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ABSTRACT

A reasonable description of the hydraulic conductivity structure is a prerequisite for

modeling contaminant transport. However, formulations of hydrogeological inverse 

problems utilizing hydrogeological data only often fail to reliably resolve features at a 

resolution required for accurately predicting transport. Incorporation of geophysical data 

into the inverse problem offers the potential to increase this resolution. In this study, we 

invert hydrological tracer test data using the shape and relative magnitude variations 

derived from geophysical tomographic data to regionalize a hydrogeological inverse 

problem in order to estimate the hydraulic conductivity structure. Our approach does not 

require that the petrophysical relationship be known a-priori, but that it is linear and 

stationary within each geophysical anomaly. However, tomograms are imperfect models 

of geophysical properties and geophysical properties are not necessarily strongly linked

to hydraulic conductivity. Therefore, we focus on synthetic examples where the

correlation between radar velocity and hydraulic conductivity, as well as the geophysical 

data acquisition errors, are varied in order to assess what aspects of the hydraulic

conductivity structure we can expect to resolve under different conditions. The results 

indicate that regularization of the tracer inversion procedure using geophysical data 

improves estimates of hydraulic conductivity. We find that even under conditions of 
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corrupted geophysical data, we can accurately estimate the effective hydraulic 

conductivity and areas of high and low hydraulic conductivity. However, given imperfect

geophysical data, our results suggest that we cannot expect accurate estimates of the 

variability of the hydraulic conductivity structure.

1. INTRODUCTION 

Hydrogeological variability exerts a major control on the movement of solutes in the

subsurface, a variability that is often modeled using a blocked (e.g., Carrera and Neuman,

1986a, b, c) or a geostatistical approach (e.g., Hoeksema and Kitanidis, 1984). However, 

solving hydrogeological inverse problems using hydrogeological data only often leads to 

non-unique or overly smooth models. McLaughlin and Townley (1996) in their 

reassessment of the groundwater inverse problem of estimating variations in hydraulic 

conductivity from point measurements of hydraulic conductivity and head data note that a 

small number of other variables (such as solute concentration) might be more valuable 

than just adding additional head data. Also, they state that geophysics offer attractive

possibilities to supplement traditional borehole data. An example of the potential use of 

geophysics in hydrogeological applications is provided by Scheibe and Chien (2003), 

who perform flow modeling of tracer test data from Oyster, VA. They show that a 

hydraulic conductivity structure estimated using both radar velocity and hydraulic 

conductivity data significantly improved transport predictions compared to estimates

obtained only from hydraulic conductivity data. 

Although the potential benefits of including geophysical data in the estimation of 

hydrogeological properties have been demonstrated in recent years, there are many 

obstacles that prohibit the routine use of such data in a quantitative manner. On one hand, 
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we have minimally-invasive, densely sampled, and relatively cheap geophysical

measurements. On the other hand, we have (1) a lack of direct and universal relationships

between hydrogeological and geophysical properties, (2) space-varying resolution of 

geophysical methods, (3) inversion artifacts caused by measurement errors, and (4) 

smoothness of the inverted geophysical structure estimates that complicate the use of 

geophysical data in hydrogeological parameter estimation (e.g., Hubbard and Rubin,

2004). Most high-resolution hydrogeological parameter estimation research to date has 

been carried out using crosshole tomographic methods, most notably using seismic (e.g., 

Copty et al., 1993; Hyndman et al., 1994; Prasad, 2003), radar (e.g., Chen et al., 2001; 

Alumbaugh et al., 2002), and electrical resistance tomography (e.g., Daily et al., 1992; 

Daily et al., 2004). Examples of hydrogeological parameter estimation using tomographic

data include estimation of: the hydraulic conductivity and geometry of hydrofacies 

(McKenna and Poeter, 1995; Hyndman and Gorelick; 1996; Tronicke et al., 2004 (only 

geometry)); the hydraulic conductivity structure (Hubbard et al., 2001) and its spatial 

correlation (Hubbard et al., 1999); sediment geochemistry (Chen et al., 2004); moisture

content (Alumbaugh et al., 2002); fracture geometry (Slater et al., 1997); infiltration 

(Binley et al., 2002); and solute transport monitoring (Slater et al., 2002; Day-Lewis et 

al., 2003).  The majority of these studies have assumed that the relationship between a 

geophysical attribute estimate and a hydrogeological property is stationary, and is as well 

independent of data acquisition errors and inversion method. In reality, these conditions 

are rarely met because of two reasons. First, petrophysical relationships are typically non-

stationary. Although researchers have tended to define a single petrophysical model to 

represent the entire area of investigation, in reality these relationships may vary as a 
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function of hydrogeological heterogeneity. For example, Prasad (2003) illustrated using a 

real dataset how seemingly uncorrelated measurements of seismic velocity and hydraulic 

conductivity may have correlation factors as high as 0.9 if they are grouped into 

hydrogeologically similar units. This means that (1) the estimated petrophysical 

relationship may be unnecessarily weak if data from different hydrofacies are grouped 

together in the estimation process or (2) that a petrophysical relationship estimated using 

data from one type of hydrogeological unit may not be valid for other nearby units. The

second reason why conditions are not met is that the tomogram itself is an estimate of the

geophysical attribute rather than a precise visualization of the true geophysical structure. 

The tomogram is affected by many factors including the aspect ratio, data errors, the 

inversion procedure, and geological heterogeneity (Peterson, 2001; Alumbaugh et al., 

2002). The effects of the inversion procedure is illustrated by Day-Lewis and Lane

(2004), who show how a perfect linear relationship between radar velocity and hydraulic 

conductivity deteriorates during the inversion process, and that the tomograms are 

smooth estimates with a space-varying resolution. Inclusion of tracer test data in the 

hydrogeophysical estimation process may minimize the influence of inversion artifacts.

Furthermore, it allows the simultaneous estimation of the petrophysical relationship at the 

scale of interest. Hence, making borehole data less important and avoiding the 

assumption of scale invariance that is needed to apply petrophysical relationships 

developed at a smaller scale, e.g., through analysis of core samples in a laboratory. 

Hyndman et al. (1994) jointly inverted synthetic seismic and tracer test data in 2-D to 

estimate the hydraulic conductivity and geometry of hydrofacies. Hyndman and Gorelick 

(1996) extended this analysis to 3-D and three unique lithological classes and applied 
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their method to the Kesterson aquifer, Ca. They observed reasonably good data fit to the 

tracer test data. Hyndman et al. (2000) established a linear field scale petrophysical 

relationship between seismic velocity and hydraulic conductivity using tracer test data. 

Their relationship between seismic velocity and hydraulic conductivity had a correlation 

factor of 0.74, which can be compared with a relationship of 0.16 using borehole data. 

The tracer test data were better explained when the hydraulic conductivity realizations 

were performed using both hydraulic conductivity and seismic traveltime data compared

with only hydraulic conductivity data.

We propose a robust method to estimate the hydraulic conductivity structure using 

tracer data and tomograms without assuming a stationary petrophysical relationship, or 

stationary geophysical and hydrogeological structures. Our method is general, but we 

choose to focus on crosshole radar data. To regionalize the inverse problem, we invert 

hydrological tracer test data using the shape and relative magnitude variations given by 

geophysical attribute variations, which we refer to herein as anomalies, derived from 

tomographic data. The quality of the available data and the unknown petrophysical 

relationship will determine what aspects of the conductivity structure we can estimate.

