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ABSTRACT OF THE DISSERTATION

Efficient Statistical Models For Detecting And
Analyzing Human Genetic Variations

by

Zhanyong Wang
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2014

Professor Eleazar Eskin, Chair

In recent years, the advent of genotyping and sequencing technologies has en-
abled human genetics to discover numerous genetic variants. Genetic variations
between individuals can range from Single Nucleotide Polymorphisms (SNPs) to
differences in large segments of DNA, which are referred to as Structural Varia-
tions (SVs), including insertions, deletions, and copy number variations (CNVs).

Genetic variants play an important role in regulating human diseases and traits.

I first propose an efficient genotyping method which can accurately report the
genotypes of thousands of individuals over a high-density SNP map at low cost.
This method utilizes pooled sequencing technology and imputation. A proba-
bilistic model, CNVeM, is then developed to detect CNVs from High-Throughput
Sequencing (HTS) data. I demonstrate by experiment that CNVeM can estimate
the copy numbers and boundaries of copied regions more precisely than previous

methods.

Genome wide association studies (GWAS) have discovered numerous individ-
ual SNPs involved in genetic traits. However, it is likely that complex traits
are influenced by interaction of multiple SNPs. I propose a two-stage statistical

model, TEPAA, to reduce computational time greatly while maintaining almost

1



identical power to the brute force approach which considers all possible combina-
tions of SNPs. The experiment on the Northern Finland Birth Cohort data shows
that TEPAA achieved 63 times speedup.

Another drawback of GWAS is that rare causal variants will not be identified.
Rare causal variants are likely to have been introduced in a population recently
and are likely to be in shared Identity-By-Descent (IBD) segments. I propose a
new test statistic to detect IBD segments associated with quantitative traits. I
make a connection between the proposed statistic and linear models so that it does
not require permutations to assess the significance of an association. In addition,

the method can control for population structure by utilizing linear mixed models.
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CHAPTER 1

Introduction

Deoxyribonucleic acid (DNA) in the cells is the carrier of genetic information of all
known living organisms. The DNA sequence is composed of a particular order of
repeating units called nucleotides. There are four types of nucleotides in the DNA

bl

sequence, which are denoted as ‘A’, ‘C’, ‘G’ and ‘T". It is the sequence of these
four nucleotides in DNA that encodes genetic information. Individuals within one
species share as much as 99.9% of their DNA sequences. Completed in 2003, the
Human Genome Project (HGP) determined the common sequence of the 3 billion

nucleotides that make up the human genome [Con01] (In this article, we use DNA

sequence and genome interchangeably).

Differences between the DNA sequences within one species are called genetic
variations, or genetic variants. Genetic variation in the genome is present in
many forms, including single nucleotide polymorphisms (SNPs; locations in the
DNA sequence which are polymorphic in the population), small insertion-deletion
polymorphisms and chromosomal structural variations (SVs), including insertions,

deletions, and copy number variations (CNVs).

Genetic variations play an important role in regulating the human diseases,
such as cancer, diabetes and so on. Individuals who carry a mutation at a certain
variant may have high probability to develop the disease than those without the
mutation. Also, human traits, such as height, hair color are also affected by the
genetic variants. Thus, it is of crucial importance to study the role of genetic

variants in human genome. The process of identifying genetic variants that are



associated with a certain trait or disease is referred to as an association study,

which is fundamental in understanding diseases and searching for treatments.

The first step to conduct an association study is to collect the genotypes for a
group of individuals over a set of genetic variants. The advent of high throughput
sequencing technologies have ushered in a new era of genetic variant discovery.
For the first time, we are able to collect thousands of individuals’ genetic data
at hundreds of thousands genetic markers, and perform a genome-wide associa-
tion study (GWAS). SNPs have been a main interest in the field of genetics for
the last decade, and they contain significant amounts of information for GWAS.
High-Throughput Sequencing(HTS) technologies are rapidly decreasing the cost of
obtaining genetic information. The cost for utilizing one of these technologies con-
sists of a sample preparation step and a sequencing step of the prepared sample.
The dramatic increase in the efficiency of the sequencing technology makes the
cost of the sequencing step negligible for small target regions. Thus the main re-
maining cost is the sample preparation step. Using overlapping sequencing pools,
where samples are mixed together into pools which are prepared and sequenced
together has been shown to reduce cost significantly for collecting information on
genetic variants that only occur in a few of the samples. These methods utilize
ideas from compressed sensing. In Chapter 2, I extend this approach to utilize
additional information from reference genetic variation datasets which provide the
correlation structure between genetic variants. Utilizing this information, we can

significantly increase the efficiency of overlapping pool sequencing.

CNVs are another important mediator for diseases and traits. The develop-
ment of HTS technologies has also provided great opportunities to identify CNV
regions in mammalian genomes. In a typical experiment, millions of short reads
obtained from a genome of interest are mapped to a reference genome. The map-
ping information can be used to identify CNV regions. One important challenge

in analyzing the mapping information is the large fraction of reads that can be



mapped to multiple positions. Most existing methods either only consider reads
that can be uniquely mapped to the reference genome, or randomly place a read to
one of its mapping positions. Therefore, these methods have low power to detect
CNVs located within repeated sequences. In Chapter 3, I propose a probabilistic
model, CNVeM, that utilizes the inherent uncertainty of read mapping. It uses
maximum likelihood to estimate locations and copy numbers of copied regions,
and implements an expectation-maximization (EM) algorithm. One important
contribution of our model is that it can distinguish between regions in the refer-
ence genome that differ from each other by as little as 0.1%. As our model aims
to predict the copy number of each nucleotide, it can predict the CNV boundaries
with high resolution. We apply our method to simulated datasets and achieve
higher accuracy compared to CNVnator, the state of art CNV detector. More-
over, we apply our method to real data from which we detected known CNVs. To
our knowledge, this is the first attempt to predict CNVs at nucleotide resolution,

and to utilize uncertainty of read mapping.

I have further extended the approach to apply it to cancer data. Recent
studies have reported that CNVs are an important factor leading to cancer. In
order to obtain the DNA-sequence of the cancer cells using HTS technologies,
a biopsy is first conducted on the patient, where tumor tissue specimens were
collected from the random sites of the tumor. However, analysis of tumor CNVs
can be confounded by the presence of contaminating cells from normal surrounding
stromal tissue, which have normal copy numbers. Another challenge is also the
large fraction of reads that can be mapped to multiple positions. Most existing
methods have low power to detect CNVs of tumor cells. In Chapter 4, I propose
a probabilistic model, CNVmix, that utilizes the inherent uncertainty of read
mapping to infer CNVs from tumor samples mixed with stromal cells. I propose a
method to estimate the proportion of stromal cells in the contaminated samples.

Then the information is utilized to estimate locations and copy numbers of CNV



regions.

GWAS studies have discovered numerous loci involved in genetic traits. Vir-
tually all studies have reported associations between individual SNP and traits.
However, current studies on certain complex diseases have also suggested that
some SNPs influence diseases through interactions [WAP00, BSW05, YIS04]. One
approach to detect interactions of SNPs is the brute force approach which performs
a pairwise association test between a trait and each pair of SNPs. The brute force
approach is often computationally infeasible because of the large number of SNPs
collected in current GWAS studies. In Chapter 5, I propose a two-stage model,
Threshold-based Efficient Pairwise Association Approach (TEPAA), to reduce the
number of tests needed while maintaining almost identical power to the brute force
approach. In the first stage, our method performs the single marker test on all
SNPs and selects a subset of SNPs that achieve a certain significance threshold.
In the second stage, we perform a pairwise association test between traits and
pairs of the SNPs selected from the first stage. The key insight of our approach is
that we derive the joint distribution between the association statistics of a single
SNP and the association statistics of pairs of SNPs. This joint distribution allows
us to provide guarantees that the statistical power of our approach will closely
approximate the brute force approach. We applied our approach to the Northern
Finland Birth Cohort data and achieved 63 times speedup while maintaining 99%

of the power of the brute force approach.

