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ABSTRACT OF THE THESIS

Bioinformatic Software Library for Circadian Analysis
By
Nicholas Ceglia
Master of Science in Computer Science
University of California, Irvine, 2018

Professor Pierre Baldi, Chair

Circadian oscillations play a fundamental role in many biological processes including cell
metabolism and cell cycle. As such, interest in understanding these molecular oscillations
has generated an increasingly large collection of circadian omic data. These studies have
demonstrated the remarkable plasticity with which the set of oscillating molecular species
within a cell are selected. These large shifts in oscillating species are known as circadian
reprogramming events. These events have been observed across experimental condition,
tissue, and species. While many of these studies have made tissue or condition specific
conclusions, a consolidated framework of software tools and a central repository of data
has become necessary to answer questions about the orchestration of these reprogramming

events.
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Chapter 1

Introduction

Circadian rhythms are a ubiquitous biological phenomenon that has been etched into cell
biology over trillions of day and night cycles. Many omic studies have found that hundreds of
thousands of individual molecular feedback loops operating at a 24 hour frequency are present
in almost every cell in almost any tissue. It is well known that the core clock is a robust
and prolific regulator of this oscillation. However, the core clock as a sole regulator of these
oscillations cannot account for large reprogramming events found in diverse experimental
conditions including diet challenge, drug treatment, and disease. The goal of this manuscript
is to present a software framework for the analysis of circadian reprogramming. These
methods make use of the large database of circadian omic datasets compiled on CircadiOmics

and improved methods for identifying oscillating transcripts using BIO_CYCLE.

1.1 Motivation

Circadian oscillations in the concentrations of molecular species play a fundamental role in

many biological processes from metabolism, to cell cycle, and to neuronal function [4, 12,



16, 41]. To study the role of these oscillations, an increasing amount of high through-put
circadian omic data is being generated under diverse genetic, epigenetic, and environmental
conditions. In any single circadian transcriptomic experiment, roughly 10% of measured
transcripts are found to oscillate in a circadian manner [14, 13, 38, 37, 43]. However, the
intersection of oscillating transcripts between any two experiments is typically small, only
about 2% [48]. This small overlap between experiments suggests that the union of all oscil-
lating transcripts across all experiments is large. Remarkably, we calculate that over 95% of
all of protein coding transcripts in mouse are found to oscillate in at least one condition [8].
Previous studies have demonstrated specific mechanisms by which a cell can select different
oscillating subsets of transcripts, an event known as circadian reprogramming [33, 34, 63, 43].
However, the question of how almost every transcript is capable of oscillating in a circadian
manner remains unanswered. The body of this research is devoted to the development of
informatic tools and the analysis of specific reprogramming events to generate an under-
standing of the mechanisms behind these events. Finally, this research aims to identify a

model for the transcriptomic organization of circadian rhythms.

To address this problem, it must be noted first that the concentration of any molecular
species cannot oscillate in isolation [6]. The fundamental unit of any such oscillation is a
feedback loop of molecular interactions, such as transcriptional regulation, post-trascriptional
modification, and protein-protein interactions [38, 51, 48], causing all species in the loop to
oscillate at the same frequency. A very large number of such regulatory loops have been
identified using informatics methods and large omic repositories [48, 10, 62, 58, 24, 53]. The
empirically observed pervasiveness of circadian oscillations implies that a significant fraction
of these loops is capable of oscillating with a 24 hour period. This 24 hour common period is
most likely due to evolution given the importances of the differences between night and day
for all biological life, the ~ 2 trillion night-day transitions that have occurred since the origin
of life 3.5 billion years ago, and the inherently circadian nature of the molecular circuitry

of early photosynthetic life (cyanobacteria) [47]. Thus, in short, modern cells contain entire



networks of circadian coupled oscillators. The question again is how specific subsets of

oscillators are selected under specific genetic, epigenetic, and environmental conditions.

