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The Effects of Reinforcement Interval on the
Acquisition of Paired-Asscciate Responsesl
L. Keller
W. J. Thomson
J. R. Tweedy
R. C. Atkinson

Stanford Unlversity

Abstract
The length of the reinforcement interval (RI) in paired-associate
learning was.studied using a within-subjects design te eliminate confound-
ing of presentation rate with the time between successive presentations of

items. Forty 8s were run for fifteen trials on & 2h-item list with RI's of
L
L

function of RI; (b) mean errors for items meeting a criterion were not rew

1, 2, and 4 sec. Results indicated: (a) mean errors were a decreasing

lated fto RI, but the proportion of items meeting criterion was sn increas-
ing function of RI; {c) precriterion mean latencies increased slightly for
both correct and incorrect respomses, whersas posteriterion latencles de-
creased; (d) the proportion of correct responses decreased ag the number
of intervening items_increased, but the latency measure showed no effect.
Several alternative models dealing with RI effects are propoged and
evaluated against thege data. None of the models prové entirely satis-

factory.



The length of the reinforcement interval in palred-asscciate learning
has been an experimental variasble in yecent stﬁdies by Nodine (1963, 1965);
Bugelski (1962); Bugelski & Rickwood (1963) 3 Murdock (1965); Newman
(1964); and Keppel & Rehula (1965). Most of these studies used the
anticipation method which partitions an item presentation into the following
intervals: (1) the stimulus-alone interval (St) during which the 8 ig re-
quired to respond; (2) the reinforcement interval (RI) during which the
stimulus and response members are presented together; (3) the interstimulus
interval (ISI) during which nothing is presented.

The typical experimental design used to study the length of the rein-
forcement interval assigns a different value of RI to independeﬁt groups of
Ss and then compares learning measures across the groups. Evaluation of
data cobtalned using this design suffers from the fact that other varisbles
are lnseparably confounded with the effectg of RL., B8pecifically, the total
time to complete one presentation cycle of the ligt and the time between
successlve presentations of the same item are both confounded ﬁith the
length of RI.

The present study eliminates the confounding of RI with other tempofal

%, 1, 2, and 4 sec.

variables by using a within-subjects design. RI's of
were assigned to four subsets of items with six iftems in each subset. On
each trial the entire list of 2k items was presented to the § in a new
random order. Consequently, the time required for a trial (i.e., one cycle

through the list), and the average time between one presentation of an item

and its next presentation are constant.



A gecond varisble manipulated in this study was concerned with the effect
of always presenting the same RI for an item versus the effect of randomly
changing RI's from one presentation of the item to the next. Two conditions
were used: one where the RI assigned to an item remained the same throughout
the sesslon, and one where the RI for an item was randomly asssigned on each
trial. This second independent variable was also handled so that a within-
subjects gomparison could be made.

The thecretical analysis of the data will deal primarily with an ¢valua~
tion of assumptions concerning the effects of manipulating RI; these assump-
tlons will be incorporated into existing versions cof both incremental and
discrete-process medels for paired-assoclates learning.

| Method

Design. Each § learned a list of 2l paired-associate items. The
main independent variable was the length of RI; four values were used. For
each S three items were assigned to each of the four values of RI, and will

L

be designated F(E)’ F(1), F(2), and F(k) to indicate that these subsets

of dtems had fixed RI's of e

5> 1, 2, and 4 sec., respectively. The assign-

ment of RI's for thesge 12 items remained fixed throughout the gession. For
the remaining 12 items the R1l assignments were varilable; 1.e., for these
items the RI's were reassigned randomly at the start of each trial with the
restriction that each of the four RI's were assigned to exactly three of
these 12 items. Thus, on every trial, each of the four values of RI always
occurred with six items, three were fixed assignments and three were variable
assignments.