Another drawback of GWAS is that rare causal variants will not be identified
as they are rare in the population and the statistical power is low. Rare causal
variants are likely to have been introduced in a population recently and are likely
to be in shared Identity-By-Descent (IBD) segments. Recently, many methods
have been developed to detect the IBD segments between a pair of individuals.
These methods are able to detect very small shared IBD segments between a pair

of individuals up to 2 centimorgans in length. This IBD information can be used



to identify recent rare mutations associated with phenotypes of interest. Previous
approaches for IBD association were applicable to case/control phenotypes. In
Chapter 6, I propose a novel and natural statistic for the IBD association test-
ing, which can be applied to quantitative traits. A drawback of the statistic is
that it requires a large number of permutations to assess the significance of the
association, which can be a great computational challenge. We make a connec-
tion between the proposed statistic and linear models so that it does not require
permutations to assess the significance of an association. In addition, our method

can control for population structure by utilizing linear mixed models.



CHAPTER 2

Efficient Genotyping of Individuals using

Overlapping Pool Sequencing and Imputation

2.1 Backgroud

In the past few years GWAS studies have successfully detected single SNPs as-
sociated with many diseases [MC09, MCC09]. Most of the associated SNPs have
been collected using genotyping technologies [GSL05, MDLO04]. Genotype chips
typically collect SNPs with minor allele frequency (MAF) of at least 0.01; these
SNPs are known as ‘common SNPs’ [MDL04]. However, the recent studies have
shown that rare variants, or SNPs with MAF lower than 0.01, may play an im-
portant role in diseases [MCC09, EFG10]. Since rare SNPs outnumber common
SNPs, one possibility is to increase the number of SNPs collected by the genotype
chips. However, this will increase the cost of genotyping and is limited to collect-
ing only previously discovered SNPs. Another approach is to apply imputation
methods. In these methods, a standard genotype chip is used for genotyping.
Then one of the existing computational methods [HDM09, MHMO7] is used to
infer the ungenotyped SNPs. However, the imputation methods may have error

rates as high as 5% and are also limited to genotypes on previously discovered

SNPs.

High throughput sequencing (HTS) technologies, where millions of fragments
of DNA are obtained in each run of a sequencing machine [SJO8, Met08, Mar08],
have the advantage that they can collect rare variants [BTL11, Banl0, LCY11,



ZBG12]. Although HTS costs are decreasing, compared to the cost of genotyping
they are expensive. The cost of HTS technologies consists of a sample prepa-
ration step and a sequencing step of the prepared samples. Recent advances in
sequencing technologies have dramatically decreased the cost of the sequencing
step. Thus, the main cost is in the sample preparation step. Many studies require
a large number of individuals to be sequenced in order to have sufficient statis-
tical power to implicate variations in disease. However, due to cost constraints,
it is impractical to sequence each individual separately because of the sample
preparation costs. To reduce the sample preparation costs, one strategy is to use
overlapping pools where multiple individuals (samples) are grouped into one pool
and are sequenced together. The cost is reduced because only one sample prepa-
ration is necessary per pool. This reduces total number of sample preparation
steps necessary for the study. In this strategy the pools are designed such that
each individual sample is present in more than one pool. Utilizing the knowledge
of which individual is in which pool and the results of the sequencing of the pools,

in principle, it is possible to infer the genotypes of each individual.

In the past few years a number of studies have investigated the overlapping
pool problem, which consists of two main subproblems. The first subproblem is
to determine the design matrix, which indicates how individuals should be pooled
together so that the detection of rare and common SNPs is possible with high
accuracy [PP09, HHS08]. The second subproblem is to recover the sequence of
each individual given the design matrix and the results of the sequencing. This

problem is known as the decoding problem.

Prabhu et al. [PP09] introduced an elegant method to compute the design
matrix using error-correcting codes. This method is able to recover a single rare-
allele carrier from multiple pools. Using this design matrix the method can detect
which individual carries a rare SNP with only log(N') pools where N is the number

of individuals. However, this method fails for common SNPs.



Shental et al. [SAZ10] introduced a method to solve the decoding problem for
rare SNPs. This method utilizes compressed sensing (CS) [CRT05], where they
minimize sequencing errors and the predicted minor allele frequency for each SNP.

However, this approach is also not applicable for common SNPs.

Recently, Golan et al. [GER12] utilized a pooling strategy where each individ-
ual is present in only one pool. In this strategy, different individuals have different

abundance levels, which further reduces the cost of sample preparation.

Most similar to our approach, He et al. [HZP11] developed a likelihood method
that solves the decoding problem using linear programming. They incorporated
sequencing errors and the results of imputation of the common variants into their
model. Imputation information provides information on the genotypes of com-
mon SNPs, although this information may be inaccurate. The key idea behind
this approach is to combine the imputation information with the results of the
sequencing to obtain more accurate genotypes. The method detects rare SNPs
with high accuracy. This approach is also among the first methods to use the

overlapping pooling approach to genotype common SNPs.

In this work, we present an approach for solving the decoding problem where
the design matrix, the results of sequencing, and imputation information is given.
We propose two methods to solve the decoding problem. The first method is based
on compressed sensing (CS) [CRTO05] which is an active research topic in many
fields. The second method is a likelihood-based approach where we compute the
maximum a posteriori (MAP) estimate. To solve both objective functions we use
the proximal gradient descent algorithm which is an extension of the gradient de-
scent algorithm. We use simulated data to illustrate the accuracy of each method.

In our experiments we show that the MAP model has lower error rate than the

CS model.



2.2 Methods

2.2.1 Problem Statement and Notations

Consider the scenario where a set of N individuals are to be sequenced and the
length of the genome is L. We can denote the sequence of these individuals by a

matrix

G =1{0,1,2}V*L, (2.1)

The element g¢;; stands for the number of minor alleles at i-th individual’s j-th
genetic locus. We aim to reconstruct the matrix G utilizing HTS technologies.
However, as we mentioned above, it is infeasible to sequence each individual sep-
arately in practice due to budget constraints, especially when N is large. We
design a pooling schema to mix the samples into 7" pools. The design schema is

represented by a matrix

A= {0, 1}V (2.2)

where a;; = 1 if and only if the j-th individual appears in the i-th pool. Under an
error-free model, the number of minor alleles at each locus in each pool is given

as

Y = AG. (2.3)

Our objective is to reconstruct G from this equation. However, we do not observe
Y directly, but only observe an estimate of Y from the sequencing data. From
the results of sequencing the pools, we can estimate the number of minor alleles

for each SNP in each pool using the read counts at each position.

In principle, we can obtain the genotypes by finding a solution to the set of
equations AX =Y. However, as in our design schema 7" < N, the solution is
not unique. We need other constraints or external data to accurately reconstruct
the matrix GG. One possible constraint is that for SNPs that are rare, the column

vector corresponding to each SNP will contain mostly zeros. This idea is the



basis of most previous overlapping pool methods [HHF11, SAZ10]. Since the
allele frequency can be inferred from the sequencing results, this constraint can

be utilized to reconstruct the columns of G corresponding to rare SNPs.

For common SNPs, there is not enough information in only the sequencing
data. However, the data can be augmented using information from an imputation
method applied to genotype data collected from microarrays on a subset of the
SNPs. Imputation methods can be utilized to infer the unmeasured common
SNPs, where nearby SNPs are used to impute ungenotyped variants using the
linkage disequilibrium(LD) structure of the genome. However, this process is
inevitably noisy, especially when imputing SNPs of low allele frequencies or SNPs
in regions of low LD. In addition, imputation methods can not infer genotypes for
rare variants. Combining a pooling sequencing approach, we could provide more

accurate genotypes for imputed SNPs and rare variants.