A key element of the answer to this question is the circadian core clock. The circadian
core clock is genetically implemented by a relatively small set of genes whose transcripts
are consistently found to oscillate in most circadian experiments [26, 27, 59]. The core
clock regulates an extensive number of transcripts through a set of transcription factors
(TF) including CLOCK-BMAL [50]. CLOCK-BMAL binds to E-box motifs that are found
abundantly throughout the genome [45, 65]. A possible centralized model of organization is
that the core clock directly orchestrates the selection of oscillators in the coupled network.
While the importance of the core clock is undeniable [60, 50, 28, 54|, additional findings
have shown that knocking out elements of the core clock (including CLOCK-BMAL) does
not lead to a complete loss of circadian oscillations [29, 35, 2, 64, 11]. Thus, at the other
extreme, a completely decentralized model of circadian oscillations is also conceivable where
oscillators compete and self organize. Here we seek to find where in this spectrum, from
centrally orchestrated to completely decentralized, the cellular network of coupled-oscillators

operates.



Chapter 2

Software Framework

2.1 Identification of Oscillation

High-throughput transcriptomic or metabolomic experiments [14, 20, 37, 47], have revealed
that typically on the order of 10% of all transcripts or metabolites in the cell are oscillating
in a circadian manner. Furthermore, the oscillating transcripts and metabolites differ by cell,
tissue type, or condition [47]. Genetic, epigenetic and environmental perturbationssuch as a
change in dietcan lead to cellular reprogramming and profoundly influence which species are
oscillating in a given cell or tissue [7, 13, 37]. When results are aggregated across tissues and
conditions, a very large fraction approaching 100%, of all transcripts is capable of circadian

oscillations under at least one set of conditions [48, 8§].

In a typical circadian experiment, high-throughput omic measurements are taken at multiple
timepoints along the circadian cycle. The first fundamental problem that arises in the anal-
ysis of such data is the problem of detecting periodicity, in particular circadian periodicity,
in these time series. The problem of detecting periodic patterns in time series is of course

not new. However, in the cases considered here the problem is particularly challenging for



several reasons, including:

e The sparsity of the measurements.

e The noise in the measurements and the well known biological variability.
e The related issue of small sample sizes.

e The issue of missing data.

e The issue of uneven sampling in time.

e The large number of measurements and the associated multiple-hypothesis testing

problem.

We developed and apply deep learning methods for robustly assessing periodicity in high-
throughput circadian experiments, and systematically compare the deep learning approach
to the previous, non-machine learning, approaches [20]. While this is useful for circadian
experiments, the vast majority of all high-throughput expression experiments have been car-
ried, and continue to be carried, at single timepoints. This can be problematic for many
applications, including applications to precision medicine, precisely because circadian vari-
ations are ignored creating possible confounding factors. This raises the second problem
of developing methods that can robustly infer the approximate time at which a single-time
high-throughput expression measurement was taken. Such methods could be used to ret-
rospectively infer a time stamp for any expression dataset, in particular to improve the
annotations of all the datasets contained in large gene expression repositories, such as the
Gene Expression Omnibus (GEO) [15], and improve the quality of all the downstream infer-
ences that can be made from this wealth of data. There may be other applications of such
a method, for instance in forensic sciences, to help infer a time of death. In any case, to
address the second problem we also develop and apply deep learning methods to robustly

infer time or phase for single-time high-throughput gene expression measurements.
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Figure 2.1: Accuracy of periodic/aperiodic classification at different p-value cutoffs on the
BioCycleForm dataset

To classify signals as periodic or aperiodic, we train deep neural networks (DNNs) using
standard gradient descent with momentum [57]. We train separate networks for data sampled
over 24 and 48hours. The input to these networks are the expression time-series levels of the
corresponding gene (or metabolite). The output is computed by a single logistic unit trained
to be 1 when the signal is periodic and 0 otherwise, with relative entropy error function. We
experimented with many hyperparameters and learning schedules. In the results reported,
the learning rate starts at 0.01, and decays exponentially. The training set consists of 1
million examples, a size sufficient to avoid overfitting. The DNN uses a mini-batch size of
100 and is trained for 50,000 iterations. Use of dropout [3], or other forms of regularization,
leads to no tangible improvements. The best performing DNN found has 3 hidden layers of
size 100. We are able to obtain very good results by training BIO_CYCLE on synthetic data

alone and report test results obtained on biological data shown in Figure 2.1.

