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Abstract

Plant viruses face many challenges in agricultural environments. Although crop fields appear to be
abundant resources for these pathogens, it may be difficult for viruses to “escape” from crop
environments prior to host senescence or harvesting. One way for viruses to increase the odds of
persisting outside of agricultural fields across seasons is by evolving traits that increase transmission
opportunities between crops and wild plant communities. There is accumulating evidence that some
viruses can achieve this by manipulating crop plant phenotypes in ways that enhance transmission by
vectors. Putative manipulations occur through alteration of plant cues (color, size, texture, foliar
volatiles, in-leaf metabolites, defenses, and leaf cuticles) that mediate vector orientation, feeding, and
dispersal behaviors. Virus effects on host phenotypes are not uniform but appear to exhibit
convergence depending on virus traits underlying transmission, particularly the duration of probing
and feeding required to acquire and inoculate distinct types of plant viruses. This shared congruence
in manipulation strategies and mechanisms across divergent virus lineages suggests that such effects
may be adaptive. To discern if this is the case, researchers must consider molecular and
environmental constraints on virus evolution, including those imposed by insect vectors from
organismal to landscape scales. In this review, we synthesize applied research on vector-borne virus
transmission in laboratory and field settings to identify the main factors determining transmission
opportunities for plant viruses, and thus, selection pressure to evolve manipulative traits. We then
examine these outputs in the context of studies reporting putative instances of plant virus
manipulation. Our synthesis reveals important disconnects between virus manipulation studies and

actual selection pressures imposed by vectors in real-world contexts.

Keywords: Virus evolution; host phenotype; non-colonizing vector; colonizing vector; transmission

opportunities; transmission mechanism; parasite manipulation



AR AR L AR R AR Nl

Domestication of wild plants for agriculture fundamentally changed the evolution of plant viruses. Agriculture
brings homogeneity in the form of fixed host genotypes planted over large areas, as well as instability, in the
form of sudden and synchronized harvesting, crop rotations, and fallow periods. As a result, the pace and
trajectory of virus-host coevolution has been forever altered by the presence of agriculture at interfaces with
unmanaged habitats (Gibbs et al., 2010, 2008; Nguyen et al., 2013; Smith et al., 2014). Crop fields present huge
swaths of potentially dead-end hosts, most of which are susceptible to infection during early phenological stages
(Panter and Jones, 2002). These fields are magnets for arthropod vectors because crop hosts present visual and
olfactory cues that are highly arresting (Doring, 2014; Powell et al., 2006; Webster, 2012). Plant viruses that rely
on arthropod vectors for transmission have had to adapt to survive, and persist across seasons, under

circumstances where their vectors prefer transient and unstable host environments.

How plant viruses are able to cope with agricultural landscapes characterized by frequent host turnover is still an
open question. One strategy might be to increase the number of transmission-conducive vector contacts, thereby
upping the odds of exploiting and “escaping” an infected crop host prior to harvest or senescence. Based on this,
it has been proposed that plant viruses infecting annual crops have evolved to manipulate host phenotypes and
vector behavior in ways that enhance transmission opportunities (Blua and Perring, 1992; Castle et al., 1998;

Eigenbrode et al., 2002; Kennedy, 1951; Mauck et al., 2012, 2019, 2018, 2010). Virus infections in plants, and
especially crops, will typically result in drastic phenotypic changes that alter physical and physiological
characteristics, such as color, size, texture, volatile profiles, primary and secondary metabolite levels, metabolite
partitioning among tissues, defenses, and cuticular waxes (reviewed in Culver and Padmanabhan 2007; Mauck
et al. 2019). These phenotypic aspects determine how vectors perceive and interact with the infected host, and
thereby, the probability of vectors engaging in transmission-conducive feeding and dispersal behaviors. If viruses
can evolve to elicit specific changes in host phenotypes that encourage vectors to visit infected crop hosts and
engage in behaviors optimal for virion acquisition, this may improve the odds of establishing infections in
perennial vegetation that can support over-wintering. Thus, we might predict that manipulative viruses (i.e.,
those that alter host plants to increase vector contacts and transmission-conducive feeding behavior) will more
effectively persist across seasons and disproportionately contribute to new infections over time, while viruses that

are not able to manipulate their hosts and vectors will fail to do so.

Consistent with this prediction, there is now substantial evidence that numerous viruses of economic importance
induce changes in host phenotypes and vector behavior in ways that are expected to increase transmission
opportunities (reviewed in Mauck et al.,, 2018). Experiments demonstrating such effects typically combine
ethological approaches with chemical analytical and molecular techniques to describe virus effects on plant
physiology and quantify the impact of these changes on vector attraction, settling and feeding, and performance
(reviewed in Mauck et al., 2019). In some cases, virus proteins underlying these effects have been linked to
specific elements of the infected host phenotype that influence vectors (Ziebell et al. 2011; Zhang et al. 2012; Li
et al. 2014; Wu et al. 2017; reviewed in Mauck et al. 2019). For example, an elegant series of studies on the
species T-urnip mosaic virus (genus Potyvirus, family Potyviridae) revealed that a multifunctional protease,
NIla-Pro, modifies plant defenses to increase attraction of aphids to infected hosts, and also relocalizes in the cell
during aphid probing to selectively inhibit plant defenses against the vector (Casteel et al. 2014; Bak et al. 2017).
In other cases, phenotypic changes are caused by multiple virus proteins. This can occur in both an additive (
Patton et al. 2020) and synergistic manner (Westwood et al. 2013). Additionally, there is mounting evidence that

infected host phenotypes and vector behaviors change over disease progression, with manipulative effects only



and Bressan 2013; Shi et al. 2016; Legarrea et al. 2015; Mann et al. 2008; Rajabaskar et al. 2013; Williams 1995
; Luetal. 2016; Shrestha et al. 2019).