Our estimation procedure has the following priorities in descending order: (1) to capture

the mean hydraulic conductivity; (2) to capture high and low hydraulic conductivity 

zones while avoiding the introduction of false zones; and (3) to capture the spatial 

variability of the hydraulic conductivity structure. Compared with Hyndman et al. (1994) 

and Hyndman and Gorelick (1996) we focus on radar data and at estimating a linear 

petrophysical relationship, and not at estimating values of geophysical attributes that 

delimit different hydrofacies. This is similar to what Hyndman et al. (2000) did using 
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seismic and tracer test data, even though we estimate different relationships in different 

parts of the model. However, the major differences compared with these studies are in the 

questions we ask, see below. 

We use a synthetic model with characteristics similar to the Oyster site (Hubbard et 

al., 2001) to simulate and invert a large number of data sets that have different degrees of 

correlation between radar velocity and hydraulic conductivity, as well as different errors 

in the acquisition geometry and zero-times. We also consider non-stationary 

petrophysical relationships. We address the following questions:

Under what conditions can we accurately estimate the petrophysical relationship

and can we accurately estimate different petrophysical relationships within the 

model?

How is the correlation between our estimated and true hydraulic conductivity 

structure affected by the tomographic inversion process, the correlation between 

geophysical and hydrogeological properties, and different geophysical data 

acquisition errors? 

Can we correctly estimate the variability of the hydraulic conductivity structure?

How is the estimated variability of the hydraulic conductivity structure affected 

by the correlation between geophysical and hydrogeological properties and by 

different geophysical data acquisition errors, such as borehole deviations or 

misplacement of transmitters and receivers?

Is a sequential deterministic inversion approach appropriate when the 

petrophysical relationships and the geophysical data have non-random errors?
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In section 2 we describe the inversion approach and define a set of evaluation criteria. 

In section 3 we evaluate a set of synthetic cases where we consider different correlation

factors of the petrophysical relationship and different types of geophysical data 

acquisition errors. Finally, in section 4 we use the results from section 3 to discuss and 

draw conclusions with regard to the questions raised above. We also provide an outlook 

towards methods that could address some of the shortcomings of the present method.

2. METHOD 

In this section, we describe the general ideas and assumptions behind our inversion 

approach, discuss the geophysical and tracer datasets that are used in the inversion 

procedure, and develop a set of evaluation criteria of the inversion results. 

Let us define Y=logK, where K (m/s) is the hydraulic conductivity and log refers to a 

base of 10. We consider isotropic hydraulic conductivities, we use Y to indicate a matrix

with all Y values in the flow model (i.e., Y is not a hydraulic conductivity tensor), and Y

to indicate the estimated hydraulic conductivity structure. Let V define the true 

geophysical structure and V our tomographic estimate. In this study, we consider radar 

traveltime data. However, we stress that the framework that we develop is general and 

could be applied to any geophysical data set. Let f(Y,V) denote the petrophysical 

relationship between Y and V, hereafter referred to as the intrinsic relation, and f(Y ,V )

denote the petrophysical relationship between Y  and V , hereafter referred to as the 

empirical relation. Let (Y,V) and (Y ,V ) denote the corresponding linear correlation 

factors. We use the terms intrinsic correlation and empirical correlation to refer to these 

linear correlation factors.

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

Our approach is based on the following assumptions:
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1. Major variations in the true hydraulic conductivity structure are associated with 

variations in our estimates of the velocity structure, but variations in the velocity

structure may not necessarily correspond to variations in the hydraulic 

conductivity structure; 

2. The variability within anomalous zones of the estimated velocity structure carries

hydrogeological information; and 

3. A stationary empirical linear relation is applicable within each anomalous zone. 

Our inversion approach can be summarized in the following steps: First, we define

geophysical anomalies and their internal variability; second, we fit tracer test data by 

perturbing initial hydraulic conductivity values at pixels that belong to the different 

geophysical anomalies in order to estimate a hydraulic conductivity structure; and finally 

we evaluate the estimated hydraulic conductivity model. A detailed description follows 

below.

2.1 Tomographic anomalies 

In this study, we rely on information obtained from high resolution geophysical

surveys, such as crosshole radar or seismic velocity datasets. In section 3, we will explore 

the use of information obtained from synthetic radar velocity fields of varying quality. In 

all cases, we assume that the radar wave raypaths are straight. For the inversion, we use 

the travel time associated with the difference between the pick of the first arrival energy

and what is called the “zero-time”, or the time associated with signal initiation. Our radar 

velocity contrasts are on the order of 10%; the straight-wave approximation is therefore

valid (Peterson, 1986; Gritto et al., 2004). We use the algebraic reconstruction technique 

(ART) for the tomographic inversion (Peterson et al., 1985). We discretize the 
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tomograms with uniform pixel sizes that are comparable to the expected resolution in

areas with the highest ray density. The number of iterations in the tomographic inversion

of synthetic radar data is optimized such that we minimize a weighted L1-norm V of the 

deviations between the true and the estimated velocity structure

,

ˆ

1 1

NZ

i

NX

j

ij

ij

ijij

V

VV
       (1)

where NZ and NX is the number of pixels in the z- and x-direction of the tomogram,

respectively;  contains the relative ray intensity at each pixel, where the highest ray

intensity is given a value of 1; and ij is 1 if the relative ray intensity for the 

corresponding pixel is above a certain threshold, otherwise it is 0. The choice of the

objective function is related to our hydrogeological inversion, which will be described in 

section 2.3. High-quality data allow many iterations and we can fit finer features of the 

data, whereas too many iterations for noisy data will fit the noise and thereby introduce 

inversion artifacts. Obviously, the optimal number of iterations is unknown in real 

applications, but the number of iterations is not too important as long as we are

reasonably close to the optimal number of iterations (Peterson, 1986). In real 

applications, the number of iterations is often qualitatively based on the estimated quality

of the data and the resulting tomograms.

A tomogram typically has a number of anomalous zones where the tomographic

attribute is quite distinct from surrounding areas. These different anomalous zones might 

correspond to different hydrofacies and be associated with different intrinsic relations. 

We use the following automated procedure to divide the tomograms into different 

anomalies:
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1. calculate the median  of the estimated velocity structure; medianV̂

2. assign +1 and -1 to all tomographic pixels that are above or below the median,

respectively, and that have a relative ray intensity above a certain threshold (in

our study 0.25); 

3. group the pixels into different anomalies u, such that no pixel has a neighboring 

pixel with the same type (+1 or –1) that does not belong to the same anomaly, and 

where each pixel is defined to have eight neighboring pixels (except at the 

boundaries);

4. discard anomalies that consist of few pixels (in our  study less than three); 

5. for each pixel, calculate the absolute deviation from the median and multiply this

value with the pixel’s relative ray intensity divided by the highest ray intensity 

within that anomaly ;
max

u

6. within each anomaly, assign 1 to the largest value calculated in Step 5, and scale 

all other pixels in that anomaly linearly to a value ij, which falls between 0 and 1; 

7. for each pixel, write the relative magnitude ( ij calculated in Step 6), its location (i

and j) and the anomaly number (u) to a file.

We scale the data with regard to the relative ray intensities in order to give less weight to

data with poor ray coverage, where we expect a poorer resolution and more inversion 

artifacts compared to areas where the relative ray intensity is close to 1 (e.g., Day-Lewis 

and Lane, 2004). We discard anomalies with few cells to keep the number of model

parameters as small as possible and because such small anomalies are likely to have an 

insignificant impact on flow and transport. Other criteria than deviations from the median

are necessary in certain cases. Figure (1a) illustrates typical delineations of radar 
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velocities into different anomalies; Figure (1b) illustrates the distribution of the relative

magnitudes ij within each anomaly.

