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ABSTRACT OF THE THESIS 

 

DMAx: a High-Throughput Computational Tool for Dynamic Mechanical Analysis 

 

 

by 

 

Ricardo Silva Buarque 

 

Master of Science in Materials Science & Engineering 

University of California San Diego, 2023 

Professor Tod Pascal, Chair 
 

Dynamic Mechanical Analysis (DMA) is an important experimental characterization 

technique for the mechanical properties of polymers. In this paper, we translate such a 

technique into a Molecular Dynamics (MD) simulation workflow capable of outputting 

properties from DMA within a much wider frequency and temperature range than what can be 

experimentally observed. We also introduce metrics for convergence of simulation runtime 

and DMA straining size that are not discussed in comparable computational literature but that 

drastically affect the accuracy of results. We validate the efficacy of the work by comparing 

our obtained storage and loss modulus data on Polyvinylidene Fluoride (PVDF) with previous 

computational literature and indicating performance and accuracy improvements for such 

study based on our convergence metrics. Finally, we perform a complete workflow run at 
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GHz-range frequencies on PVDF utilizing the All-Atom Optimized Potential for Liquid 

Simulations (OPLS-AA). With this, we hope to validate and justify this forcefield as a good 

standard for high-throughput analyses on other polymers with the workflow and to compare 

our data with experimental results employing the Time-Temperature Superposition (TTS) 

method.

 



1 

INTRODUCTION 
 

The study of material behavior under dynamic conditions is paramount across a wide 

spectrum of scientific and engineering disciplines. Comprehending the intricate mechanical 

properties of compounds when subjected to varying temperature, frequency, and strain rates is 

crucial in designing and optimizing novel materials for cutting-edge applications. Dynamic 

Mechanical Analysis (DMA) is a powerful and versatile experimental technique to investigate 

the dynamic responses of materials, offering valuable insights into their viscoelastic and 

mechanical behavior over a wide range of conditions. 

The standard operation of a Dynamic Mechanical Analyzer (DMAn) or Rheometer 

consists of the application of a small periodic stress into a polymeric sample with a defined 

frequency and under controlled temperature conditions. Such oscillatory stress will generate a 

strain response in the material at the same frequency as the stimulus applied. A perfectly elastic 

material will have its sinusoidal stress perfectly matching the applied strain. On the other hand, a 

perfectly viscous material should have an exact phase angle between the sinusoidal strain applied 

and the observed pressure response of 90°. A viscoelastic material should have an intermediate 

behavior, with a phase lag in its stress response between 0° and 90° [1]. These behaviors are 

depicted in Figure 0.1. 
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Figure 0.1.1: Periodic stress/strain response from a material under Dynamic Mechanical 

Analysis. Adapted from [1] 

 

The most important dynamic mechanical information extracted from these periodic 

stress-strain results are the Storage Modulus (SM), the Loss Modulus (LM), and the Loss 

Tangent (LT) for the analyzed species. These properties are obtained by multiplying the ratio of 

the maximum stress (σmax) and maximum strain (εmax) applied on the material by a trigonometric 

relation with the phase angle (θ) between the applied strain and the stress response curves 

(Equations 1.1-1.3). The storage modulus represents the material's ability to store elastic energy 

and is associated with the material's stiffness. It is generally frequency-dependent, showing 

variations with the loading rate. The loss modulus indicates the energy dissipated by the material 

as heat during deformation and characterizes its damping capacity. It also varies with frequency 

and temperature. The loss tangent is the ratio of the loss modulus to the storage modulus, 

representing the material's damping behavior, and it provides insights into the material's energy 

dissipation capabilities [2].  
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𝑆𝑀 =
𝜎𝑚𝑎𝑥

𝜀𝑚𝑎𝑥
cos 𝜃 (Equation 1.1) 

𝐿𝑀 =
𝜎𝑚𝑎𝑥

𝜀𝑚𝑎𝑥
sin 𝜃 (Equation 1.2) 

𝐿𝑇 =
𝐿𝑀

𝑆𝑀
=

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
= tan𝜃 (Equation 1.3) 

 

Through the evaluation of these moduli against varying time, temperature, and frequency, 

one can investigate phenomena such as viscoelasticity, glass transition, relaxation behavior, and 

damping capacity, among other mechanical properties, with DMA. Despite the efficacy of this 

technique, traditional experimental DMA methods suffer from a series of physical limitations. 

