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Abstract

In the medical imaging field, we need fast deformable
registration methods especially in intra-operative settings
characterized by their time-critical applications. Image
registration studies which are based on Graphics Process-
ing Units (GPUs) provide fast implementations. However,
only a small number of these GPU-based studies concen-
trate on deformable registration. We implemented Demons,
a widely used deformable image registration algorithm, on
NVIDIA’s Quadro FX 5600 GPU with the Compute Uni-
fied Device Architecture (CUDA) programming environ-
ment. Using our code, we registered 3D CT lung images
of patients. Our results show that we achieved the fastest
runtime among the available GPU-based Demons imple-
mentations. Additionally, regardless of the given dataset
size, we provided a factor of 55 speedup over an optimized
CPU-based implementation. Hence, this study addresses
the need for on-line deformable registration methods in
intra-operative settings by providing the fastest and most
scalable Demons implementation available to date. In ad-
dition, it provides an implementation of a deformable reg-
istration algorithm on a GPU, an understudied type of reg-
istration in the general-purpose computation on graphics
processors (GPGPU) community.

1 Introduction

Image registration is the process of aligning images
so that corresponding features can easily be related [5].
In the medical field, professionals use registration to aid
in many critical tasks such as diagnosis, planning ra-
diotherapy/surgery, patient positioning prior to radiother-
apy/surgery, dose delivery verification, performing image-
guided surgery, monitoring disease progression or response
to treatment, and atlas-based registration.

Registration aligns images by applying transformations
to one of the images so that it matches the other. Registra-
tion techniques can be divided into rigid registrations and

deformable registrations. Rigid registration methods only
allow rigid transformations. On the other hand, deformable
registration methods apply techniques such as elastic trans-
formations to correct deformations that rigid methods are
not sufficient to correct.

Medical imaging applications use different deformable
registration methods [18]. Among these methods, develop-
ers widely use Demons deformable registration technique
proposed by Thirion [31] due to its proved effectiveness,
simplicity, and computational efficiency. Demons takes two
images as inputs and produces the displacement field which
indicates the transformations that should be applied to pix-
els of one of the images so that it can be aligned with the
other as shown in Figure 1.

(a) (b)

(c) (d)

Figure 1. Registering images with Demons:
(a) original lung image of a patient, (b) same
image after a deformation, (c) corrected im-
age after applying Demons, and (d) differ-
ence image of the original and corrected im-
age (helps to verify visually the quality of the
match).

While deformable registration methods have broad ap-
plicability in intra-operative settings, the long CPU run-
times of current deformable registration techniques do not
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allow for time-critical intra-operative applications, which
typically require only few seconds as a maximum response
time. Hence, developers of time-sensitive medical applica-
tions need techniques that considerably reduce the runtime
of deformable registration.

Graphics Processing Unit (GPU) computing presents
one of the techniques that can address this need. The
GPU’s substantial arithmetic and memory bandwidth capa-
bilities, coupled with its recent addition of user programma-
bility, has allowed for “general-purpose computation on
graphics hardware” (GPGPU) [4]. Many non-graphics-
oriented computationally expensive algorithms have been
implemented on the GPU. Developers prefer GPUs over
other alternative parallel processors due to several advan-
tages including their low cost and wide availability. Owens
et al. presented a comprehensive survey of latest research in
GPU computing [23]. Since medical imaging applications
intrinsically have data-level parallelism with high compute
requirements and most of them requires visual interaction,
they are very suitable to be implemented on the GPU. As
will be explained in Section 3, researchers have conducted
several prior GPGPU studies in the field of image registra-
tion. However, only a limited number of previous studies
concentrate on deformable registration.

In this study, we implemented Demons deformable reg-
istration algorithm, on NVIDIA’s Quadro FX 5600 GPU
with the Compute Unified Device Architecture (CUDA)
programming environment. The Demons algorithm, though
not necessarily the fastest and most robust deformable regis-
tration method in all clinical cases, is widely available and
serves as a standard for comparison due to its simplicity.
Hence, we have chosen to implement Demons and we hope
that other GPGPU researchers in the field will also make the
same choice to standardize the performance comparisons.
The specific technical contributions of our paper are three-
fold:

1) It addresses the need for faster intra-operative de-
formable registration algorithms by presenting the fastest
GPU-based implementation of Demons algorithm: To the
best of our knowledge, Sharp et al. [27] reported the fastest
implementation using the Brook [1] programming envi-
ronment. We improved this speed using CUDA [22] and
achieved 10% faster runtime.

2) It provides a scalable implementation by achieving
speedup which is constant across datasets with different
sizes: Independent of the size of the dataset, our CUDA
implementation of Demons running on the GPU is 55 times
faster than the single-threaded, optimized C implementa-
tion running on a CPU. Other implementations either re-
ported speedup for only one dataset or they reported smaller
speedups for larger dataset sizes.

3) It concentrates on implementing a deformable regis-
tration algorithm exclusively on a GPU, an understudied

type of registration in the GPGPU community.

2 Background

In this section, we provide expanded explanations of
some of the concepts we introduced in Section 1. First, we
talk about the differences between rigid and deformable reg-
istration. Next, we give examples of intra-operative applica-
tions that can take advantage of fast deformable registration
methods. At the end, we list benefits of using deformable
registration in such applications.