In a way similar to how we train DNNs to classify between periodic and aperiodic signals,

we can also train DNNs to estimate the period of a signal classified as periodic. During



training, only periodic time series are used as input to train these regression DNNs. The
output of the DNNs are implemented using a linear unit and produce an estimated value for
the period. The error function is the squared error between the output of the network and
the true period of the signal, which is known in advance with synthetic data. Except for the
difference in the output unit, we use the same DNNs architectures and hyperparameters as

for the previous classification problem.

To calculate p-values, the distribution of the null hypothesis must first be obtained. To
do this, N aperiodic signals are generated from one of the two BioCycleSynth datasets.
Then we calculate the N output values V(i) (i=1,,N) of the DNN on these aperiodic signals.
The p-value for a new signal s with output value V is now + > N;I(V > V(i)), where [
is the indicator function. This equation provides an empirical frequency estimate for the
probability of obtaining an output of size V or greater, assuming that the signal s comes
from the null distribution (the distribution of aperiodic signals). Therefore, the smaller the p-
value, the more likely it is that s is periodic. The g-values are obtained through the Benjamini
and Hochberg procedure. We also compute a posterior probability of periodic expression

(PPPE), which models the distribution of p-values as a mixture of beta distributions.

2.2 Web Server

The CircadiOmics web application is constructed as a three-tier Model View Controller ar-
chitecture. The web server is implemented with the Flask Python library. The interface
is generated dynamically with Twitter Bootstrap and Google Charts. Fast query response
times are accomplished by caching JSON serialized datasets on disk as the server is started.
The interface loads with an example search of ARNTL (CLOCK-BMAL) in a sample liver
control dataset. Dynamic filtering of the available datasets is provided based on tissue and

experimental perturbations. Examples of filtering options are provided in the documentation
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Figure 2.2: Three-tier Model-View-Controller architecture of the CircadiOmics web portal.
Intelligent data discovery supplies candidate datasets for inclusion in the repository using
a machine learning filter applied to key word features derived from web crawling published
abstracts. BIO_CYCLE results are obtained and stored for all datasets. The user interface
sends requests and displays results from the web server allowing for interactive hypothesis
generation and scientific discovery.

on the main web server in the context of various sample workflows. Downloadable results
for each search include high resolution images in PNG or SVG format, and an excel table
of BIO_CYCLE reported statistics. Dataset documentation includes a short technical de-
scription as well as a link to the corresponding article in PubMed. At last, additional help
information on the features of CircadiOmics is provided through a link on the main page of

the web server. 2.2 shows a simplified view of the web server architecture.

2.3 Data Repository

The omic datasets available on CircadiOmics are compiled from project collaborations, au-
tomated discovery and manual curation. Over 6400 individual time points spanning 227

separate circadian experiments are available for search and visualization. In aggregate, these
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Figure 2.3: Dataset Collection by Species, Tissues, Experimental Conditions, and Omic
Categories.

datasets form the largest single repository of circadian data available, including all datasets
from other repositories including CircaDB [49]. Eight species are currently available on

CircadiOmics. The majority are collected from Mus musculus and Papio anibus.

Over 62 tissues grouped into 18 categories are represented in the database. Within these
categories, liver and brain experiments comprise the majority. Diverse experimental con-
ditions grouped into nine broad categories are available for comparison. Unique conditions
include chronic and acute ethanol consumption, high-fat diet, traumatic brain injury, fi-
broblast undergoing myogenic reprogramming and several cancer-specific datasets. At last,
CircadiOmics is the only tool that includes transcriptome, metabolome, acetylome and pro-
teome experiments. The full table of datasets is available, with a short description and
experimental details such as number of replicates, on the CircadiOmics web portal. 2.3

quantifies the number of datasets by category.



2.4 Data Discovery

Increased interest in circadian rhythms is driving a continuous increase in publicly available
omic datasets. Automated discovery of datasets has become necessary to maintain the most
current and comprehensive repository. A Python framework built with scholarly and geotools
Python packages is used to continuously search the literature for new circadian omic studies
and datasets. Automated discovery based on keyword searches in published abstracts is fil-
tered using several features including publishing journal, author and provided supplementary
materials. A logistic regression step is used to classify datasets that are good candidates for
inclusion in CircadiOmics. Results produced by this automated pipeline are then manually
inspected for quality, based primarily on the time point resolution of the dataset. The min-
imum sampling density for any dataset in the repository is every eight hours over a 24-h
cycle. Additionally, the CircadiOmics team and collaborating biologists periodically search

recent publications for new datasets that qualify for inclusion in CircadiOmics.