For instance, the energy necessary to overcome the inertia of the instrument utilized for applying 

the oscillating stress can be transferred to the sample in the form of heat and cause difficulty in 

maintaining the sample’s temperature constant. The temperature is usually controlled by a heat 

chamber in which the sample is immersed during the oscillatory behavior of the DMAn, which 

has a limited temperature range and can fail in keeping the sample temperature constant for more 

viscous materials under higher-frequency stress. Such chambers are also only responsible for 

controlling temperature, with no Rheometer to date containing any type of pressure control. In 

addition, any imprecision in the sample’s dimensional measurements is extremely impactful over 

the measurements of its properties since they exhibit a high geometry dependence. Finally, there 

are limitations to the frequency-based techniques in DMA since most devices can only perturb 

the material at up to 1 kHz rates [3]. Therefore, there is little to no data on the mechanical 

properties of polymers in the high-frequency regime, which has gained immense relevance over 

the past few decades due to the interest in ultrasound-responsive drug delivery [4] and MHz to 

GHz-range electronic signal emission and processing [5]. 
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To overcome the high-frequency limitations of DMA, researchers have made use of the 

Time-Temperature Superposition (TTS) principle observed in polymers to extrapolate data to 

higher frequencies. TTS suggests that the dynamic mechanical response of a polymer at different 

frequencies follows an Arrhenius behavior and can be translated to predict its behavior at other 

unmeasured frequencies (Figure 0.2). This principle is applicable over a broad frequency range, 

enabling researchers to extend the viscoelastic data obtained from short-term experiments to 

long-term behaviors - and vice versa - into a Master Curve (MC). 

 

Figure 0.1.2: Temperature dependence of Storage Modulus of a viscoelastic material under 

periodic excitation. The frequency is ω, G' is the SM, and T0 < T1 < T2. Adapted from [6] 

 

Despite the usefulness of this extrapolation method, it is difficult to validate the high-

frequency data since no experiments can be run at such a range. In addition, MCs require several 

data points - optimally over 100 - of DMAs from multiple frequencies and temperatures, which 

can be extremely time-consuming at the low-frequency regime. Therefore, in this paper, we 

introduce a first-of-its-kind computational workflow capable of mimicking the capabilities of a 

DMAn through Molecular Dynamics simulations. The workflow is equipped with a proxy 
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designed to select the appropriate number of dynamic cycles to be run in a polymer system and 

the appropriate strain size for each structure to minimize disparities from experimental 

conditions, something unique to date in all literature attempts of simulating periodic mechanical 

properties with MD. It can also simulate several data points for the construction of a Master 

Curve. Since the workflow can effectively simulate frequencies from the high-kHz regime and 

above, it is also extremely useful both in validating MCs constructed experimentally and in 

extrapolating computational data to the low-frequency regime so that it can be validated over 

empirical measurements. The individual tasks from the workflow can determine several other 

important parameters of polymers, such as the Young’s modulus, the glass temperature, and the 

storage modulus/loss modulus/loss tangent at specified temperatures, pressures, and frequencies. 

Finally, the high-throughput capabilities of this workflow open a plethora of possibilities in 

materials discovery and analysis, whether by aiding in database screening for optimal 

mechanical properties or by allowing the development of datasets for machine-learned models to 

suggest new polymeric systems with intrinsic mechanical characteristics. 
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Chapter 1 Methods & Workflow Description 

 

In this study, all MD simulations were performed with the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) software. We perform all analyses on an amorphous 

sample of Polyvinylidene Fluoride (PVDF), built with an in-house script to closely match the 

system studied by Ghajar et. Al. [7] to validate the efficacy of the workflow and suggest 

improvements on previous literature. The system, depicted in Figure 1.1, is composed of a set of 

10 chains of 100 monomers (6080 atoms) wrapped in periodic boundary conditions with an 

initial density of 1.68 g/cm3 to closely match the experimental density of amorphous PVDF [8]. 

The nonpolar forcefield by Byutner and Smith [9] was used to match the simulation standards 

most closely from Ghajar [7]. 