Registration techniques are divided into two groups: 1)
rigid registration methods, which only allow rigid transfor-
mations such as translation, rotation, etc., 2) deformable
registration methods which apply techniques such as elas-
tic transformations to register images that rigid methods are
not sufficient to register. To minimize the discrepancy be-
tween the original image and the image with deformations,
rigid registration should be performed before applying any
deformable registration technique. Since rigid registration
methods are less complex than deformable ones, rigidly
aligning two images before performing non-rigid transfor-
mation reduces the time needed to non-rigidly align these
images.

In addition to composing the preliminary step for de-
formable registration, rigid registration methods are used in
many other vital clinical applications. For instance, they
can be used for positioning a brain tumor patient prior to
commencing radiotherapy. Positioning a patient has a cru-
cial role in the effectiveness of therapy, since it arranges
the location of the patient’s couch and the angle of radiation
beam in a way such that healthy tissues would be minimally
affected while the tumor is exposed to maximal radiation.
In the case of a brain tumor patient, since the skull has a
rigid structure, aligning of intersubject brain images can be
done by rigid transformations. Thus, positioning a patient,
which involves aligning pre-operative and intra-operative
brain images of the same subject, can be performed by rigid
registration.

In many cases rigid transformations are insufficient for
aligning images. As an example, various factors such as res-
piratory or cardiac motion, tumor growth or shrinkage, and
weight gain or loss cause deformations in the images, which
can only be matched by non-rigid registration techniques.
Similarly, atlas-based registration would require non-rigid
transformations. In such cases, a deformable registration
method such as Demons is needed to align images.

In addition, some of the critical intra-operative applica-
tion can be significantly improved by the use of deformable
registration methods. These applications are characterized
as time-sensitive and can only tolerate few seconds as a
maximum response time. However, depending on the tech-
nique, image size, and stop criteria, CPU runtimes of de-
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formable registration methods range between a couple of
minutes to several hours. This is because, unlike rigid reg-
istration techniques, deformable registration methods com-
pute the transformations on a pixel by pixel basis, which is
computationally very expensive. Hence, unless their run-
times are reduced to a few seconds, deformable registration
methods can not be clinically implemented in real-time.

If we could reduce the deformable registration runtime,
examples of clinical applications that can take advantage of
real-time deformable registration include Adaptive Radia-
tion Therapy (ART) [11] and image-guided surgery [7, 29].
ART improves radiation therapy by modifying a treatment
plan based on daily changes of patient anatomy. Changes in
patient anatomy can occur during the course of radiotherapy
due to the facts such as change in the sizes and shapes of
tumor and internal organ motion. If a fast deformable reg-
istration algorithm is available, ART can take these changes
into account in real-time and modify a treatment plan ac-
cordingly, before commencing daily therapy.

In image-guided surgery, intra-operative and pre-
operative images are registered before the intervention in
order to position the medical equipment and the patient so
that the surgery can start as it is planned. During the inter-
vention, however, soft tissues such as brain tend to deform.
This fact causes intra-operative and pre-operative images to
be mis-aligned and requires adjustments to the surgery plan
at important stages of the intervention. Similar to ART, if a
fast deformable registration algorithm is available, the plan
can be modified in real-time by determining the deforma-
tion of the tissue and updating navigation of medical equip-
ment accordingly.

Thus, making deformable registration available in oper-
ation rooms by reducing the runtime of these methods to
few seconds would improve the accuracy and efficacy of
the intra-operative applications such as ART and image-
guided surgery. Hence, techniques such as GPGPU that
would make the runtime of deformable registration meth-
ods compatible with time-critical intra-operative applica-
tions are strongly desired in the medical field.

3 Previous Work

In this section, we present the previous research on GPU-
based image registration techniques. The current litera-
ture has not paid sufficient attention to GPGPU use in de-
formable methods. Instead, GPUs have been mainly used
in Digitally Reconstructed Radiograph (DRR) generation to
speed up the rigid registration process. We structure this
section by first providing the interested reader with survey
papers on image registration techniques, then we present
GPU-based image registration techniques by specifically
focusing on deformable methods. Finally, we discuss three
studies that implemented Demons algorithm on a GPU and

highlight the contributions of our study.
Image registration is an integral part of many vital clin-

ical tasks including diagnosis, radiotherapy/surgery plan-
ning, patient positioning, image-guided surgery, and evalu-
ation of radiotherapeutical/surgical procedures. These tasks
require performing intrasubject registration which involves
aligning multiple images from the same individual. In ad-
dition, by performing intersubject registration, images ac-
quired from different patients can be aligned to compare
different individuals or to do an atlas-based registration.

Image registration techniques which are used in the med-
ical field were reviewed by Maintz and Viergever [21].
Lester and Arridge [18] also surveyed medical image reg-
istration approaches by specifically focusing on deformable
methods. In addition to medicine, image registration is also
used in different fields such as weather forecasting, environ-
mental monitoring, image mosaicing, map updating, com-
puter vision, etc. Zitova and Flusser [36] provided a com-
prehensive survey of methods used in image registration in
a variety of application areas.

Due to their high parallelism, image registration tasks are
computationally very expensive. Hence, GPUs with their
high-performance parallel processing power provide great
opportunities for speeding up these tasks. As mentioned
by Khamene et al. [13], in the domain of medical image
registration, GPUs have been mainly utilized to generate
DRRs using hardware-accelerated volume rendering tech-
niques. Indeed, in the literature, we see many studies which
followed GPU-based DRR generation approaches to speed
up the 2D/3D rigid registration process [9,12,15,17,25,26].

