in the long run due to prevented fatalities.

While much research suggests the returns to investments in disaster miti-

gation may be large, “Governments do not routinely collect or monitor spending

on disaster prevention” (Bank and Nations, 2010). Healy and Malhorta (2009)

find that $1 of preparedness spending is worth $15 of future damage mitigation,

yet U.S. voters reward political parties for disaster relief spending but not disas-

ter preparedness spending. This is perhaps due to disaster preparedness spending

by governments having low salience relative to disaster relief spending. There is

some evidence that individuals are willing to pay for more salient direct receipt of

disaster mitigation. Simmons et al. (2002) find both greater structural integrity
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and storm blinds increase the sale value of homes in a Gulf Coast city. And large

numbers of individuals purchase NWR receivers.

3.3 Data & Methodology

3.3.1 Data

This paper uses data from the Storm Prediction Center’s national tornado

archive to examines over 58,000 tornadoes recorded between 1950-2014.3 Each

tornado observation has deaths and injuries reported by state, along with the

date, time, and properties of the tornado such as start and end location, path

length, and tornado width. Fujita scales are reported, with Enhanced Fujita scale

reported after January 2007.4 Property damage is reported beginning in 1996.5

Affected counties are recorded by FIPS code.

Much gratitude is due to NOAA for directly providing the date on which

each transmitter began broadcasting, as well as the handful of dates that any trans-

mitters were permanently deactivated. The database which was used to gather this

information was not developed until the 1990’s. Installation dates prior to that

time were gathered by NOAA from old records so some measurement error is pos-

sible. Annual county-level population data comes from the U.S. Decennial Census

and the U.S. Census Bureau’s Intercensal Estimates. Data on state-by-decade

3Only data from U.S. states are used in this analysis. Records from Puerto Rico and the
Virgin Islands are excluded.

4The Fujita Scale is a measure of tornado intensity based on the damage indicators to build-
ings, trees, and infrastructure.

5Categorical damages (≤ $50, $50-$500, $500-$5,000, etc.) is available before 1996 but is
missing in some cases so is not used.
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housing stocks come from the Historical Census of Housing. Summary statistics

can be found in Table 3.1 and Table 3.2.

3.3.2 Methodology

This paper estimates the causal impact of NWR transmitters on tornado in-

juries and fatalities by comparing outcomes between tornadoes which cross through

areas with various levels of coverage by NWR transmitters. Differences in cover-

age are due to the tornado location and whether the tornado occurs before or

after transmitter begin broadcasting. Because both the location and timing of

transmitter installation is non-random, many important controls are included and

discussed below. The identification assumption is that conditional on these con-

trols, transmitter broadcast areas are only correlated with tornado injuries and

fatalities through their transmission of warnings.

It is well-known that log-linear regression models produce biased estimates

when the dependent variable has a binding lower bound of zero (Silva and Tenreyro

(2006)). Here the outcomes of interest are the number of deaths and injuries at-

tributed to each tornado. Both Poisson and negative binomial regressions analysis

are commonly used to model count data (non-negative integers without an explicit

upper limit). Each involves different assumptions about the conditional variance

of the error term.6 Because both the fatality and injury statistics have a large

6The Poisson distribution assumes the mean is equal to the variance, while different negative
binomial distributions make a variety of alternative assumptions about the functional form of the
variance, with Poisson being a special case of a negative binomial distribution. The properties
discussed here are well known. See Winkelmann (2008) or Cameron and Trivedi (2013).
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number of 0’s, the data suffers from overdispersion – the variance is greater than

the mean. The Poisson regression still produce consistent estimates regardless of

any overdispersion as long as there exists some β such that, given a set of variables

X, the conditional mean of fatalities and injuries can be correctly expressed as

E[Y |X] = eβX (3.1)

Not all negative binomial distributions have this property. For some nega-

tive binomial distributions, unbaised estimation of β requires correct specification

of an additional variance parameter. One method of resolving this issue in certain

types of negative binomial distributions is to use the two-step estimation process

discussed in Wooldridge (2010). Poisson regression analysis is used here because

it is simpler and negative binomial regressions have been found to provide no

improvement over Poisson for identification in finite samples with overdispersion

Blackburn (2014). Coefficients are estimated using the pseudo-maximum likeli-

hood technique of Silva and Tenreyro (2010).