Denote the matrix imputed from genotyped common SNPs to be
M = {0,1,2}VxE (2.4)

For the positions j that are neither genotyped nor imputed for individual i, we
set the element M;; = 0. We can represent the true genotype matrix G' as a sum
of imputed genotypes and a residual error matrix £, with e;; € {—2,—1,0,1,2}.
We note that for common variants, the residuals represent the errors in the im-
putation and for rare variants, since the corresponding column of M is all zeros,

the genotypes of the rare variants are captured in the residuals £. Thus, we have

G=M-+E. (2.5)

2.2.2 Compressed Sensing (CS)

As rare variants appear only in a few individuals and the imputation precision is

over 95%, we can assume that the difference between G' and M is sparse. To solve
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the formula Y = AG, it is natural that we introduce an L1 penalty. Then the

optimization problem becomes:

minimize ||V — AG/||% + \||G — M||;
¢ (2.6)
subject to G,; ={0,1,2},i=1,...,N;j=1...L.

A preliminary method. As we have an imputed matrix M and the dif-
ference between GG and M is sparse, it is feasible that we enumerate all possible
differences for each individual at one SNP. We enumerate all possible locations of

the differences and mutate corresponding loci in M to recover G and find the one

which minimize ||Y — AG|[% + A|G — M]|;.

A proximal gradient method. The disadvantage of the previous method is
that enumerating all possible differences makes the method to be intractable for
large set of inputs. We propose an alternative procedure to solve the objective
function (2.6). In this method we relax the condition that the genotype for each
individual at each given position is {0, 1,2}. We assume the genotype to be a real
number between zero and two (i.e. 0 < Gi; < 2) and solve the objective function
with the relaxed constraint. After obtaining the solution, we round the solution
to an integer value. The main intuition behind this method is to use a gradient
descent method. In the gradient descent GG is the value of matrix G computed
in the k-th step. In the first step of gradient descent we set GG; equal to the
imputation matrix, or any random matrix. In the k-th run of the method we set
Gy equal to G_1 — tV f, where f is the objective function we want to optimize.
We keep iteratively updating the value of G until we achieve convergence of the
objective function. However, in the proximal gradient method after each step we
project the computed value to the space which contains the L; regularizer. We
utilize a constant step function ¢ > 0, then we initialize the value of G to the

imputation matrix M. In the k-th step we set G} equal to Gy_1 — tV f, where

11



f=3|lY = AG||%. Considering that our objective function has the L; regularizer

we have to project Gy using the prox, function. We keep improving the value

of G' until the value of objective function converge to an optimal solution. The

pseudocode of the method is shown in Algorithm 1.

(
Gij—t GijZMz‘j'f‘t

prOXt(Gij) = M,L Mij + 1 S Gij S Mij —1

kGij+t GUSMU_t

Algorithm 1: Calculate G to minimize the Equation (2.6)
Require: f = {||Y — AG|[%

pick a constant step t > 0

Go+— M

while Not converged do
Gy « prox,(Gy_1 —tVf)
k< k+1

end while

2.2.3 Maximum a Posteriori

The difficulty of the CS method is to select the correct A as different values of
A result in different G’s, thus recovering the original G depends on the correct
choice of . In this section we use the generative model of the data to obtain the
desired objective function. We introduce a new variable G' = % so that G is the
probability that the ¢-th individual has a minor allele at the j-th SNP. Moreover,
we have two matrices, Cryy, and Dryy, which represent the major and minor
allele counts observed from the HTS data, respectively. C;; indicates the major
allele count for the j-th SNP in the i-th pool. Let € indicates the sequencing error

rate.

The probability of observing a minor allele for the j-th SNP in the ¢-th pool
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Ziv:1 AikG;cj
Zi\rzl Aik
> w—q Air is the normalization constant and A is the design matrix. In the case

is when the sequencing error rate € is zero. The denominator value

where the sequencing error is not zero, the probability of minor allele is (1 —

)lecvzl AikGZj + 6(1 . lecvzl AikG;cj)
Zi\;l Aik Zi\;l Aik ’

the sequenced allele is the minor allele. Incorporating the assumption that the

The first part represents the scenario where

sequencing error rate is €, the probability of observing the minor allele will then
shrink by a factor of 1 — e. The second part represents the scenario where the
sequenced allele is the major allele. Then a minor allele will only be observed in
the case that sequencing error occurs, with a probability of e. We can calculate

the likelihood of observing the data as follows:

L T N
> e AirGy 3
P(C,DIG) = [ T]((1 — 20 55—~ + o
j=11i=1 Zk*l A
N
. Au G
x((26 — 1) SE=L TR g )P (2.7)
k=1 <Yik

Let the imputation error be denoted as €;,,,. As the imputation error rate is less
than 5%, the difference between G and M should be small. Given the imputation

matrix M, it is natural to approximate the prior of the GG as follow:

P(GIM) o (1= egy) V710 () 6011 (2.8)

Considering the (2.7) and (2.8) one can compute the posteriori probability of

the data according to Bayes rule:
P(G|C,D,M) x P(C,D|G) x P(G|M). (2.9)

Maximizing the posterior probability of the genotype matrix G in (2.9) is equal
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to maximizing the following log probability with respect to G:

|G — M|, log "

2(1 — Ejm)
L N
_, AuGl
+ ZZ (Czjlog (1 — 2 )M +€)
j=1 i=1 Zk:l Aik
Zk—l AiGl
+ Djjlog((2e —1)=——F——2+1—¢)|. (2.10)
’ chvzl A

We use the similar proximal gradient method as mentioned in section 2.2.2 to

solve this maximum a posteriori (MAP) objective function.

2.3 Results

In order to assess the performance of our method, we designed a simulated frame-
work where we can measure the accuracy of our method. We simulated the geno-
type of 50 individuals. For simplicity, we assess the accuracy on one SNP in each
simulation. Since minor allele frequency (MAF) is a crucial factor that will af-
fect the accuracy of pooling sequencing, we evaluated our method under various
MAFSs ranging from 1% up to 30%. For each SNP, whether the genotype for each
individual is homozygous or heterozygous is randomly determined according to

the pre-selected MAF. These genotypes serve as the true genotype G.

We also simulate the imputation matrix M. According to the current tech-
nology, the genotyping error rate is as low as 0.5% and the imputation error rate
is 5%. We analyze two cases where the SNP is either genotyped or imputed. If
the SNP is genotyped, the genotype of this SNP in the imputation matrix M is
obtained from the corresponding cell in matrix G, with a chance of 0.5% of hav-
ing an error. If the SNP is imputed, the genotype of this SNP in the imputation
matrix M is obtained from the corresponding cell in matrix G, with a chance of

5% of having an error.

We use a random design matrix A. We simulate 15 pools and the probability
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for any individual to appear in any pool is 50%. For each pool in order to simulate
the read count of each locus we assume the number of reads generated from each
position follows a Poisson distribution. Given that the sequencing coverage is m,
on average each position is covered by m reads. Thus, the number of reads (K) at
one SNP follows a Poisson distribution K ~ Pois(m). If we take each sequencing
event as a Bernoulli trial, then the number of reads carrying the minor allele follows
a binomial distribution Binom(K, M AF'). Using this distribution, we simulate
the number of reads carrying minor alleles and major alleles, respectively. The

read counts are then considered as the output from pooling sequencing.

From the read counts, we reconstruct the matrix Y and use the methods in
Section 2.2.2 and Section 2.2.3 to recover the matrix G. The methods are tested
under various MAF ranging from 1% up to 30%. Each scenario is repeated 50
times for genotyped SNPs and imputed SNPs respectively. For genotyped SNPs,
our method always achieves almost 100% accuracy. Here we only demonstrate
the accuracy for imputed SNPs. The results for imputed SNPs are shown in
Figure 2.1. The accuracy depends on the MAF, especially for the MAP method.
Both of our methods provide improvement in imputation accuracy. When the

MAF is lower than 10%, the MAP method has higher than 99% accuracy.

