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Mean B-field Effects on Jet
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& The tachocline is believed to play an important role in solar magnetic activity. Simulations and
1. theories have shown that it plays an important role in generating large-scale magnetic fields.
Several studies point out the stratified turbulence inside the tachocline i1s of significance in
1y redistributing angular momentum on a long timescale. The details of the turbulent transport
. process, however, remains poorly understood. Tobias et al. found by using a simple p-plane MHD
- model of the deep tachocline with a weak toroidal magnetic field will suppress the formation of
" zonal flow. We report an analytical theory of this flow suppression due to the mean B-field, which
Y also enters as a modification of the cross phase in the vorticity flux. A mean field equation for the
vorticity and comparisons of real-space and k-space formulations will also be presented by using
closure and quasi-linear (QL) approximations.
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3 Introduction
o ® The tachocline 1s believed to play an important role in solar
. f magnetic activity g convecive SN
r ® The lower tachocline is strongly stratified. If we could remove vy & i
: ;"‘ the convection zone of the Sun, we’d see the similar pattern of
x the tachocline as of the Jupiter atmosphere.
‘ 'Z ®  We consider the 3-plane MHD turbulence for this quasi-
Y geostrophic MHD, instead of spherical shell model, for
y simplicity.
a ®  Spiegel and Zahn (1992) have proposed that the redistribution
of angular momentum result in an anisotropic eddy vorticity
(friction). Gough and Mclntyre (1998), however, argued that
% the turbulence will act as antifriction and driving mean flow.
3 ® Tobias et al. (2007) asserted this stratified turbulence plays no role of angular momentum %
: transporting due to the cancelation of Maxwell stress and Reynold stress. P
- ° ° o /4 “.'
3 @ Physics behind the p-plane turbulence does not just merely depend on Aflvén or &
E Rossby state! X
& 10 +'"' Fig 2. Scaling law for the transition 3%
10-1FE & o | between forward cascades (diamonds) 33
¥ ; { and inverse cascades (plus signs). The %
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Critical Questions .
: 2 &
. , o o ([ o BO ‘) "
What’s the dimensionless parameter, which underlines—? »
n ;
® What’s the physics behind this parameter?

1. p-Plane Approximation

Consider a solid sphere— a planet, which 1s covered by a thin atmosphere. The sphere 1s rotating in a
constant angular velocity. At latitude ¢, the velocity is at the surface is v, and thus the Coriolis

Force is 2C2 x v. The Navier-Stokes equations in a rotating frame can be written as:

4 )
( -V - V)V + 20 xv=—-VP+F
.,“ Zonal Direction 3: is the Rossby parameter
_ (} f= fo+ By y: 1s a meridional distance €2 is angular
; g rotation rate of the planet
L yZ
d
; =Yy =2cos(on)fa
¥ Y O, : latitude raising from the equator

.' We calculate (Fy,k szk) by replacing B

Q ~ W
g Dy =25 Uyl

' Pure 2D Fluid

Bo=0
» (Unmagnetized Wave)
..“ Strong B Field B
. W v _Ok»x > nkQ’ I/kz, Wi
= (Alfvénized wave) Hop
' § Weak Field | pe

Dimensionless
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 If we stir the system in small scale (V) & Rhine scale can be determined!

Formation in p-Plane MHD

= > = 0 R - - - - -
R~ . " -,

. z - - o
- ~ v v & » . =

- '-- -
o >y

i 3 Our work— Forming Zonal Flow in 2D MHD Turbulence |
(Quasi-Linear Approximation)
» From the linear response of vorticity and field potential, we’ll have :
Stream Function 1) = ngi,y, ?9)¢ [ — (Dy — D)( §<<> _ )
Velocity field u=(—,——,0) Y
dy  Ox —0 () + fo + By

! Fluid Vorticity ¢ = (0,0, ¢) = (D1 = Do) 5 (=)

Potential Field A = (0,0, A) —0
. DA 9A = (D1 = D2) 5 —(PV),

Magnetic Field B = (By+c¢—,——,0) Yy

\ dy Oz

Evolution of Mean Vorticity Dispersion Relation of Rossby-Alfvén wave

0 0 0
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(w — k(u) - T z’qu) (w — k(u) + ink2> = vik?
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Notice that the D,, D, is transport coefficient of potential vorticity (PV).

nk?
+ 772 k4

2 |, 2
vk® + wi—

and A , with vorticity {; (from induction equation):

w4 k? [I/(w2 + n?k*) + win]

— Zk 5y,k|2

W ’ nk? 2 72
2 2
(w_wAw2+772k4> +<Vk2+w‘4w2+772k4>

U
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+'  We have four frequencies: Alfvén frequency vk, Rossby frequency wp, vk?, and nkz, where
vk? and nk? suggest for the turbulence decorrelation.

D

& Now, we consider the 3 most relevant limits:

2
DL (w2 + n?k* — wi) 4+ k4 [V(w2 + n?k*) + wfm]

2

k. > vk?
Hop

nk* > w >
(Electrostatic)

v

flux is zero with 2™ order correction of — o —

. 3. PV transport modification and B-field dependence enter t
K 212

, phase (v, (), not Reynold-Maxwell csmpetition:s A«
; nk*wd

coefficient! The dimensionless parameter 1s:

Key Parameter:

Basic Physics

2. Tavlor Identitvs ;
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1. Pure 2D Fluid: We retrieve the vorticity flux of unmagnetized fluid! ¢/

= 2. Strong mean B-field: The Reynold stress 1s canceled out by the Maxwell stress, thus vorticity
& 2
& nk "

pugh the Reynold stress cross
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PV flux transport in y-direction will generate a

mean zonal (x-direction) flow.

Shear force in x direction will contributes the

formation of zonal flow.

(Evolution of) Vorticity~ (Evolution of) charge density

(Evolution of) mean zonal flow
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¥ Discussion
 '§ Is Quasi-Linear (QL) Theory applicable in weak B-field ? NO

® Zel’dovich Theorem: in high magnetic Reynold number R, : <’E’2> ~ RmBg.

Weak mean B-field o Strong magnetic turbulence "f
T ( tangled springs) 3
> makes the system has memory = QL approximation fails! :
Strong Bo Weak Bo
B, Bo RN Bo .

_:ng %
l_’ > U\_/'/ ; .

QLT is applicable QLT fails

® How to calculate the nonzero cross phase (k k) ? :

We are interested in Maxwell stress = Symmetry breaking by zonal shear!

.. D 0 . .
Starting with Eky = — d_y (ky(vx)) , and modify cross phase (k,k,) with
oKV,) B
0 o Y
ky — k)(] ) —_— kx ayx T c*
® Next: Consider weak field where QL approximation fails. We’ll recalculate the cross phase in & ,'
i (V,v,)and (B B ). “:
+¢ For fusion: Many related issue appears in Magnetic fusion energy (MFE) plasmas &

® 1.c. Effect of weak Resonant Magnetic Perturbation (RMP) or ambient stochastic field on
flow evolution?

& Previous analyses are using quasilinear Approximation.
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3. Rhines scale in 2D MHD
It’s widely accepted that the Zel’dovich Theorem for 2D MHD is applicable to [3-plane MHD: '-. ;
In E(K) 'E’Z '." '
t : (B = ﬂ, Zel’dovich Theorem
. CNergy forward B3 0 "
. back scatter energy
Rossby ¢ cascade o, |
wave : - 4
turbulence ; ¢ vV
: Energy\\ o = —A, MHD Rhines scale
i Eddy and Alfyven wave | ﬂ IR
. O 9O 500 1
|: l l » |nk '
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