Despite recent progress on molecular mechanisms of manipulation for single virus-host-vector combinations
(reviewed in Mauck et al. 2019; Carr et al. 2020), logistical constraints have limited the number of vector species
that can be explored for behavioral responses to any given pathosystem. This may not be problematic when the
virus under study is transmitted by a limited suite of vectors in the field. But it may fail to represent real-world
scenarios for numerous viruses that are transmitted by many vector species or biotypes having a range of
relationships with commonly infected crop hosts. In these cases, extrapolating conclusions about the evolution of
manipulative traits is not warranted because the experimental design replicates a selective environment that is not
realistic. To explore whether there are systematic methodological issues limiting the study of plant virus
manipulation, we provide a review of approaches to studying transmission in laboratory and field environments.
We then use this information as a framework for exploring whether virus manipulation studies are congruent
with selection pressures imposed by arthropod vectors. To achieve this, we structured both the review and
synthesis portions of this paper around well-established transmission mechanism categories (Table 1).
Transmission mechanisms are an excellent framework for studying the adaptive significance of virus
manipulation because we expect phylogenetically divergent pathogens that share transmission mechanism traits
to exhibit convergence in effects on host phenotypes and vector behavior. This has been demonstrated in prior
quantitative syntheses of virus manipulation literature (Mauck et al., 2012, 2018). Here, we leverage these
syntheses and combine their outputs with compiled information about virus transmission traits to reveal important

gaps in our understanding of virus manipulation and identify research priorities for future work.

2 Identifying competent vectors of plant viruses and measuring
transmission characteristics

Much of our knowledge about virus transmission by arthropod vectors comes from experiments performed in the
laboratory or greenhouse using cultured virus isolates and vector colonies. These experiments provide crucial
information about the transmission process and the nature of virus-vector relationships. For example, knowing
the breadth of competent vector species, at least among those that are most commonly present, facilitates
improved vector monitoring efforts, selection of appropriate insecticides or biological control agents, and
identification of resistant plant material (Steinger et al., 2015). Knowledge of virus-vector associations is equally
critical for understanding-eeelogieal-aspeets—of virus movement across the agroecological interface, including
possible alternative host ranges and prevalence in wild communities (Alexander et al., 2014; Wintermantel et al.,
2009). Moreover, virus evolution is strongly constrained by the identity and abundance of competent vectors in
the environment. Viruses need to maintain genetic components that enable associations with their vectors, and
adaptive strategies to accomplish this vary considerably among viruses depending on selection pressures
imposed by vector interactions with shared host plants (e.g., vector host range and preferences) (Chay et al.,
1996; Ng et al., 2005). It has even been hypothesized that adaptation to transmission by a new vector species is
more difficult, evolutionarily, than adaptation to new host genotypes or species (Lefeuvre et al., 2019). This
hypothesis is supported by abundant evidence of rapid plant virus adaptation to infecting resistant crop
germplasm (Djidjou-Demasse et al.,, 2017; Gomez et al., 2009; Rousseau et al. 2019) as well as strong
congruence between virus coat protein phylogenies and vector phylogenies (Lefeuvre et al., 2019). Thus, despite
logistical constraints, laboratory experiments to identify competent vectors are necessary as a starting point for

applied, ecological, and molecular-evolutionary virus studies.



especially the minimum acquisition access period (AAP), latent period in the vector before transmission is
possible, and minimum inoculation access period (IAP). These experiments are done in the laboratory using the
most common crop hosts of the virus and vector, and occasionally non-crop hosts that are common in
agricultural landscapes. Protocols typically involve labor-intensive factorial assays requiring tedious transfers of
hundreds of individual vectors, maintaining large numbers of plants for sufficient durations to observe infections,
and use of specialized equipment, such as electrical penetration graphing instrumentation, to identify stylet
activities associated with virion acquisition and inoculation (Boquel et al., 2011; Fereres and Collar, 2001;

Tjallingii, 1978). As a result, for many viruses, AAP and IAP information is only available for a fraction of the

vector and host genotypes and species these pathogens may encounter, even in agricultural landscapes.