We also explore an alternative approach to group the data, which is based on the 

assumption that the empirical relation is constant throughout the model domain. In this 

stationary case, we in effect have only one anomaly in the entire plane of investigation. 

To perform this, we: 

1. calculate the median of the estimated velocity structure; 

2. for each pixel, multiply the deviation from the median with the pixel’s relative ray 

intensity;

3. scale the data linearly such that the largest positive value is 1 and the median is 0; 

4. for each pixel, write the relative magnitude ( ij calculated in Step 3) and its

location (i and j) to a file. 

Figure (1c) illustrates the distribution of ij using this approach. This figure shows that 

the relative magnitudes are related to each other and that certain relative magnitudes are

negative when only one empirical relation is assumed. Note the difference to Figure (1b),

where several empirical relations are assumed, giving positive relative magnitudes only 

related to pixels in the same anomaly.

The next step is to carry out the hydrogeological inversion to estimate the relationship 

between the relative magnitudes and the hydraulic conductivity within each anomaly for

the case of multiple empirical relations, or for the whole model domain for the case

where we assume that the empirical relation is stationary. 

2.2 Model parameters 

The model vector m in the hydrogeological inversion is 
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,Nn1Uu1b l,...,l,...,l,,...,,...,,Ym      (2)

where Yb is a background hydraulic conductivity from which we calculate deviations; u

is the logarithm of the uth anomaly’s perturbation factor (always positive); ln is the nth

sampler’s logarithm of its loss factor (explained below). We calculate an estimated value

of hydraulic conductivity byijŶ

,11logˆ
ijbij -YY

ij
       (3)

where ij is an integer that identifies the estimated anomaly u for this pixel. Equation (3) 

allows us to handle both positive and negative empirical relations, it avoids negative 

hydraulic conductivities, and it provides unbiased sensitivity estimates when calculating 

the Jacobian. We note that our estimated hydraulic conductivity at pixel ij equals the 

background hydraulic conductivity if 
ij
is 1 or if if the relative magnitude ij is 0; 

values close to zero correspond to a low hydraulic conductivity, and large values

correspond to large values. However, equation (3) breaks down when we only seek one 

empirical relation. This occurs because certain relative magnitudes a

ij ij

ij are negative in that 

case. We reformulate the calculation of an estimated value of hydraulic conductivity for 

cases where the relative magnitude aij is negative such that 

,11logˆ
ijbij -YY

ij
       (4)

To account for these potential losses, each sampling location has a loss factor  with 

which the simulated mass fraction at time p and sampling point n is transformed to 

nl10

sim

pnX̂

,ˆ10'ˆ sim

pn

lsim

pn XX n (5)
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where is the transformed tracer mass fraction. The loss factors are the fractions of 

the tracer that reaches the well at a certain sampling depth. We introduce the loss factors 

because computing power restricts us from 3-D flow simulations. We note that the loss

factor is a good description of the loss of tracer due to flow paths that moves away from

the 2-D plane. However, inconsistencies occur if some tracer moves significantly out of 

the 2-D plane and at a later stage enter the plane again.

'X pn
ˆ

2.3 Tracer test data and inversion procedure 

The data vector d is defined as

,,...,,...,,..., obs

PN

obs

pn

obs

P1

obs

11 XXXXd        (6)

where  is an observed tracer mass fraction in an observation borehole. However, this

representation of breakthrough gives no sensitivity to small perturbations of an initial 

model if the simulated breakthrough curves do not overlap the observed breakthrough 

curves. Another problem is that there is no way to distinguish between early and late 

arrivals if the data are treated independently; this leads to local minima. We must either 

use a global optimization technique or apply time-consuming manual curve fitting 

procedure before we can apply a local optimization method.

obs

pnX

A remedy is to use a two-phase inversion procedure. The first step of this procedure 

involves fitting an approximation of the integral

p

0

t

t

dt           (7)

at different times tp and sampling locations, where t0 is the time of tracer injection. We

then define as
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p

i

i

obs

n1-i

obs

inobs

pn tt
XX

1

1 ),(
2

i       (8)

where is referred to as the observed cumulative concentration history, and tobs

pn i is the

time of the ith observation. The simulated concentration history  is defined in a 

similar fashion. This representation significantly decreases the number of local minima

because the cumulative concentration histories distinguish between early and late 

arrivals. An example of the cumulative concentration history is shown in Figure (2a), 

together with the initial response  of an initial model vector m

sim

pn

0 0 that is too far away

from the true model to be fitted using a localized optimization algorithm on the tracer

mass fractions only. Figure (2b) shows the tracer concentration X that corresponds to this 

cumulative concentration history. We assume that the errors in the concentration data are 

normally distributed with zero mean and a standard deviation of s. A good estimate of the

standard deviation for the cumulative concentration history at time p is cum

ps

.
1

p

i

1ii

cum

p stts         (9)

We justify this measure by the fact that the distance from the origin of a random walk has 

an expected value of the square root of the sum of the individual steps (Spitzer, 1976), 

and the accumulation of uncorrelated zero-mean Gaussian errors can be considered a 

random walk.

As the second phase of the hydrological inversion, we can now use our resultant 

model from the first phase as an initial model in order to fit the breakthrough data. There 

are several reasons why we shouldn’t use our estimated model from the first stage of the 

inversion as our final model. First of all, our linear interpolation (equation 8) of the 
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integral of the breakthrough data (equation 7) introduces errors; measurement errors at 

early times will have a large effect because they are included at each subsequent data

point and there is a low sensitivity to the tails. This means that we would expect some

improvement when we fit the concentration breakthrough data in the second phase of the 

hydrogeological inversion. Furthermore, we can better understand results from error and 

sensitivity analysis that are based on breakthrough data. 

We carry out the hydrogeological inversion using iTOUGH2 (Finsterle, 1999), which 

we have modified to accommodate the calculation of the cumulative concentration

histories (equation 8) and our hydraulic conductivity representation (equations 3 and 4). 

The forward model is calculated using the EOS7 module of TOUGH2 (Pruess et al., 

1999). We use the Levenberg-Marquardt minimization algorithm (Marquardt, 1963), 

where the Jacobian is calculated with forward finite difference quotients for the first few 

iterations and central finite difference quotients for the last few iterations. Our objective 

function is defined as 

P

i

N

j
1/2

pn

obs

pn

sim

pn

cum
S1

2

1

'
       (10)

for the first phase of the inversion and

P

i

N

j
1/2

pn

obs

pnpn

conc
W1

2

1

' XX
sim

       (11)

for the second phase, where S and W are diagonal matrices of the estimated error 

variances, i.e., either ( )cum

ps
2
 (see equation 9) or s

2
. We used 20 iterations for both the first 

and second phase of the hydrogeological inversion. The number was chosen based on our 

observation for this study that almost no improvement in the objective function is made 

after the first ten iterations.
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2.4 Definition of evaluation criteria 

We define a set of evaluation criteria to facilitate comparisons between different 

inversion results. The most obvious and typical criterion is the objective function 

(criterion 1), defined in equation (11). However, due to the non-uniqueness of 

hydrogeological inverse problems, this is often an insufficient measure. Synthetic 

modeling allows us to evaluate the performance of the method for different cases using 

eight additional criteria, defined below.