2.4 Discussion

Many studies require thousands of individuals to be sequenced in order to have
enough power to detect the SNPs involved in disease. This motivated the need

for efficient methods for genotyping individuals.

One approach of efficient genotyping is through overlapped sequencing pools.
A problem with traditional approaches is that they are unable to genotype com-
mon variants. However, for many cohorts that are currently being sequenced,

genotype data collected from microarrays is already available and imputation
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Figure 2.1: The error rate computed for each given method on the simulated
data sets. We range the minor allele frequency (MAF) from 1% up to 30%. CS
represents the results of the compressed sensing method proposed in this work and
MAP represents the results from the maximum a posteriori method. MAP has
the lowest error rare among all methods and as expected the error rate increases

as the MAF increases.

methods are applied to obtain genotypes at uncollected SNPs. Unfortunately,
these methods can only infer genotypes at previously known SNPs. Our approach
utilizes imputation information in conjunction with sequencing pools to both infer

the rare variants as well as improve the accuracy of the imputed genotypes.

We proposed two methods to solve the decoding problem for overlapping pools.
The first method is based on the sparsity of rare variants and low error rate of
imputation methods, where we use the compressed sensing technique to formulate
the problem. The second method is based on a maximum likelihood approach. In
this method we used the generative model of data to obtain the objective function.

We simulated data sets for 50 individuals where these individuals are randomly
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pooled into 15 pools reducing the sample preparation costs by a factor of 3. Using
this simulation framework we illustrate the fact that both of our methods tend
to have low error rate. Moreover, the MAP method tends to outperform the CS
method. In all of our experiments MAP method had lower error rate compared

to the CS method.

We note that our method is very accurate for MAF less than 10%. For higher
MAF, our performance is still better than just using the imputed genotypes. One
way to further increase the accuracy is to use a larger number of pools which

increases the total cost of sequencing.
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CHAPTER 3

Copy Number Variation Detection Using

Uncertainty of Read Mapping

3.1 Background

Genetic variations between individuals can range from single nucleotide differences
to differences in large segments of DNA. Variations on the nucleotide level are re-
ferred to as Single Nucleotide Polymorphisms (SNPs) and on the segment level
are referred to as Structural Variations (SVs), including insertions, deletions, and
copy number variations (CNVs). SVs and in particular CNVs, in which a large
region of genome is deleted or duplicated, play an important role in the genetics
of complex diseases and traits [IFR04, TSB05]. Many recent studies have shown
a correlation between CNVs and different genomic disorders, ranging from brain
related diseases (such as autism, schizophrenia and idiopathic learning disabil-

ity [SLMO07]) to cancers (e.g. non-small cell lung cancer [CHRO5]).

Common methods to detect CNVs were until recently based on whole genome
array comparative genome hybridization (ArrayCGH). In ArrayCGH, both a genome
of interest (donor genome) and a reference genome are hybridized to a tiling array
and the intensity ratio of the two genomes (donor /reference) provides an estimate
of the copy number gain or loss [Car07, CLCO08]. Although a powerful method
to detect the presence of CNVs and to estimate copy numbers, the ArrayCGH

approach is unable to identify the boundaries of CNVs with high resolution.

The development of high-throughput sequencing (HTS) technologies provides
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great opportunities for detecting CNV regions. With HTS technologies, whole
genome shotgun sequencing of one or more individuals becomes possible. Meth-
ods to detect the CNVs from short reads generated by HTS technologies can be
categorized by two main ideas. The first category of methods divides the genome
into small windows and the number of reads mapped to each specific window (read
depth) is used as a proxy for the copy number of that window [AKMO09, SKA10,
SMA10, CGJ09, YXMO09, Conl0]. Alkan et. al [AKMO09] used a set of fixed re-
gions which are unique among all primates as control windows and calculated the
average read depth for those regions. Then they scaled the results to predict the
copy number of other windows. Simpson et al. [SMA10] used the same idea of
splitting the genome into windows while incorporating read depth and heterozy-
gous SNPs information (in inbred mouse) into a Hidden Markov Model (HMM).
Adjacent windows with same copy number state are combined into one CNV
region. Abyzov et al. [AUS11] developed a method for CNV discovery from sta-
tistical analysis of read depth. The method is based on the established mean-shift
approach [CMO02], which is a popular method in computer vision. This approach
is able to detect the presence of large CNVs and the copy numbers. However, the
resolution of this approach is limited by the size of the windows, which is typically

at least one kilobase.

In the second strategy, “paired-end” reads, where “paired-end” refers to the
two ends of the same segment of a DNA molecule, are used to detect CNVs.
A short gap appears between the two paired-end reads and the distance of this
gap is roughly fixed and known. The second class of approaches utilizes discor-
dant paired-end reads, which are the reads mapped to the reference genome in
an unexpected way [MFD10, HFE10, HAE09]. Discordant reads may indicate the
presence of CNVs. Read depth information is then used to compute the copy num-
ber for each candidate CNV region [SKA10, AKMO09]. Medvedev et al. [MFD10]

introduced the idea of using both the read depth as well as the discordant reads
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to detect CNVs. This method first clusters the discordant reads to identify the
CNV boundary, after which it builds a “donor graph” representing the genome
as segments of sequences connected by edges. Moreover, it uses maximum flow
to estimate the most likely copy numbers for the donor genome. One limitation
of this strategy is that it only detects CNVs in regions which are not repeat-rich.
This may reduce the applicability of this method given the existence of many
repeat-rich regions in the genome. Also, the CNVs may have complex structure.
For example, there exist multiple copies of CNVs in the reference genome. This

method can not detect variation within different copies.

Another important challenge for CNV detection lies in the uncertainty of
read mapping. All of the mentioned methods use read depth information. The
read depth is obtained by mapping the short reads to the reference genome and
then calculating the number of reads within a region. However, a read can be
mapped to multiple locations, although the read originated from one specific lo-
cus in the donor genome. This mapping uncertainty can be due to short read
length, sequencing errors, and the presence of repetitive regions. With few ex-
ceptions [HHF11], most studies either consider all possible locations or randomly
pick one mapping location, or even discard all such reads. These methods have
difficulty in detecting CNVs with high accuracy, especially CNVs in repeat-rich

regions.

In this work, we show that handling the uncertainty of read mapping can
help us in predicting the copy number of CNVs, especially in repeat-rich regions.
We propose a probabilistic model, CNVeM, that utilizes the uncertainty of read
mapping. We use maximum likelihood to estimate locations and copy numbers
of copied regions, and implement an expectation-maximization (EM) algorithm.
One important contribution of our model is that we distinguish between similar
copies of a region in the reference genome. We can predict exactly which copy

of a region is duplicated or deleted utilizing the differences between copies and
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handling uncertainty of read mapping.

In our model, we predict the copy number for each nucleotide and adjacent
nucleotides with same copy number are then combined to form a full CNV region.
In this way, we can detect the boundaries precisely and are able to predict small
CNVs. To our knowledge, this is the first attempt to detect CNVs at nucleotide

resolution and to distinguish between similar regions in the reference genome.