Despite limitations, accumulated knowledge of pathogen-vector interactions gleaned from laboratory studies is
vital for improving our understanding of virus evolution and lifestyles. For example, establishment of the modern
nomenclature for transmission mechanisms (Table 1) emerged in the 1930s following rigorous and meticulous
vector transmission studies that only yielded useful information because researchers took steps to exclude myriad
confounding factors typical of observational studies (Rand and Pierce, 1920; Watson and Roberts, 1939). Beet
curly top virus (genus Curtovirus, family Geminiviridae) was the first insect-transmitted plant virus species to be
described in detail by a logical series of transmission experiments identifying the one competent vector (beet
leathopper, Circulifer tenellus [Baker] [Hemiptera: Cicadellidae]), minimum A APs, minimum latent periods, and
susceptible alternative over-wintering hosts for both the virus and the vector (Bennett and Wallace, 1938; Rand
and Pierce, 1920; Severin, 1931). The progression of studies on beet curly top virus established a

methodological framework for future work, which rapidly expanded to include many new virus pathogens.

By 1940, clear distinctions in transmission requirements were evident, and researchers began classifying viruses
into the categories of “persistent” and “non-persistent” based on differences in the durations of retention on, or
in, the vector (Table 1). These categories were succinctly defined by Watson and Roberts (1939) following a
series of studies on transmission of several non-persistently transmitted viruses (hereafter, non-persistent viruses),
which also provided definitive proof that aphid transmission efficiency for viruses with this lifestyle declines
with increasing time feeding on the infected host (Watson, 1936; Watson and Roberts, 1939; Watson and
Russell, 1938). A more comprehensive review of non-persistent virus transmission followed in 1954 (Sylvester,
1954). Additional studies eventually led to differentiation of retention categories into “non-circulative” and
“circulative” based on whether a virus is able to cross the gut barrier and invade the hemolymph and salivary
glands of their vectors, thus being retained through molting (Kennedy et al., 1962). A further distinction,
“propagative” vs. “non-propagative”, was introduced to separate circulative viruses that replicate in vector
tissues from those that do not (Kennedy et al., 1962).

The work of Watson and colleagues also clarified an important discrepancy in how researchers approach the
study of persistent viruses, which are often obligately vector-transmitted, and non-persistent viruses, which can
be mechanically sap-transmitted or via insect vectors. Watson and Roberts note in their 1939 paper that “When
viruses are difficult to transmit mechanically, understanding of the insect-virus relationships is essential to easy
propagation of the viruses, and no progress can be made without it. When the viruses are readily sap-
transmissible their properties can more easily be determined without the use of their vectors. Also the specific
and obligate nature of the insect transmission observed for the persistent viruses has led workers to consider it as
of particular complexity and interest whereas the superficial nature of the studies which have so far been made

on the non-persistent type has led some workers to the conclusion that they are of minor interest.” It is interesting
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research on non-persistent virus transmission largely focused on narrow suites of vectors known to colonize the
most commonly infected crop hosts. Even to this day, papers still use the words “simple” and “mechanical” to
describe the non-persistent transmission mechanism, despite obvious evidence to the contrary (Deshoux et al.,
2018).

3 Quantifying vector contributions in the field

The approaches and research described in Section 2 pertain to virus-vector interactions under a narrow suite of
laboratory conditions at single time points in disease progression and host phenology. For all but the most well-
studied pathosystems, complementary field studies have not been performed to validate links between vector
presence and patterns of virus spread. However, for those systems where such studies are available, we
sometimes find important contrasts with laboratory results that further refine our understanding of selection

pressures that certain groups of plant viruses face in real-world environments.

Non-persistent viruses provide excellent examples of disconnects between laboratory and field studies. These
disconnects are important to explore because they have implications for how we design and interpret research on
virus evolution and ecology. As noted in Table 1, unlike persistent viruses, non-persistent viruses are exclusively
aphid-bome and have very brief AAPs and IAPs, typically only a few seconds. For the AAP, longer-term aphid
feeding in vascular tissues is detrimental for virus retention, with the one exception being c€auliflower mosaic

virus (CaMV )y—(species Cauliflower mosaic virus, genus Caulimovirus family Caulimoviridae), which has a

bimodal non-persistent/semi-persistent transmission mechanism depending on the vector. Acquisition takes place
during intracellular probes in epidermal and mesophyll tissues and virions are only retained for a few hours. If
aphids feed from the phloem of the infected plant following virion acquisition, they often lose viruliferous status
(Martin et al., 1997; Wang and Ghabrial, 2002; Watson and Roberts, 1939). Thus, unlike persistent and semi-
persistent viruses, transmission of non-persistent viruses largely depends on vectors dispersing rapidly from
infected hosts following probing, and before initiating phloem sap ingestion. Empirical studies demonstrating this
(Fereres et al., 1992; Garzo et al., 2004; Martin et al., 1997; Wang and Ghabrial, 2002; Watson and Roberts,
1939; Watson and Russell, 1938) are supported by theoretical work modeling virus spread and vector
movement; for non-persistently transmitted viruses to spread, it is critical that vectors move to new susceptible

hosts over short time frames following virus acquisition (Madden et al., 2000).