Subjecte. Forty Stanford University students from an introductory
psychology class were used. They were elther paid $2,0Q or given credit

toward a course requirement,



Materials. The stimuli used were two-digit numbers, and the responses
were the letters A, B, and C. For each S 24 stimuli were randoml& selected
from a master pocl of 38 stimuli which was constructed by the following
procedure: (1) the fifty two-digit numbers with the lowest associabion values
as described by Battig & Spera (1962) were chosen. (2) Double numbers (i.e.,
1%, 22, 33, ...) and numbers with consecutive digits (i.e., 12, 23, 34, ...)
were eliminated reducing the sample to 44 numbers ranging from 26 to 97.

(3) The largest six of these were alwéys uged ag stimull in a practice
session leaving 38 numbers (26-87) available for the learning session. The
stimuli and respenses were drawn with black ink on s white Packground, photo-
graphed on microfilm, and projected on a ground gless screen during the ex-
periment. The letters and numbers appeared as lighted figures, % in. high,
on a dark gray background.

Apparatus. The experiment was conducted in the Computer-Based Learn-~
ing Laboratory at Staﬁford University. The control functlons were performed
by computer programs running in a modified PDP-1 compuier manufactured by
the Digital Equipment Corp., and under  control cof a time-sharing system.

The 8 was Seated at an IBM microfilm display terminal (IBM 0405). There
were six terminals locatgd in individual 7 X 8 ft. sound-shielded rocms.
Elements of the display appeared in the foliowing positions on a 10 X 13
in. ground-glass screen: (1) the stimulus was 2% in, from the left.edge
and M% in, from the top edge. (2) The response areas were % in, from the
left and 7%. in. from the top and consisted of a row of three boxes, 1 in.
sguare, % in. apart, which contained the letters A, B, and C, respectively.

(3) The response member of the reinforcement appeared 5 in. to the right of



the stimulus. (%) When used, the comment, "Please make response,” was
centered l% in, from the top of the screen,

Responses were made by touching one of the three response boxes with
a light pen, Due to the mechanical copersations invelved in execuving slide
changes there was a moderate amount cf nolse during the ISI and a slight
neoise from a fan during the entife session.

Procedure. The Ss arrived in groups of one to four and were taken as
a group into one of the six booths. Instructions were read to them explain-
ing that they were to learn a list of number-letter pairs., They were shown
where the stimuli would appear on the screen and how responses were to be
made., Then 12 practice items were run for the group 1Illustrating the pre-
sentation sequence and glving each of them an cpportunity to make a few
practice responses with the light pen. After questions about procedures
were answered each 5 was assigned to a booth and the session of 360 item
presentations began, i.e., 15 trials of the 2h-item list. For each § the
computer program performed the functions of randomly selecting stimuli,
assigning stimuli to fixed and variakble conditions, and assigning responses
to stimuli, as well as raendomizing the corder of the list on ever trial.
The format for each item was the same except for the length of the RI. The
gtimulus appeared on the screen and remained on until the response was made,
with the exception that if the response did not cceur in 3.6 sec., the stlimulus
was removed and the statement, "Please make response, appeared and remained
until the response occurred. After the response was made the stimulus and
response members of the pair appeared on the screen for the appropriate RI.

Then there was an ISI of 2 sec., during which the éomputer selected the slide



Ifor the next item. The compuler program serviced each S individually even
though more than one § ran slmulfaneously. It should be noted that the
regponse reminder was rarely dlsplayed after the practice sessicn during
which the Ss became accustomed to the presentation rate.

Regults

Overall performance. Figure 1 presents the mean total errors per

item for each of the experimental variables. For the four subsets of [ixed-
assignment items the mean total errors are a decreasing function of RI
(upper curve in Fig. 1}; these differences are highly reliable [F{4,39)=
3.7L, p § 025 for a treatments-by-subjects anélysis of variancel. However,
the mesn number of errors over all fixed items versus variable items (5.8
and 5.9, reépectively) is not significant using a paired t-test [t(39) =
1.28].

The learning curves presented in Filg. 2 support the results obitained
fof mean total errors. The curves for the fixed an@ variable conditions
are very close to each other throughout the session; for both curves the
proportion of correct responses increases from about .33 to .80 over the
15 trials. Although they are not presented, the learning curves for the
four filxed-interval conditions tend to be arranged in order of increasing
RI, but there is some overlapping of points over the 15 trials.