2.5 Visualization

The main functionality of CircadiOmics is the search, comparison and visualization of os-
cillation trends. The user can search any molecular species in the omic datasets within the
repository and overlay multiple searches together to initiate a comparative study. A typical
work flow may consist of comparing a set of specific transcripts, metabolites or proteins
among several datasets. Intelligent auto-completion facilitates user queries within the cur-
rently selected dataset. Searches can be performed individually or in batch on a selected
dataset. When datasets do not have the same time course, results are displayed from the
minimum to the maximum time point over all selected datasets. Documentation available

on the web server illustrates common query tasks and results. Datasets with large difference
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in intensity values at each time point can be dynamically scaled for easy visual comparison.

Minimum and maximum values are normalized to zero and one, respectively.

A table of statistics is compiled and displayed beneath the main search window after each
query. Statistics can be updated dynamically to reflect results obtained with BIO_CYCLE.
The table can be downloaded in several formats compatible with Excel. Individual searches
can be removed from both the search view and the statistics table. 2.4 highlights an example

query and accompanying results.

With a rapidly expanding dataset collection, filtering candidate dataset within the inter-
face has become necessary. The filtering menu allows the user to limit the scope of datasets
displayed under drop-down menus for each dataset type. Filtering can be done by species, tis-
sues and experimental conditions. Similar experimental conditions are categorically grouped
together in the filtering menu. These include knock-downs, knock-outs, diet changes and
drug treatments. The search interface uses an abbreviated dataset identification. Upon
selection of a dataset, the user can quickly verify the source of the data through a corre-
sponding literature citation. Additional details for each dataset can be found in tabular form

under the dataset tab. These details include a brief description of the experimental protocol.

s MOUSE LIVER MASRI
2014 SIRT1-WT ARNTL
MOUSE LIVER MASRI
2014 SIRT1-WT PER1

m— MOUSE LIVER MASRI
2014 SIRT1-WT CRY1

Mean Expression

Figure 2.4: Visualization of queries for ARNTL, PER1, and CRY1 in a control mouse dataset.
Any number of queries, across any number of datasets, can be displayed simultaneously.
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2.6 Metabolomic Atlas

The Metabolic Atlas web portal (http://circadiomics.ics.uci.edu/metabolicatlas) is also avail-
able under the CircadiOmics umbrella. In addition to metabolite time series, interactive
metabolic networks can be generated and visualized. These networks are derived in part

from the KEGG database [24] and can be filtered using BIO_CYCLE statistics.

2.7 Circadian Regulatory Control

We formulated the Circadian Regulatory Control (CRC) method for identification of reg-
ulatory edges in circadian feedback loops. Two CRC scores, B-Score and FE-score, incor-
porate multiple sources of evidence including statistical significant of transcript oscillation
and high quality predicted binding sites. These scores further take into account the delay
between transcript and protein abundance using available proteomic datasets included in
CircadiOmics. CRC scores provide evidence for circadian regulation from a TF or RBP to
a specific target. Additionally, an aggregated score provides a measure of the regulatory

influence of a TF or RBP by combining the scores of all outgoing edges.

The CRC graph can be seen as representation of the structure of circadian transcriptomic
regulation based on the evidence presented in previous results. Here we analyze this repre-
sentation by combining results from both nodes and regulatory edges. The following results
were generated from both individual dataset CRC graphs and the aggregate CRC graph. The
CRC B-score was used in place of a weighted F-score to discretely determine the presence

of a regulatory edge.

Regulatory distance was computed as the length of the shortest directed path in the CRC

graph between a source TF or RBP and a target transcript. The set of oscillating transcripts

12



that are found to have a regulatory distance-one from the core clock were considered to be
directly regulated by the core clock. The mean percentage of distance-one transcripts across
all dataset CRC graphs is roughly 35%. While the majority of transcripts are not found
to be directly regulated by the core clock, almost any transcript can be connected through
a regulatory path in the CRC graph to the core clock. On average, greater than 80% of
oscillating transcripts in a dataset CRC graph can be connected within distance-three from

the core clock.

