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Abstract

A deep problem in cognitive science is to explae t
acquisition of abstract semantic relations, suclargsnymy
and synonymy. Are such relations necessarily pararo
innate representational endowment provided to hsfMar,
is it possible for a learning system to acquirdralos relations
from non-relational inputs of realistic complexifgvoiding
hand-coding)? We present a series of computational
experiments using Bayesian methods in an effoleéamn and
generalize abstract semantic relations, using @ssrpairs of
specific concepts represented by feature vectorated by
Latent Semantic Analysis.

Keywords: Bayesian inference; induction; generalization;
abstract relations; machine learning; LSA

Introduction

An intelligent human adult can recognize that tbeaepts
day andnight are related in much the same wayhasand
cold, but not in the same way day andhour. This ability

to appreciate abstract semantic relations is furtaah to
analogical reasoning, and is arguably a core coegoaof
what is special about the human mind (Penn, Holy&ak
Povinelli, 2007). But how are such abstract reftatio
acquired? If they are learned, how this could deeved is
far from obvious. On the face of it, no perceptoalother
features seem to be available to represent suctraabs
relations as antonymy, synonymy, or superordination
Almost by default, it might be assumed that abstrac
relations must be innate (Fodor, 1975).

Research on cognitive development has clearl
established the phenomenon aktational shift(Gentner &
Rattermann, 1991), such that children process ioekat
more effectively with increasing age. In particulehildren
move from a focus on global similarities of objedts
similarities defined by specific dimensions, sushsize or
color (Smith, 1989; Smith & Sera, 1992). Less i©wWkn
about the development of abstract relations thamsget
further divorced from perceptual similarity (see Ifidid,
1993). Analyses of corpora of child speech havatitied
systematic use of antonyms by children aged 2-5syea
(Jones & Murphy, 2005). Children aged 6-7 yearsnaoee
accurate in detecting the falsity of sentences sigcBome
valleys are mountaings compared t@ome valleys are
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lakes where the former sentence type contains an
antonymous pair (Glass, Holyoak & Kossan, 1977),
suggesting that some sense of antonymy is avaifaine to
any formal instruction about this concept.

The Problem of Relation Learning

Regardless of whether abstract relations are ldawre
mature over the course of development, there islaubt
that adults can distinguish among instances ofiogla such
as antonymy versus synonymy. In the present papgyose
the following computational problem: Given as irgpw
modest number of pairs of concepts that instantate
abstract relation (e.g.day-night and hot-cold which
instantiate antonymy), is it possible to extract
representation of the abstract relation that may the used
to accurately classify novel instantiations (e.galley-
mountain)?

Most recent connectionist models of relation laagn
(e.g., Rogers & McClelland, 2008) have focused ba t
acquisition of small numbers of specific input-auttpairs
(e.g., “canary” + “can™ “fly"), but have not demonstrated
the capacity to generalize to novel inputs disgimib the
training items. In contrast, achieving such gerneatibn is
the central aim of our project. Moreover, an impaott
constraint we imposed is that inputs to the leayrapstem
could not be hand-coded, as has been commonplaite in
literature on computational models of analogy asldtion
learning. For example, Doumas, Hummel, and Sandhofe
2008) showed how structured relations correspandin
elative adjectives such d@sgger-thancan be extracted by
bottom-up mechanisms given inputs consisting of
unstructured feature vectors of objects. Howevémr t
modelers ensured that “size” features were prespming
the relatively small feature set defining the irgpuietting
the stage for selecting these size features to torpart of
the to-be-learned relational predicate. While pefual
relations may indeed be derived from the percepgaslires
of objects, this assumption is unwarranted for nadystract
relations, for which hand-coding of features is reveore
problematic. In addition, realistic semantic repraations
would seem to require very large numbers of feature
raising all the difficulties associated with seafoha large
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representational space. Learning models that arelajged A General Framework for Relation Learning
I:%rallzwaélé O??Qgélt?r:lo[]eq Alr?gtuht:r a; br((a)ztchpq:)teone th Here we report a preliminary investigation of riglat
enge 1g up AN PP fzy learning based on two variants of the same baamdwork.
relations is to combine statistical techniques sittuctured Our goal is to learn an explicit representatioraa®lation
;i%r\z;ejn:gﬁrsé Feosriaer:(?(r;::?llr?i' ﬁg?gaing L?g?g%?hgﬁrgg from a training setS, consisting of pairs of concepts that
Y q P each instantiate the relation. We assume that @idec