For items with variable RI assignments another analysis is needed to
demenstrate the effect of RL. We considered the proportion of correct
responses conditional on the fact that a specific RI was presented on the
previcus presentation of the item and combined these over trials and items.

The conditilonal proportions were computed separately for certain events
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occurring on the previcus trial which included the four RI's, the fixed
versus variable conditioné, and correct versus incorrect responses; they
are dlsplayed in Fig. 3. The proportion of correct responses is an in-
creasing function of RI when the previous response was incorrect for beth
the fixed and the variable items. When the previous response was correct
the RI's have less effect for the fixed items and almost no effect for the
variable ltems. When the reéponse or trial n dis ignored and only the RI
is consldered we obtain the two curves in the center section of Fig. 3, which
for the fixed items again indicate that proportion cdrrect is an increasing
function of the RI on the previcus trial., The corresponding curve for the
variable items indicatesless effect of RI with possibly only the 4-sec.
interval being better than the other three Ri‘s. |

Criterion énalysis. Since the sessions were terminated after 15 trials

a learning criterion of five consecutivé correct responses was subseguently
applied to each item. The proportion of items meeting the criterion was

.625 and .637 respectively, for the variable and fixed conditions. However,
the four RI conditions are not egually represented in the coverall fixed
condition since the propertions of items meeting criterion for F(%)B 7(1),
F(2), and F(I) were .52, .60, .68, and .7h, réspectivély, When we congider
only precriterion trials the proportions of errors are .65 and .63 based

on 3554 and 3504 observations for the fixed and variable conditions, respec-
tively. But for l737‘and 1734 observations which occurred after the criterion
" run, the corresponding error proporticns are .052 and .05%. While we showed
earlier that mean total errors was a decreasing functicn of RI, further analysis

shows a flet curve (see the lower .curve of Fig. 1) when only criterion items
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ere considered, indicating that for these items there is little effect of
RI on performance.

The mean latency curves also tend to support the separation of item
protocols into pre-and posteriterion trials. PFigure 4 displays trial-by
trial mean latencies separately for the fixed and variable items, ﬁhere
the upper curves in each panel are based on trial 1 te the trial of last
error for all items. For the lower curves we renumber the trials beginning
with the first trial of the criterion run for those items which met criterion.
Latencies for precriterion trials for both correct regponses and errors are
gimilar to eaﬁh other, and tend tc increase with trisls; however, latencies
for correct responses in the posteriterion trials gradually decrease to about
1.5 sec.

An analysis sugggsted by Suppes and Ginsberg c1963) to evaluate response
stationarity in the precriterion trials involves spliftting the protocols
into four equal Vincent gquartiles, For each item, the response protocol
after trial 1 and before the last error in the sequence was divided into
quartiles. Ag shown in Fig. 5, the propertion ceorrect is fairly stationary
in the first three quartiles, but in the fourth gquariile it increases for
both the fixed and varilable conditions.

Analysis of intervening items. One source of forgetting may be due

to the amount of activity required of § between successive presentations
of an item. When an entire 1istkof 2L items is randomly presented in a
complete cycle, the number of other items which may intervene between btwo
successive occurrencesof a given item will range from O to 46, If all

items were independent and no time-dependent forgetiing occurred we would

11
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expect that the number of intervening items would nol affect the probability
that an item is correct. Figure 6 presents the proportion of correct re-
gponses on trial n for a given iltem as a function of the number of inter-
venling ltems since its presentétiom on trial n -1l. Each of the curves shows
decreasing. proportions of correct responses azg the number of intervening
items increases. We might also expect some change in mean latency as a
function of the number of intervening items but as indicated in Fig. Ty

there is almost nc effect for either correct or incorrect responses.