Despite these stringent requirements for vector feeding and dispersal behaviors, laboratory experiments exploring
basic aspects of non-persistent virus transmission often employ only colonizing vectors, which are more likely to
settle and feed on the infected hosts (e.g., Boiteau et al., 1998; Srinivasan et al., 2012; Srinivasan and Alvarez,
2007, but see Boquel et al., 2015, 2012). This is probably because colonizing vectors were the insects seen in
the field feeding on the crop when virus was also present, and so the presumption was that they are primary
drivers of virus spread. For example, in the laboratory, pPotato virus Y (fPVY H_(species Potato virus ¥, genus
Potyvirus, family Potyviridae) transmission and ecology are most commonly explored using the aphid vector
Myzus persicae (Sulzer) (Hemiptera: Aphididae), and occasionally Macrosiphum euphorbiae (Thomas)
(Hemiptera: Aphididae) and Aphis nasturtii (Kaltenbach) (Hemiptera: Aphididae) (e.g., Bradley, 1963; Bradley
and Rideout, 1953; Gibson et al., 1982: Govier and Kassanis, 1974; Powell, 1992; Watson and Roberts, 1939
among many others). These aphids are colonizers of the most economically important crop host (potatoes) and
can colonize related indicator hosts (e.g., tobacco). Under laboratory conditions where the researcher controls the

duration of probing behaviors to suit AAP and IAP requirements, both of these species are highly efficient
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vectors that do not colonize solanaceous hosts as being responsible for the bulk of virus transmission events.

Because they do not feed on potato (i.e. no or reduced phloem sap ingestion), non-potato-colonizing aphids will
automatically engage in the behaviors most conducive to PVY acquisition and inoculation, namely probing and
rapid dispersal (Fereres and Moreno, 2009; Kennedy et al., 1961, 1959). They are also more likely to be present
in high numbers during the most vulnerable early stages of the potato crop, which has not been in the field long
enough to generate successive generations of potato-colonizing species or appreciable numbers of mobile alates.
For example, an extensive study in England performed in the 1980’s trapped 6769 individual aphids using a
vertical net downwind of a PV Y-infected potato plot and tested them, individually, for viruliferous status using
susceptible hosts (Harrington et al., 1986). This massive undertaking yielded 165 transmission events by 20
vector species. A single non-colonizing aphid species, Brachycaudus helichrysi (Kaltenbach) (Hemiptera:
Aphididae), was responsible for 52% of transmissions, while M. persicae and M. euphorbiae accounted for just
11.56% and 2.72% of transmissions (Harrington et al., 1986). The importance of the non-potato-colonizing B.
helichrysi as a main driver of PVY spread was further reinforced by a long-range study that compiled over 20
years of country-wide virus incidence and aphid flight data from the Swiss seed certification program (Steinger
et al., 2015). While B. helichrysi abundance was highly predictive of outbreaks, there was no relationship
between M. persicae abundance and PVY incidence. A similar finding was reported the following year from a
multi-year study in U.S. potato-growing regions (Mondal et al., 2016). The study documented marked increases
in PVY prevalence in potato fields following peaks in trap catches of non-potato-colonizing aphid species
(especially Rhopalosiphum padi L. [Linneaus] and Metopolophium dirhodum [Walker] [Hemiptera:
Aphididae]), but weak connections between M. persicae and PVY spread.

The implication of non-potato-colonizing aphids as drivers of PVY spread in multiple geographic locations
suggests that surrounding landscape composition may play more of a role in predicting infection rates in crops
than any management efforts that target colonizing vectors (Carriére et al., 2014; Claflin et al., 2017). This
speculation has been elegantly demonstrated by a series of studies on infection rates by non-persistent viruses
infecting cultivated pumpkins. Like most cucurbits, pumpkins are subject to infection by a suite of non-
persistently transmitted viruses in the families Potyviridae and Bromoviridae. Through a two year survey in the
midwestern U.S., Angelella et al. (2015) determined that three non-colonizing aphids were associated with
increased prevalence of several potyviruses and a cucumovirus in pumpkin fields. In subsequent work using the
same data set, the authors constructed partial least-squares path models to explore the influence of within-field
(i.e., weed cover) vs. extra-field land cover on virus spread (Angelella et al., 2016). Contrary to the prevailing
narrative that weeds in the local vicinity of crop fields are sources of vectors, the path models revealed that extra-
field cover (4-5 km) was more strongly predictive of total non-colonizing aphid numbers and virus prevalence in
pumpkin fields (Angelella et al., 2016). In fact, weed cover deterred landing by non-colonizing aphids, possibly
by disrupting the very attractive visual stimulus of green crop host plant tissue against a soil background (Doring
and Chittka, 2007; Saucke and Doring, 2004; Schroder et al., 2017).

Knowing that local landscape features are strongly associated with vector abundance and virus spread enabled
the use of molecular methods to identify the origins of one abundant non-pumpkin-colonizing aphid species,
Aphis craccivora (Koch) (Hemiptera: Aphididae). Using single nucleotide polymorphism genotyping to identify
host-associated differentiation, it was determined that early season A. craccivora originate from locust trees,
while late-season A. craccivora originate largely from alfalfa (Angelella et al., 2019). This progression of work