2.8 PyCircadiOmics

PyCircadiOmics is a modular software library written in Python designed to facilitate anal-
ysis of circadian high-throughput sequencing experiments through integration of common
bioinformatic tools including BIO_.CYCLE [1]. The library is composed of three layers de-
scribed in Figure 2.5. Layers are organized by granularity of analysis including processed
data from experiments (e.g. Microarray and RNA-Seq), pair-wise comparison of experimen-
tal conditions to a control, and integrated analysis over a large repository of data collected

on the webserver CircadiOmics [8].

Dataset class is the base object for all PyCircadiOmics analysis. This class defines objects
that work on a processed tab delimited file containing experimental measurements for each
timepoint and sample replicate or those datasets that are included in the CircadiOmics
repository. Data is stored internally in a Pandas data frame object [40]. The class provides
simple methods for instantiating objects using data from either case. Methods exist can be
used for annotating trends for each molecular species in the dataset with oscillation statistics.
Currently, these methods include JTK_CYCLE [20] and BIO_CYCLE. Additional methods
can be easily written to append statistics based on desired third party software. The class

also provides utilities for managing identification symbols and basic lookup for trends and

13
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Figure 2.5: PyCircadiOmics Abstract Class Hierarchy
statistics within the class data.

The CircadianDataset can be instantiated from a Dataset object. This class provides
higher level analysis tools related to the statistical results obtained from BIO_-CYCLE (or
JTK_CYCLE). Statistics for the instantiated object can be summarized into histograms as
seen in Figure 3.2. Additionally, it is possible to query transcriptomic datasets by symbol to
retrieve CRC graph downstream and upstream results. Downstream results are defined as
targets of TF and RBP queries that meet user defined CRC criteria and respective E-scores.
Finally, molecular species with trends correlated to a user querying can be retrieved using
significance scores calculated from spearmant, pearsonr, or DT'W. While this functionality is
available for any dataset, combining this correlation with the KEGG database [24] provides

the functionality for network visualization in Metabolomic Atlas.

The CircadianComparison class exposes functionality for comparing two datasets. The pri-
mary comparison is the set of molecular species (e.g. transcript, metabolite, or protein)
found to be uniquely oscillating in each condition and the set that are found to be oscillating

in both conditions. These sets can be visualized as venn diagrams as shown in Figure 2.7.

14
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Figure 2.6: Histogram of BIO_CYCLE computed lags.
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Figure 2.7: Comparison of oscillating genes in a control and chronic ethanol consumption
condition within mouse liver.

Additionally, several other tools are provided including the generation of heatmaps and a

comparison of enriched GO terms in each of the oscillating sets described above obtained

using Goatools Python library [25].

ClircadianArchitecture class provides implementations for integrative analysis over all datasets
contained within CircadiOmics repository. CircadianDataset objects for each dataset are cre-
ated and stored in memory along with accompanying CRC graphs. The superimposition of
individual CRC graphs can potentially lead to a deeper understanding of the underlying

transcriptomic architecture necessary for circadian reprogramming.

15



Chapter 3

Applications

3.1 Collaborations

Central to the study of circadian rhythms are large-scale reprogramming events. Under-
standing these events at the molecular level critically depends on being able to access and
compare significant amounts of high-throughput circadian omic data. CircadiOmics, with
its advanced search features and unprecedented amount of high quality circadian data, is a
primary enabling tool for such studies. In a circadian reprogramming event, changes in os-
cillation of one molecular species can often be related to changes in other molecular species
[48, 19]. One of the main qualities of CircadiOmics is the flexibility of the comparative
analyses it enables. For instance, a user can compare transcripts across species, or relate
metabolites to proteins and transcripts and identify underlying oscillatory trends. An im-
portant example can be seen in the loss of oscillation in the metabolite NAD+ as a response
to changes in the transcriptomic oscillatory landscape [14]. As a result, CircadiOmics has
proven to be highly effective for hypothesis generation in new studies. To date, the web

server has contributed to multiple studies that have been published in high impact journals.

16



The server has been accessed more than 250000 times in total traflic in 2017 alone.