The pixel-to-pixel correlation between the estimated and true hydraulic conductivity 

structure is calculated for the region where the relative ray intensities are above the 

threshold; it is denoted by (Y ,Y) (criterion 2). The effective conductivity, Kˆ
eff in the 

direction of the layering of the true hydraulic conductivity structure is calculated using 

the second-order accurate results derived by Dagan (1989) given by 

,
22

1
3.21 2

GKK Yeff       (12)

where

and11
1

tan
1

1

1 2

1

22

2

eeee

e
     (13)

x

z

I

I
e , where Iz and Ix are the integral scales in the z- and x-direction, respectively, and 

KG is the geometric mean of the hydraulic conductivity. As a performance criterion we

also calculate Yeff-  (criterion 3), where our estimate of the effective hydraulic

conductivity is calculated using  and . In our synthetic examples in section 3, we 

cannot make a reliable estimate  and instead we used e. The reason behind this is that 

an estimate of the horizontal integral scale would be highly uncertain because I

effŶ

2

Y
ˆ ê

ê

XÎ x (1.5 
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m) is of the same order as the borehole separation (4.2 m). In the synthetic examples in 

Section 3, we estimated standard deviations in the case-studies using deviations between 

hydraulic conductivity values that are at least 1.5 m away (6 pixels) from each other in 

the vertical direction, an offset at which pixels are essentially uncorrelated (Iz is 0.3 m).

The estimated standard deviations are normalized by the true standard deviation for

comparison (criterion 4). 

Another measure that we use to assess the overall similarity between our estimated

and true hydraulic conductivity structures is based on the residuals  (criterion 5), 

defined as 

NZ NX

ijij YY
NXNZ 1i 1j

ˆ1
ŶY       (14)

and the L1-norm (criterion 6), defined as 

.ˆ1ˆ

1 1

i

NZ

i

NX

j

jij1 YY
NXNZ

L YY       (15)

We estimate the empirical relation within each anomaly u by the following weighted 

least-squares estimate

,ˆˆˆˆˆ
T1T

uuuuu yvvva         (16)

where  consist of uv̂
max

u

ij

medianij VV ˆˆ  for all that belong to anomaly u;  consist ofijV̂ uŷ

max

u

ij

bij YY ˆˆ  for all  that belong to anomaly u; and superscript T indicates transpose. 

Let us define the size 

ijŶ

u of anomaly u as 

,10
1 1

ˆˆ
u

ij

NZ

i

NX

j

YY

u

bij

        (17)
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where the value of u

ij is 1 if the corresponding pixel belongs to anomaly u, otherwise it

is 0. We now calculate a weighted norm of variations in a  (criterion 7) by ˆ

,

ˆˆ

)ˆˆ(
U

1u

u

U

1u

meanuu

meanu1

aa

aaL       (18)

where the estimated slope of the empirical relation is estimated by redefining

equation (16) for the whole model domain. We use the estimated slope of the empirical

relation normalized by the intrinsic relation as a performance criterion (criterion 8). 

Finally, we define a measure of how well the loss factors are fitted (criterion 9) 

meanâ

N

1i

,ˆ-
1

)ˆ-( iiii1 ll
N

llL        (19)

where denotes the ith estimated logarithm of the loss factor. il̂

3. SYNTHETIC EXAMPLES

In this section, we apply our methodology to estimate the hydraulic conductivity 

structure using tracer breakthrough and radar traveltime data for a set of synthetic 

examples. We assess the influence of different intrinsic relations and geophysical data 

errors on our estimates of the hydraulic conductivity structure. We generate the true 

hydraulic conductivity structure using an unconditional sequential Gaussian simulation

(Deutsch and Journel, 1998) with an exponential variogram model and a correlation 

structure similar to that at the Oyster, VA site (Hubbard et al., 2001). In this case, we 

used integral scales of Ix=1.5, Iz=0.3, and a standard deviation of Y=0.26 (see Figure 3a). 

We define the intrinsic relation by scaling the true hydraulic conductivity structure such 

that the lowest value corresponds to a velocity of 58 m/µs and the highest value to 64 
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m/µs, which is the range of velocity values observed at the Oyster site (Hubbard et al., 

2001). The intrinsic relation is: V(m/µs)=80.6+4.3Y. We can now use the intrinsic 

relation to map the true hydraulic conductivity structure into the true velocity structure. 

However, we are not only interested in cases where the intrinsic correlation is perfect. We

create a set of radar images  that have different intrinsic correlations,kV but have the 

same standard deviation and integral scales as the true velocity structure. We do this by

generating a new hydraulic conductivity structure Y0 that has the same standard deviation 

and integral scales as the true hydraulic conductivity structure but has no correlation with 

the true hydraulic conductivity structure. These two hydraulic conductivity structures 

allow us to calculate a set of hydraulic conductivity structures that have intermediate

correlations by 

),( 00k YYYY k         (20)

where k=0.0,0.1,…,1.0 and Y=Y1.0. For each k we use the intrinsic relation to map the 

hydraulic conductivity structure onto a velocity structure  (see Figure 4).kV

Hypothetical crosshole radar tomographic surveys of the different velocity structures 

are carried out using typical spacing of transmitters and receivers (i.e., 30 cm) and 

different data acquisition errors. We consider errors caused by:

1. incorrect assumptions of the zero-times; 

2. random errors in the horizontal position of the sources and receivers;

3. Inaccurate depth information and horizontal separation between boreholes; and 

4. dipping boreholes, which were assumed to be vertical.

The errors are chosen to represent ranges of typical errors for high-resolution, local scale 

surveys (J. Peterson, personal communication, 2004). We restrict the inversions of the
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radar data to rays with angles less than 45˚ because high angle ray-paths traveling 

through the earth is often distorted by faster rays traveling within the boreholes (Peterson, 

2001). The data are inverted using the ART technique, as described in section 2.1. We 

use each estimate of a velocity structure  to estimate the anomalous zones and their

internal variability as described in Section 2.1. The observed tracer data are obtained by 

simulating flow and transport through the true hydraulic conductivity structure (Figure

3a) from a 9.3 m line source using a slug test of 280 g bromide. The bromide

concentration is synthetically sampled with multi-samplers at every 0.9 m at one vertical 

borehole every 18 h during 19 days, with an error of 10 ppb. The observed tracer data are 

shown in Figure 2 and a conceptual model of the sampled domain is shown in Figure 3b. 

We can compare different estimates of the hydraulic conductivity structure with the true 

structure visually and by using the different evaluation criteria defined in Section 2.4.

kV̂

We first verified the implementation of our method by carrying out the 

hydrogeological inversion for the case where the true velocity structure (not an estimated

velocity structure) was used to estimate the anomalies (see Figure 1). We then fit the

tracer data within their error levels and recovered the intrinsic relation. A number of 

cases were subsequently considered (Table 1). We start by considering very small

geophysical data acquisition errors and a perfect intrinsic relation (see Case 1), which we

gradually degrade (see Cases 2-11). In Cases 12-20 we work with strong intrinsic 

relations and with different data acquisition errors.