The dependent variable, Yi, is a count of fatalities, injuries, or in some

cases property damage from tornado i. The expected outcome conditional on all

controls, Xi, can be expressed as

ln(E[Yi|Xi]) =β1(Coverage)i + γ1(Properties)i + γ2(Location)i (3.2)

+ γ3(Timing)i

Coverage is a [0,1] treatment intensity variable representing the percentage of coun-

ties on a tornado’s path which receive broadcasts from at least one NWR trans-
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mitter.7 Propertiesi is a vector of tornado properties which accounts for tornadoes

which have longer paths being mechanically more likely to enter a county with a

broadcasting transmitters. It contains a quadratic measure of path length and the

number of counties hit.

Locationi is a vector of characteristics of the location of the tornado to ac-

count for transmitters being more likely to be built in certain areas such as densely

populated areas or areas with certain types of housing infrastructure. This vector

contains state fixed effects, several controls for population, and decade-by-state

measures of the percentage and number of residences of different housing types.8

To account for further unobserved reasons transmitters may be installed in certain

areas first, it contains the date at which the first transmitter on the tornado’s path

was installed. Locationi also contains the area of each of the three largest impacted

counties is controlled for to account for correlation between a county’s physical area

and its probability of having a transmitter. Finally, Locationi contains controls

for the number and size of tornadoes a county has historically received, to account

for areas more prone to tornadoes being more likely to have NWR transmitters.9

7Literally, number of treated counties on path
number of counties on path . In the present draft, transmitter broadcast areas are

measured at the county level. Measurement error exists to the extent that a NWR transmitter’s
broadcast area does not fully cover cover a county.

8Specifically, population controls include a cubic polynomial and log of total population among
the impacted counties, as well as county-level measures of density for each of the three most
densely populated impacted counties. This last measure is interacted with indicators for the
number of counties impacted control for the fact that most tornadoes only impact a single
county. Limiting to three categorical indicators avoids collinearity issues, as less than 0.25% of
tornadoes strike four or more counties. Housing types include detached homes, attached homes,
two-to-four unit-per-building homes, five or more unit-per-building homes, and mobile homes.

9Specifically, controls for the total number of tornadoes and the number received in the last
5 years for each of the three most-impacted counties on each tornadoes’ path are included.
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Finally, Timingi is a vector of variables related to the timing of the tornado

to control for changes over time in the probability that tornadoes will be recorded.

Year fixed effects control for coverage being higher in later years when fatalities

or injuries may have decreased for other reasons.10 While variables such as the

month and time of day a tornado occurs are correlated with fatalities and injuries,

there is no obvious reason that these are correlated with coverage and hence they

are not included.

Even though both location and timing information are available for each

tornado and are used in Equation 3.2, the analysis is at heart cross-sectional with

each tornado as an independent observation rather than a county-level panel. I also

constructs a county-level panel to control for all temporally constant differences

between counties. This approach is limited by the fact that fatalities and injuries

are measured at the state level rather than the county level. In order to cor-

rectly allocate outcomes, this second methodology examines only tornadoes which

impacted a single county, and only counties where fixed effects are not collinear

with treatment status across observed tornadoes. This accounts for 89.3% of the

tornadoes used in the cross-sectional analysis. This analysis also requires at least

one non-zero outcome within each county, so that the final sample is 72.1% of

the cross-sectional sample for injuries, and 25.8% of the cross-sectional sample for

fatalities. Hence these results are driven by the subset of counties which receive

10Year fixed effects begin in 1975, because prior to that point all areas are untreated. See
section 2.1.
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more dangerous tornadoes more frequently. The cost of resolving any concern

about fixed differences between counties is some external validity.

Under this panel FE analysis, the expected outcome of a tornado in county

j at time t, conditional on all controls, Xj,t, can be expressed as

ln(E[Yj,t|Xj,t]) =β2(Coverage)j,t + θ1(Properties)j,t + αj + θ2(Location)j,t (3.3)

+ θ3(Timing)t

Because these are single-county tornadoes, Coverage is a binary treatment indi-

cator representing the whether the county was receiving broadcasts from at least

one NWR transmitter at the time of the tornado. Propertiesj,t again contains a

quadratic measure of path length and indicators for Fujita or Enhanced Fujita

scale values. Because county FE, αj, are included, Locationj,t includes only time-

varying area characteristics. These include the same controls for population and

housing types found in Equation 3.2. Timingt again includes year fixed effects.