3.2 Methods

3.2.1 A Motivating Example

One important contribution of our method is that we distinguish between regions
in the reference genome that differ from each other by a single nucleotide. Fig-
ure 3.1 illustrates an example. The reference genome has two nearly identical
copies of a CNV region, represented as A and B. They only differ by one nu-
cleotide as indicated in the figure, where the nucleotide is ‘C’ in region A and ‘1"
in region B. In the donor genome, region B is copied twice as B1 and B2. Reads
{rl,r2,...,r6} are obtained from the donor genome as shown in the lower part
of Figure 3.1 and then mapped to the reference genome as shown in the upper
part of Figure 3.1. As shown in the figure, reads {r1,r3,75} can be mapped to
both region A and B in the reference. However, read {r2} can only be mapped to
region A and reads {r4,r6} can only be mapped to region B. If we assign a read to
one of multiple mapping positions randomly following the traditional strategy, we
would determine the copy number of both region A and B to be 1.5. However, in
CNVeM, we use the EM algorithm to find the optimal solution. In each iteration,
we assign a read to different mapping positions according to the distribution of
copy numbers of those positions, and update the copy number of each position.
Upon convergence, the EM algorithm assigns reads {r1,73,r5} to region A with

probability 1/3 and to region B with probability 2/3. We correctly predict the
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Figure 3.1: Similar copies of a CNV region exist in the reference genome.
‘C’ and ‘T’ are the only different nucleotide between region A and B. Reads
{r1,r2,...,r6} are obtained from the donor genome as shown in the lower part
of the figure. Furthermore, these reads can be mapped to the reference genome

as shown in the upper part of the figure.

copy number of region A to be 1 and copy number of region B to be 2.

3.2.2 The Generative Model

We use short read information from HTS technologies to detect copy number
variants. Let G = (g1, 92,...,9Kx) be K continuous nucleotides in the reference
genome, where g¢; is the i nucleotide. We assign the copy number of each nu-
cleotide in the reference genome to be 1. The donor genome is also composed of
these nucleotides. However, large regions of the genome can be either deleted or
duplicated and thus the copy number can be changed. For each nucleotide g;, we
denote the copy number as C; in the donor genome. If C; < 1, we call it a copy
loss. If C; > 1, we call it a copy gain. C = (C4,Cy,...,Ck) can be interpreted
as the copy number vector of the donor genome. For most nucleotides, the copy
numbers are the same in the donor genome and in the reference genome. So one
can assume that the length of donor genome is the same as the length of the
reference genome, i.e. Zfil C; = K. We define vector (%, %, e CTK) to be the

normalized copy number vector of the donor genome.
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Using HTS technology, millions of short reads are sampled from the donor
genome. We assume that a read r; of length [ is generated by randomly picking a
position i from G according to distribution C/K, and then copying [ consecutive
positions starting from position i. The copying process is error-prone, with known
probability € for a sequencing error rate at any position of the read. This process
is repeated until we have a set of N reads R = {ry,rs,...,rn}. The objective is
to infer C = (C4,Cy, ..., Ck) from R. Since the reads are mapped to the reference

genome, mapping information is utilized to infer CNVs.

In our model, each read r; is sequenced starting from one position in the donor
genome. As we assume that the donor genome is obtained from the reference
genome by alternating the copy number of some regions, each position in the donor
genome “originates” from a nucleotide in the reference genome. Consequently,
each read originates from a position in the reference genome. If a region in the
reference genome is duplicated in the donor genome, any read generated from the
duplicated segments of the donor genome originates from a unique position in the
reference genome. Z = (Zy, Z, ..., Zy) is the origin for each read in the reference
genome, where Z; € {1,2,..., K'}. We then define the following likelihood model
of all reads given copy number C and reference genome G:

N K

P(RIC,G) = H P(rilc,g) =[] >  P(r;. 2, =ilC,9). (3.1)

j=1 i=1
Here the first equality follows from the fact that the probability that read set R
is composed of independent probabilities of all the reads, and the second equality
follows from the fact that the read probability is equal to the marginalization of
read mapping uncertainty, i.e., P(r) = >, P(r, Z = 1).

The interpretation of the above probability definition P(r;,Z; = i|C,G) is
straightforward: the probability of j-th read originating from i-th position of the

reference genome, given the copy numbers and reference genome. We can further
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expand this probability as follows:
P(rj,Z; =1i|C,G) = P(Z; =i|C)P(r;|Z; = i,G). (3.2)

The equality follows from the fact that the read origin Z is independent of reference
genome G and the sequence of read r is independent of copy number C. We define
the first term P(Z; = i|C) = C;/ K to be the probability of read r; originating from
position 4. For each position 7 and read r;, we have a probability P(r;|Z; = 1,G),
which stands for the probability of observing read sequence r; given that the origin
of read r; is position i. We can write P(r;|Z; =1,G) as

l
P(rj|Z; =1,G) = H’V(gi-i-a:—larf) (3.3)

=1
and
. ¢/3 if 77 # Gita—
V(Gita—1, Tj) =
1 — € otherwise

where r§ stands for the z-th nucleotide of read r;, and the [ consecutive nucleotides
starting from position ¢ in the reference genome are g;, g;11, - - ., gir1—1. In practice,
for each read r;, the probability P(r;|Z; = i,G) will be close to zero for all but a

few positions, which are reported by the mapping methods.

We also take the prior probability of the donor genome into consideration. As
we assume the donor genome sequence can be obtained by either deleting or dupli-
cating large regions of nucleotides from the reference genome, adjacent positions
will have similar copy numbers in the donor genome. Then, in our probabilistic
model, it is natural to assume that the copy number of the current nucleotide is
only dependent on the previous nucleotide. We have P(C) = P(Cy,Cy,...,Ck) =
P(C) [Tz, P(GHCia).

Using Bayes rule, we can get the posterior probability of C given the read set
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R and reference genome G:

P(CIR,G) «x P(R|C,G)P(C)

x (HZ%P@\@ :z)) X (P(Ol)HP(OACi_l)) - (3.4)

3.2.3 Optimization

Maximizing the posterior probability of copy number C in (3.4) is equal to maxi-
mizing the following log probability with respect to C:
N K K
3 (logz P2, = z‘)) + log (P(ca) HP(CircH)) . (39
j=1 i=1 i=2
In this section, we illustrate a lower-level description of our method. In order to
make the above objective function simpler we eliminate the constraint Zfil C; =
K by introducing a penalty function g(C) = K — Y% | C;, which prevents the C’s
from growing unbounded (the above objective function will have a higher value if
the Cls grow larger). Incorporating the penalty function, our objective function
now becomes

Z <logz P(r;]Z; —z)) + log (P(C’l)lli (Ci|Ci 1) < Z(J)

j=1

(3.6)

where ¢ is a penalty function coefficient (We set § = % in our experiments, from
which we achieve best results). We optimize the objective function (3.6) through
an expectation-maximization (EM) algorithm. The algorithm iteratively applies

the following two steps until convergence.

Expectation-step: Estimate the posterior probability of each read origin

under the current estimate of C®
P(Zj =ilr;) = WP(TJ']Z]» =i)P(Z; =ilc",G)
j
P(ry]Z; = i)c)”
S P(rilZ; = k)ey!
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We can then calculate the expected value of the log objective function, with respect

to the posterior probability of Z using the current estimate of C*):

Q(cley) =

7j=1 =1

j=1 i=1

+1log P(C) +

Maximization-step:

ZZP Z; =i|r;)log

{ P(r;|Z; = )}JrlogP(C)Jré(K—

O' P(Zj:i"/‘j) N
%) 202 log PlrglZ; = i)

5<K_

1 =1

).

=1

We find the vector CtY) that maximizes the above function:

CHY = arg max Q(C|cM).

(3.9)

In each iteration of the EM algorithm, both C¥) and P(r;|Z; = i) are fixed values,

so P(Z; = i|r;) is a fixed value within the each iteration. Furthermore,

N K
Z Z 10g P(Tj|Zj = Z')P(ijﬂrj)

=1 i=1

is also a fixed value within one single iteration.

function reduces to finding

C(t+1)

j=1 i=1

= argmax log

= argmax log

= argmax log

= argmax (Z Z log
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where
N

d; =Y P(Z; =ilry).

Jj=1

We solve the M-step using dynamic programming. Denote the objective func-

P(C) x lj ((%)d X ewz‘)] : (3.11)

Then we define f(k,z) to be the maximum function value for the first k& positions

tion in the M-step to be

f = log

when the copy number of kth position is Cy, = x. Now we design the dynamic

programming solution as indicated in Equation (3.12).