Deformable registration algorithms applied to large 3D
data sets put an even heavier burden on computational re-
sources. However, as indicated by Vetter et al. [32], there
has not been much research into the use of GPU in non-
rigid registration methods. Likewise, Sharp et al. [27] do
not consider prior work on the GPU-based deformable reg-
istration as “well established”. In this domain, the research
of Soza et al. [28] presents one of the early studies. They
used 3D Bézier functions for non-rigid alignment of respec-
tive volumes and utilized the trilinear interpolation capabili-
ties of the GPU to accelerate the deformation of the moving
volume. In order to better understand the brain shift phe-
nomenon, Hastreiter et al. [7] performed deformable voxel-
based registration and, like Soza et al. [28], they also accel-
erated trilinear interpolation by using the 3D texture map-
ping capabilities of graphics hardware. In this study, the au-
thors applied piecewise linear transformations proposed in
an earlier study [24] to approximate nonlinear deformations
instead of using Bézier splines. Levin et al. [19] exploited
graphics hardware to implement a high-performance Thin
Plate Spline (TPS) volume warping algorithm that could be
used in iterative image registration and accelerated the ap-
plication of the TPS nonlinear transformation by combin-
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ing hardware-accelerated 3D textures, vertex shaders, and
trilinear interpolation.

Strzodka et al. [30] implemented a non-rigid regularized
gradient flow registration introduced by Clarenz et al. [2]
on the GPU to match 2D images. Köhn et al. [16] extended
regularized gradient flow to 3D and in contrast to earlier
studies that used graphics hardware only for the trilinear in-
terpolation (e.g. Soza et al.’s study [28]), they based their
entire implementation on a GPU. However, due to memory
bottlenecks, they reported that their 3D non-rigid registra-
tion is not as fast as one would expect. Vetter et al. [32]
implemented non-rigid registration on a GPU using mutual
information and the Kullback-Leibler divergence between
observed and learned joint intensity distributions. They pro-
posed this method for specifically matching multi-modal
data sets and, like Köhn et al. [16], they implemented the
entire registration process on the GPU.

To the best to our knowledge, there are only three studies
which mapped Demons registration to the GPU: implemen-
tation of Kim et al. [14], Courty and Hellier [3], and Sharp
et al. [27]. All these three studies were conducted concur-
rently and independently with our study and differ mainly
on the method they used for smoothing the displacement
field. These implementations also used different GPUs and
programming environments.

Kim et al. implemented Demons using a simple ramp
smoothing. They took the average of the closest six neigh-
bors of each voxel to smooth the displacement field, us-
ing an NVIDIA GeForce 6800 GPU and the Cg language.
Courty and Hellier presented a GPU implementation of the
Demons algorithm using a Gaussian recursive filtering. The
advantage of recursive filtering is that number of operations
is bounded and independent of the standard deviation of
the Gaussian filter. In order to implement recursive filter-
ing, they approximated the Gaussian filter with 4th-order
cosines-exponential functions. The authors mentioned that
this approximation is fair for Gaussian filters with standard
deviation lower than 10. In this implementation, they chose
an NVIDIA Quadro FX 1400 GPU, with fragment programs
written with a Cg-like syntax. Finally, Sharp et al. imple-
mented Demons algorithm using a separable Gaussian fil-
ter. They used the Brook programming environment and an
NVIDIA GeForce 8800 GTS GPU.

Using a Gaussian filter for smoothing the displacement
field provides the most accurate implementation. How-
ever, as will be explained more in detail in Section 5, this
is the most expensive part of Demons algorithm. Hence,
to achieve faster runtimes some of the researchers simpli-
fied or approximated the smoothing process. For instance,
Kim et al. used simple ramp smoothing instead of Gaussian
smoothing and Courty and Hellier approximated the Gaus-
sian filter as discussed above. Sharp et al. was first to use
a separable Gaussian filter. In addition, even if they did

not simplify or approximate the smoothing process, they
achieved the fastest runtime by using the Brook program-
ming environment and a newer GPU than the other two
studies.

In order to provide an accurate implementation, we have
also used Gaussian smoothing and performed convolution
of the displacement field with separable Gaussian filter like
Sharp et al. did. However, we improved the speed of Sharp
et al.’s implementation by using NVIDIA’s CUDA envi-
ronment instead of Brook; we report a 10% faster runtime
on the same hardware. CUDA specifically targets newer
NVIDIA cards (e.g. the GPUs used in Sharp et al.’s im-
plementation and our study) and provides powerful features
such as shared memory access, which we extensively used
in our implementation, that Brook does not offer. Hence,
CUDA is optimized for these cards and provides better sup-
port/performance than Brook. In addition, Brook is a legacy
academic project and is at best maintenance-mode-only,
whereas CUDA is directly supported by NVIDIA, is under
active development, and has a broader set of programming
tools and libraries available.

In addition to achieving a fast runtime, we obtained a
constant speedups across datasets with different sizes. Kim
et al. and Courty and Hellier reported speedup for only one
dataset. Sharp et al. reported speedups for two datasets.
However, they reported a smaller speedup for the larger
dataset size. Hence, to the best to our knowledge, our imple-
mentation presents the fastest and most scalable GPU-based
implementation of Demons algorithm available to date. We
will talk more about our runtime and speedup in Section 5.
In this section, in contrast to the above studies, which only
present single-threaded CPU implementation runtimes, we
will also provide multi-threaded CPU implementation run-
times, in order to present a fair comparison between CPU
and GPU speeds. Additionally, we will provide a detailed
analysis of our implementation by discussing the break-
down of the runtime into kernels and by presenting GFLOP-
GiB information, which are not provided in other studies.