3.4 Results

It is easiest to first interpret the results from Equation 3.3. The coeffi-

cient on Coverage is approximately equal to the percent reduction in death and

injuries caused by having a NWR transmitter broadcasting over the impacted

county. Table 3.3 reports that having a NWR transmitters broadcasting over a

county causally reduces injuries by approximately 40.2%, with a 95% confidence

interval of (3.0%, 77.4%). Similarly, having an NWR transmitters broadcasting
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over a county causally reduces fatalities by 77.5%, with a 95% confidence interval of

(12.4%, 142.6%). While these ranges are quite broad, it is clear that NWR trans-

mitters cause a statistically and economically significant reduction in the injuries

and fatalities caused by tornadoes.

For the cross-sectional analysis of Equation 3.2, interpretation is similar.

However, 8.6% of tornadoes in the cross-sectional sample impact multiple coun-

ties, so Coverage measures intensity of treatment rather than a binary treatment

indicator. The coefficient on Coverage is then approximately equal to the percent

reduction in death and injuries caused by having a NWR transmitter(s) broad-

casting over all impacted counties relative to none. Table 3.3 reports that having

a NWR transmitter(s) broadcasting over all impacted counties causally reduces

injuries by 38.6%, with a 95% confidence interval of (6.7%, 70.5%). Similarly, hav-

ing an NWR transmitters broadcasting over a county causally reduces fatalities

by 46.9%, with a 95% confidence interval of (5.2%, 88.6%). While these ranges

are again quite broad, it remains clear that NWR transmitters cause a statisti-

cally and economically significant reduction in the injuries and fatalities caused

by tornadoes. Applying the cross-sectional analysis to the panel sample yields

very similar estimates to the panel estimates, suggesting differences are driven by

external validity concerns rather than unresolved selection bias.

Because a tornado warning are often given with relatively short notice, it

is likely difficult for NWR users to move or protect physical capital such as homes
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after hearing a warning. It should be expected that while NWR may reduce

injuries and fatalities, it is unlikely to reduce property damage. As a robustness

check, property damage is examined as the dependent variable. Analysis focuses

on data beginning in 1996 because property damages are reported in more detail

at this point. Table 3.3 reports that having a NWR transmitter(s) broadcasting

over all impacted counties has no statistically or economically significant impact

on property damage under either specification.

3.5 Conclusion

This paper provides the first estimates of the causal impact of a natural

disaster warning system on fatalities and injuries. Two different identification

strategies found the presence of National Oceanic and Atmospheric Administra-

tion’s Weather Radio All Hazards (NWR) transmitters causally reduces deaths

and injuries by as much as 40% or more. While the 95% confidence intervals are

quite broad, it is clear that NWR transmitters cause a statistically and economi-

cally significant reduction in fatalities and injuries. These are results are consistent

with the widespread belief that the return on investment for disaster warning and

mitigation systems is quite large relative to other public health and safety invest-

ments.
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(a) Jan. 1, 1975

(b) Jan. 1, 1990

(c) Jan. 1, 2005

Figure 3.1: Counties Receiving NWR Broadcasts, by Date

Initial dates of Transmitter broadcasts provided directly by NOAA.
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Table 3.1: Summary Statistics, Full Sample (Cross Sectional Sample)