 

Figure 1.1: PVDF amorphous structure 
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Equipped with the right input structure and DMA parameters, one can easily navigate the 

DMAx object-oriented Python package and calculate the storage and loss moduli as well as the 

loss tangent at a specific temperature, pressure, and frequency for a previously parametrized 

material. However, to enable high-throughput analysis of multiple polymers as well as detailed 

property investigation – Young’s modulus, glass transition temperature, and master curve of the 

studied polymer - we have developed a primary workflow that runs sequentially with minimal 

user interference, depicted in Figure 1.2. We utilize the jobflow Python package by Ganose et al. 

to automate this sequence of tasks. Details about the workflow procedure are described in the 

following sections. 

 

Figure 1.2: DMAx workflow 
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Input Selection & Structure Optimization 

Despite utilizing an externally built structure for this study, we have provided a plethora 

of options for users to create their polymer systems in DMAx. For simpler polymer systems, we 

integrate our workflow with Sahu et al.’s [10] PolymerStructurePredictor Python package. In 

this case, users need only to provide a Simplified Molecular-Input Line-Entry System (SMILES) 

string of the desired monomer and the workflow will build crystalline and amorphous LAMMPS 

data of it. Parameters such as the density, the number of monomers, and the number of polymer 

chains can also be input but are otherwise set to values that ensure the highest result accuracy 

based on training use of the software.  

An example of the above standards is that we set a minimum of 6000 atoms for stress 

data reliability. As further explained later in this section, the storage and loss moduli data are 

obtained through an analysis of the average pressure response of the system throughout the 

simulation. Pressure in molecular dynamics simulations is a statistical quantity calculated based 

on the momentum exchange between particles. In smaller systems, the statistical accuracy of 

pressure calculations might be lower due to the limited number of particles contributing to this 

exchange, leading to larger fluctuations. In addition, systems with fewer atoms typically have a 

higher ratio of surface area to volume. This imbalance can affect the system's response to 

pressure changes, leading to more pronounced fluctuations compared to larger systems where the 

ratio of surface area to volume is smaller, hence the need for an established minimum number of 

atoms for ensuring data quality. 

Another standard characteristic of the workflow is to utilize OPLS-AA forcefield 

parameters as default when no forcefield is specified. We do so because this force field has 

demonstrated good agreement with experimental data on various polymer properties such as 

conformational energies, bond lengths, dihedral angles, and phase behavior. In addition, OPLS-
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AA provides a balanced representation of bonded and non-bonded interactions within polymer 

chains. This balance is crucial for accurately capturing the structural and dynamical properties of 

polymer systems, especially considering intra- and -inter-molecular interactions under periodic 

strain. 

Users are also allowed to enter any MSI Biograf Format (.bgf) or Protein Data Bank 

(.pdb) structure and any Cerius2-formatted forcefield as the primary inputs for the DMA 

simulations. Our in-house scripts can parse such files and generate LAMMPS input and data files 

for the simulations. The user can additionally choose to manually provide the LAMMPS data file 

desired to be used throughout the workflow. These advanced input tools allow users to amplify 

the range of structures being studied, such as polymers with impurities or varied groups of 

polymer chains. They also allow for accuracy improvements as users can provide the most 

appropriate forcefields for their materials, including better-parametrized machine-learned 

forcefield options. As will be discussed in the Future Work section, we hope to encode a 

universal machine-learned forcefield for polymers into DMAx, as well as a tool for properly 

creating semicrystalline polymer structures besides the crystalline and amorphous tools already 

available. 

Every MD simulation executable in the workflow can subject the polymer to an 

equilibration sequence of steps before the calculation of its dynamic mechanical properties. For a 

full run of the workflow, this equilibration set of steps is done only once and the equilibrated 

structure is saved and utilized as a starting point in further steps to reduce computational cost. 

Such equilibration protocol consists of a 500-step conjugate-gradient minimization of the 

structure, followed by a 10-picosecond heating process from 1K to the desired temperature, 

utilizing a Nosé-Hoover Thermostat (NVT). Commonly, MD studies start equilibrating materials 
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already at the desired temperature of analysis, but we utilize this ramping temperature technique 

to avoid inadequate dynamics caused by a potentially unstable configuration being assigned high 

atom velocities from start. The material is then subjected to a 1-nanosecond Nosé-Hoover 

Barostat (NPT) to allow for the density of the system to reach equilibrium. Finally, the lattice 

parameters are averaged from the NPT step and a final NVT is run for 500 picoseconds to 

equilibrate the new density at the simulated temperature. Figures 1.3 and 1.4 illustrate the Total 

Energy and Density of the PVDF system as a function of time with these equilibration steps 

labeled, indicating the stability of the density after the volume convergence. The Byutner and 

Smith forcefield [9] underestimates the PVDF density to 1.455 g/cm3 while OPLS-AA 

overestimates it at 1.89 g/cm3, indicating that the OPLS-AA likely weights van der Waals (vdW) 

interactions stronger between the polymer chains. 