Eckel-Mahan et al. [14] utilized CircadiOmics to analyze three related omic datasets in mouse
liver. They found that core clock genes regulate the acetylation of the enzyme AceCSI.
AceCS1 is responsible for changes in the oscillation of the metabolite acetyl-CoA, a key
metabolite involved in fatty acid synthesis. Similarly, [37] compared liver transcriptomic
data with metabolomic data in mice afflicted with cancer using CircadiOmics. They dis-
covered that a distal tumor-bearing lung can reprogram the liver circadian transcriptome
through inflammatory pathways and insulin related metabolic pathways [37]. More recently,
CircadiOmics has been used to examine the role of circadian regulation in myogenic repro-
gramming of fibroblast . It was observed that the core clock is completely disrupted during
this process. However, exogenous MYOD1 gains rhythmicity during transition to muscle
cell. As a result, MYOG and a majority of critical transcription factors related to muscle
development known to be regulated by MYOD1 synchronize oscillation. This behavior was
identified in CircadiOmics through visualization and confirmed by BIO_CYCLE reported
phase lag. At last, aggregating all mouse transcriptomic datasets confirms and amplifies
the notion that circadian oscillations are pervasiveness: 93.5% of all possible protein cod-
ing transcripts exhibit circadian oscillations in at least one tissue or experiment (up from
about 67% in [48]). The large number of datasets in CircadiOmics facilitates these kinds of

integrative analyses.

The latest release of CircadiOmics is the largest single repository of circadian omic data avail-
able. Updates in server architecture and data mining ensure that CircadiOmics will continue
to maintain and grow as new data is published. Improvement in features for search and vi-
sualization expand the possibilities for study of circadian rhythms in omic datasets. These
possibilities include generating specific hypothesis for individual experiments and answering

larger questions about the organization of oscillation within a cell.
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Figure 3.1: Selected Examples of the Impact Of CircadiOmics. (A) CircadiOmics was used
to link a multitude of circadian metabolites with functionally related circadian transcripts.
Figure taken from Figure 5A of [14]. (B) CircadiOmics was used to discover reprogrammed
circadian transcripts and metabolites related to inflammatory and energy pathways. Figure
taken from Figure 2E, 4B and 5D of [37]. (C) Exogenous MYOD1, during MEF myogenic
reprogramming, entrains oscillation in MYOG and related targets in absence of oscillation
of the core clock. (D) Bar heights show the ordered number of oscillating protein coding
transcripts with a p < 0.05 in each mouse transcriptomic experiment in the repository. The
trend is the cumulative union of oscillating transcripts. Over 93% of possible protein coding
transcripts are found to oscillate in at least one tissue or condition across all mouse datasets.
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Figure 3.2: Most Frequent Oscillating TFs and RBPs

3.2 Integrated Analysis

The frequency at which a TF or RBP is found to oscillate in a collection of datasets provides a
simple metric for estimating its consistency in circadian oscillation. Figure 3.2 illustrates this
frequency distribution for mouse at a BIO_CYCLE p-value < 0.01. Additionally, 64 datasets
from Papio anubis (baboon) were used for comparison to validate the methods. Both analyses
show that TFs involved in the circadian core clock are found to be the most frequently
oscillating. This purely data-driven approach automatically discovers the circadian core

clock. Furthermore, it identifies additional TFs and RBPs that must play an important role

in circadian oscillation.

Transcript frequency is defined as the total number of datasets where a given protein coding

transcript is found to be oscillating at a BIO_CYCLE predicted p-value < 0.01. Protein-

coding transcripts were identified from BioMart ENSEMBL gene database [55].
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Measuring the circadian regulatory influence of the TFs and RBPs identified in the previous
analysis requires further investigation using more sophisticated computational methods. To
this end, a novel computational method was used to identify and score directed regulatory
edges in oscillating loops. The Circadian Regulatory Control (CRC) method can be under-
stood as a proxy for circadian regulation between a TF or RBP (source) and a transcript
(target). There are three major components of the CRC method. First, as a prerequisite,
the source and target must be oscillating, as assessed by BIO_CYCLE. Second, the source
must have at least one high quality binding site on the target for transcriptional or post-
transcriptional regulation, as assessed by MotifMap and MotifMap-RNA [62, 10, 36]. For a
TF, binding sites were assessed at the promoter region of the target transcript. For an RBP,
binding sites were assessed at the introns or UTRs of the target transcript. Third, there
must be a correlative relationship between the phases of the source and the target. Recent
studies have shown a significant lag between the transcript expression and the concentration
of the corresponding protein [52]. We addressed this issue by computing and modeling the
distribution of this lag, using transcriptomic and proteomic datasets produced from the same

study on CircadiOmics.