perfectly illustrates how knowing the identity of virus vectors in the field can inform studies that precisely
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stages of growth in the crop. It also underscores the complexity of virus transmission at field scales (and
especially non-persistent virus transmission) and reinforces how little it resembles the laboratory and greenhouse
conditions under which most aspects of transmission have historically been studied. Other reports documenting
prominent roles for non-colonizing aphids in non-persistent virus spread have been published for cucurbits
growing in Europe (Katis et al., 2006), and for garlic (Perotto et al., 2014), papaya (Kalleshwaraswamy et al.,
2005), soybeans (Halbert et al., 1981), passion fruit (Garcéz et al., 2015), stone fruits (Knoll et al., 2004) and
many other crops. These studies are only snapshots of a few selected pathosystems, each using different
approaches for quantifying spatial and temporal variations in vector richness and abundance in relation to virus
incidence. We are now learning that aphid abundance and species richness can vary significantly over short
(intra-annual) timescales, with the nature of this variation being strongly influenced by regional cropping
structures (Claflin et al. 2019). Studies employing large sampling intervals, single time point collections, or
limited spatial variation may not capture the influence of all crop-colonizing and non-colonizing vectors. But
even with these limitations, the studies cited above still provide strong evidence that the actual insects
transmitting non-persistent viruses in the field are quite often not those we are focusing on for management or

studying in the laboratory.

4 Implications for the evolution of manipulative traits

Knowing the breadth of competent vectors and minimum AAPs and IAPs for at least a subset of these vectors
allows researchers to make predictions about the range of transmission opportunities available to different viruses
under real-world scenarios. Likewise, determining which vectors in the landscape provide the most transmission
opportunities for any given virus is essential for ranking the relative contributions of vectors as drivers of virus
spread in contexts that include spatial and temporal components. If we consider virus fitness across hosts as the
number of new infections originating from a single inoculum source (the basic reproductive number, R), those
viruses experiencing more transmission opportunities will enjoy greater fitness. Thus, the vector species that
transmit in the field are ultimately the ones imposing selection pressure on a virus to take advantage of their

presence and the transmission opportunities this provides.

It is within this context that manipulative traits enabling viruses to alter host phenotypes and vector behavior are
purported to evolve. To explore congruence between studies reporting putative instances of virus manipulation
and virus traits underlying transmission opportunities, we summarized transmission traits (number of reported
competent vector species, minimum AAP, and whether extended feeding enhances acquisition) for viruses
having at least one published report describing effects consistent with adaptive host and vector manipulation.
These studies have been previously reviewed in Mauck et al. (2018) (see list of the studies as supplementary
material). To compile transmission trait information, we considered online databases such as Plant Virus Online (
Brunt et al., 1997), The Universal Virus Database (ICTVdB) (Buchen-Osmond, 2006) and DPVweb (Adams
and Antoniw, 2006), all of which have the shared purpose of compiling and summarizing basic research
generated for individual virus species over the last ~100 years. When different numbers of competent vectors
were indicated within these databases, we kept the higher value. To complete our compilation, we also surveyed
Edwardson and Christie (1991), which reviewed characteristics of viruses associated with legume crops, as well
as specific articles for viruses characterized more recently and not reported in databases (indicated directly in
Tables 2&3). To locate these articles, we searched Google Scholar using the following terms: “[virus name]>
transmission-"_and “[virus name]> acquisition access period”. We then evaluated how transmission metrics have,

or have not, informed the design and interpretation of empirical and theoretical explorations of plant virus



(families Bromoviridae, Potyviridae and some Caulimoviridae) can be transmitted by a greater number of
vector species than most persistent and semi-persistent viruses (all other families, Tables 2&3). The average
number of competent vector species for a non-persistent virus in the Bromoviridae, Potyviridae, or
Caulimoviridae _families is 34.5 +/- 9.3 vector species (range: 4 to 89 vectors), while the same metric for viruses
from any other family is 3.8 +/- 0.84 vector species (range: 1 to 22). The compilation further shows that viruses
having higher numbers of competent vector species tend to be those for which extended feeding in vascular
tissue (more precisely, phloem sap ingestion) does not enhance virus acquisition rates. This is strongly congruent
with the studies cited in Section 3 reporting major contributions of non-colonizing vectors to the spread of

viruses in the families Bromoviridae and Potyviridae in field studies of potato and cucurbit crops.

In terms of virus evolution, the compilation suggests that non-persistent viruses generate transmission
opportunities through adaptations facilitating interactions with multiple, potentially distantly related vectors,
possibly by capitalizing on shared features of the aphids stylet anatomy (Uzest et al., 2010). As described in
Section 3, outbreaks of non-persistent viruses occur when there are increases in abundance of one or more
vectors that do not colonize the main crop hosts of the virus (Angelella et al., 2015; Steinger et al., 2015). The
identity of these vectors may or may not be the same from year to year depending on landscape features that

support growth of key vector populations (e.g., adjacent crops, which may rotate).

How might this reality shape the evolution of manipulative traits in non-persistent viruses? Clearly, most
competent vector species (Tables 2&3) will engage in behaviors required for efficient non-persistent virus
transmission (e.g., rapid probing and dispersal) due to host plant incompatibility, and regardless of infection
status. Thus, for these viruses, there may be little gained, if anything, from maintaining mutations that manipulate
host phenotype to encourage colonizing vectors to engage in transmission-conducive behaviors. Mutations may
even be detrimental given that virus coding capacity is already severely limited and pleiotropic effects of

mutations are common (Bedhomme et al., 2012; Garcia-Arenal and Fraile, 2013; Sanjudn et al., 2005).