ﬁ:{:;:uorf dsetrci)nlesr;lhrgl?;ggslnZﬁtt?&fu?gg;?;mbﬁz ?r?g regarding whether a pair of concepts instantiatearticular
gs. ke relation R is determined by a representation that includes

s%/stetm by Aﬂﬁlumr;]g tr? grammarh that gt? nerates r‘;l';‘rss"bboth the basic features of the input concepts alditianal
structures. oug 'S approach may be apprtp features that the model automatically derives fthebasic

:ﬁlea%)gdsetlr;?t i??g/i(i \(':Vlilérdterfl;ei?gg%'?gg;ﬁ;g{g:{ﬁ%tt% feat_ures. The full input representation is comm_tisé the

the full ranée of “messy” semantic relations. Indisidn basic features of two concept& and .B' which are

since the postulated grammar of relations. is nselﬁt represented by LSA vectors, and_ of denved_featmr(ats,

learned, rather strong nativist assumptions remain B) gomputed fro_mA andB (see Fig. 1). In this study the
' ' derived features included two types, product festAB =

Learning Relations from Unstructured Inputs [AB. AB -+ AR] and absolute difference features

In this project, we have taken the tack of attemptio |A-B|=[|A-B| |A-B| -+ |A- B[], both defined

model the learning of abstract relations througseesally 5155 corresponding positions in theandB vectors. The
data-driven statistical learning, using Bayesiagodathms length of each type of derived vector is thus edoathe

applied to large, unstructured input representatiiat We ot of each basic vector, so that the total sfzée input
the modelers did not create. The raw inputs aréovec \qcior scales linearly with the number of basidfezs.
representations of words, derived by Latent Seroanti |t e |ot X denote the full vector including basic and
Analysis (LSA; Landauer & Dumais, 1997). Such VeS80 jarived features.X = [A, B, @A, B), then the
the. product of singular value decomposition applied computational goal of relation learning is to estienthe
lexical co-occurrence datla from a Iarge c_orpuse@f, th"_“’e distribution of a corresponding weight vecterfrom a set
proved extremely useful in many applications, oemving ot yaining pairs that share the same relation.t Taawe

as good measures of semantic similarity of conc@fvslf _ C
& Goldman, 2003). However, LSA vectors do not pdevi calculateP(w | Xs,R s = 1), where the subscrig indicates

any direct basis for identifying abstract relatidmstween the set of training examples (the source) &ndis a set of
concepts (although some modest success has beienaath binary indicators, each of which (denoted Ry indicates

by exploiting LSA vectors for relation words, su@s whether a particular pair of concepts instantitttesrelation
opposite Mangalath, Quesada & Kintsch, 2004). Relatedor not. The vectorw constitutes the learned relational
machine-learning algorithms have had some success fepresentation, which can be interpreted as attenteights
solving relational analogies by working directhorin co- reflecting the importance of the correspondinguesg inX.
occurrence data for word combinations found in mda To test generalization of the learned relational
corpus of text (Turney & Littman, 2005). Howeveurgoal representation, we test on new transfer pairs, téelrtoy the

is different in that we aim to model learning ofateonal  subscript T. The inference step needs to estimate the
representations from the LSA vectors for a smalRkQ¥ set probability that a target pair shares the sameioglas the

of word pairs that instantiate each abstract i@hatihe task training pairs,P(R =1|X; X R =1).

of learning relations from representations of sinpl
concepts bears at least some resemblance to tha tsld
might face in acquiring an abstract relation frormadest- @(A, B)