After filtering on p-value for the first criteria, the remaining two criteria were combined into
two different CRC scores. The B-score is a binary indicator of circadian regulation at various
filtering thresholds for the number of high quality binding sites and the likelihood of phase
correlation. The E-score is an exponentially weighted combination of these two criteria. In
general, results generated using both scores tend to agree. However, B-score, as a binary
indicator, is more convenient for large scale analysis of graph structures. In contrast, F-score,
as a real valued metric, has more sensitivity and is used for ranking nodes and edges. For
each source TF or RBP, a CRC score was computed by aggregating all the CRC E-scores
from all its outgoing edges either in all experiments or in tissue-specific experiments. The

highest scoring TFs and RBPs are shown in Table 3.3.
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Mouse All (n=81) Mouse Brain (n=13) Mouse Skin (n=14) Mouse Liver (n=31)
TF/RBP All Score All Ranking | (TF/RBP Brain Score Brain Rank| |TF/RBP Skin Score Skin Rank | |TF/RBP Liver Score Liver Rank
FUS 8.83 9 CIRBP 1.54 2 NFIC 3.44 6 CEBPB 4.25 4
THRA 8.44 10 SFPQ 1.20 6 E2F1 268 7 BHLHE40 4.22 5
BHLHE40 8.30 11 KLF15 0.96 8 MXI1 2.34 10 FUS 3.92 7
NFIC 8.09 12 FUS 0.94 9 RUNX1 1.59 13 HNRNPK 3.58 10
HNRPDL 7.56 15 ZC3H11A 0.88 10 BRCA1 1.55 14 EIF4B 3.51 12
CIRBP 7.42 16 MX11 0.86 1 TCF4 1.46 15 PCBP4 3.45 14
MXI1 7.35 7 RBM28 0.81 14 HCFC1 1.41 16 THRA 3.30 15
EIF4B 7.34 18 EGR1 0.75 15 MEF2A 1.32 A MXI1 2.83 18
CEBPB 6.65 20 CHD1 0.71 16 ETV5 1.27 18 Yy1 2.80 19
HNRNPK 5.61 21 CREB1 0.71 17 THRA 1.17 19 MAFK 2.79 20
TARDBP 5.40 22 HIF1A 0.67 18 CHD1 1.16 20 ATF5 2.75 21
KLF13 4.75 23 HNRPDL 0.66 19 FOXM1 1.12 21 MTA3 2.75 22
PPARA 4.73 24 CEBPG 0.65 20 NFATC1 1.12 22 PPARA 2.63 23
FOX03 4.64 25 BHLHE40 0.64 21 FUS 1.12 23 BACH1 2.59 24
RAD21 4.56 26 HNRNPK 0.63 22 ALCAM 1.11 24 RXRA 2.58 25
KHDRBS1 4.38 27 SP2 0.63 23 HNRPDL 1.08 25 ESR1 2.57 26
ALCAM 4.30 28 RAD21 0.62 24 NFYA 1.03 26 RFX4 2.54 27
MTA3 4.25 29 NFE2L2 0.60 25 ZFP161 1.00 27 HNRPDL 2.53 28
ARHGAP24 4.23 30 EGR2 0.59 26 CHD2 0.98 28 FOX03 252 29
YY1 4.22 31 GTF2I 0.58 28 RBM5 0.97 29 CIRBP 2.52 30
HNRNPL 4.15 32 KLF12 0.58 29 TCF12 0.95 30 STAT5B 2.49 31
NFYA 4.14 33 HCFC1 0.58 30 SREBF2 0.94 31 CRP 2.43 32
MAFK 4.12 34 CHD2 0.57 31 KHDRBS1 091 32 TARDBP 2.37 33
KLF15 4.12 35 GTF2F1 0.56 32 EIF4B 0.87 33 HNRNPC 235 34
PCBP4 4.06 36 SRPR 0.54 33 KLF13 0.85 34 ARHGAP24 2.33 35
HNRNPC 4.08 37 CEBPD 0.53 34 ELK4 0.85 35 DCTN2 2.28 36
ESR1 4.00 38 ETV1 0.49 35 RFX5 0.83 36 NFIC 227 37
SREBF2 3.92 39 GABPA 0.49 36 SF1 0.81 37 KLF1 2.25 38
BACH1 3.77 40 A1CF 0.49 37 ELAVL1 0.79 38 USF2 2.25 39