Nonindependence of successive items. In an earlier analysis we ex-

amined the effect of a particular RI on the response to the same iltem on
the next trial. In this analysis we consider the effect of a particular
~RI on the very next ltem presented, and find that there seems to be no
effect on the likelihood of a correct response; the pfoportions correct
were .613, .608, .607, and .610, given that the RI's on the previously pre-

L 1, 2, and b sec. However, the mean latencies ghow
25 3 2 2

sented items were
reliable effects for both correct and incorrect responses. In Fig. 8 we
gee that mean latency is an increasing function of the length of RL on the
previous item. This increasing fuanction suggests that 8 was optimally ready
to respond to the next stimulus presentation when the preceding RI was
% sec., but the longer RI's may have initiated processes that continued
into the stimulus interval of the next item.
Discussion
We shall analyze these data in terms of two falrly simple models

that have been proposed to acccount for paired-associate learning: the

linear model (Bush & Mosteller, 1955; Sternberg, 1959) and the one-element

14
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model {Bower, 196l§ Estes, 1959). The linear model assumes that the

effect of eadh reinforcement is to add an increment to the strength of the
assoclation between the stimulus and the correct response. If we let P,
denote the probability of a correct response on the nth presentation of =

given stimulus item, then the linear model postulates that

= (1-86
P = (1-6)p + 8

nek-
where Py ig the initial guessing probabvility (which is %.in our experi-
ment). The one-element model assumes that learning for any given stimulus
item proceeds in an all-or-none fashion; +the item ig either in = learned
state (whéﬁaperformance is perfect) or in an unlearned state (where per-
formance is at-a chance level)}. Stated more precisely, the one-element
model assumes that

, With probability c

pn+l - . oo
h with probability 1~ ¢

where sgain. Py = %, Thus, responsge probablliby starts out at %3 remains
at that value for a series of presentations, and then jumps to one for the
remaining trials. A more precise characterization of these two models can
be found in Atkinson, Bower, & Crothers (1965, Ch. 3).

The models being congidered make no expliclt assumptions concerning
the effect of RI on learning. One approach ls to guantlze time and express
each RT ag a fixed number of base-time units. I ﬁe aggume that during
each time unit a learning operator characterized by the parameter a is
applied, then the parameter characterizing the effect ¢f a reinfcercement

interval of time t, which is made up of m time units, is

L7



a, =a%—ﬂl—a)+a{l—@2+-nnﬁ-ﬂl—aﬁbl, (1)

We shall refer to the parameter a as the learning parameter, and it ig
to . be interpreted as ¢ 1in the one-element model, and & 1in the linear
medel., Using Eg. 1 with a base-time unit of L gec., Lhe parameters asgsoci-

2

ated with the fixed reinforcement intervals of =

5, 1, 2, 4 sec. and with the

variable reinforcement conditicn are as follows:

a1 = a
2
a; = a + a(L- a)
a, = &+ a(l-a) + a(l—a}2 + a(l—a)3
g, = a-t a(l-a) + a(L- a)2 4 eee + all- a)7
a, = %[a% + a, +a, + ah] , (2)

Equations 1 and 2 assume that fthe learning operator apﬁlies uniformly over
all time units. However, it 1s possible that there is some attenuvation

in the effectiveness of conditicning in the later parts of the longer Rl's,
To take this possibility into account we Introduce an attenuation parameter,

d, in the expressions for a,; namely
: i

ay = &
=
8, =&+ (L-3a)ad
a, =&t (L-a)ed + (L- a)(1-ad)ad” + (1-a)(1-ad)(L-ad")ad’
g, =a-*+ {(1-a)ag + (L-a)(L -ad)ad2 o

+ [{1- a) (1~ ad)(l-—adg) e (1 —adé)ad7] . (3)
Whern d approaches one, the above equations reduce to those in Eg. 2;
when d approachegs zero, the expressgions approach a common value, a,
implying fhat learning is not affected differentially by the RI duration.