Our first step is to estimate the velocity structure through tomographic inversion for 

these cases; the results are summarized below and given in Table 1. The anomalies are 

estimated following the procedures described in section 2.1. For many cases, the 
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estimated velocity structure yielded the same anomaly type (i.e., above or below the 

median) as the true velocity structure in approximately 90% of the pixels where the 

relative ray intensity is above 0.25. This is not the case when the intrinsic correlation 

decreases (i.e., k in equation 20 is less than 0.5) (see Cases 6-11), when we have large 

errors in the horizontal offsets of the boreholes (see Case 12), or when borehole

deviations exist (see Case 20). The numbers of anomalies are fairly variable between the

cases, varying from 3 to 12, with a median of 7. Fewer anomalies are estimated when we

consider realistic acquisition errors because we use fewer iterations in the tomographic

inversion to minimize the misfit of the observed and simulated travel times (see equation 

1). Hence, resolving less features leads to fewer anomalies. The next step is to carry out 

the hydrogeological inversion as described in sections 2.2-2.4. The hydrogeological 

inversion is carried out twice for each case: by estimating one empirical relation for each 

anomaly, or estimating only one empirical relation for the entire model domain. We use 

the terms “non-stationary” and “stationary” inversion to refer to these two types of 

inversions, respectively. We use subscripts NS and S to distinguish between the non-

stationary and stationary estimates of hydraulic conductivity. The results of the non-

stationary inversions tell us if we can estimate the intrinsic relation through variations 

within velocity structure anomalies and if we can estimate different intrinsic relations. 

The stationary inversions are used for comparison with the non-stationary inversions, but 

also to assess the discrepancies between empirical and intrinsic relations.

Below we describe five examples of how the hydraulic conductivity estimates

obtained using tracer and geophysical data are affected by (1) the tomographic inversion; 

(2) non-stationary intrinsic relations; (3) non-random errors in the intrinsic relations; (4) 
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geophysical data acquisition errors (but no errors caused by unknown borehole 

deviations); and (5) errors caused by unknown borehole deviations. Subsequently, we use

a graphical representation of certain evaluation criteria for a broad range of cases to 

illustrate the effects of structured noise in the intrinsic relation and errors in the 

geophysical data acquisition. 

3.1 Example 1: Tomographic inversion 

We consider the case where the intrincic relation is stationary, the intrinsic correlation

is almost perfect, and the geophysical data acquisition errors are unrealistically small 

(Case 2 in Table 1). We introduce a zero-time error of 0.33 ns and random location errors 

of the sources and receivers within the boreholes, modeled as independent realizations 

from a uniform distribution between –2 and 2 cm. This example illustrates the effect of 

sparse data sampling under very good data acquisition and investigation conditions.

First, our estimated velocity structure (Figure 5a) is a smooth estimate of the true 

structure (Figure 4a); it captures the major features in the central part of the model area 

but has problems in the upper and lower parts, as well as close to the boreholes, as has 

been reported by other researchers (e.g., Day-Lewis and Lane, 2004). The vertical 

experimental variograms z in Figure 5b show that the estimated velocity structure is 

considerably less variable than the true hydraulic conductivity structure, where the 

exponential variogram of the estimated velocity structure has been scaled using the 

intrinsic relation to be comparable. Using the obtained tomographic anomalies following

Section 2.1, tracer test data, and the procedure described in Section 2.3, we estimate the 

hydraulic conductivity structure. We compare our estimated hydraulic conductivity 

structures based on the non-stationary (Figure 5d) and stationary (Figure 5e) inversions. 
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Images of the residuals (Figures 5f and 5g) show that both models are good 

representations of the true hydraulic conductivity structure with essentially random errors 

in the central parts of the models. The estimate based on the non-stationary inversion 

accurately estimates the variability of the true hydraulic conductivity structure (see z in

Figure 5b), whereas, the stationary inversion results in an estimate that is even smoother

than the estimated velocity structure. This means that the empirical relation is non-

stationary even if the intrinsic relation is stationary. It also suggests that the non-

stationary inversion can amplify features in the smooth velocity estimate and create a 

more realistic hydraulic conductivity estimate than a simple mapping of the velocity 

estimate onto a hydraulic conductivity estimate through an intrinsic relation, even if this 

relation is known and has a perfect intrinsic correlation.

3.2 Example 2: Influence of non-stationary intrinsic relations 

The non-stationary inversion can potentially handle different intrinsic relations in 

different anomalies. We use the example discussed in Section 3.1 with one difference: the

hydraulic conductivity values of one of the anomalies (approximately between 9 and 10 

m depth and 0 to 3 m along the x-axis in Figure 3a) has been reflected around the median,

making the originally low hydraulic conductivity anomaly now hydraulically conductive. 

Our estimated velocity structure shown in Figure 6a is unchanged compared to the 

previous example (see Figure 5a). We repeat the hydrogeological inversion using the 

geophysical and tracer test data. Our estimation of the hydraulic conductivity structure

using the non-stationary inversion provides an accurate estimate of the new high 

hydraulic conductivity anomaly, whereas the stationary inversion models a low hydraulic 

conductivity zone. The variability of the true hydraulic conductivity structure is preserved 
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in the inversion estimates based on the non-stationary inversion (Figure 6b) whereas it is 

even smoother than the previous example (Figure 5c) for the stationary inversion (Figure 

6c). The residuals (Figure 6f) based on the non-stationary inversion still show a random 

pattern, whereas the residuals (Figure 6g) based on the stationary inversion shows a large

non-random error at the new hydraulically conductive anomaly.

3.3 Example 3: Weak intrinsic relation 

In this example, we consider more realistic correlations between geophysical 

attributes and hydraulic conductivity. Prasad (2003) report on correlation factors between 

seismic velocity and permeability as high as 0.9 although Pride (2004) describes how a

universal relationship is impossible. There is also no universal relationship between radar 

velocity and permeability (e.g., Annan, 2004) although site-dependent relationships have 

been found through links with porosity (Lesmes, 2004). This means that the correlation 

between radar velocity and permeability might be anything from almost perfectly 

correlated to not correlated at all. We use V5 as the velocity structure from which we 

calculate the radar travel time data (i.e., Case 6 in Table 1). Figure 7a shows our

estimated velocity structure for this case. We observe differences between the resulting

structure and our earlier estimate (Figure 6a). For example, the high velocity zone at 8 m 

depth in Figure 6a is less pronounced in Figure 7a. The vertical exponential variogram of 

our estimated hydraulic conductivity structure based on the non-stationary inversion is 

much too variable (Figure 7b), whereas the variability in the estimate based on the 

stationary inversion is even smoother than in illustration 1 (Figure 5c). The much too 

variable estimates based on the non-stationary inversion can also be seen on the residuals 

(Figure 7f) that are larger than the ones based on the stationary inversion (Figure 7g). In
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this case, the non-stationary inversion has the freedom to model different empirical

relations for different anomalies, and it will fit “noise” manifested by correlated 

deviations from a perfect intrinsic relation. We see that both the non-stationary (Figure 

7d) and stationary (Figure 7e) inversion estimates are severely deteriorated compared

with the true hydraulic conductivity structure (Figure 3a), but that we accurately model 

major regions with high or low hydraulic conductivity. 

3.4 Example 4: Effects of data acquisition errors 

It is now time to consider more typical acquisition errors. We use the example of 

example 1, but we have increased the zero-time error to 1 ns, incorporated a 5 cm error in 

the depth of the receivers, and a distance between the boreholes that is 10 cm shorter than 

what is assumed (i.e., Case 19 in Table 1).

ART inversion of the radar travel time data using the incorrect geometry information

yielded a velocity range of 60 to 66 m/µs, instead of the true range of 58 to 64 m/µs. If 

we used this estimate together with a relation established from theoretical considerations 

or laboratory experiments to estimate the hydraulic conductivity structure we would

create an estimate imaged around the wrong background hydraulic conductivity. Using 

this biased radar velocity structure, we again performed our hydrogeological inversion. 