 

Figure 1.3: Total Energy vs Runtime for the equilibration procedure 
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Figure 1.4: Density vs Runtime for the equilibration procedure 

 

Following these equilibration steps, the simulations undergo another NVT to control the 

temperature - as done by the heat chamber in a Rheometer - while sinusoidally deforming the 

system at a user-defined amplitude, temperature, pressure, and frequency. At the time of 

publication, only the tensile/compressive and shear analyses are available, but we will be adding 

options for purely tensile, purely compressive, and cantilever perturbations in DMAx 2.0 as well 

as several other new features later described in the Future Work section.  

The sample oscillatory process is different in DMAx from experiments in the sense that it 

simulates a user-defined strain and calculates the output stress while experiments do the exact 

opposite. However, since the relevant measure for property calculations is the phase lag between 

both signals, it does not matter which stimulus is applied and which is measured. Mechanical 

properties are then obtained from the MD trajectory of this oscillatory step in the simulation, 

where we use the Scipy Python package to fit a sinusoidal curve to the pressure output and 
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measure the phase angle between such fitted curve and the original strain applied. Although the 

Nyquist-Shannon [11] sampling theorem indicates that one should have at least double the 

sampling rate than the maximum frequency of the observed signal, we collect 1000 data points 

per sinusoidal cycle by default. We do so to ensure data fitting accuracy while not compromising 

simulation time. 

The pressure data output from LAMMPS is a second rank tensor. Therefore, for 

compression/tension mode, the pressure sampled is parallel to the direction in which the strain is 

applied, while for shear mode, the pressure analyzed is perpendicular to the strain. For the 

compression/tension mode, we also ensure to expand/shrink the unit cell dimensions respectively 

as we strain the system in order to maintain a constant volume, which is crucial to mimic 

experimental results. 

 

Strain Size Convergence 

There is no clear consensus on the correct strain size to use in a material when simulating 

DMA, only recommendations that such value lies within the linear viscoelastic region of the 

material. This convergence step identifies the plastic transformation regime of the material and a 

consequent maximum allowed strain, an analysis that is standard in experimental DMA [12]. 

Another important aspect of this analysis which has not been previously discussed in the 

scarce computational DMA literature is the accuracy vs. cost-effectiveness of MD simulations 

with this type of sinusoidal perturbation. The thermostat coupled with the oscillatory command is 

known for yielding pressure oscillations [13] that, under low amplitudes, generate an unfilterable 

noise in the sinusoidal signal. This phenomenon is even more prominent in amorphous polymer 

systems in which the predominant van der Waals (vdW) interactions cannot counteract the strain 

as strongly as the directional covalent bonds in crystalline systems, yielding a pressure signal 
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that might be lower than the random oscillations caused by the thermostat. Such a behavior is 

depicted for amorphous PVDF in Figures 1.5 and 1.6. 

 

Figure 1.5: Pressure evolution over the perturbation step of the DMA analysis at 1% strain. 

 

Figure 1.6: Pressure evolution over the perturbation step of the DMA analysis at 23% strain. 
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As aforementioned, such noise can be reduced by drastically expanding the system, but 

this can greatly increase the computational cost of simulations in the workflow. Therefore, our 

alternative to mitigate this noise is determining an optimal strain size besides the maximum one 

that minimizes a statistical cost function. This is also important in approximating, as much as 

possible, computational strain values to experimental ones, which are much lower for both 

crystalline and amorphous systems. 