4 Implementation

In this section, first, we introduce the general scheme for
Demons algorithm. Then, we introduce our GPU imple-
mentation environment by first discussing why GPUs are
a good fit for medical imaging applications and then pre-
senting NVIDIA’s CUDA platform and GeForce 8800 GTX
architecture. Next, we talk about the CPU implementation
environment. This is followed by description of the test
data used in the experiments. Finally, we provide the list
of CUDA kernels used in our GPU implementation.
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4.1 Demons Algorithm

The Demons algorithm, originally proposed by
Thirion [31], is a deformable registration algorithm that is
widely used to match medical volumes. Demons is based
on the optical flow method [8] which is used to find small
deformations in temporal sequences of volumes, often
called static and moving volumes.

The optical flow method finds a displacement field that
deforms the moving volume, M, so that it is matched with
the static volume, S. The basic hypothesis of optical flow is
that intensities are constant between M and S, which leads
to the following optical flow equation for a given voxel lo-
cation index, i:

−→vi ·
−→5si = M(i)−S(i) (1)

where−→vi denotes the displacement vector that should be ap-
plied to the voxel at location id in M, such that i = id +−→vi
and M(id) = S(i). Here, −→5si denotes the intensity gradient
vector of S at location i. In addition, M(i) and S(i) are the
intensity values of voxels at location i in M and S, respec-
tively.

If we find −→vi for each voxel, we would match M with
S. However, since Equation 1 is underconstrained, it cannot
be used to define −→vi . To deal with this problem, Thirion
follows an iterative approach and proposes the Demons al-
gorithm based on optical flow [31]. This iterative algorithm
alternates between computation of additional displacement
field and regularization of the total displacement field until
convergence. The displacement field is composed of dis-
placement vectors of all voxels. Let −→v denote the total dis-
placement field. In addition, let D denote the deformed im-
age that is produced by applying the total displacement field
of the current iteration to the moving image M. The general
scheme of the algorithm is shown in Algorithm 1.

1: Compute −→5si for each voxel, i
2: Initialize −→v to zero
3: repeat
4: for each voxel, i do
5: Compute intensity value in deformed image:

D(i) = M(id) where id = i−−→vi
6: Compute additional displacement vector:

−−−→vi add = (D(i)−S(i))
−→5si

(
−→5si)2+(D(i)−S(i))2

7: Compute total displacement vector:
−→vi =−→vi +−−−→vi add

8: end for
9: Regularize −→v by applying Gaussian smoothing

10: until D and S converges

Algorithm 1: Pseudo code of Demons algorithm.

M(id) is estimated using trilinear interpolation in M. In
addition, since for each voxel we initialize −→vi to zero, D
would be equal to M in the first iteration. On the other hand,
D would be very close to S in the last iteration. This would
approximate the numerator of −−−→vi add for each voxel to zero.
Hence, the additional displacement field gets closer to zero,
and in the last iteration, −→v becomes stable. Although the
exact number of iteration for D and S to converge is heavily
dependent on the dataset, in most cases, 50 to 100 iterations
are sufficient for convergence. In order to measure conver-
gence, we compute the correlation coefficient between D
and S at the end of each iteration. As we iterate, the two
volumes converge and therefore, the coefficient gets closer
to 1.

4.2 GPU implementation environment

We have implemented a GPU version of Demons with
NVIDIA’s new GPGPU programming environment, CUDA
v0.9. The computer used for the GPU implementation has
two dual-2.4 GHz AMD Opteron 8216s and 3.6 GB of main
memory, and runs Linux distribution 2.6.21-gentoo-r3. This
linux box is equipped with an NVIDIA Quadro FX 5600
graphics card (equivalent to the NVIDIA GeForce 8800
GTX GPU with more memory) with 1536 MB of video
memory.

The era of single-threaded processor performance in-
creases has come to an end. Programs will only increase
in performance if they utilize parallelism. However, there
are different kinds of parallelism. For instance, multicore
CPUs provide task-level parallelism. On the other hand,
GPUs provide data-level parallelism.

Depending on the application area, the type of the pre-
ferred parallelism might change. Hence, GPUs are not a
good fit for all problems. However, medical imaging ap-
plications are very suitable to be implemented on a GPU ar-
chitecture. It is because these applications intrinsically have
data-level parallelism with high compute requirements, and
GPUs provide the best cost-per-performance parallel archi-
tecture for implementing such algorithms. In addition, most
medical imaging applications (e.g. semi-automatic segmen-
tation) require, or benefit from, visual interaction and GPUs
naturally provide this functionality.

Recently, GPU vendors have made general-purpose
computation on GPU a centerpiece of their future strategy
by providing GPGPU programming environments. Hence,
the use of the GPU in non-graphics related highly-parallel
applications, such as medical imaging applications, became
much easier than before. For instance, NVIDIA introduced
CUDA to perform data-parallel computations on the GPU
without the need of mapping to the graphics API. Since it is
cumbersome to use graphics APIs for non-graphics tasks
such as medical applications, the graphics-centric nature
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of previous environments (e.g. Cg, GLSL, HLSL) makes
GPGPU programming more complicated than it needs to
be. CUDA makes GPGPU programming easier by hiding
GPU-specific details and allowing the programmer to think
in terms of memory and math operations as in CPU pro-
grams, instead of primitives, fragments, and textures that
are specific to graphics programs.