The estimated hydraulic conductivity structure based on the non-stationary inversion 

(Figure 8d) and the one based on the stationary inversion (Figure 8e) are centered around

the background hydraulic conductivity. This example highlights the advantage of 

including geophysical and tracer data in an inverse procedure even if the geophysical 

dataset is corrupted.  The optimal number of tomographic iterations was 10, not 35 as in 

the previous examples. This explains why our estimated velocity structure is smoother
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(Figure 8b) compared to previous examples. Our estimates of the hydraulic conductivity 

structure do not resolve a lot of detail within the anomalies, but the anomalies are well 

placed, as evidenced by the residuals (Figure 8f and 8g). The estimate based on the non-

stationary inversion is more variable than the estimated velocity structure (see Figure 8b), 

whereas the estimate based on the stationary inversion is smoother (Figure 8c). We note 

that these geophysical data acquisition errors lead to smoothing but do not create any 

significant bias or inversion artifacts in our estimates of the hydraulic conductivity 

structure.

3.5 Example 5: Borehole deviations from vertical 

Our last example is the same as example 1, but with a 2% deviation of the right borehole

while it is assumed that the borehole is vertical (i.e., Case 20 in Table 1). Based on 

analysis of borehole deviation logs at hydrogeological study sites, deviated wellbores are 

a norm rather than an anomaly. Our current practice is to collect borehole deviation logs 

with all high resolution tomographic datasets to account for these potential errors. Under 

the error conditions in this example, our estimated velocity structure has too high radar 

velocities and it is severely distorted, e.g., the high velocity zone at the bottom of the 

tomogram in Figure 9a. Our estimate of the hydraulic conductivity structure based on the

non-stationary inversion has by coincidence the correct variability (Figure 9b), but it is 

not very similar to the true hydraulic conductivity structure (Figure 9d and 9f). Our

hydraulic conductivity estimate based on the stationary inversion is an extremely smooth

estimate (Figure 9c and 9e) that gives smaller residuals (Figure 9g) than the non-

stationary inversion (Figure 9f). We see that unknown borehole deviations have large 

consequences for our estimation of the hydraulic conductivity structure, and that 
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deviation logs are needed if any attempts to estimate the hydraulic conductivity structure

from an estimated velocity structure should be made.

3.6 Evaluation criteria scores 

In the examples presented above we qualitatively illustrated our method’s sensitivity to 

different effects that degrade our estimates of the hydraulic conductivity structure. In this 

section, we use the evaluation criteria defined in Section 2.4 to identify what happens 

when the intrinsic relation degrade or if we introduce errors in the geophysical data 

acquisition (see Table 1). We will also provide figures to illustrate a subset of the criteria

defined in section 2.4, including the objective functions (criterion 1), the empirical

correlation (criterion 2), the estimated variability (criterion 4), and the mean slope of the 

empirical relation (criterion 8). Although all criteria are reported in Table 2 for all case 

studies, we will describe these criteria scores in detail and the figures provide a much

better overview.

As shown in Figure 10a, objective functions (equation 11, criterion 1) of the 

stationary inversions increase approximately linearly on a log-scale when we decrease the 

intrinsic correlation, while we fit the data equally well for the non-stationary inversions. 

This indicates over-parameterization of the number of independent empirical relations in 

the non-stationary inversions. The geophysical data acquisition errors have as large 

effects as a low intrinsic correlation, where the largest effects are caused by large 

horizontal errors in the wellbore locations and unknown borehole deviations.

The empirical correlation (criterion 2) decreases approximately linearly (Figure 10b)

with decreases in the intrinsic correlation. The highest empirical correlations are observed 

for the stationary inversions and the highest value is 80%, showing the loss of 
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information caused by insufficient data sampling and the inversion process that degrade 

our estimate even if the intrinsic correlation is perfect and data acquisition errors are

small. The empirical correlations decrease when we add geophysical data acquisition

errors. For example, the 2% error in the borehole deviation (case 20) decreases the 

empirical correlation to the same level as when the intrinsic correlation is 0.6 and almost 

no geophysical data acquisition errors are considered. Obviously, the intrinsic correlation 

is not under our control and it provides an upper limit to the empirical correlation. A 

careful geophysical survey may result in empirical correlations close to this upper limit

but even small acquisition errors give significantly lower correlations with a resulting

decrease in the usefulness of our estimates.

The effective hydraulic conductivity is well estimated (Table 2) with mean residuals 

(equation 12, criterion 3) of 0.052 and 0.022 for the non-stationary and stationary 

inversions, respectively, showing that the tracer test data constrain the solution around the 

effective hydraulic conductivity; thus, decrease the effects of inaccurate well locations.

The non-stationary inversions give accurate estimates of the variability (criterion 4) 

(Figure 10c) when the intrinsic correlation is high, and it is increasingly too variable 

when the intrinsic correlation decreases. The estimates based on the stationary inversion 

are too smooth, starting at 75% of the true variability and decreasing linearly to 40% of 

the true values. Geophysical data acquisition errors give smoother hydraulic conductivity 

estimates because we use less iterations in the tomographic inversion in order to 

minimize the misfit of observed and simulated travel times, see equation (1).

The absolute values of the residuals (equation 14, criterion 5) have medians of 0.040 

and 0.050 for the non-stationary and stationary inversion, respectively, whereas the L1-
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norm (equation 15, criterion 6) have medians of 0.23 and 0.17 for the stationary and non-

stationary inversions, respectively.

The stationary inversions give approximately the same slope of the empirical relation 

(criterion 8) as the intrinsic relation and the non-stationary inversions have higher values 

that increase as the intrinsic correlations decrease; geophysical data acquisition errors

give lower values, i.e., smoother structures. Variations in our empirical relations are 

substantial (see Table 2, criterion 7) for all cases showing that we cannot estimate

intrinsic relations from variations within anomalies of the velocity structure. The 

variations increase as the intrinsic correlations decrease and as the geophysical data

acquisition errors get more severe.

Furthermore, we see that the logarithm of the loss factor (equation 18, criterion 9) is 

well estimated with a median of 2.75% and 2.3% for the non-stationary and stationary 

inversion, respectively, meaning that the perturbation factors and the loss factors are 

weakly correlated. 

These results indicate that only our objective function (equation 11, criterion 1) is an 

insufficient measure of model performance and that it is very difficult too distinguish

errors caused by geophysical data acquisition errors or by a low intrinsic correlation and, 

therefore, to assess the quality of our estimated hydraulic conductivity structure. 

Laboratory measurements of core samples, geophysical borehole logs, or flow meter data 

may be highly useful to assess the validity of field estimates.

4. DISCUSSION AND CONCLUSIONS

Our method uses the internal variability of tomographic anomalies to regularize a

hydrogeological inverse problem, which we solve using tracer test data in order to 
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estimate the hydraulic conductivity structure. Our procedure simultaneously yields the 

empirical relation between the geophysical attributes and hydraulic conductivity. Our 

focus in this study is not on the method’s applicability in a real field setting, but rather on 

how the estimates of the hydraulic conductivity structure obtained from tracer test data

alone can be improved by incorporating geophysical information and how the estimates

are affected by the correlation between the geophysical (i.e., radar velocity) and the 

hydrogeological properties (i.e., hydraulic conductivity), as well as geophysical data 

acquisition errors. We apply our method to a set of synthetic examples where we vary the 

intrinsic relation and the geophysical acquisition errors. Our primary findings are 

summarized as: 

1. Geophysical information can constrain hydrogeological inversion, in this case 

through regularization, making the inverse problem better posed. 

2. We can accurately estimate the hydraulic conductivity structure if a good intrinsic

relation between geophysical and hydrogeological parameters exists and the 

geophysical data acquisition errors are very small, even if the identified anomalies

have different intrinsic relations (see Figure 6). 