A B
sized set of examples that instantiate it.
For our present purpose, we do not assume that LSA
provides anything like an optimal psychological
representation of concepts (indeed, it has wellknand

serious limitations, notably problems dealing wigxical

ambiguity). However, by using LSA inputs we ensthrat
we have in no way tailored the inputs so as to thhald”
the learning algorithms we test. Moreover, we dd no
assume that it is in fact possible to acquire huiiien
representations of abstract relations solely bya-daiven
learning. Rather, by pressing the limits of dateh
approaches, we may be able to identify more cleahat
nativist assumptions may ultimately prove essential

Figure 1: Graphical representation of the general
framework. A andB denote two vectors of concept features
(LSA inputs); @(A, B) denotes derived features based on
the two concepts, i.e., product featu®B and absolute
difference featuredA — B| Vector w represents the
unknown relational weights that defiri® and is learned
using the training set of examples instantiatiag
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The models we consider are both based on Bayesian

logistic regression, as described by Silva, Aira@dd Heller
(2007) and Silva, Heller and Gharamani (2007). Gize
small set of word-pairS that all instantiate a given abstract

relation R, both models compute the posterior probability

that (A;,B;) is an example of the same relation,
P(R =1|X; XsRs=1)=

J,P(R =1]X; w)P@ [XsR¢=1)
where the likelihood is assessed usiadogistic regression
function to predict the probabilty of a word-pair
instantiating a given relation,

P(R=1|X w )= logisticv"X )

@)

2
where logistic(x) = (1+ &) .

For the first model we consider (based directlySilna et
al., 2007), the posterior distribution fav is found by
applying Bayes’ rule using the prior distributioor fv and
the training word-pairs:

PRs=1|w,X5)PWw)
[ P(Rs=1]w X )P@w)
Because of the high dimensionality of the learrpngblem
we are tackling, the choice of a good priBXw) is

essential to the performance of any model. We tiyatzd
two kinds of priors, a simple empirical prior praea by
Silva and colleagues, and our own hierarchical hode

P(w|XsRs=1)= ®)

The Empirical Prior

Intuitively, our simple empirical prior distinguish word-
pairs that instantiatany of the to-be-learned relations from
unrelated word-pairs. The empirical prior takes fbem

P(w) = N(w; W, ﬁ‘.), in which the sample mean estimate
W is by found by fitting a logistic regression clifiss
using maximume-likelihood estimation on a relativeiyall
set of related word pairs (positive examples), andrger

set of unrelated word pairs (negative examplesheatng
the fact that most pairs of actual concepts doimsiintiate

any abstract relation. The covariance matkix for this
empirical prior is calculated by

(£7)=ctfx™™x )/N (4)
wherec is a user-defined smoothing parameter set to twic
the number of related pairs in the training sampies the
total number of word pairs in the training set, atds a
matrix containing the features of all (related amdelated)
word pairs in the training sel is a diagonal matrix with
each entry defined as

(M), =B (1- p() ®)
where p(i) is the MLE predicted probability of théh word
pair being related, given by Eq. (2).

The Hierarchical Prior

The above model computes its prior based on therobd
data. This empirical prior uses all related pagsnembers
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@(A, B)

4_@/

Figure 2: Graphical representation of hierarchicaldel.
Distribution ofa is determined by the hyperparameters that
model the variance of the relational weight veatorThe
other notations are the same as in Figure 1.

of the set of positive training cases, and numetouslated
pairs as negative cases. An alternative empiridal gould
be computed by considering pairs of a specificti@taas
positive examples and pairs instantiating otheati@hs as
negative examples. Although empirical priors asemsible
choice to facilitate inference in the high-dimemsibspace,
the question of how the best data set for learramg
empirical prior could be constructed remains urkesh
Here we explored a different approach, specifying a

hierarchical prior on the distribution of the welighectorw
(see Fig. 2). Specifically, the posterior distribat of w
learned from training data is derived (replacing Eoby