I3

Another exftengion of this line of argument involves the introduction

18



of a parameter, x, %o allow for an estimate of learning during the ISI.
Since all items, independent of RI's, have the same ISI only a single
value of x 1s required; hence

aj =a; + (l-ai)x s 4 (4)

1

50 1y 2, 4, v. In summary, the parameters a, d, and x are

for 1 =
used to characterize the reinforcement effects; a I1s the learning parameter
applied in each time unit of RI, 4 allows for attenvation in successive

time units of RI, and x is applied during the ISI,

* Parameter estimates for the linear and one-element modelg were obtained
by using the chi-square minimization procedure described by Atkinson &
Crothers (1964). The data used were the four-tuples of successes and -
errors from trials 2 through 5, 6 through 9, and 10 through 13. Following
the notation.of Atkinson and Crothers, let O dencte a correct response and
Ll an error. Define O',jgn as the four-tuple response sequence listed in
the ith row of the data tables (see Tables 1, 2, and 3), for RI condition
j (3 = %, 1, 2, &4, v) where the sequence beging on trial n (in our analysis
n = 2, 6,

and 10). Further, let ﬁ(oi 5 n) be the observed freguency of
N a2

the four-tuple, and Pr(Oi i n;p) e the predlcted probabllity given a
23

particular choice cof. the parameter vector p of the model. The expected

;p) end. T,

freguency may be obtained by taking the product of Pr(oi 3.
_ sd ol

the total number of item protocols for a given RI condition. The function
2
)

iﬂjﬂn (5)
L3P ’
n?

;p) - 8(o

O. .
( 1,d,

T P3 o .
2 =[ 1"(013:1’n
i,j:n ] T iy

is a measure of the discrepancy between the predicted and observed fre-

guencies for a particular four-tuple. A messwe of Tthe discrepancy

19



Table 1
Observed and Predicted Frequericies for Four-tuples of Response
Sequences from Trials 2 through 5

(L denotes the predicted column for the linear model; O-F denotes the one-element model)

0

Trial F(%) F(1) F(2) ' L) Variable
2345  Obs. L  O-E Obs. L  O-E Obs. 1.  O-F Obs. L  O-E Obe. L 0-E
CO000 8.0 4.0 10.5 2.0  L.5 12.1 14.0 5.0 13.3 11.0 5.2 13.7 43.0 18.6 49.7
0001 4.0 k.3 2.4 5.0 4.5 2.3 6.0 4.6 2.2 2.0 4,7 2.2 12.0 18.1 9.0
0010 3.0 4.9 2.8 8.0 5.2 2.7 4.0 5.4 2.7 5.0 5.5 2.7  19.0 21.1 10.9
0011 8.0 5.3 L7 5.0 5.2 L6 2.0 5.0 L.k 0 5.0 kb4 27.0 20.5 18.1
owoc  1L.0o 5.7kl boo 6.1 h.2 5.0 6.5 1.3 2,0 6.7 kb 16.0 25.0 17.0
0101 L.o 6.1 k4.7 6.0 6.1 46 5.0 6.0 k.4 Lo 6.0 . kb 8.0 2k.3 18.1
So1o kO 7.0 5.6 7.0 7.1 5.5 4.0 7.1 5.4 8.0 7.1 5.4 25,0 28.3 21.9
0111 7.0 7.5 9.5 5.0 7.1 9.1 5.0 6.6 8.8 10.0 6.4 8.7 33.0 27.5 36.2
000 7.0 6.7 8.2 9.0 7.3 9.0 12.0 7.9 9.6 13.0 8.2 9.8  3L.0 30.1 36.6
w01 2.0 7.2 by 0 7.3 46 6.0 T.h by 5.0 7.k k. 17.0 29.2 18.1
1010 6.0 8.3 5.6 k.o 8.5 5.5 .0 8.7 5.4 7.0 8.7 5.4 27.0 341 21.9
1011 3.0 8.8 9.5 11,0 8.5 9.1 7.0 8.0 8.8 5.0 7.8 8.7  3L.0 33.2 36.2
1100 12,0 9.6 8.1 11.0 9.9 8.k 9.0 10.3 8.7 9.0 10.5 8.8  33.0 Lo.h 3h.1
1101 4.0 10,2 9.5 11,0 9.9 9.1 13.0 6.6 8.8 16.0 9.5 8.7  32.0 39.3 36.2
1110 ,8.0 11.7 11.1 7.0 11.5 11.0 9.0 11.3 10.9 5.0 11.2 10.8 51.0 L45.8 L43.8
1111 29.0 12.5 19.0 15,0 11.6 18.2  16.0 10.5 37.6  15.0 10.1 17.5  75.0 Lk.5 72.3
X* 48,47 34.40. X2 29.59 24 .63 xZ 31.65 14.99 X% 30.24 16.65 X% 82.87 23.26