For the convergence analysis, structures undergo 10 DMA cycles with strain amplitudes 

between 0.1 and 50% (amorphous) or 0.001 and 10% (crystalline) the length of the unit cell. We 

then measure the SM, LM, and LT, as well as the Root-Mean-Squared Error (RMSE), R2-score, 

and offset from the original pressure in the sinusoidal curve fitting. We rank the data based on 

the lowest RMSE and offsets and highest R2 scores and the strain with the best summed score is 

selected to be used throughout the rest of the workflow. An example of such analysis for PVDF 

is shown in Figure 1.7. While the suggested strain in [7] is about 12%, our workflow indicates a 

better convergence over a strain of approximately 8%. That is due primarily to the high negative 

pressure offset at 12%, indicating that the system is undergoing a small drift, which is an error 

inherent to MD simulations over high perturbation. 
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Figure 1.7: Output from the strain size convergence step of the workflow for amorphous PVDF. 

Measurable properties (SM, LM, and LT) are somewhat constant near the most appropriate strain 

size. 
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Number of Cycles Convergence 

This convergence step was primarily designed to cut computational costs for the 

simulations and allow for a high-throughput analysis method. For the previous step of the 

workflow, 10 full cycles of DMA are run, and a sinusoidal curve is fit to such data. However, 

most times - especially for crystalline structures - much fewer cycles are usually necessary to 

obtain a good sinusoidal fitting. Additionally, despite being in the elastic regime of materials, 

continuous oscillations can slightly alter the hysteresis cycle in both experimental and 

computational settings as depicted in Figure 1.8. Therefore, with the newly determined optimal 

strain size, the 10-cycle simulation at that strain is cut into smaller outputs with 1 through 10 

cycles. The R2-score is then determined for all numbers of cycles and convergence is achieved 

once the score varies less than 1% based on the previous result. A PVDF example of this 

workflow step is illustrated in Figure 1.9. The workflow convergence standards suggest 4 cycles 

for a 12% strain rather than the suggested 2 from [7], indicating that their data could have been 

slightly underfitted, thus yielding to less accurate SM, LM, and LT results. 

 

Figure 1.8: Hysteresis loop deviation over multiple DMA cycles. Adapted from [14] 
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Figure 1.9: Runtime convergence plot for amorphous PVDF. 

 

Error Analysis 

This step of the workflow, as well as the rest of the tasks described, goes beyond any 

information previously provided in literature analyzing the cyclical mechanical properties of 

materials with MD. It utilizes the optimized strain size and number of cycles to determine the 

expected error in all simulations under these parameters.  

Differently from all other simulations in the workflow, each dynamic oscillation is 

assigned a different Maxwell-Boltzmann distribution of the velocities at the desired analysis 

temperature, which otherwise is set to 300K. Such a process initiates at random velocity seeds, 

indicating different starting points for the structure. Since the structure utilized has been 

previously optimized in the workflow, we assume that it has equilibrated at the temperature of 

interest and that any random velocity distribution could converge to stable dynamics. 

The error can be plotted at different frequencies such as in Figure 1.10, with a standard 

frequency of 25GHz. Such as in all other steps of the workflow, any simulation with an R2 score 
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lower than 0.01 is eliminated from the error analysis plot since the noise prevents the capture of a 

well-defined sinusoidal behavior, thus making the data unreliable. 

 

Figure 1.10: Error analysis for the SM, LM, and LT of amorphous PVDF. 

 

Glass Temperature Analysis 

The glass transition temperature (Tg) represents a critical thermodynamic property in 

amorphous polymers, delineating the transition from a rigid, glassy state to a more pliable, 

rubbery state. This temperature point, crucial in understanding the material's behavior, signifies 

the change in molecular mobility without a distinct phase transition. Below Tg, polymers exhibit 

a solid, vitreous state characterized by restricted molecular motion and high stiffness, while 

above this threshold, increased molecular mobility results in a more flexible, rubbery behavior. 

The value of Tg is influenced by various factors, including molecular weight, chain flexibility, 

chemical structure, and processing conditions. Accurate determination and comprehension of Tg 

are paramount for tailoring polymer properties to specific applications, impacting material 

design, processing techniques, and performance in various industries [15]. 
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In our workflow, we encoded the first glass temperature analysis method utilizing 

computational DMA to date. Current methods for determining this polymeric property rely on a 

long and expensive set of simulations in which the system volume is equilibrated with an NPT 

ensemble under different temperatures, as done at the structure equilibration step in DMAx. In 

our case, we assume that, even though deviating from expected system density for other data 

points, a single equilibration step at room temperature is enough for the structure as long as the 

velocities are reassigned at the oscillatory step to match the desired temperature of observation. 