Surely, any study proposing to explore adaptive host and vector manipulation by non-persistent viruses must
consider the selection pressures described above and in previous sections. Unfortunately, this is not the case:
nearly all studies to date testing for host and vector manipulation by non-persistent viruses have focused
exclusively on vectors that are the main colonizers of the hosts under study (reviewed in Mauck et al., 2019,
2018) (Fig. 1). Additionally, a single colonizing vector species is a common feature of every theoretical model
exploring the implications of host and vector manipulation for virus spread. Not surprisingly, the results of both
empirical and theoretical studies are unclear and sometimes contradictory. In one of the most recent reviews on
this topic (Mauck et al., 2018), we performed a quantitative synthesis of the effects of non-persistent virus
infections in host plants on vector orientation preferences, settling/feeding preferences, and performance. If non-
persistent viruses are manipulating colonizing vectors, we would expect to see induction of host phenotypes that
favor rapid probing and dispersal behaviors that are required for virus retention (Ng and Falk, 2006). But our
quantitative synthesis of empirical work demonstrated that non-persistent viruses have no clear effect on host
palatability for vectors, with nearly even numbers of experiments documenting increases, decreases, and neutral
effects (Fig. 2) (Mauck et al., 2018).

alt-text: Fig. 1
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attractiveness to vectors;: non-persistent viruses had neutral to positive effects on host attractiveness, usually
through exaggeration or elevation of already attractive visual and/or odor cues (Fig. 3) (Mauck et al., 2018). This
one significant effect makes sense given our summary of competent vector species (Table 2) and field evidence
discussed in Section 3. Changing cues that function over a distance, and that are broadly attractive, could result
in differential attraction of most competent vectors regardless of whether they are able to colonize the infected
host (Kring, 1972; Powell et al., 2006). Increasing vector contacts is generally beneficial for virus spread,
especially when there may be concurrent selection pressure to facilitate transmission before the dominant host
(crop) progresses in phenology and age-related resistance (Panter and Jones, 2002). However, manipulation of
vector attraction by non-persistent viruses has only been explored in a handful of papers (Eigenbrode et al., 2002
; Mauck et al., 2014, 2010; Tungadi et al., 2017; Wu et al., 2017) and attraction is the least-studied aspect of
virus manipulation, with most experiments across all virus groups focusing on post-contact vector-host
interactions (Mauck et al., 2018). But for non-persistent viruses, enhancements in general attractiveness to
vectors may be the manipulation we are most likely to observe given the realities of how members of this

complex pathogen group are transmitted in real-world scenarios (Section 3).
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Summary of virus effects on orientation preferences of insect vectors. Adapted from the quantitative synthesis of plant virus
manipulation literature reported in Mauck et al. (2018). Literature summarized in Mauck et al. (2018) is listed in the
supplementary material.

In contrast to non-persistently transmitted viruses, our compilation suggests that viruses having semi-persistent
and persistent lifestyles interact with a limited suite of vector species that must feed on the infected host for
extended durations to acquire virions (Tables 2&-3). For these pathogen groups, persistence in vectors for days

to lifetimes increases the likelihood that each vector individual will provide extended transmission opportunities



extended ingestion often enhances transmission efficiency and/or retention durations (Jiménez-Martinez and
Bosque-Pérez, 2004; Palacios et al., 2002) (Tables 2&-3). This requirement limits the breadth of possible vectors
to those likely to feed on the plant for long periods of time. Consistent with this requirement, in our quantitative
summary we found clear evidence that semi-persistent and persistent viruses enhance host palatability in ways
that encourage vector settling and feeding (Mauck et al., 2018) (Fig. 2 ). Persistent virus infection in hosts also
strongly enhanced vector attraction (Mauck et al., 2018) (Fig. 3 ). Long-term retention in the vector helps
guarantee that the pay-off of these manipulations is potentially large once vectors disperse. This has been shown
for persistent viruses across numerous theoretical studies modeling effects of manipulations on transmission by a
single colonizing vector in a homogeneous host environment (e.g., monoculture) (Donnelly et al., 2019; Roosien
et al., 2013; Shaw et al., 2019, 2017; Sisterson, 2008). Furthermore, recent empirical publications report that
vector dispersal does occur reliably even though non-viruliferous vectors initially settle more readily on hosts
infected with persistent and semi-persistent viruses (Fereres et al., 2016; Ingwell et al., 2012; Maluta et al., 2014;
Moreno-Delafuente et al., 2013; Rajabaskar et al., 2014; Roosien et al., 2013). Collectively, our compilation,
quantitative synthesis, and recent literature indicate that viruses relying on a small number of colonizing vector
species for transmission are more likely to experience benefits from manipulating hosts and may thus be under

stronger selection pressure to do so.