3. The incorporation of tracer test data assure that we can accurately estimate the 

effective hydraulic conductivity even if the intrinsic relation is weak and 

geophysical data acquisition errors are large (see criterion 3 in Table 2). 

4. The correlation between the true hydraulic conductivity structure and our 

estimates decrease linearly to zero as we decrease the quality of the intrinsic 

relation (see Figure 10b). 
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5. Geophysical data acquisition errors significantly decrease the correlation between 

the true hydraulic conductivity structure and our estimates for a given intrinsic 

relation (e.g., half of the correlation is lost if we have an unknown borehole 

deviation of 2%). 

6. The non-stationary inversion estimates have the correct variability when the 

intrinsic relation is high and geophysical data acquisition errors are low, but it is 

too variable when the intrinsic relation decreases and it is too smooth when 

geophysical data acquisition errors are more reasonable. The stationary inversion 

always yields estimates that are too smooth and that get even smoother as the 

intrinsic relation decrease and the geophysical data acquisition errors increase. 

7. The non-stationary inversion is over-parameterized, which is manifested by good 

data fit even if the intrinsic relation is low and the geophysical data acquisition 

errors are large (see Figure 10a). This shows that it is in practice difficult to

estimate several intrinsic relations given this amount of data. 

The results presented in this work indicate an upper limit of what could be obtained in 

a real field setting for a given petrophysical relationship and geophysical data acquisition 

errors. This is so because we disregard many sources of errors. For example, we assume a 

linear petrophysical relationship that is not physically-based; we disregard effects of the 

ray approximation; we neglect 3-D effects of the flow field and hydrogeological 

structures smaller than the pixel size; we assume unreasonably small random errors in the 

hydrogeological data acquisition; and we assume that the test design is perfectly known. 

We have not considered different designs of the tracer test experiment, but we expect the 

results to be general. Clearly, we need the tracer to sample a large portion of the aquifer
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making a line source or several point sources needed. Furthermore, we have not 

attempted inversion of the tracer test data without regularization through the tomograms.

This would invoke assumptions that we don’t want to make, a layered structure or a 

known correlation structure. However, an example of what we would expect is given by 

the non-stationary inversion of case 12, where the intrinsic correlation is zero. However, 

such a comparison is not completely fair because borehole information would probably

have been utilized if hydrogeological inversion using hydrogeological data only would 

have been attempted.

We refer to this method as a sequential deterministic inversion approach because we 

perform the geophysical inversion independent of the hydrogeological data and we cast 

the inverse problem in a deterministic framework. The presented results give an 

indication of what information we can retrieve from a tomographic estimate and tracer 

test data given certain information of data errors and the strength of the petrophysical

relationship. In practice, we should realize the limitations of our estimate and be careful

in using them (e.g., not assume that we can make an accurate inference of the correlation

structure of the hydraulic conductivity structure under most circumstances).

Alternatively, future work can focus on casting the problem in a stochastic framework

where we parameterize the different types of errors, the uncertainty in the petrophysical 

relationship, and preferably estimate the hydraulic conductivity and radar velocity 

structure simultaneously to allow information sharing. However, the fundamental

problems of estimating data errors and the uncertainty in the petrophysical relationship 

remain regardless of our approach to inversion. 
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Figure and Table captions 

Figure 1. Illustration of the classification of anomalies u (a) and their relative magnitude

variations ij (b) for the case where we assume several empirical relations and (c) for 

the case where we only assume one empirical relation.

Figure 2. We fit the cumulative concentration histories  (a) measured at several

sampling depths in a borehole to get a better starting model to fit the concentration

histories  (b). We also show examples of cumulative concentration histories 0 for an 

initial model (a). Each color represents the simulated data at a specific sampling

location.

Figure 3. Our true hydraulic conductivity structure Y is shown in (a). We get different 

estimates of the hydraulic conductivity structure Y  by inverting tracer test data from a 

line source (b) with models constrained by the shape of the anomalies and their relative

magnitude variations

ˆ

using different estimates of radar velocity structures that are 

obtained from hypothetical radar tomographic surveys between the two boreholes. We 

carry out these surveys for a set of radar velocity structures that have different 

correlations between radar velocity and hydraulic conductivity. Furthermore, we

consider errors due to inaccurate zero-times of the measured travel times and errors in

the acquisition geometry.

Figure 4. We calculate a series of synthetic velocity structures starting from one having a 

perfect linear correlation with the true hydraulic conductivity structure. The intrinsic 

correlation is then gradually decreased (b-j) by adding additional correlated structures

until the correlation is non-existent (k).
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Figure 5. Case study where the intrinsic correlation is perfect and small geophysical data 

acquisition errors exist (Case 1 in Table 1). The estimated velocity structure (a) has a 

variability that is lower than the true hydraulic conductivity structure, indicated by the 

vertical variograms Z of the estimated velocity, the true hydraulic conductivity, and the

estimated hydraulic conductivity structure of the non-stationary inversion (b), Z of the

estimated hydraulic conductivity structure based on the stationary inversion (c) is also 

shown. Our estimate based on the non-stationary inversion (d) has the correct 

variability (see (b)) and it is more variable than the estimate based on the stationary

inversion (e). The residuals (f) and (g) for the two types of inversions show that there is 

no bias in the central part of the models.

Figure 6. The case where one anomaly has a different intrinsic relation, approximately at 

9 to 10 m depth and 0 to 3 m along the x-axis. The estimated velocity structure (a) is the 

same as in Figure 5a. The vertical semi-variograms of the estimated velocity structure,

the true hydraulic conductivity structure, and the estimate of the hydraulic conductivity 

structure based on the non-stationary inversion (b), and of the stationary inversion (c) 

show that the estimate based on the non-stationary inversion again give a correct 

estimate of variability and that the one based on the stationary inversion is smooth. The

estimate based on the non-stationary inversion (d) accurately models the new 

conductive anomaly, whereas the stationary inversion (e) has an incorrect low hydraulic 

conductivity zone at the same location as the new conductive anomaly. The residuals of 

the non-stationary inversion (f) are random in the central part of the model whereas the 

residuals of the stationary inversion (g) have a clear bias at the new conductive 

anomaly.
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Figure 7. Example where the intrinsic correlation is 0.63 (case 6 in Table 1). The 

estimated velocity structure (a) is different from the one in illustration 1 (see Figure 5a). 

The vertical semi-variograms of the estimated velocity structure, the true hydraulic 

conductivity, and the estimate based on the non-stationary inversion (b), and the 

stationary inversion (c) show that the non-stationary inversion gives a too variable 

estimate and the stationary inversion gives a too smooth estimate. Our residuals based 

on the non-stationary (d) and stationary inversions (e) are only approximate

descriptions of the true hydraulic permeability structure, seen by the residuals (f and g)

that are large, especially for the non-stationary inversion. 

Figure 8. The case where we have introduced more realistic errors in the zero-times and 

the borehole geometry even though no borehole deviations are considered (see case 19 

in Table 1). The tomogram (a) captures the major features but it is smoother than the

earlier examples and the velocities are higher. The vertical semi-variograms of the

estimated velocity structure, the true hydraulic conductivity, the estimate based on the 

non-stationary inversion (b), and the stationary inversion (c) show that both estimates

of the hydraulic conductivity structure underestimates the variability, but that the non-

stationary inversion estimate is more variable. Our estimates of the hydraulic 

conductivity structure based on the non-stationary (d) and stationary (e) inversion 

capture the main features of the true structure. The corresponding residuals (f and g) 

have some non-random behavior, especially for the non-stationary inversion. 