Figure 3.3: Tables showing the ranking of circadian TFs and RBPs by CRC E-score in
different tissue types. The leftmost table shows ranking in mouse transcriptome across all
datasets. RBPs are labeled in red, while TFs are labeled in black. Core clock TFs have been
removed from the listing.

When looking at aggregated results, core clock TF's such as CLOCK and BMAL1 were found
to have the largest scores, a finding consistent with both the frequency of oscillation and

previous literature [60]. Extended members of the core clock were also identified in the

ranking including THRA and BHLHE40 [56, 32].

In the results across all datasets, additional TFs and RBPs were identified that seem to
have a much broader regulatory role than what is reported in the literature. For instance,
FUS and CIRBP have been reported to affect the core circadian factor PER2 via alternative
splicing, but only in the mouse liver [30, 42, 46]. In contrast, we find that FUS and CIRBP
are found to be high scoring also in both brain and skin. EIF4B has been identified in the
circadian regulation of translation in mouse liver [23]. We find that EIF4B is also top scoring
in skin. HNRPDL is listed as a potential target of circadian regulation via microRNA in the
brain [9]. Strikingly, these RBPs and TFs are found to have very high CRC scores across

all mouse datasets. This suggest that they play a broader, previously uncharacterized role
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in circadian regulation.

When looking at tissue specific results, many additional TFs and RBPs with high CRC
scores are discovered. Although literature evidence has shown that these factors interact
with circadian pathways, they are not known to be regulators of oscillation. These TFs may
explain tissue specific circadian reprogramming. Within brain tissue, SFP(Q is functionally
involved in the cell cycle pathway, which also includes NONO and PER2 [17]. EGRI1 has
been found to oscillate and regulated by the core clock [31]. Within our results, EGR1
potentially regulates a large number of downstream transcripts in the brain. CHD1 is known
to be involved in circadian chromatin remodeling in brain [5]. KLF15 is well known to be
regulated by the peripheral clock in relation to circadian nitrogen homeostatis in liver and
muscle [22]. Within skin tissue, RUNX is a top TF and is known to be regulated in a
circadian fashion in epidermal cells [21]. E2F1 is regulated by circadian factors SIRT1 and
CLOCK]|44]. BRCAL1 is known to interact with core clock TFs such as PER2 [61]. Within
liver tissue, CEBPB is top ranking excluding core clock TFs. This agrees with the literature
finding that it interacts with the core clock through REV-ERB [18]. PCBP4 is known to be

involved in circadian alternative splicing in the liver [39].

Additionally, there are many other novel findings that have been linked to very few circadian
studies. These findings include: NFIC, RAD21, MXI1, and TARDBP across all tissues;
ZC3H11A, RBM28, and CEBPG in brain; HCFC1 and ETV5 in skin; and HNRNPK, ATFb5,
and BACH1/MAFK in liver, and may provide leads for investigations of previously unknown

circadian regulatory mechanisms.
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3.3 Summary

Further analysis is required to understand the organization of transcriptomic oscillation.
The software framework presented in this paper provides a foundation for such inquiry. The
latest release of CircadiOmics is the largest single repository of circadian omic data available.
Updates in server architecture and data mining ensure that CircadiOmics will continue to
maintain and grow as new data is published. Improvement in features for search and vi-
sualization expand the possibilities for study of circadian rhythms in omic datasets. These
possibilities include generating specific hypothesis for individual experiments and answer-
ing larger questions about the organization of oscillation within a cell. PyCircadiOmics is
currently being used in ongoing collaborations within the Institute for Genomics and Bioin-
formatics. Finally, the Circadian Regulatory Control (CRC) provides a foundation for deeper

study of the transcriptomci organization of circadian reprogramming events.
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