Coverage>0 Coverage=0
mean sd count mean sd count

Injuries 1.120948 16.51491 35197 2.253604 22.73667 23651
Fatalities .0668239 1.233654 35197 .1450679 1.948917 23651
Property Loss 2.776952 46.64212 11261 .4283062 1.643588 418
Length 3.087201 6.824699 35197 4.086531 10.62586 23651
Number of Counties Hit 1.10856 .4099218 35197 1.123843 .4879203 23651
Total Population of all Counties Hit 145314.1 433335.4 35197 79731.27 273864.4 23651
Detached House Count 1759899 1375400 35197 1263014 1062010 23651
Detached House Percent .6604029 .0695362 35197 .7476643 .0899188 23651
Attached House Count 111848.7 151275.9 35197 60603.4 102912.9 23651
Attached House Percent .0346784 .0271764 35197 .0309022 .0291586 23651
Two to Four Units Per Building Count 215433.7 213146.6 35197 176543.1 182093.2 23651
Two to Four Units Per Building Percent .074879 .0276843 35197 .1008895 .0464029 23651
Five or More Units Per Building Count 473474.7 543494.1 35197 210764.8 344002 23651
Five or More Units Per Building Percent .1406211 .0509969 35197 .0865989 .0550293 23651
Mobile Home Count 226188.8 215244.8 35197 65529.05 115990.3 23651
Mobile Home Percent .0855338 .0421663 35197 .0329253 .0297342 23651
Land Area of Largest County Hit 1027.963 1204.346 35197 1058.408 1224.175 23650
Land Area of Second Largest County Hit 627.3252 412.6389 3010 629.6503 344.764 2022
Land Area of Third Largest County Hit 545 369.5758 557 575.6165 271.7003 558
Number of Pre-Coverage EF3+ Tornadoes in 1.229885 .5851879 522 1.331807 .6971672 4587
County with most such Tornadoes
Number of Pre-Coverage EF3+ Tornadoes in 1.066667 .2537081 30 1.138249 .3590918 217
County with second most such Tornadoes
Number of Pre-Coverage EF3+ Tornadoes in 1 . 1 1.05 .2207214 40
County with third most such Tornadoes
Number of recorded Tornadoes in impacted County 43.74427 36.41301 35197 40.04744 29.6819 23651
with most recorded Tornadoes
Number of recorded Tornadoes in impacted County 28.12392 17.95259 3010 28.28586 18.59084 2022
with second most recorded Tornadoes
Number of recorded Tornadoes in impacted County 23.64991 14.58063 557 26.88172 17.67004 558
with third most recorded Tornadoes
Number of Recent Tornadoes in impacted County 5.283748 5.322252 30002 3.607905 3.225353 17432
with most Recent Tornadoes
Number of Recent Tornadoes in impacted County 3.128275 2.654836 2214 2.277682 1.883136 1156
with second most Recent Tornadoes
Number of Recent Tornadoes in impacted County 2.546218 2.055745 357 2.013793 1.606588 290
with third most Recent Tornadoes

This table contains data from the full sample of tornadoes in counties which eventually re-
ceive transmitters. Data from the NWS’ Storm Prediction Center’s national tornado archive,
NOAA records, the Decennial Census and intercensal population estimates, and the Historical
Census of Housing.



146

T
a
b
le

3
.2

:
S
u
m

m
ar

y
S
ta

ti
st

ic
s,

S
in

gl
e-

C
ou

n
ty

T
or

n
ad

o
es

(P
an

el
S
am

p
le

)

C
ov

er
ag

e>
0

C
ov

er
ag

e=
0

m
ea

n
sd

co
u
n
t

m
ea

n
sd

co
u
n
t

In
ju

ri
es

.4
86

33
86

4.
92

62
86

31
07

3
1.

16
19

63
14

.0
14

64
21

57
9

F
at

al
it

ie
s

.0
21

36
9

.3
29

90
59

31
07

3
.0

70
90

23
1.

31
84

9
21

57
9

P
ro

p
er

ty
L

os
s

.9
09

37
69

11
.3

31
92

92
94

.4
00

44
9

1.
61

54
76

39
2

L
en

gt
h

1.
91

48
79

3.
29

66
52

31
07

3
2.

13
41

4.
40

49
86

21
57

9
N

u
m

b
er

of
C

ou
n
ti

es
H

it
1

0
31

07
3

1
0

21
57

9
T

ot
al

P
op

u
la

ti
on

of
al

l
C

ou
n
ti

es
H

it
14

03
45

.5
43

54
84

.1
31

07
3

74
08

8.
55

26
71

18
21

57
9

D
et

ac
h
ed

H
ou

se
C

ou
n
t

17
74

79
4

13
95

13
3

31
07

3
12

80
91

5
10

85
77

1
21

57
9

D
et

ac
h
ed

H
ou

se
P

er
ce

n
t

.6
60

42
67

.0
68

77
74

31
07

3
.7

46
88

61
.0

89
66

55
21

57
9

A
tt

ac
h
ed

H
ou

se
C

ou
n
t

11
16

79
.9

14
83

08
.5

31
07

3
61

56
1.