The set of simulations for DMAx are much shorter than the aforementioned NPT method since 

higher frequencies translate into shorter periods, hence shorter runtimes for the oscillatory runs. 

Figure 1.11 shows the fitted LT evolution for the PVDF system at 5GHz between -80°C 

and 80°C, sampled at a 1°C rate. When compared to Figure 1.12, which portraits experimental 

data for the same system, one notices that the simulated and experimental glass transition 

temperature ranges match, with a difference in the peak Tg of about 3°C. Further information 

about the glass temperature of the sample, including the comparison of SM data with 

experiments and explanations about data variation with frequency, is detailed in the Results 

chapter. 
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Figure 1.11: Glass Temperature Analysis of PVDF at 5GHz 

 

 

Figure 1.12: Experimental SM and LT of PVDF. Adapted from [16] 
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Master Curve 

Like the glass transition temperature, Master Curves (MCs) are of ultimate importance 

for the characterization of polymers. They aid in extrapolating material behavior under 

conditions that might not be practically feasible to test in a laboratory setting, offering invaluable 

insights into the mechanical behavior of polymers across diverse environmental conditions. The 

Time-Temperature Superposition (TTS) principle forms the basis for constructing Master Curves 

(MCs) in polymer characterization. It postulates that different experimental data obtained at 

various temperatures and time scales can be shifted and superimposed onto a single master curve 

by using a time-temperature shift factor. This shift factor allows the rearrangement of the data to 

align with a reference temperature or time, typically the glass transition temperature or the 

characteristic relaxation time. By applying appropriate shifts along the frequency and 

temperature axes, the viscoelastic behavior observed at different conditions can be unified onto a 

single master curve, providing a comprehensive depiction of the material's mechanical response 

across a broader range of temperatures and frequencies.  

As observed in Figure 1.13, the storage modulus (E') is plotted against a frequency or 

time window over several isotherms. Each isotherm is then assigned a temperature-dependent 

shift factor α with respect to the intermediate temperature (T0) of the dataset, which can either be 

determined by computational curve fitting methods or based on the experimental Williams-

Landel-Ferry (WLF) equation (Equation 2). 

log(𝛼) =
𝐶1∗(𝑇−𝑇0)

𝐶2+(𝑇−𝑇0)
  (Equation 2) 
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Figure 1.13: Master Curve fitting procedure. Adapted from [6] 

 

 

The WLF method relies on two material-specific constants, C1 and C2, which will likely 

not be available for all polymers studied with DMAx. Therefore, we opt for a curve-fitting 

approach by using [17]’s mastercurves Python package. This software utilizes a Gaussian 

Process Regression (GPR), which is a machine learning method, for determining the shift factors 

and creating a continuous curve based on the reference temperature. It predicts a smooth 

interpolant with its respective uncertainty bounds that will be responsible for assigning vertical 

and horizontal shifts to each isotherm that ensure maximum possible continuity of the final MC. 

The final plot should then have data for the mechanical response of the material at the 

intermediary temperature of the dataset - usually the glass transition temperature - over a much 

broader frequency range. The example for PVDF will be further discussed in the Results section. 
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Chapter 2 Results, Limitations & Future Work 

 

In this chapter, we hope to elaborate on the data comparison made with [7] to validate our 

DMAx’s method. In addition, we introduce more details on the error and glass temperature 

analyses as well as on the master curve construction for the PVDF system. We hope to elucidate 

the quality of the data by comparing it to experimental results as well as indicate limitations of it 

and improvements already planned for DMAx 2.0. 

Table 2.1 displays the SM, LM, and LT values obtained by DMAx and by [7] for an 

equivalent PVDF system under the frequencies of 0.25GHz, 2.5GHz, and 25GHz and at 12.5% 

strain over only 2 oscillations, closely matching Ghajar’s simulation conditions. We observe that 

most data points disagree by more than the expected error margin for DMAx results at 25 GHz 

depicted in the previous chapter. The data at lower frequencies tends to deviate even more from 

our calculations and at what we argue to be an incorrect trend for this type of material. 

Table 2.1: Values of SM, LM, and LT calculated with DMAx and by Ghajar et. Al. 

 
 DMAx Ghajar et. Al. 