S Conclusions, limitations, and knowledge gaps

We can safely assume that Tables 2 & 3 are incomplete, as there is no way of establishing when all competent
vectors have been identified. And as discussed in Section 3, data on competent vector species for non-persistent
viruses may be understated because biases in studying transmission of this group have existed since the
persistent/non-persistent distinction was established. There may similarly be underestimations for virus species
that are recently described, recently emerged as crop pathogens, or that have limited economic importance (
Ghosh et al., 2015; Quito-Avila et al., 2012; Reinbold et al., 2003). Additionally, inability to resolve cryptic
vector species complexes (e.g., for Bemisia whiteflies) may lead to spurious rejection of vector species as
competent if concurrent molecular confirmation of the vector subspecies or biotype is not performed (De Barro
etal., 2011; Milenovic et al., 2019). But even with somewhat incomplete data, when considered alongside multi-
year field studies (Section 3), our compilation reveals important discrepancies in how we are studying the

phenomenon of plant virus manipulation across persistent and non-persistent virus groups.

Pathogen-vector combinations studied for evidence of manipulation by persistent and semi-persistent virus
species are mostly representative of the actual pathogen-vector interactions that occur in the field environment.

Even in cases where a persistent virus speetes-has several possible vectors (e.g., the species Barley yellow dwarf

virus,_genus Luteovirus,_family Luteoviridae fHB¥P¥4 having 17 vectors across all strains) studies reporting
manipulation have used the most compatible virus strain x vector species combinations (Bosque-Pérez and
Eigenbrode, 2011; dos Santos et al., 2016; Gildow, 1980; Ingwell et al., 2012; FménerMariner—et—al:
2004aJiménez-Martinez et al., 2004; FHménez-Martinez—et—al—2004bJiménez-Martinez et al.,_2004; Medina-
Ortega et al., 2009). This is important because the field environment is where manipulative traits are purported to
have evolved. Given the abundance of studies on persistent viruses, and the clear requirements for vector-host
compatibility, researchers need only choose the one or two colonizing vectors that are competent, efficient and

abundant in the target crop host to reconstruct a laboratory pathosystem that is congruent with field realities.

However, it is troubling that this same strategy is employed when selecting vectors for virus manipulation studies
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often a result of transmission by non-colonizing vectors. The identities of the most important vectors for the same
virus species may vary by geographic region and across seasons within geographic regions (e.g., PVY spread is
driven by Asteraceae specialist aphids in Europe and grass-feeding aphids in the U.S.). Furthermore, the
diversity of possible vectors is far greater than that recorded thus far for most persistent and semi-persistent
viruses. By ignoring these facts when selecting virus-vector combinations, researchers studying virus
manipulation are certainly failing to approximate conditions under which manipulative traits are evolving, yet
still claiming that phenotypic changes induced by non-persistent viruses are adaptive (Mauck et al., 2018, 2014a,
[Instruction: This reference does not appear to be linked.]2010).

This realization can help researchers to clarify the evolution of manipulative traits in future work. For example,
even though the number of studies is sparse, it seems that non-persistent viruses induce changes in hosts that
enhance vector attraction (Fig. 3 ). Effects on cues mediating attraction of aphid vectors may substantially
increase transmission because such changes are more likely to enhance visitation by multiple species, including
those that do not colonize the infected host. Thus, to establish whether non-persistent viruses can evolve to
manipulate hosts, it may be more prudent to focus on quantifying phenotypic changes that affect pre-alighting
vector behavior. If changes in these cues cause non-colonizing vectors to differentially visit infected hosts in an
otherwise homogeneous crop environment, it will increase the basic reproductive number (R,) for viruses
capable of inducing attractive host plant phenotypes. In contrast, for semi-persistent and persistent viruses,
focusing on post-contact cues may be more appropriate, as the bottleneck for transmission of these pathogens lies
in the vector ingesting sufficient quantities of virions to become viruliferous. The bigger question here is how
arrested vectors ultimately disperse to spread the pathogen. A few studies indicate that vectors may change
preferences following virion acquisition, adding a new dimension to persistent virus manipulation (Fereres et al.,
2016; Ingwell et al., 2012; Maluta et al., 2014; Moreno-Delafuente et al., 2013; Rajabaskar et al., 2014; Roosien
et al,, 2013). Ultimately, a full understanding of the robustness and evolutionary significance of plant virus
manipulation will require greater integration of experimental approaches with the entire transmission process,
including relevant selection pressures experienced by viruses in agricultural and natural environments. To

address these knowledge gaps, we propose the following focus areas as next steps:
1 Determine key vectors driving virus transmission across agroecological interfaces.

Annual monoculture environments are conducive for the evolution of manipulative traits in plant viruses because
they are genetically uniform, phenologically synced, intensively managed to exclude pests, and, ultimately, dead
ends for the virus if it is not transmitted elsewhere before harvest. All of these aspects will favor the evolution of
manipulative traits that improve the odds of persisting across seasons, either in other crops, in vectors, or in
unmanaged vegetation. But whether this selection pressure exists depends on which vector species or genotypes
are visiting host plants in the field, and when they are doing it. We provided examples of the value of this
information for management of PVY and non-persistent cucurbit viruses in Section 3 and discuss how it does, or
does not, inform work on virus manipulation in Section 4. More studies are needed across a wider array of
geographic areas and pathosystems to provide information on the breadth of vectors responsible for transmitting
economically important viruses. These data will improve consideration of ecological aspects during design and
interpretation of empirical studies on virus manipulation, assist in refining integrated pest management
approaches, and provide a wealth of information on how temporal and spatial variation in agriculture impacts

vectors and viruses (Claflin et al. 2019).