;

log[P(Cy, = x) x ($k)d x e=9Ck] if k=1
flk,x) = maxc, , {f(k—1,Ch) + log[P(Ci|Crr)]} (3.12)
otherwise
+log[(F5 )% x e0%k]

\

We prove that the above dynamic programming solution returns the global

optimal solution for the objective function in (3.11) as follows.

Lemma 3.2.1. The objective function in (3.11) is solved optimally using the

dynamic programming mentioned in (3.12) .

P’I"OOf We recall f(l, l‘) = IMaxXc,,Cy,-C;—1 log[P(C’l, CQ, cee Ci—l; Cl = .I‘) Xné‘:l(%)di X
%] where d; = S, P(Z, = j|r;). Moreover, f(i,z) is the maximum value of
the copy number for the first i — 1 positions and the copy number of position 7 is

x (C; = x). Using the above definition we drive f(i + 1,y):
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The maximum value of the objective function in the M-step is then max, f(K,x).
Using a backtracking process, we find the vector C' = (C, Cy, ..., Ck) that max-
imizes function f in the M-step. By iteratively running the E-step and M-step,

we achieve local optimal solution.

3.2.4 Implementation

This optimization process requires an initial input of copy numbers. Different

initial inputs will affect the convergence time. To achieve better performance, it

is important to start with a “good” initial guess. In order to obtain a good initial

input, we split the genome into non-overlapping bins of 300 bp. All nucleotides

within one bin share the same copy number. Using a similar model as in (3.1), we

get a initial guess of copy numbers by optimizing the objective function (3.13).
N [K/300]

al Ci x 300 300
P(RIC.G) = [[Prilc.o)=]] . —“—P(r;lZ; € ith bin)
j=1 j=1 i=1

(3.13)

where P(r;|Z; € i-th bin) = 300 2300 Hx 1 V(Gix3004s+2—1,7F). Similarly, we can
optimize function (3.13) by the EM algorithm. As proved in [HH06], the likelihood
function (3.13) is concave. The EM algorithm will converge to global optimal so-

lution and it will be a good initial guess for the objective function in formula (3.6).

After obtaining a solution using a standard EM algorithm, we conduct our
extended EM algorithm introduced in section 3.2.3. We summarize our method

in Algorithm 2.

3.2.5 GC-bias Correction

One of the short comings of the HTS technologies is the existence of different
biases in the sequencing process. Some biases are due to the environment while

others are due to chemical reactions (DNA amplifications, GC content). Studies
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Algorithm 2: The complete algorithm of CNVeM

Input: Read mapping information, allowing reads map to multiple locations.
Output: Copy number variations compared to reference genome.
Initialization: Choose an initial configuration of copy numbers C®.
STAGE ONE:

Optimize the function in (3.13) using a standard EM algorithm based

on bins. We get an initial solution of copy numbers for each bin.

STAGE TWO:

2.1 Use the output from STAGE ONE as an initial guess.

2.2 For each read r; with j € {1,2,..., N}, consider all mapping
positions, calculate the posterior probability of each position according to the
joint probability in formula (3.2). Then map the read to multiple locations
fractionally according to the posterior probability.

2.3 Calculate the total number of reads mapped to each position.

2.4 Update the copy numbers of all nucleotides using the dynamic
programing in formula (3.12).

2.5 Repeat Steps 2.3-2.4 until it converges.
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show that both Sanger and HTS sequencing have bias toward high GC regions.
GC-bias can influence the number of reads generated from a position and thus
the reads are no longer uniformly generated. There have been a number of papers
[AKMO09, AUS11, SKA10, YXMO09] which deal with GC-bias in CNV calling. In
this work, we adapted the idea mentioned in [AUS11, YXMO09] to correct for GC-

bias. In equation (3.10), d; is the number of reads mapped to position i. We

Docglobal

D06, where

correct this bias by updating the definition of d; to be df = d; x

ds is the corrected number of reads mapped to position 4, d; is the original number
of reads mapped to position i, DOC jiopa is the average depth of coverage (DOC)
over all positions, and DOC, is the average DOC over all positions where the

reads have the same GC content as in the reads mapped to position .

3.3 Results

3.3.1 Simulation Results

In order to assess our method, we carried out experiments on simulated datasets.
We developed a simulation framework, in which a donor genome is obtained by

altering the copy number of some regions in the reference genome.

Experiment on a simulated mouse chromosome

We first tested CNVeM on a simulated mouse genome. We obtained the masked
reference chromosome 17 of Mus Musculus. After pruning all the ‘N’s, the length
of the chromosome 17 reduced to 58Mb. This can be used as the “template
sequence”. We then duplicate segments of the sequence to generate a refer-
ence genome. The lengths of the duplicated segments are chosen from the range
[1000, 10000]. We allow nucleotides to mutate with probability 1% in the dupli-

cation process. The copy numbers of these segments are then altered to generate
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Table 3.1: The results on the simulated mouse chromosome 17 under different
sequencing depth and mutation rates between duplicated segments. No. of predi-
cated CNVs are the number of regions CNVeM reports as CNVs. False discovery
rate is the ratio between number of false positives and number of predicted CNVs,
while false negative rate is the ratio between number of false negatives and num-
ber of true CNVs. It is obvious that CNVeM reports false positive regions due to

that fact that it calls more CNVs than implanted in the donor genome.

mutation rate Depth of No. of No. of False False
between duplicated | Coverage Predicted  Correct  Discovery Negative
segments CNVs CNVs Rate Rate
30X 102 100 2.0% 0
1% 15X 102 100 2.0% 0
5X 105 100 4.8% 0
30X 102 100 2.0% 0
0.5% 15X 105 100 4.8% 0
5X 109 100 8.3% 0
30X 101 97 4.0% 3.0%
0.1% 15X 107 98 8.4% 2.0%
5X 116 96 17.2% 4.0%

the donor genome. The copy numbers are chosen from the set {0,1,2,3,4,5}. In
each experiment, we simulated 100 copy number variations between the reference
genome and donor genome. To generate a read, we randomly picked a position
from the donor genome and copied 36 consecutive bases starting from this po-
sition. The copying process is repeated until we have the desired coverage. All
reads are then mapped to the reference genome using mrsFast [HHA10], allowing
reads to map with two mismatches. In addition to detecting the existence of copy

number variants, CNVeM especially aims to distinguish which copy is duplicated
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or deleted in the donor genome, while others have the same number of copy oc-
currences compared to the reference genome. Simulations are performed using
various depth of coverage settings. A CNV is considered to be detected correctly
when it overlaps with the true CNV region, meanwhile the predicted copy num-
bers should be the same as the true copy numbers. The results are shown in the

first row of Table 3.1.

We also compared our reported CNVs to true CNVs by base pairs. The overlap
is calculated by intersecting the coordinates of predicted CNVs with those of true
CNVs. The results in the first row of Table 3.2 indicate high accuracy of CNVeM

in predicting the break points.

Furthermore, we simulated the duplicated segments under different mutation
rates to assess the power of our method in locating the copy variation origin. All
results are summarized in Table 3.1 and Table 3.2. We see that both the mutation
rate between duplicated segments and sequencing depth can affect the accuracy
of our program. The smaller the mutation rate, the more similar the duplicated
sequence, and the more difficult to distinguish which segment has copy number
variation in the donor sequence. We have higher false discovery rate when the
read depth is lower and the difference between duplicated copies is smaller, but

we manage to recall almost all copy number variations.