CUDA is available for the NVIDIA GeForce 8800 (G80)
Series and beyond. The GeForce 8800 GTX has 16 multi-
processors with 8 processors each, hence, 128 processors
in total. Each of these 128 processors can sustain float-
ing point multiply and add per cycle, yielding a measured
rate of 330 GFLOPS of computation. The memory band-
width of the GeForce 8800 GTX is 80+ GB/s. To get the
best performance from G80 architecture, we have to keep
128 processors occupied and hide memory latency. In order
to achieve this goal, CUDA runs hundreds or thousands of
fine, lightweight threads in parallel.

In CUDA, programs are expressed as kernels. Kernels
have a Single Program Multiple Data (SPMD) program-
ming model, which is essentially Single Instruction Mul-
tiple Data (SIMD) programming model that allows limited
divergence in execution. A part of the application that is ex-
ecuted many times, but independently on different elements
of a dataset, can be isolated into a kernel that is executed
on the GPU in the form of many different threads. Kernels
run on a grid, which is an array of blocks; and each block is
an array of threads. Blocks are mapped to multiprocessors
within the G80 architecture, and each thread is mapped to
single processor. Threads within a block can share mem-
ory on a multiprocessor. But two threads from two differ-
ent blocks cannot cooperate. The GPU hardware performs
switching of threads on multiprocessors to keep processors
busy and hide memory latency. Thus, thousands of threads
can be in flight at the same time, and CUDA kernels are ex-
ecuted on all elements of the dataset in parallel. We would
like to mention that in our implementation, increasing the
dataset size does not have an effect on the shared memory
usage. This is because, to deal with larger datasets, we only
increase the number of blocks and keep the shared memory
allocations in a thread as well as the number of threads in a
block the same.

4.3 CPU implementation environment

The CPU version of Demons is implemented in C. The
computer used for the CPU implementation is a Dell XPS
710 with dual-core 2.4 GHz Intel Core2 6600s. It runs Win-
dows XP SP2 and has 3 GB of main memory. The CPU
implementation was executed on this box with both single-
threading mode and multi-threading mode. OpenMP is used
to implement the multi-threading part.

4.4 Test data

Our test data consists of 3D Computed Tomography
(CT) lung images of three patients. Each patient is repre-
sented with two CT volumes, which correspond to static
and moving volumes of the patient. These volumes were
obtained based on Four-Dimensional CT (4DCT). 4DCT
acquires a sequence of three-dimensional CT datasets over
ten consecutive phases of a breathing cycle. The end of the
inhale phase and the end of the exhale phase are used as
static and moving volumes, respectively. The dimensions
of static and moving volumes are the same within each pa-
tient, and they are different between the three patients. We
have chosen these patients such that their dataset sizes are
significantly different from each other. As can be seen from
Table 1, they provide a good range of possible input sizes
and allow us to measure the performance when small (e.g.
Dataset 1), medium (e.g. Dataset 2), and large (e.g. Dataset
3) datasets are used.

4.5 CUDA kernels

As explained in Section 4.2, in order to map an algorithm
to the CUDA programming environment, developers should
identify data-parallel portions of the application and iso-
late them as CUDA kernels. Hence, in order to implement
Demons with CUDA, we identified parts of Algorithm 1
that are executed many times, but independently on differ-
ent elements of the dataset. Then, we implemented these
parts as CUDA kernels and grouped them into five cate-
gories:

1) Gradient: This group calculates the gradient of the
static volume, S, which corresponds to the computation on
line 1 of Algorithm 1. It takes S as input and produces a
gradient for each voxel in the x, y, and z directions.

2) Interpolation: This group performs trilinear interpo-
lation on the moving volume, M, which corresponds to the
computation on the line 5 of Algorithm 1. It takes M and
a total displacement for each voxel in the x, y, and z direc-
tion as inputs and produces a deformed volume, D. Since
hardware-based trilinear interpolation is not accessible at
this time from the CUDA interface, we could not utilize it
and instead, included this kernel in our implementation.

3) Displacement: This group calculates the total dis-
placement field, −→v , which corresponds to the computation
on the lines 6 and 7 of Algorithm 1. It takes S, the output
of the gradient and interpolation kernels, and the total dis-
placement of each voxel from the previous iteration in the
x, y, and z directions as inputs. It produces the current total
displacement of each voxel in x, y, and z directions.

4) Smoothing: This group applies Gaussian smoothing to
−→v , which corresponds to the computation on line 9 of Algo-
rithm 1. This is accomplished by performing convolution of
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−→v with a three-dimensional Gaussian filter. Since the Gaus-
sian filter is separable, convolution is performed in separate
passes for the x, y, and z filters. Kernels in this group are
based on NVIDIA’s “Separable Convolution” example re-
leased in June 2007, which is provided in the CUDA SDK
individual sample packages. We have extended this exam-
ple so that convolution can be performed in three dimen-
sions and the Gaussian filter radius can be different in all
dimensions.