04
10

32
56

.1
21

57
9

A
tt

ac
h
ed

H
ou

se
P

er
ce

n
t

.0
34

68
56

.0
26

74
05

31
07

3
.0

31
02

28
.0

29
13

05
21

57
9

T
w

o
to

F
ou

r
U

n
it

s
P

er
B

u
il
d
in

g
C

ou
n
t

21
31

04
.5

20
36

96
.6

31
07

3
17

58
25

.3
18

11
71

.3
21

57
9

T
w

o
to

F
ou

r
U

n
it

s
P

er
B

u
il
d
in

g
P

er
ce

n
t

.0
74

26
35

.0
26

79
59

31
07

3
.0

99
64

29
.0

45
58

56
21

57
9

F
iv

e
or

M
or

e
U

n
it

s
P

er
B

u
il
d
in

g
C

ou
n
t

47
76

27
53

84
06

31
07

3
21

62
33

.1
35

14
97

.5
21

57
9

F
iv

e
or

M
or

e
U

n
it

s
P

er
B

u
il
d
in

g
P

er
ce

n
t

.1
41

51
59

.0
50

18
18

31
07

3
.0

87
54

06
.0

55
35

38
21

57
9

M
ob

il
e

H
om

e
C

ou
n
t

22
91

84
.2

22
08

60
.8

31
07

3
68

17
3.

22
11

97
16

.9
21

57
9

M
ob

il
e

H
om

e
P

er
ce

n
t

.0
85

18
6

.0
41

80
49

31
07

3
.0

33
82

09
.0

30
26

97
21

57
9

L
an

d
A

re
a

of
L

ar
ge

st
C

ou
n
ty

H
it

10
43

.4
22

12
26

.7
66

31
07

3
10

78
.1

05
12

66
.7

97
21

57
9

N
u
m

b
er

of
P

re
-C

ov
er

ag
e

E
F

3+
T

or
n
ad

o
es

in
C

ou
n
ty

1.
21

55
84

.5
93

16
09

38
5

1.
32

44
27

.6
87

92
35

39
30

N
u
m

b
er

of
re

co
rd

ed
T

or
n
ad

o
es

in
im

p
ac

te
d

C
ou

n
ty

45
.1

25
64

37
.1

39
72

31
07

3
39

.9
76

78
29

.9
70

21
21

57
9

N
u
m

b
er

of
R

ec
en

t
T

or
n
ad

o
es

in
im

p
ac

te
d

C
ou

n
ty

5.
36

16
86

5.
45

00
39

26
61

7
3.

60
76

06
3.

24
17

06
15

80
3

T
h

is
ta

b
le

co
n
ta

in
s

d
at

a
fr

om
th

e
sa

m
p

le
o
f

si
n

g
le

-c
o
u

n
ty

to
rn

a
d

o
es

in
co

u
n
ti

es
w

h
ic

h
ev

en
tu

a
ll

y
re

ce
iv

e
tr

a
n

sm
it

te
rs

.
D

a
ta

fr
o
m

th
e

N
W

S
’

S
to

rm
P

re
d

ic
ti

on
C

en
te

r’
s

n
at

io
n

al
to

rn
a
d

o
a
rc

h
iv

e,
N

O
A

A
re

co
rd

s,
th

e
D

ec
en

n
ia

l
C

en
su

s
a
n

d
in

te
rc

en
sa

l
p

o
p

u
la

ti
o
n

es
ti

m
a
te

s,
a
n

d
th

e
H

is
to

ri
ca

l
C

en
su

s
of

H
ou

si
n

g.



147

T
a
b
le

3
.3

:
T

h
e

C
au

sa
l

Im
p
ac

t
of

N
W

R
T

ra
n
sm

it
te

rs

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

lo
g(

In
ju

ri
es

)
lo

g(
In

ju
ri

es
)

lo
g(

F
at

al
it

ie
s)

lo
g(

F
at

al
it

ie
s)

lo
g(

P
ro

p
er

ty
L

os
s)

lo
g(

P
ro

p
er

ty
L

os
s)

C
ov

er
ag

e
-0

.3
86
∗

-0
.4

02
∗

-0
.4

69
∗

-0
.7

75
∗

0.
90

7
0.