P(WIXsRs=1)=[ PW la X R 5= 1PG)  (6)
where vectora =[a,, a,,...] determines the precision (the

inverse variance) of each element of the weightorew/ .
We use a conjugate prior distribution in the form a0
Gamma distribution fora; with two hyperparametera,
andby:
P(a;) ~Gammda; g, b) (7)
The individual prior for each element in vectw is
assigned in the form of a normal distribution:
P(wla)~N(w; 0, a) (8)
This normal distribution imposes a general priat tthe
value ofw; is centered at O (i.e., thih feature dimension is

not expected to be relevant in predicting whetheedain
relation exists between the two words). Howeveg, alue

gf a, controls the certainty about this prior belief. ldw

precision value makes the prior belief uninformativ
whereas a high precision value imposes a strong thiat

W, is most likely 0. Accordingly, the hyperparametptay

an important role in determining the relevance edtfire
dimensions in predicting the existence of a refatio

The other term in Eq. (6) can be derived by appglyin
Bayes rule directly,

P(Rs =1|w X )P |ot)
[, P(Rs=1|w . Xs)Ptw Jo)

P(w|a,Xs,Rs=1)= 9)



The Inference Algorithm

Although the general framework of the relation feag
models is straightforward, the inference step in-tnivial
because the calculation of the normalization tenmEgqgs.
(3) and (9) and integrals in Eqg. (6) are intraaaldcking
analytic solutions. A sampling approach is impadtifor
dealing with high feature dimensionality. We ttere
employed variational methods developed by Jaakkold
Jordan (2000) to obtain a closed-form approximat@mthe
posterior distribution. Specifically, the variaiel method
updates the mean of vectar and its covariance matri¥
iteratively:
Vi=al/b+2> A€, XX, ,

w=V>y'x, /2,
a=a,+1/2,
b=h,+E,(ww")/2,

g2 =x"(V +ww')x.

(10)

Computational Experiments
The Training Set and Generalization Test
Table 1 shows some examples of pairs of conceptswh

Table 1: Examples of word pairs used in the trajnsets
and generalization tests (correct option on left).

Training pairs Testing pairs

Function
door-open rabbit-hop vs. rabbit-bunny
sun-warm cup-drink vs. cup-mug
zoo-animals smile-happy vs. smile-frown
Synonyms

car-auto vs. car-bus
weak-feeble vs. weak-strong
sad-unhappy vs. sad-sadder

liberty-freedom
huge-enormous
forest-woods

Linear ordering

worse-worst inch-foot vs. inch-length

kitten-cat rain-downpour vs. rain-fall
tap-strike pebble-rock vs. rock-mineral
Antonyms

weak-strong
start-finish
slowly-quickly

shallow-deep vs. shallow-depth
float-sink vs. float-boat
find-lose vs. find-search

used to train and test the two models. We useddiffarent
relations: function, synonyms, linear ordering,

antonyms. For each relation, we chose 15-20 phas
were examples of that relation to use as the trgiset. We
will refer to pairs used for training as AB paisll pairs
were selected from experimental materials usediquely
to form four-term verbal analogy problems, and vdrich

LSA vectors (derived using the tasaALL corpus) were

available. We selected pairs for which the cosinalarity
between the words (based on their LSA vectors)atdsast
0.1, aiming to exclude pairs that included hightytéguous
words (e.g.gift-presentas an example of synonyms).

After learning representations of the abstracttimia based
on the AB pairs, the model was tested on a twavstéve
forced-choice generalization task. For each tesn,tthe
model was asked to choose which of two alterngpiaies
instantiated a specified relation. We will referctarrect and
incorrect options as CD and CD', respectively. &ample,
one item required the models to decide which pai
instantiated antonymyshallow-deeCD) or shallow-depth
(CD"). As this example suggests, the discriminatieas
quite subtle, as the C term was common to botlooptand
the CD' pair also instantiated an abstract relgor not the
relation being queried). The words used in this
generalization test did not overlap at all with #B pairs
used in training, but were selected according #® same
general criteria. For each test problem, the model
calculated the probability of CD and of CD' beingmples

of the relation, respectively, according to Eq, @nd chose
the pair with the higher probability as the answéhe
percentage of test questions that each model aedwer
correctly for each relation was calculated.
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andsijmuylation Details

Inputs for each word were LSA vectors of length .30Be
LSA algorithm orders its features from highestdaést in
terms of their predictive power. Preliminary testdicated
that most of the information useful for our leagnimodels
was encoded in the first ten features of the LSAtws.
Accordingly, we used just these first ten featui@seach
word as inputs. The full vector for a word paiclirded the
basic and derived features,= [A, B, AB, |A — B[], with a
total length of 40 features.