5) Correlation: This group calculates the correlation co-
efficient between S and D, which corresponds to the compu-
tation on line 10 of Algorithm 1. The correlation coefficient
is computed using following formula:

Σi(D(i)−D)(S(i)−S)√
Σi(D(i)−D)2Σi(S(i)−S)2

(2)

where D and S are the mean values of D and S, respectively.
In order to calculate the sums and mean values in Equa-
tion 2, we perform a reduction operation.

Figure 2. Control flow of the kernels.

After the static and moving images are transferred from
CPU memory into GPU memory, our implementation iter-
ates through the above CUDA kernels until convergence as
shown in Figure 2.

5 Results

In this section, we first compare the runtimes of our GPU
and CPU implementations for datasets with different sizes
and present our speedup and error. Then, we show visual re-
sults by providing slices from one of the datasets. Next, we
provide the breakdown of GPU implementation runtime to
the CUDA kernels and present GFLOP (Giga Floating Point
Operations = 109 FLOP) and GiB (Gibi Bytes = 230 Bytes)
instruction and data throughput information. This is fol-
lowed by the discussion of the factors that limit our perfor-
mance. Finally, we compare our implementation with Sharp
et al.’s implementation and highlight our improvements.

Table 1 shows the performance of our GPU imple-
mentation with respect to the optimized CPU implemen-
tation. We have achieved around 55x speedup over a
single-threaded CPU implementation and 35x speedup over

Dataset 1 2 3
Dimensions 256x256x88 256x256x119 512x512x54
(Height × Width × Depth)
Size (MegaPixels) 5.77 7.80 14.16
GPU runtime (s) 5.27 7.07 13.54
Single-threading
CPU runtime (s) 297 401.25 745.27
Multi-threading
CPU runtime (s) 191 257.37 466.01
GPU speedup over
single-threading 56.32 56.78 55.05
GPU speedup over
multi-threading 36.22 36.42 34.42
Maximum GPU error 0.000017 0.000015 0.000030

Table 1. Performance of GPU implementation
with respect to CPU implementation.

a multi-threaded CPU implementation. We present both sin-
gle and multi-threading comparisons, since comparing the
GPU implementation with only the single-threaded CPU
implementation would result in underutilization of the CPU.
In all implementations, the algorithm is run for 100 itera-
tions. In each iteration, we computed the error by taking the
absolute difference between the correlation coefficients of
the GPU and CPU implementations. We reported the error
with the largest difference as maximum error for the related
dataset. For all datasets, the maximum error was less than
3 · 10−5, which is a negligible difference. However, intro-
ducing error is unavoidable, since the CPU implementation
is using double-precision floating-point variables, whereas
the GPU implementation is using single-precision floating-
point variables. This is because, currently in the G80 ar-
chitecture, only single-precision floating-point is supported.
Using single-precision instead of double-precision floating-
point variables in the CPU implementation provides 20%
faster runtime.

Figure 1 shows slices from Dataset 2. Figure 1(a), (b),
and (c) refer to slices from static, moving, and deformed
volumes, respectively. The deformed image is produced by
deforming the moving image with the GPU implementation
of Demons, so that it can be aligned with the static image.
Figure 1(d) and Figure 3(b) show the difference images of
the static image and the deformed image generated by the
GPU and CPU implementations, respectively. As can be
seen from these figures, the GPU and CPU implementations
of Demons produced no visible difference, a result which
is in line with the negligible error mentioned above. Fig-
ure 3(a) presents the difference image between the static
and moving images. When Figure 3(a) is compared to Fig-
ure 3(b) and Figure 1(d), we see that by applying Demons,
a large difference is corrected and reduced to a very small
amount.

Table 2 shows the breakdown of GPU implementation
runtime into the kernels invoked from the main loop of the
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(a) (b)

Figure 3. Slices from Dataset 2: (a) difference
image of the static and moving image, and (b)
difference image of the static and deformed
image generated by the CPU.

Kernel Interpolation Displacement Smoothing Correlation Total
Runtime
of 100
iterations
(s) 2.75 0.56 2.95 0.71 6.97
GFLOP per
iteration 0.29 0.14 0.42 0.10 0.94
GiB per
iteration 0.35 0.30 0.54 0.29 1.48
GFLOP/s 10.42 24.54 14.25 13.48 13.50
GiB/s 12.62 53.81 18.43 40.80 21.29
(number of
FLOP) /
(number of 3.08 1.70 2.88 1.23 2.36
memory
operations)

Table 2. Breakdown of GPU runtime to the
kernels and GFLOP-GiB information.

algorithm. Since the gradient kernel is invoked only once
(and takes 0.04 seconds to run), it is excluded from the ta-
ble. In addition, we show GFLOP-GiB data. Dataset 2 is
used to generate measurements. Let’s denote “GFLOP and
GiB per iteration” as “GFLOP-GiB/iteration”. If we com-
pare the runtimes of all kernels, we see that smoothing is
the most expensive part of algorithm and takes the longest
time to run. This is not surprising when we consider that
this kernel has the most GFLOP-GiB/iteration. Interpola-
tion has the second longest runtime and the second largest
GFLOP-GiB/iteration. However, even though the GFLOP-
GiB/iteration of this kernel is much less than smoothing,
we do not see a significant decrease in the runtime of in-
terpolation when compared to the runtime of smoothing.
This is because less opportunities exist to perform memory
coalescing (accessing a coherent chunk of memory with a
block of threads) in interpolation than in smoothing, due to
the nature of the interpolation process. Displacement and
correlation have much less GFLOP per iteration than other
kernels. In addition, due to the nature of these kernels, all of
the memory accesses can be coalesced. Thus, the runtimes
of displacement and correlation are pretty short and in these
kernels, we approach half of the theoretical peak GiB/s
measurements of the G80, which is 80+ GB/s. Even though

displacement has slightly more GFLOP-GiB/iteration than
correlation, its runtime is shorter. This is mainly due to the
time-consuming branching inherit in the reduction process
implemented in the summing calculations of the correlation
coefficient.