05
80

(0
.1

63
)

(0
.1

90
)

(0
.2

13
)

(0
.3

32
)

(0
.5

81
)

(0
.4

56
)

P
at

h
L

en
gt

h
X

X
X

X
X

X

P
op

u
la

ti
on

X
X

X
X

X
X

C
ou

n
ty

T
or

n
ad

o
H

is
to

ry
X

X
X

X
X

X

H
ou

si
n
g

S
to

ck
X

X
X

X
X

X

Y
ea

r
F

E
X

X
X

X
X

X

In
st

al
la

ti
on

O
rd

er
X

X
X

S
ta

te
F

E
X

X
X

N
u
m

b
er

of
C

ou
n
ti

es
H

it
X

X
X

C
ou

n
ty

A
re

a
X

X
X

C
ou

n
ty

F
E

X
X

X
N

58
49

2
43

57
8

57
73

8
16

52
4

11
64

8
92

14

C
ov

er
ag

e
is

d
efi

n
ed

as
th

e
p

er
ce

n
ta

ge
of

im
p

a
ct

ed
co

u
n
ti

es
w

h
ic

h
re

ce
iv

e
tr

a
n

sm
it

te
r

b
ro

a
d

ca
st

s
a
t

th
e

ti
m

e
o
f

th
e

to
rn

a
d

o
.

C
o
n
tr

o
ls

a
s

d
es

cr
ib

ed
in

S
ec

ti
on

3.
3.

2.

∗ p
<

0.
0
5,

∗∗
p
<

0.
0
1,

∗∗
∗
p
<

0.
0
0
1
.



Bibliography

Abler, David G., George S. Tollow, and G. K. Kripalani, Technical Change
& Income Distribution in Indian Agriculture, Westview Press, 1994.

Adhvaryu, Achyuta, A. V. Chari, and Siddharth Sharma, “Firing Costs
and Flexibility: Evidence from Firms’ Employment Responses to Shocks in In-
dia,” The Review of Economics and Statistics, 2013.

Agarwal, Sumit, Chunlin Liu, and Nicholas S Souleles, “The Reaction of
Consumer Spending and Debt to Tax Rebates–Evidence from Consumer Credit
Data,” Journal of Political Economy, 2007, 115 (6).

Altonji, Joseph G and Christina H Paxson, “Labor Supply Preferences,
Hours Constraints, and Hours-Wage Trade-offs,” Journal of Labor Economics,
1988, 6 (2), 254–276.

Auffhammer, Maximilian, Solomon M. Hsiang, Wolfram Schlenker, and
Adam Sobel, “Using Weather Data and Climate Model Output in Economic
Analyses of Climate Change,” Review of Environmental Economics and Policy,
2013, 7 (2).

Averett, Susan L, H Elizabeth Peters, and Donald M Waldman, “Tax
Credits, Labor Supply, and Child Care,” Review of Economics and Statistics,
1997, 79 (1), 125–135.

Balluz, Lina, Laura Schieve, Talmage Holmes, Stephanie Kiezak, and
Josephine Malilay, “Predictors for peoples response to a tornado warning:
Arkansas, 1 March 1997,” Disasters, 2000, 24 (1), 71–77.

Bank, The World and The United Nations, “Natural Hazards, Unnatural
Disasters: The Economics of Effective Prevention,” 2010.

Bartolome, Charles AM De, “Which Tax Rate do People Use: Average or
Marginal?,” Journal of Public Economics, 1995, 56 (1), 79–96.

Beegle, Kathleen, Joachim De Weerdt, and Stefan Dercon, “Migration
and Economic Mobility in Tanzania: Evidence from a Tracking Survey,” The
Review of Economics and Statistics, 2011.

148



149

Bhalotra, Sonia, “Fatal fluctuations? Cyclicality in infant mortality in India,”
Journal of Development Economics, 2010.

Björkman-Nyqvist, Martina, “Income shocks and gender gaps in education:
Evidence from Uganda,” Journal of Development Economics, 2013.

Blackburn, McKinley L., “The Relative Performance of Poisson and Negative
Binomial Regression Estimators,” Oxford Bulletin of Economics and Statistics,
2014.

Blau, David, “Child Care Subsidy Programs,” in Robert A. Moffitt, ed., Means-
Tested Transfer Programs in the United States, University of Chicago Press,
2003, pp. 291–364.

Blau, David M and Philip K Robins, “Child-care costs and family labor
supply,” The Review of Economics and Statistics, 1988, 70 (3), 374–381.
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