TS

(L denctes the predicted column for the linear model; O-E denotes the one-element model)

Table 2

Observed and Predicted Frequencies for Four-tuples of Résponse

Sequences from Trizls 6 through 9

1
F(g)

Variable

Trial F(1) F(2) F{L)
6789  Obs. L  O-E Obs., L  O-E Obs. L  O-F Obs. L  O-E Obs. L 0-E
0000 26.0 11.6 32.3  31.0 13.6 36.9  37.0 16.0 k0.4 43.C 17.2 k1.5 15,0 58.1 151.6
0001 6.0 7.7 1.9 9.0 8.1 1.8 1.0 8.5 1.6 1.0 8.7 1.6 140 33.2 6.9
0010 6.0 8.6 2.2 0 9.2 2.1 9.0 9.7 2.0 6.0 9.9 2.0 18.0 37.5 8.3
001l 5.0 5.8 3.8 o 5.5 3.5 3.0 5.2 3.3 5.0 5.0 3.2 12.0 21.5 13.8
Lo 7.0 9.7 3.3 L0 104 3.3 3.0 1l.1 3.2 2.0 11.% 3,2 22.0 k2.7 13.0
ol01 2.0 6.5 3.8 6.0 6.2 3.5 5.0 5.9 3.3 2.0 5.8 3.2 8.0 2b.) 13.8
0110 L0 7.2 ks 5.0 .0 L2 6.0 6.7 4.0 7.0 6.6 L0 10.0 27.6 16.7
0111 _u,o 4.8 7.6 3.0 k.2 7.0 1.0 3.6 6.6 3.0 3.3 6.5 19.0 15.8 27.5
1000 10.0 10.9 6.5 9.C 11.8 6.9 8.0 12.8 7.0 1.0 13.2 7.2 36,0 48.8 27.9
1001 3.0 7.3 3.8 2.00 7.1 3,5 6.0 6.8 3.3 5.0 6,7 3,2 1%.0 27.9 13.8
oo 3.0 8.1 ks 3.0 8.0 L.z 2.0 7.7 4.0 7.0 7.6 k.0 22,0 31.6 16.7
i 5.0 0 5.k 7.6 b0 w8 7.0 5.0 bl 6.6 1.0 3.8 6.5 15,0 18.1 27.6
e 9.0 9.1 6.5 150 9.0 6.5 6.0 8.9 6.5 9.0 8.7 6.5 33.0 35.9 26.0
101 7.0 6.1 7.6 6.0 5.0 7.0 n.0 W7 6.6 0 bl 6.5 30,0 20.5 27.6
1116 10.0 6.8 8.9 7.0 6.1 8.4 8.0  5.4°8.1 8.0 5.0 8.0 29.0 23.2 33.4
L1l 16,0 k.5 15.2 12,0 3,7 140  18.0 2.9 13.1 10,0 2.6 12.9 53.0 13.3 55.2
x? 65.19 30,94 x? 67.64 52,13 ¥ 133.34 07 X;z 88.17 32.26 %= 327,08 45,58



Teble 3
Observed and Predicted Freguencies for Four-tupleés of Response
" Sequences from Triels 10 through 13

(L denotes the predicted column for the linear model; O-E denotes the one-element model)

o

Trial F(E) F(1) F(2) | F(L) Variable
10,11, © Obs. L 0-F Obs. L 0-E Obs. L 0-E Cbs: L 0-E Obs. L 0-F
12,13 :