The key observation in comparing the two tables (Table 3.1 and Table 3.2)
is that the false negative rate in predicting the correct quantitive copy number
is always lower than the false negative rate in calling the breakpoints of CNVs,
moreover the false discovery rate of quantitative value for CNV is always higher
than the false discovery rate in breakpoint calling. This illustrates that CNVeM
is robust in detecting the existence of CNVs and determining the break points
of CNVs. To achieve high sensitivity in CNV calling, CNVeM inevitably reports
false positive regions. However, most of these false positive regions are short and

thus we have low false discovery rate in break points calling.
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Table 3.2: Measuring the accuracy of CNV break points by base pairs under
different sequencing depth and mutation rates between duplicated segments. False
discovery rate is the ratio between length of false positive regions and total length
of predicted CNVs, while false negative rate is the ratio between length of false

negative regions and total length of true CNVs.

mutation rate Depth of Length of Length of False False
between duplicated | Coverage Predicted over- Discovery  Negative

segments CNVs(bp)  lap(bp) Rate Rate

30X 506755 502183 0.9% 0.3%

1% (504000bp) 15X 506162 501291 1.0% 0.5%

X 507703 495074 1.8% 2.5%

30X 492271 488114 0.9% 1.0%

0.5% (493000bp) 15X 500460 488387 2.4% 0.9%

5X 501139 483830 3.5% 1.9%

30X 469821 452120 3.8% 9.1%

0.1% (492000bp) 15X 465518 433495 6.9% 11.9%

5X 462193 417340 9.7% 15.2%
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Comparing CNVeM with CNVnator on GC-biased data

In this section we compare CNVeM with the CNVnator [AUS11], which is the
state of art CNV detector. Using a similar framework, we generated a reference
genome and donor genome from chromosome 17 of Mus Musculus. We set the
mutation rate between duplicated segments to be 0.1%. Reads are then simulated
from the donor genome, allowing GC-bias [AUS11, YXMO09]. In order to make
the comparison fair for CNVnator, we used Bowtie [LTP09] to do the mapping
with option ‘-best -M 1’. With this option, Bowtie returns the best mapping for
each read and in the case of ties it will randomly pick one mapping location for
a read. This step is due to the fact CNVnator assumes there exists one mapping
location for each read. However, for CNVeM, we use mrsFAST [HHA10] to return
all possible mapping positions for each read. Figure 3.2 illustrates the intersection
of CNVs found by CNVeM and CNVnator on the simulated dataset, where 100
CNVs are implanted to the donor genome. CNVeM finds 111 CNVs which includes
98 of the true CNVs. This indicates that CNVeM has 13 false positives and 2 false
negatives. However, CNVnator finds 250 CNV regions among which 91 regions
are true CNVs. CNVnator fails to find 9 regions which are true CNVs. Moreover,
CNVnator reports 159 false positives. This results from the fact that CNVnator
randomly places a read to one of its multiple mapping positions, and thus affects
the read depth (RD) information, from which CNVnator determines the copy
variation status. All the results indicate that CNVeM has lower false discovery
rate and false negative rate compared to CNVnator. Another disadvantage of
CNVnator is that it can only determine the CNV to be a copy gain or copy loss,

instead of recalling the exact quantitive copy number as in CNVeM.
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True CNVs CNVeM calls
True CNVs CNVnator calls

(a) CNVnator results (b) Our CNV results

Figure 3.2: Intersection of two CNV detection results with true CNVs. (a) We
illustrate the Venn diagram of the CNVnator calling with the true CNV regions.
(b) We illustrate the intersection between the CNVeM calls and the true CNV

regions. This figure indicates that we have less false positives and false negatives

than CNVnator.

Comparison between different strategies dealing with read mapping

uncertainty

When handling reads that can be mapped to multiple positions, existing meth-
ods either discard those reads, or randomly place the read to one of the multiple
mapping positions. CNVeM considers all possible mapping positions, and a read
can be placed to one of the positions with a probability. We compared the perfor-
mance of these different strategies. Furthermore, we consider the popular strategy
which divides the genome into bins. All nucleotides within one bin have the same
copy number. We develop a method ‘wind’ using the same EM framework as in

section 3.2.3 for the bin strategy.

We run these methods on the same simulated datasets. Following the same
process mentioned above, we generated the reference genome and donor genome
from chromosome 17 of Mus Musculus, with mutation rate between duplicated
segments set to be 0.1%, 0.5%, and 1%, respectively. Reads are simulated at 30X
coverage. The results plotted in Figure 3.3 illustrate that CNVeM has highest

recall and precision at different mutation rates.
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Comparing Recall among different methods
100%
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60% .
& wind
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(a) Recall
Comparing Precision among different methods
100%
5% W CNVeM
60% - .
¥ wind
40% - .
“ uniq
20% -
& rand
0%
0.01% 0.50% 1.00%

(b) Precision

Figure 3.3: Comparison between several strategies dealing with read mapping un-
certainty. The x-axis represents the mutation rate between duplicated segments.
The shorthands CNVeM, wind, uniq and rand represent the results from CNVeM,
the results from wind which divides the genome into bins, the results from only
considering reads mapped to unique positions, and results from placing a read to

one of multiple mapping positions randomly, respectively.

Time and memory usage

When dealing with HTS technology which generates tens of gigabytes of data per
day, not only the accuracy of the method becomes important, but memory and
time usage become important factors. The time and memory usage is estimated

for the CNV calling process, and we assume the mapping is done in a separate step.
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Our program takes 30 minutes to detect all the CNVs in the simulated dataset on
masked chromosome 17 of the mouse genome, where we had 30X coverage (having
around 50 million reads). All the experiments were run on a 64-bit AMD Opteron
processor, furthermore, our program used 2Gb of memory at the peak of usage.
In order to run CNVeM on the whole genome sequencing data, the memory usage

increases linearly with the size of the genome.

3.3.2 Results on Real Data

We used the data published by Sanger Institute [SSS09], where chromosome 17
of mouse strain A/J is deeply sequenced using Illumina technology to test our
method on real data. The data contains 112 million (56 million pair-end) reads
and the length of each read is 36bp. This results in a 42X coverage. We aligned
the reads to the masked chromosome 17 using mrsFast [HHA10], allowing up to
2 mismatches. Out of these 112 million reads, 39 million reads mapped uniquely
to the genome. However, 4 million reads mapped to more than one position
in the genome. We supply the mapping information of both uniquely and non-
uniquely mapped reads to CNVeM, and managed to detect 44 copy gain regions
and 355 copy loss regions. Among those 44 copy gain regions, 28 regions have
been reported by Sudbery et al. [SSS09], and 15 regions out of these 355 copy
loss regions have been reported by Sudbery et al. [SSS09] as copy loss regions.
Sudbery et al. also reported 416 deletion regions. We checked the coordinates of
those deletion regions and discovered that 415 of them have overlap with the rest
of copy loss regions reported by CNVeM. Furthermore, we apply CNVnator on
this real data where it manages to detect 42 copy gain regions and 264 copy loss
regions. Comparing the CNVeM calls with those of CNVnator, we see 26 copy

gain regions overlap, and 86 copy loss regions are found by both methods.
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3.4 Discussion

CNV regions have been shown to be correlated with many diseases ranging from
cancers to learning disabilities [CHRO05, SLM07]. Two main strategies exist to
improve CNV detection, either to improve the technology from which we gather
data from individuals, or to design better algorithms. The shift from ArrayCGH
to HTS is a good indicator of improvements in the data gathering process, as
current studies suggest that the use of HT'S results in higher power in detecting

CNYV breakpoints and quantifying the true copy number for each region.

It has been shown previously that we can use both the depth of coverage (DOC)
and paired-end information to detect CNVs accurately [MFD10]. We have shown
that correct usage of DOC improves the accuracy of CNV detection greatly. In
this work we have presented a probabilistic model for detecting CNVs, based on
an expectation-maximization (EM) method. Our method incorporates all avail-
able mapping information in the CNV prediction. It not only has higher accuracy
in detecting the CNVs but also can detect which of the paralog regions in the
genome is copied or deleted. All previous methods fail to distinguish paralog re-
gions as they either discard all multiple mapping reads (reads mapped to multiple

positions) or randomly assign a read to one of the mapping positions.

Another main contribution of this work is that we can predict the CNV break-
points in base-pair resolution. Unlike previous methods which define CNV for
each bin (segment of fixed or variable length), our objective function is defined
for each base-pair. In other words we are predicting the CNV for each base-pair.