In a CUDA implementation, three factors can limit the
performance: bus bandwidth, compute bandwidth, and
memory bandwidth. In our implementation, since the CPU-
GPU data transfer takes a very short time compared to the
overall runtime of the algorithm (e.g. the transfer of static
and moving images of Dataset 2 from CPU to GPU memory
takes 54 milliseconds whereas the whole algorithm takes
7.07 seconds), we can say that bus bandwidth does not limit
our performance. Because the ratio of compute throughput
to memory throughput is 16:1, as a starting point, we con-
sider a kernel as compute bounded if it its ratio of compute
operations to the number of memory operations is larger
than 16, and memory bounded otherwise. Table 2 indicates
that in our implementation, we have an average of 2.36
floating-point operations per memory operation, when all
kernels are considered. This suggests that our implementa-
tion is memory bounded rather than compute bounded.

Along the three GPU-based Demons implementations
mentioned in Section 3, the study conducted by Sharp et
al. [27] has the fastest runtime. In addition, since it uses a
separable 3D Gaussian filter to regularize the displacement
field, this study has the most accurate displacement com-
putation and also the closest implementation to ours. One
difference between Sharp et al.’s and our study is that they
do not compute the correlation coefficient in each iteration.
Instead, regardless of the dataset used, they run the algo-
rithm for a fixed number of iterations (e.g. 50 or 100) and
then stop. The advantage of calculating the correlation co-
efficient is that for a given dataset, it allows us to see in
which iteration the algorithm converges and stop the exe-
cution in that iteration. Hence, for each dataset, algorithm
would run for a necessary number of iterations instead of
fixed number of iterations, which would in turn reduce the
overall runtime. For instance, Figure 4 shows that the corre-
lation coefficient values of Dataset 2 stabilizes after around
70 iterations. This suggests that for Dataset 2, the algorithm
converges early and we can stop the execution at iteration 70
instead of running it until iteration 100.

We compared our runtime and speedups with Sharp et
al.’s results. In order to make a fair comparison, we re-
placed our NVIDIA Quadro FX 5600 graphics card with an
NVIDIA GeForce 8800 GTS, the older graphics card Sharp
et al. used in their study. In addition, since Sharp et al’s
implementation does not compute correlation coefficients,
we turn off this computation in our code. Under these con-
ditions, our implementation yielded about 10% faster run-
time. For a dataset with dimension 180×424×150 (height
× width × depth) when the algorithm is run for 100 iter-
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Figure 4. Correlation coefficient versus itera-
tion number for Dataset 2.

ations, Sharp et al. reported their runtime as 13.92 s. For
a dataset with the same size, it took 12.46 s for our imple-
mentation to run for 100 iterations. In addition, Sharp et
al. reported a smaller speedup for a larger dataset size (i.e.
70× speedup for dataset with dimensions 128×126×128
and 45× for dataset with dimensions 180×424×150). As
can be seen from Table 1, in our implementation speedups
are almost the same and do not significantly fluctuate with
dataset size. This suggests that our implementation is more
scalable as problem sizes increase.

6 Discussion

In this section, first we share our experiences with opti-
mizing our GPU implementation and list some of the tech-
niques that provided us with better runtimes. Then, we dis-
cuss how we can improve the Demons algorithm by utiliz-
ing the great speedups we achieved by GPUs. Next, we
talk about two main types of data communication on GPUs
called gather and scatter, and indicate why we preferred
gather over scatter in our implementation. Finally, we con-
clude this section by making some hardware and software
recommendations to vendors, which we believe would im-
prove the runtime of similar applications on GPUs.

Among the optimizations we have performed to reduce
the runtime of our GPU implementation, coalescing the
global memory accesses [35] provided us with the biggest
performance gain. For instance, the runtime of our imple-
mentation was reduced from 52.47 seconds to 13.54 sec-
onds for Dataset 3 when our kernels were optimized to per-
form memory coalescing. Memory pinning was another op-
timization we used in our implementation and it allowed us
to achieve shorter data transfer time between CPU-GPU.
For instance, by pinning the memory we reduced the CPU
to GPU transfer time of static and moving images of Dataset
3 from 129 ms to 97 ms.

As explained in Section 2, accelerating the runtime of
Demons registration by utilizing the GPU allows us to use

this technique in real-time settings such as in operation
rooms. The tremendous computation power provided by
GPU can also be exploited to improve Demons algorithm.
For instance, by implementing Juggler’s method [34], a hy-
brid deformable registration method that combines Demons
with free-form deformable registration via the calculus of
variations technique [20], we can improve the convergence
speed of the registration. Convergence speed can also be
improved by adding certain parameters to Demons as pro-
posed in the accelerated Demons study [33]. The methods,
such as Juggler, accelerated Demons, or any other tech-
nique, which improve the Demons algorithm, might require
extra computation power; and the significant speedups pro-
vided by GPUs can help us easily address this need.