0000 53.0 22.4 L9.8 60.0 26.4 56.0 71.0 31.3 60.9 67.0 33.6 62.1 265.0 113.Lk 229,k
0001 3.0 10.1 1.5 2.0 10.4 1.4 5.0 10,5 1.2 7.0 10.5 1.2 6.0 1.7 5.3
0010 L.o 111 1.8 2.0 11.5 1.6 7.C 11.7 1.5 3.0 1.8 1.5 17.0 46,3 6.4
0011 3.0 5.0 3.0 2.0 4.5 2.7 .0 3.9 2.4 1.0 3.7 2.k 7.0 17.1 10.5
0100 5.0 12.2 2.6 6.0 12.7 2.5 L0 13.1 2.4 5.0 13.2 2.4 25.0 51.6 9.5
0101 5.0 5.5 3.0 2.0 5.0 2.7 00 by 2.4 1.0 k124 12.0 19.0 10.5
0110 1.0 6.0 3.6 1.0 5.5 3.3 -0 4.9 3.0 2,0 4.6 2.9 9.0 21,1 12.7
0l1l 2.0 2.7 6.1 2.0 2.2 5.4 0 1.6 k4.9 h.o 5 1,8 10.0 7.8 2l.1
1000 6.0 13.5 5.2 11.0 1k.2 5.3 10.0 14.8 5.3 17,0 15.0 5.3 26,0 57.8 21.3
1001 L.o 6.1 3.0 1.0 5.6 2.7 1.0 5.0 2.4 00 k7T o2y 8.0 21.3 10.5
1¢10 8.0 6.7 3.6 2.0 6.1 3.3 3.0 5.5 3.0 Y.o 5.2 2.9 6.0 23.6 12.7
1011 k0 3.0 61 ho 24 54 .0 1.9 49  p.o 1.6 k.8 0 8.7 21.1
1100 10.0 7.3 5.2 8.0 6.8 5,0 3.0 6.2 L8 4.0 5.9 4.8 12.0 26.3 19.8
1101 k.0 3.3 6.1 2.0 2.7 5% 1.0 21 %9 20 1.8 48 140 9.7 21.1
1110 .0 3.6 7.1 6.0 3.0 6.5 h.0o 2.3 6.0 L0 2.1 5.9 23.0 - 10.8 25.5
11l 5.0 16122 g0 1.2 108 5.0 .8 9.8 2.0 .6 9.5 3.0 k.o k2.1
| e i, 36 30.80 X2 132,45 21.91 X2 105.76 56.72 X°  67.30 56.15 x2 529,15 T75.35




between observed and predicted frequencles for RI condition J ds found
by summing Eq. 5 over the 15 possible four-tupies and the three sets of

trials, i.e.,

_ 16 16 16 |
2 2 2 2
= X X
X5 (2sd,%) Z 1,3,2 *Z 1,3,6 "’in 5,10 ()
A - 2 2423 2d 2
i=1 i=1 i=1

Note that this equation generates a. X? value for any set of parameters

a, d, and x that we clhoose. Hence we can minimize X?(a,dgx) with regard
tc these parameters to obtain an estimate of &, 4, and x for condition

J. Howeverg we would prefer a single estimate of a, d, and x obtalned
glmiltanecusly over the five RI conditions. To do this we define the
function,

2 2 2 \ 2 2 2
X (a,d,x) = Xlﬂa,d,x) + Xl(a,d,x) + Xg(asdgx) + Xu(asdax) +-Xv(a3dax), {(7)
2

The minimization of Eg. 7 was carried out for thé data presented in
Tables 2, 3, and 4 by a computer program that searched a grid on the param-
eber space, ylelding parameter estimates accurate to three decimal places.
In evaluating the minimum of Xg(agdgx)j néte that each set of 16 success-
error sequences yields 15 df (since the predicted frequencies are coanstrained
tc sum to the total number of cbservations); further, there are three
sets of four-tuples znd five different RI comditions. Hence, the total
degrees of freedom ig 15 X 3 X 5 = 225, minus three for the number of
parameters belng estimatedoe The parameter estimates for the 1ineaf and
one-element models and the corresponding chi-squares are presgented in
Table 4, The predicted frequenciles are presented in Tables 1, 2, and 3.