2 Study changes in virus-induced host phenotypes over time.



components within the context of host progression through phenological stages, a process that involves changes
in the same metabolic and phytohormone-regulated pathways purported to be targeted by viruses with
manipulative traits (Westwood et al. 2013, Mauck et al. 2014b, Casteel et al. 2015, Yuan and Zhang 2015, Igbal
et al. 2017, Bera et al. 2020). Studies thus far strongly suggest that putative virus manipulations of host
phenotype are limited to specific host phenology x disease progression time points, which can be as small as one
week (Blua and Perring 1992a; Blua-andPerring+992bBlua and Perring, 1992: Blua et al. 1994; Wemer et al.
2009; Higashi and Bressan 2013; Shi et al. 2016; Legarrea et al. 2015; Mann et al. 2008; Rajabaskar et al. 2013;

Williams 1995; Shrestha et al. 2019). In some cases, vectors even exhibit opposing behavioral responses to the
same virus-host combination at different time points in disease progression (e.g., Blua and Perring 1992,

Rajabaskar et al. 2013, Shi et al. 2016). Implications of “temporally limited host manipulations” for virus spread
are intriguing to consider, but are not well-integrated into theoretical models that attempt to quantify benefits of
manipulation for viruses (McElhany et al. 1995, Sisterson et al. 2008, Roosien et al. 2013, Shaw et al. 2017,

Shaw et al. 2019). Likewise, these dynamics are rarely considered alongside typical fluctuations in vector

activity present in the field environments where manipulative traits are purported to have evolved.

3 Comprehensively evaluate the ecology of viruses before, during, and after undertaking empirical

work on virus manipulation.

Viruses infect multiple hosts and can be transmitted by multiple vectors. These aspects must be considered
during the experimental design phase of studies exploring whether virus-induced host phenotypes are likely to
enhance transmission through effects on vector behavior. Doing so often reveals complexity underlying what
appears to be a simple story at the surface level (Rajabaskar et al. 2013, Mauck et al. 2014a). For example, we
previously reported induction of a transmission-conducive phenotype by the non-persistently transmitted

cucumber mosaic virus (CMV)_(species Cucumber mosaic virus, genus Cucumovirus, family Bromoviridae)

infecting cultivated squash (Mauck et al. 2010). But CMV infects a wide variety of hosts across many plant
families. When additional CMV isolates were tested for manipulative ability, we observed both transmission-
conducive and transmission-limiting effects depending on the host species being infected (Mauck et al. 2014a).
In the host where we detected transmission-conducive effects, only a very compatible, colonizing vector species
responded to the shift in host phenotype, while a marginal colonizer had a neutral response (Mauck et al. 2014a).
These findings reveal important trade-offs and limitations on the evolution of manipulative traits but were only
evident when variation in host and vector associations were included in the experimental approach. In this
manuscript, we consider virus-vector associations retroactively in the context of previously published studies that
did not include the breadth of competent vectors as an ecological axis. The outputs of this exercise suggest that
conclusions about many cases of manipulation may be premature and formed out of context. More value and
insight into virus manipulation could be gained by considering virus ecology outside of the laboratory before

study conception, data interpretation, and publication.
4 Include more marginal and non-colonizing vector species and genotypes.

Our synthesis indicates that studies exploring virus manipulation of host phenotypes and vector behavior tend to
focus on the most compatible vector-host combinations. We highlighted downsides of this focus for our
understanding of putative manipulations by non-persistently transmitted viruses. However, exclusion of marginal
and non-colonizing vector species or genotypes from studies on persistently transmitted viruses also influences
interpretations of putative manipulations by viruses in this group. Benefits of host phenotype manipulation for

persistently transmitted viruses may extend bevond colonizing vectors if virus infections improve host



virus. For example, Davis et al. (2017) found that infection by the persistent, circulative bean leafroll virus

(species Bean leafioll virus,_genus Luteovirus, family Luteoviridae) reduced the degree of host fidelity

(attraction and settling) exhibited by different genotypes of Acyrthosiphon pisum (pea aphids) specialized on pea
or alfalfa, both of which are susceptible hosts for the virus. Thus, viruses which alter host phenotypes to favor
feeding by a broader array of vector species or genotypes will create additional transmission opportunities that
are not available to viruses lacking manipulative traits. These benefits, driven by marginal or non-colonizing
vector species, could even be a primary selective force favoring manipulative traits under certain field conditions.
Understanding the contributions of marginal and non-colonizing vectors to the transmission process, and
evolution of manipulative traits, will require more studies to identify relevant vectors across diverse pathosystems

and landscape structures.
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Highlights

* Plant viruses face pressure to escape dead end hosts in agricultural environments.

* Viruses may evolve to manipulate host phenotypes and vector behaviors.

* Manipulation should enhance transmission and the odds of persisting outside of crops.
* Virus transmission traits provide context for the evolution of virus manipulation.

* Virus-vector pairs in manipulation studies are not congruent with transmission traits.

Appendix A Supplementary data

The following are Supplementary data to this article:
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