In the implementation of the model by Silva et(aD07),
the dataset for computing the empirical prior idgld all
AB word pairs plus a large number (>3500) of urtezla
word pairs. Each unrelated word pair was weightgd b
approximately the ratio of the total populationwfrelated
word pairs to the number of unrelated word paiet there

r'sampled. After obtaining the prior, the model emplb

variational methods to compute the posterior distion for
w using the AB training pairs for each relation sapaly.

In the simulation of our hierarchical model, théues of
hyperparametersag, by) were searched separately for each
relation to maximize generalization performance.

To provide baselines for evaluating the two Bayesia
learning models, we applied three simpler methofls o

EJdging the correct relational alternative. Firstye
calculated the mean cosine distances of the correct

alternative and its foil to the training set usimgw” LSA

vectors, i.e., using only the basic featurds B] over all
300 dimensions of the LSA vector for each word ipadr
(yielding 600 features total). Specifically, we qmmed the
average of cosine distances between a CD pair lh#kBa



pairs in the training set, and for the correspogdd®D’ pair

The Importance of the Prior

and all AB pairs. The baseline decision for thethe improvement in generalization performance of th

discrimination task was determined by which paglged
the closer cosine distance. The performance ofrtgthod
informs us about the amount of information thatia SA
vectors provide for the four abstract relationgntérest.

Second, we used an additional cosine distance meeas

defined over the same feature vectors as those msehe
Bayesian models, i.e., thé vectors, which included the
first ten features of the LSA vector for each waptls the
corresponding derived features.

Third, we examined the performance of simple laogist

regression (which obtains the relational repregiemtav
through maximume-likelihood estimation) using thesffiten
LSA dimensions and the full set of derived features

Results and Discussion

The five modeling methods were evaluated on niffereint
sets of training pairs and testing pairs. Each was
randomly chosen from the analogy problems availtbles.
Mean proportion correct over the nine differentrtirzg/test
sets for each of the methods described above iwrslio
Fig. 3. Overall, the Bayesian model incorporatirge t

Bayesian models over the MLE logistic regressiordeho
illustrates the importance of the prior distribution the
relational weightsv. This result suggests the possibility that
children may also benefit from prior knowledge,heit

Ynnate or acquired through previous experience, nwhe

learning new abstract relations. They may, for eperrfirst
learn to distinguish related or generally similamcepts
from unrelated concepts before discriminating amomge
specific relations. Future experiments could ex@ldhe
kinds of prior training that best aid human leagnof new
abstract relations, and compare the results wittdaho
performance using different priors.

The superior generalization of the Bayesian modaigl
the hierarchical prior compared with the model gsihe
empirical prior indicates that learning can be Hart
improved by introducing a more effective prior. ktgithe
general prior knowledge obtained by contrastingtesl and
unrelated relations is a sensible choice in thdigatons on
which Silver et. al. (2007) focused. However, thispirical
prior may not be sufficient to provide informatigeidance
for inferences in the high dimensional space crhatgng

hierarchical prior vyielded the best generalizationLSA inputs. Adopting a hierarchical prior increasesrning

performance for all four relations, and in eachecass
reliably more successful than any of the three lbase
models. The proportions correct for the hierardhioadel
were .78 for function, .72 for synonyms, .86 fonelar

power by incorporating soft constraints on the tretel
representationy, and its associated uncertainty

Why are Antonyms so Hard?

ordering, and .66 for antonyms. In general, therpe fact that the Bayesian models performed redbtiv

generalization performance for the Bayesian modes
best for linear ordering and weakest for antonyinghould
be noted that the linear ordering relation canibved as a
generalization of the type of specific comparatietation
(e.g., “larger than”) to which the learning modebjposed
by Doumas et al. (2007) has been applied.