The estimates of 4 of .422 and .516 for the one-element and linear

models, respectively, lndicate that there is conslderable attenuation in
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Table L
Parameter Estimates and Goodness~of~fit Measures for

the One-Element snd Linear Models

‘Model Parameter Estimate Estimate
' (with @ = 1)
One-element ¢ .023 .008%
a | Jzp 1,000%*
x .031 .016
2 _ 555 .84 1255.84
Linear K .016 .008%
d .516 1.000%*
X LObT .008%
X° 1813.47  10370.37

*Smallest value used by the minimization procedure

**Parameter held constant

ol




the effectiveness of the longer feinforcement intervals. This result is
supported by the large chi-squares shown in the second column 6f estimates,
which were obltained by carrying out the minimization with d set equal to
unity (d = L assumes no attenuation over successive time units). Estimates
of x of .031 and .0O47 suggest a slighit learning effect during the IST,
Since both the. linear and the cne-element models have the same number of
estimated parameters, the chi-squares of 1813.47 and 555.84 indicate that
the one-element model does a far betber job. Howevér3 as indicated by the
chi-square values, both models can be rejected on statistical grounds.

Predictions for separale RI conditions. We next estimate the parameters

Tor the linear and cne-element mogels separately from each of the five RI
conditions in order to compare them with the modified versions of the models
used in the previoug section. We also apﬁlied the random-trials-incremental
(RTT) model of- Norman (1964) because it subsumes both the linear and one-

element models as speclal cases. For the RTL model

(1- 8)p, + 0 , with probability c @
with probesbility 1-c¢ ,

=1
pl'_3°

medel; on the other hand, if ¢ equals one, then the medel reduces to the

where It 8 eguals one, the RTT model reduces to the one-element
lire ar model.

Table 5 presgentg the parameter estimates for the three models. These
estimates were obtained by minimizing the chi-square function defined in
Eq. 6 separately on data for each RI condition. Inspection of Table 5
reveals that all three models can be rejected on statistical grounds.

Agaln the one-~element model fits the data better than the linear model,
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Table 5

Paraneter Estimates and Goodness-of-fit Measures for

the One-Element, Linear, and RYT Mocdels Applied

Separately to the Data of the Five Experimental Conditions:

Condition

Model Parameter F(%) (1) F(2) F(4) Variable
One-element c L05h 062 .Q70 .070 .070
%2 96,30 58,61 111.54% 204,75 iki.oh

Linear 6 062 070 078 °686 070
X2 187.56 230.56 270.77 181.07  937.56

RTI c . 086 .102 109 <117 094
6 .756 <773 .805 . 761 875

X° 60.97 57.95 50,45 60.14

26
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and of course, the RTL model with 1ts two parameters for each RI condition
fite best of all. Notice that the parameter 6 of the RTL model is
relatively constant over conditions; whereas ¢ appears tc increase with
increasing wvalues of RI. An iﬁteresting fact that emefges from Table 5

is that the sums of the chi-squares over the five experimental conditions
for‘both the linear model and the one-element model are only slightly.lower
than the chi-squares presented in Table 4. In the case bf Table 5, five
parameters were used, whereas in Table 4 only threé parameters were used

to characterize changes in RI. Thus, despite the poor fit of’ the models,
there 1s some indication that the assumptions regarding the effects of

veriations in RI, as represented in Eq. 4, may not be too bad.
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Focotnotes
lSupport for the rescarch was provided by the National Aeronautics
and Space Administration, Grant No. NGR-05-020-036.
2The minimum of Xe(a,d,x) is not precisely chi-sguare distributed,
but for our purposes the approximaticn is adequate. For a discussion of

this point, see Atkinson, Bower, and Crothers (1965, pp. 394-5).
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