Figure 9. We consider an unknown 2% borehole deviation (see case 20 in Table 1). The

tomogram (a) is dominated by the unknown deviation, causing too high velocities and a

trend of higher velocities with depth. The vertical semi-variograms of the estimated
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velocity structure, the true hydraulic conductivity, the estimate based on the non-

stationary inversion (b), and the stationary inversion (c) show that the non-stationary 

inversion estimate, probably by chance, models the variability accurately and that 

stationary inversion estimate is extremely smooth. The corresponding hydraulic 

conductivity estimates are (d and e) and the residuals (f and g) are large and show non-

random behavior. 

Figure 10. Criteria scores as a function of the intrinsic correlation, starting with perfect

correlation for the cases where we change the intrinsic relation (Cases 1-11 in Table 1),

where + specifies results of the non-stationary inversion and * specifies results of the 

stationary inversion. Colored arrows (solid for the non-stationary and dashed for the 

stationary inversions) indicate the criteria scores for a few representative cases where 

we consider different data acquisition errors (Cases 12-13, 15-17, and 19-20 defined in 

Table 1) and where the intrinsic correlation is perfect. We show (a) the normalized

objective functions (criterion 1); (b) the empirical correlations (criterion 2); (c) 

estimated variability (criterion 4); and (d) the slopes of the empirical relation (criterion

8).

Table 1. Intrinsic correlations and data acquisition errors used in the different cases. The 

columns specify the values of k (see equation 20), the random horizontal errors of the 

transmitters and receivers within the boreholes, the error in the depth information of the 

receivers, errors in the horizontal separation of the wellbores, errors in the zero-times,

percent deviation from vertical in one of the boreholes, the percentage of the model that 

has the correct anomaly type, and the number of anomalies U defined given the

procedure described in Section 2.1.
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Table 2. We give the criteria scores defined in section 2.4 (Cr1-Cr9) for all Cases and for

both the non-stationary (NS) and stationary (S) inversion estimates of the hydraulic 

conductivity structure.
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Case k Max. horizontal random

deviation within

boreholes (cm)

Error in the

depth of

receivers  (cm)

Error in the

horizontal

separation of

wellbores (cm) 

Zero time error

(ns)

Deviation from

vertical (%) 

Correct

anomaly

type (%) 

U

1 1. 2 0 0 0.33 0 90 7
2 0.9 2 0 0 0.33 0 90 7

3 0.8 2 0 0 0.33 0 93 7

4 0.7 2 0 0 0.33 0 92 6

5 0.6 2 0 0 0.33 0 90 8

6 0.5 2 0 0 0.33 0 84 10

7 0.4 2 0 0 0.33 0 76 11

8 0.3 2 0 0 0.33 0 70 9

9 0.2 2 0 0 0.33 0 61 9

10 0.1 2 0 0 0.33 0 56 12

11 0.0 2 0 0 0.33 0 49 10

12 1.0 2 0 -10 0.33 0 90 6

13 1.0 2 0 -50 0.33 0 77 7

14 1.0 2 -1 0 0.33 0 89 8

15 1.0 2 -5 0 0.33 0 91 4

16 1.0 2 -15 0 0.33 0 83 3

17 1.0 2 0 0 1 0 90 5

18 1.0 2 0 0 3 0 92 8

19 1.0 2 -5 -10 1 0 90 5

20 1.0 2 0 0 0.33 2 74 4

Table 1 

Linde et al. 
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Case
conc/

perfect

conc

10-3 Cr1

(Y, V )ˆ

Cr2
efeff YY ˆ

Cr3

Y/
Ŷ

 Cr4 

YY, ˆ

 Cr5 

YY ˆ,L1

Cr6

ˆ/bb

Cr7

)ˆˆ( meanu1 aaL

Cr8
)ˆ-( ii1 llL

Cr9
1NS 3.0 0.62 -0.022 97 -0.028 0.17 3.49 0.81 0.016

1S 29 0.85 -0.007 74 -0.034 0.13 0.87 - 0.014

2NS 7.2 0.72 -0.009 90 -0.021 0.16 2.86 0.39 0.014

2S 31 0.85 -0.009 74 -0.037 0.13 0.88 - 0.014

3NS 41 0.50 -0.026 114 -0.011 0.24 5.69 1.07 0.018

3S 37 0.84 -0.031 74 -0.061 0.14 0.89 - 0.029

4NS 37 0.70 -0.051 87 -0.071 0.19 3.48 0.46 0.027

4S 50 0.81 -0.015 70 -0.047 0.14 0.91 - 0.015

5NS 26 0.56 -0.044 107 -0.040 0.22 3.51 0.46 0.035

5S 68 0.75 -0.022 71 -0.053 0.16 0.91 - 0.017

6NS 21 0.44 -0.054 130 -0.022 0.24 4.46 1.84 0.042

6S 110 0.65 -0.029 68 -0.064 0.18 0.87 - 0.021

7NS 6.6 0.37 -0.082 106 -0.084 0.27 6.26 4.6 0.072

7S 160 0.49 -0.039 65 -0.077 0.20 0.89 - 0.024

8NS 33 0.17 -0.088 1.31 -0.059 0.35 5.77 1.75 0.054

8S 220 0.29 -0.046 0.63 -0.087 0.23 0.94 - 0.028

9NS 32 0.03 -0.163 1.84 -0.062 0.41 21.5 4.51 0.079

9S 430 -0.06 -0.000 0 -0.043 0.26 -0.90 - 0.047

10NS 180 0.12 -0.032 1.37 0.0124 0.36 -7.30 4.35 0.068

10S 370 0.11 -0.004 0.43 -0.053 0.24 -0.77 - 0.043

11NS 290 0.13 -0.045 1.09 -0.039 0.34 -5.19 1.66 0.046

11S 260 0.11 -0.038 0.38 -0.094 0.21 0.82 - 0.024

12NS 16 0.59 -0.041 0.89 -0.057 0.20 2.01 0.22 0.030

12S 42 0.79 -0.022 0.85 -0.040 0.15 0.99 - 0.019

13NS 146 0.43 -0.132 1.76 -0.040 0.37 12.5 3.29 0.042

13S 260 0.56 -0.038 0.38 -0.094 0.21 0.82 - 0.024

14NS 20 0.65 -0.002 0.28 -0.019 0.18 2.77 1.11 0.021

14S 42 0.84 -0.012 0.71 -0.042 0.14 0.88 - 0.014

15NS 10 0.80 -0.015 0.22 -0.039 0.16 1.47 0.18 0.019

15S 11 0.83 -0.000 0.68 -0.032 0.14 0.93 - 0.016

16NS 28 0.67 0.002 0.17 -0.035 0.18 1.00 6.23 0.025

16S 22 0.72 0.011 0.60 -0.027 0.17 1.29 - 0.022

17NS 20 0.76 0.006 0.20 -0.021 0.17 2.37 0.72 0.013

17S 34 0.84 -0.009 0.71 -0.039 0.14 0.90 - 0.014

18NS 22 0.38 -0.106 0.32 -0.087 0.24 8.97 3.58 0.028

18S 41 0.81 -0.010 0.65 -0.044 0.15 1.04 - 0.015

19NS 18 0.78 -0.034 0.76 -0.063 0.17 1.76 0.51 0.015

19S 19 0.80 -0.032 0.50 -0.080 0.17 0.77 - 0.021

20NS 66 0.41 -0.092 1.02 -0.100 0.27 2.38 1.10 0.021

20S 100 0.51 -0.073 0.30 -0.140 0.23 0.33 - 0.026

Table 2 

Linde et al. 
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