poorly on antonyms warrants further analysis. hutd be
noted that for antonyms only, the cosine distanethod
based on 300 LSA dimensions (with basic featurdg)on
outperformed cosine distance based on 10 LSA diimess
and the full set of derived features. This findiragses the
possibility that finding a good representation &mtonymy

0.97

0.7

0.67

Mean Proportion Correct

Algorithm

[Jcos w/ 300 dims, [A, B]

DCos w/ 10 dims, [A, B, AB,
|A-B[]

BmLE logistic regression

] Empirical prior

M Hierarchical prior

Function Synonyms

Relation

Linear ordering

Antonyms

Figure 3: Simulation results. Prediction accuraoy fieneralization of relations in the two-altermatiforcedehoice
relationdiscrimination task. Error bars represent 1 steh@gror of the mean, based on 9 random samplésiofng/tes

items.
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may require attention to more feature dimensioas ik the
case for the other relations. Another possibleaedsr their
greater difficulty is that antonyms are usually wsimilar
concepts that are dissimilar in only a few aspéets., both

University Press.

Glass, A. L., Holyoak, K. J., & Kossan, N. E. (1977

Children’s ability to detect semantic contradicgo@hild
Development48, 279-283.

love andhate can be used as a noun as well as a verb, andalford, G. S. (1993).Children’s understanding: The

are strong emotions that one sentient being car hawout

development of mental modditlisdale, NJ: Erlbaum.

another). Moreover, the aspects or dimensions oithwh Jaakkola, T. S., & Jordan, M. |. (1999). Bayesianameter

antonymous concepts differ vary from one pair tother
(e.g., love-hatevs. black-whit§. The shifting relevance of
features makes learning a good representationnimngms
challenging, especially using a method that leamegght
distributions over a fixed set of features.

Conclusions

We investigated the possibility that abstract seiman

relations can be learned at least in part by putatg-driven
statistical techniques applied to concept pairsasgnted by
unstructured feature vectors. By using LSA vectass

inputs we avoided any hand-coding of semantics o

relational structure, while assuring that inputsrevef

realistic complexity. Compared to baseline perfaros
(inference based on cosine similarity of test amito the

training set and MLE logistic regression), two misdef

relation learning based on Bayesian logistic resioes
achieved higher overall performance on a transést t
requiring discrimination between learned
instantiated entirely by new concepts. The moreassful
of the two models incorporated hierarchical priors.

estimation via variational methodsStatistics and

Computing, 1025-37.

Jones, S., & Murphy, M. L. (2005). Using corpora to

investigate antonym acquisitiomternational Journal of
Corpus Linguistics10, 401-422.

Kemp, C., & Tenenbaum, J. B. (2008). The discovefry

structural form.Proceedings of the National Academy of
Sciences, USA, 1050687-10692.

Landauer, T. K., & Dumais, S. T. (1997). A solutitm

Plato's problem: The Latent Semantic Analysis thexdr
the acquisition, induction, and representation of

¢ knowledge.Psychological Reviewl04, 211-240.
Mangalath, P., Quesada, J., & Kintsch, W. (2004jalagy-

making as predication using relational informatiand
LSA vectors. In K. D. Forbus, D. Gentner & T. Reagie
(Eds.), Proceedings of the Twenty-sixth Annual Meeting
of the Cognitive Science Sociefustin, TX: Cognitive
Science Society.

relationsP€nn, D. C., Holyoak, K. J., & Povinelli, D. J. (H).

Darwin’s mistake: Explaining the discontinuity betsn
human and nonhuman mind&ehavioral and Brain

Neither model approached perfect performance on Scieénces3l, 109-178.

transfer problems. However, considering the smab sf
the training set (less than 20 examples of eactiioal), the
total absence of overlap between training anditests, and
the relatively subtle discrimination of relatioreqquired on
the generalization test, these preliminary findingse
encouraging. Further exploration of statistical raghes to
learning abstract semantic relations appears teaoeanted.
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