0.25 GHz SM: 928 MPa, LM: 205 

MPa, LT: 0.22 

SM: 602 MPa, LM: 709 

MPa, LT: 1.178 

2.5 GHz SM: 718 MPa, LM: 270 

MPa, LT: 0.37 

SM: 825 MPa, LM: 669 

MPa, LT: 0.811 

25 GHz SM: 966 MPa, LM: 367 

MPa, LT: 0.38 

SM: 1761 MPa, LM: 748 

MPa, LT: 0.424 

 

 

For most polymers and, specifically, for PVDF as depicted in Figures 2.1 and 2.2, the SM 

typically tends to increase or remain the same while the LT mostly increases with an increase in 

frequency. This indicates that the phase angle between the simulated strain and computed stress 

increases, also highlighting that the material becomes more lossy. [18] explains that higher 

frequencies constraint the flow of the polymer chains, thus increasing heat losses as bonds are 
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not able to absorb the input energy at the appropriate relaxation time. Additionally, an argument 

could be made about higher frequencies exciting new vibrational modes on the structure which 

could generate more thermal losses. 

 

Figure 2.1: SM evolution of PVDF at different experimental frequencies. Adapted from [19] 

 

 

Figure 2.2: LT evolution of PVDF at different experimental frequencies. Adapted from [19] 
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Even though the SM data at 2.5 GHz is lower than that of 0.25GHz, the discrepancy lies 

within the error margin at this frequency and temperature and the expected data trend is in great 

agreement with DMAx results, supporting the conclusion that there could be incorrect physics 

encoded in the DMA simulations of Ghajar’s work. Alternatively, Ghajar’s data could be 

affected by the construction mechanism of the amorphous structure as well as by the fitting 

quality of the sinusoidal data. As aforementioned, we ensure to collect at least 1000 data points 

per cycle to account for the high-pressure fluctuations of MD, but there is no reference regarding 

the sampling rate of [7]. 

Another factor that validates the quality of our data is the close match between the 

Young’s modulus calculated with our system in comparison to that of an amorphous PVDF 

experimental sample. When the sinusoidal curve is fit to the pressure data through time, we can 

plot that series of data points against the associated strain applied at the simulation timestep 

when each pressure was computed. Since we ensure that the material is within its elastic 

deformation regime, the slope of the longest axis of the plotted ellipsoid should be equal to the 

Young’s modulus of the system [7]. For PVDF at 25GHz with the OPLS-AA FF, we calculate a 

Young’s modulus of 1065.33 MPa, which is close to the experimental value of 1260 MPa [20], 

especially taking into account the large pressure fluctuations for the amorphous system. The 

ellipsoid for this calculation is depicted in Figure 2.3. 
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Figure 2.3: Periodic stress-strain curve of amorphous PVDF with the OPLS-AA forcefield and 

fitted Young's Modulus. 

 

We further elucidate the quality and limitations of our data by extending our observation 

over the Tg results. Figure 2.4 plots the SM, LM, and LT data points – rather than the smoothed 

curve presented in Chapter 1 – for the PVDF sample at 5GHz with the OPLS-AA FF. Despite the 

great agreement of the glass transition regime with experimental data, we must highlight that the 

SM and LM data do not match expected experimental values, for which SM below the Tg regime 

is expected to increase much more rapidly as depicted in Chapter 1. As the polymer becomes 

crystalline, the LM is also expected to decrease, a fact that is not observed in our data set. 
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Figure 2.4: SM, LM, and LT for PVDF at 5GHz near Tg 

 

This disagreement is mostly due to the lack of any crystallinity on the structure studied, 

which also greatly affects the noise in the data, leading to a potential argument that the fitted 

glass transition regime has too much error to be considered a peak. The optimal approach for this 

matter would be to simulate a semicrystalline system at the glass temperature regime, a 

crystalline structure below Tg and the purely amorphous one after this range, weighting the data 

from all within the total temperature range to account for the appropriate dynamics at each 

regime. However, we have not yet successfully been able to develop an accurate semicrystalline 

structure or a crystalline one with comparable box dimensions and chain sizes.  