There are two main types of global data communication
on GPUs: gather and scatter [6]. If a data elements re-
quires its neighboring elements for its computation, we can
choose either of these two methods. If we chose gather,
each element performs a pull operation and requests infor-
mation from other elements. On the other hand, if we use
scatter, each element performs a push operation and dis-
tributes information to its neighbors who are in need of this
element. There are advantages and disadvantages of both
methods. Gather performs indirect read(s) from memory
and naturally maps to texture fetch. Scatter performs indi-
rect write(s) to memory and is available only on the new
GPGPU platforms i.e. AMD’s Close To the Metal (CTM)
and NVIDIA’s CUDA. Scatter has unspecified semantics
on collision, which results in undefined behavior when two
elements write to the same location at the same time. In ad-
dition, scatter is uncached and the performance implications
of it are not yet clear. Considering these pros and cons, we
preferred gather instead of scatter while implementing our
convolution kernel.

We will conclude our discussion by making some hard-
ware and software recommendations to the vendors, which
we believe would improve the runtime of similar implemen-
tation on GPUs. Currently, we do not have access to the
hardware-based trilinear interpolation capabilities of G80
from the CUDA programming environment. Hence, in our
implementation we had to implement a kernel that performs
trilinear interpolation. If hardware-based trilinear interpola-
tion is exposed to CUDA programmers, interpolation com-
putations in the kernel can be removed by using this fea-
ture. Although the cost of memory operations would stay
the same, saving computation would simplify this kernel.

Another functionality that we think would be advanta-
geous is having intelligent paging capabilities in the device
memory. Processing a large dataset with a size that exceeds
the capacity of the device memory creates complications.
In order to solve these complications, usually extra com-
plexity is added to the implementation. If the GPU driver is
capable of performing intelligent paging, it can hide these
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complications in an efficient way and make GPU-based im-
plementations scalable to larger datasets without requiring
major changes to the code.

Finally, we think that having more advanced profiling
tools would help us get better performance from our im-
plementations. As mentioned above, memory coalescing
brings us the biggest performance gain. Hence, it would
be very useful to have a profiling tool that provides us with
an information about which memory accesses in our ker-
nels are coalesced and which ones are not. In addition, to
get a better insight about whether we are memory or com-
pute bounded in our kernels, it would be very advantageous
to have a tool that would automatically present us with
GFLOP-GiB information. Currently, this information is ex-
tracted from kernels manually by counting floating point
operations and memory accesses, which is time-consuming
and error-prone.

7 Future Work

We would like to improve our implementation by adding
a graphical user interface to visualize evolution of the de-
formed image in each iteration of the registration process.
This feature would allow users to better understand the
progress of the deformation. In addition, we would like
to come up with strategies to handle registration of large
medical volumes with sizes that exceed the capacity of the
device memory. Automatically dividing the dataset in to
smaller pieces in an efficient way, running the Demons al-
gorithm on each subset, and combining the sub-results for
the final result would be an effective strategy.

Implementing Demons on GPU has provided us with a
proof of concept and standardization for comparison. As
a next step, we are planning to implement a more efficient
algorithm called Juggler’s method (Section 6). Then, we
would like to continue working on the implementation of
other registration algorithms on GPUs. By investigating
several different methods, we are planning to pinpoint com-
mon building blocks (i.e. primitives such as algorithms or
data structures) of these methods. Then, we would like
to implement these algorithms and data structures as high-
level parallel primitives for GPU use. Finally, we would like
to package these primitives into a library that can be used by
other GPU applications in the medical imaging field.

We believe that having a medical imaging GPU library
will significantly improve the way GPU-based medical ap-
plications are developed. Since currently there are no li-
braries available, every individual application is written ver-
tically from the ground up. This lack of code sharing forces
GPU programmers to focus their effort on custom underly-
ing primitives instead of the application where it belongs.
On the other hand, CPU developers have a wealth of algo-
rithms and data structures that help them create complex

applications. Indeed, analysis of the typical CPU high-
performance application would reveal that most code in
the application was not written directly by the application
writer, but instead comes from various libraries written by
others (i.e. BLAS, STL, Boost). Hence, CPU code sharing
allows horizontal program development where most pro-
grammer effort is put into the application rather than the
underlying primitives. With construction of a medical imag-
ing GPU library, we are aiming to change the development
environment of GPU applications from vertical to horizon-
tal, which will make the implementation of complex GPU-
based medical imaging applications much easier.

We will start construction of our library by adding im-
age registration primitives. However, to make such a li-
brary suitable for more general medical imaging tasks, we
will also build primitives for related problems such as image
segmentation, CT reconstruction, on-line motion correction
during MR acquisition, etc. In order to get ideas for po-
tential primitives and applications, we are planning to con-
tinue working with the domain experts in the field and also
look at The Insight Segmentation and Registration Toolkit
(ITK) [10], a CPU-based library.

8 Conclusion

We have presented CUDA implementation of widely
used Demons algorithm to address the need for fast de-
formable registration methods in the medical imaging field.
Among the available GPU-based Demons implementations,
we have achieved the fastest runtime and provided the most
scalable approach. Results show that, independent of the
given dataset size, our implementation is 55 times faster
than CPU-based implementation. This study also con-
tributes to the literature by implementing a deformable reg-
istration algorithm on a GPU, an understudied type of algo-
rithm in the GPGPU community.
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