In addition, this workflow is intended to be useful for any polymer despite prior 

experimental knowledge, thus allowing for new compositions and novel structures. With this in 

mind, we are still not able to automatically determine the temperature range in which the glass 

transition should occur, having relied on experimental data values to decide on the temperature 

range of our simulations. 
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For the subsequent version of DMAx, we are integrating [21]’s workflow for generating 

semicrystalline polymer structures as well as an in-house script to adapt fully crystalline 

structures to similar dimensions as that of the semicrystalline and amorphous systems studied 

near Tg. In addition, we will incorporate [22]’s 2-Phase Thermodynamics (2PT) code in our 

workflow to screen the Gibbs Free Energy curves of each structure and determine the appropriate 

temperature ranges to simulate the phase transition. Since 2PT relies on even shorter simulation 

times, we will be able to make a refined analysis even over a broader temperature range. 

We conclude our data analysis by commenting on the results of the Master Curve 

obtained for the PVDF system with the OPLS-AA FF. This analysis contains data of 100 

simulations at frequencies varying between 10 and 100GHz and temperatures between -70°C and 

20°C, encompassing the glass transition region of this polymer with the Tg at the center point of 

all measurements. Figures 2.5 – 2.7 portray SM, LM, and LT data associated with the 

construction of the master curves for PVDF. The top plots depict the original data points 

collected at the previously referenced frequencies and temperatures. The middle graphs depict 

the curves fit to each isotherm and the interpolant error margins for the data. Finally, the last 

plots portray the actual MCs for SM, LM, and LT respectively, composed of the shifted data 

from all isotherms. 
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Figure 2.5: Storage Modulus MC data 
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Figure 2.6: Loss Modulus MC data 
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Figure 2.7: Loss Tangent MC data 
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In comparing the new low-frequency data and extrapolating its trend to even lower 

frequencies, we notice that both the SM and LT data closely match the experimental values from 

Figures 2.2 and 2.3 within the error margins of DMAx. We can further prove from this analysis 

that the SM remains mostly constant even through such a high frequency range while the LM 

and LT increase with reduced oscillation periods. We also observe a decreasing trend for the SM 

above the GHz regime, which is mostly attributed to the lower SM data computed for the highest 

frequencies in the original data set. However, this data is known to be less reliable as, for higher 

frequencies, the mechanical signal begins to couple with the temperature update frequency, 

leading to unstable dynamics. We also must highlight that the lack of crystallinity in the system 

could be greatly impacting the data quality at temperatures below Tg. 

For DMAx 2.0, besides the aforementioned updates, we hope to add better convergence 

metrics for the MC to ensure its data reliability as well as a machine-learned universal forcefield 

for polymers with polarizable charges. This will drastically improve data accuracy as it will 

allow for better resolution on vdW interactions, which are the primary forces acting upon 

polymeric systems. Additionally, it will enable charge reparameterization as molecules oscillate 

in distance due to the periodic oscillation of the system. 
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CONCLUSION 

 

We have developed a first-of-its-kind platform for computing dynamic mechanical 

properties of materials. Our workflow is capable of calculating the Young’s Modulus, Storage 

Modulus, Loss Modulus, and Glass Transition Temperature of a material with as little as a 

SMILES string utilized to generate the structure, making the software extremely user-friendly. 

We also offer an error analysis metric to determine the quality of each system’s data. Besides the 

glass temperature – greatly affected by the data error margins and by the lack of crystallinity in 

the current system – our other simulated properties greatly match experimental values. In fact, 

we are able to compute a master curve by obtaining DMA data at multiple frequencies and 

temperatures and the extrapolated values closely match the SM and LT observed at the low-

frequency regime in experiments. 

DMAx 1.0, our Python package, is available free of charge on our GitHub repository 

(https://github.com/rsilvabuarque/DMAx). An upgraded version of this workflow is already 

under development for future publication and will contain several improvements focused on 

structure generation and data quality assurance. We hope to stem from pre-built algorithms 

capable of generating accurate crystalline and semicrystalline polymer structures to better 

understand the materials behavior near the glass transition regime. We also plan to integrate a 

computationally inexpensive Gibbs Free Energy analysis of the crystalline, semicrystalline, and 

amorphous systems over a large range of temperatures to define the range in which the glass 

temperature should be computed with DMA calculations. Finally, we are developing a universal 

machine-learned polymer forcefield with polarizable charges to better determine the atom 

dynamics in the system and minimize the pressure fluctuations. 

 

https://github.com/rsilvabuarque/DMAx
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