This helps us to detect the breakpoint of each CNV with high accuracy.

Although we mention that using DOC can improve the accuracy of CNV detec-
tion, we do not deny the fact that paired-end mapping has valuable information.
Our future work is to incorporate paired-end reads information into our proba-

bilistic model.
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CHAPTER 4

Copy Number Variation Detection from Tumor

Samples Contaminated by Stromal Cells

4.1 Background

Many recent studies have shown a correlation between CNVs and cancers [CHRO5,
IFRO4, TSBO05]. Historically, two key techniques have been used to detect CNVs in
tumor genomes: array comparative genome hybridization (ArrayCGH) and loss of
heterozygosity (LOH) [CLCO08, Car07, RIF06, Zhal0]. These techniques, although
powerful to detect the presence of CNVs, are unable to identify the boundaries of

CNVs with high resolution.

The development of high-throughput sequencing (HTS) technologies provides
great opportunities to detect CNV regions with high resolution in tumor genomes.
With HT'S technologies, whole genome shotgun sequencing becomes possible. Mil-
lions of reads are obtained from fragments of the DNA molecules. The reads are

mapped to the reference genome and the mapping information is utilized to call

CNVs.

Recent studies have proposed methods to detect CNVs using short reads gen-
erated from HTS technologies. One approach is to split the genome into small
windows and use the number of reads mapped to each specific window (read depth)
as a proxy for the copy number of that window [AKM09, SKA10, SMA10, CGJ09,
YXMO09]. However, the resolution of this approach is limited by the size of the

windows, which is typically at least one kilobase. Another approach is to use
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“paired-end” reads, where “paired-end” refers to the two ends of the same segment
of a DNA molecule, to detect CNVs [MFD10, HFE10, HAE09]. One limitation
of this strategy is that it can not detect CNVs in repeat-rich regions, where a
short segment of the DNA sequence appears repetitively. This may reduce the
applicability of this method given the existence of many repeat-rich regions in the

human genomes.

In Chapter 3, we proposed a statistical method, CNVeM, to detect CNVs
in the donor genome. However, CNVeM cannot be applied to detect CNVs in
tumor genome directly. One challenge in detecting tumor CNVs comes from
the specimen collecting process, prior to applying either ArrayCGH, LOH or HTS
technologies. In a typical experiment, tumor tissue samples were cut from random
sites of the tumor at biopsy. However, tumor cells are surrounded by stromal cells,
which are the normal connective tissue cells in the organs. Tumor samples are
easily contaminated by the stromal cells in the specimen collection process. This
heterogeneity in tumor samples contributes to the complexity of CNV detection.
Liu et al. proposed an HMM model to infer CNVs using SNP arrays from tumor
samples mixed with stromal cells [LLS10]. However, their method suffers from

low resolution from the inherent limitation of array techniques.

In this study, we extended CNVeM and proposed a new probabilistic model,
CNVmix, that estimates the copy numbers for each nucleotide based on the read
mapping information from tumor samples. CNVmix is able to incorporate the
contaminating genomes. We proposed a method to estimate the proportion of
contaminating genomes in the tumor samples. Most mammals, including human,
are diploid. One diploid cell contains two sets of genomes, each inherited from one
parent. CNVs in diploid tumor cells appear in many forms, such as hemizygous
deletion where a region of one genome is deleted, homozygous deletion where a
region of both genomes is deleted and amplification where a region of one or both

genomes is duplicated. We utilize the hemizygous deletion regions to estimate the
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proportion of contaminating cells in the tumor samples. We identify hemizygous
deletion regions by detecting regions in which the read depth is lower than ex-
pected and the alleles (types of nucleotides at a SNP position) of heterozygous
SNPs are imbalanced. In hemizygous regions, tumor genomes have copy number
1, while stromal genomes have normal copy number 2. Utilizing the ratio be-
tween two alleles at heterozygous SNPs within hemizygous deletion regions, we
estimate the proportion of contaminating genomes as in section 4.2.2. With the
estimated contamination rate, we develop the generative model of observing the
read set from the contaminated tumor samples. The CNVs in the tumor genomes

are estimated by optimizing the parameters in the generative model.

Another important challenge for detecting CNVs in tumor genome lies in the
uncertainty of read mapping. Similar with CNVeM, the new model CNVmix also
utilizes the uncertainty of read mapping to detect tumor CNVs. We can detect
the CNV boundaries and copy numbers of CNVs precisely and are able to predict
small CNVs.

We apply our method to simulated datasets and achieve higher accuracy com-
pared to existing methods. To our knowledge, this is the first attempt to predict

tumor CNVs using HTS outputs from contaminated tumor samples.

4.2 Methods

4.2.1 The generative model

We use short read information from the HTS technologies to detect copy number
variants in diploid tumor genome. We use same notation as the generative model
of CNVeM in Chapter 3. One difference is that we aim to detect CNVs in tumor
genome, which is diploid, so we assign the copy number of each nucleotide in the

diploid reference genome to be 2. For most nucleotides, the copy numbers are the
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same in the tumor genome and in the reference genome. So one can assume that
the length of tumor genome is the same as the length of the reference genome,

Le. Zf; C; = 2K. We define vector (&&, &2

S B 2K) to be the normalized copy

number vector of the tumor genome.

Using HT'S technology, millions of short reads are generated from the tumor
samples. As the samples are contaminated by stromal cells, which have same
copy numbers with the reference genome, reads can originate from either the
tumor genome or the stromal genome. Denote the proportion of stromal cells in
tumor samples to be p (0 < p < 1). The probability of a read originating from

the stromal genome is p.

In our model, each read r; originates from one position in either the stromal
genome or the tumor genome. Let H = {Hy, Hs,..., Hy} be the source of each
read, where H; € {0,1} represents whether read r; originates from the stromal
genome (H; = 0) or the tumor genome (H; = 1). Z = {Z1,Zs,...,ZN} 18
the true origin of each read, where Z; € {1,2,..., K}, and we then define the
following likelihood model of all reads given copy number C, contamination rate

p and reference genome sequence G
N N 1 K
P(RIp.C.G) = [[ P(rjlo.C.9) =[] D D Plrj. Hj = h. Z; = ilp,C.G). (4.1)
Jj=1 j=1 h=0 i=1

The interpretation of the above probability definition P(r;,Z; = i,H; =
hlp,C,G) is straightforward: the probability of j-th read generated from i-th po-
sition in the stromal genome (tumor genome), given the contamination rate, copy
numbers and reference genome sequence. We can further expand this probability

as follows:
P(Tj7Zj - i’Hj = h|p,C,g) = P<ZJ - 7:7Hj - h|/07 C)P(r]’ZJ - 17g> (42)

The equality follows from the fact that the read position Z and source H are

independent of the reference genome sequence G and the sequence of read r is
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independent of copy number C and contamination proportion p. We define the
first term to be the probability for read r; originating from position ¢ of the stromal
genome (tumor genome) as follows:

1/K x p ith=0
P(Z; = i, H; = hlp,C) = (1.3

Ci/2K x (1 —p) ifh=1.

As in Equation (3.3), we denote the probability of observing the sequence
of read r; given that the true origin of read r; is position i to be P(r;|Z; =
i,G). The prior probability of the tumor genome is also defined as P(C) =
P(C,Cy,...,Cx) = P(C) TIE, P(C|Ciy).

Using Bayes rule, we can get the posterior probability of C given the read set

R, contamination rate p and the reference genome sequence G:
P(Clp,R,G) o P(R|p,C,G)P(C)

o (HZ[QWF(;K_ p)Ci]P(TﬂZj Zi)> X (P(C1)HP(CZ~ICE—1)>.

j=1 i=1 =2

(4.4)

4.2.2 Estimation of contamination rate p

Due to the existence of stromal cells in the tumor samples, the detection of CNVs
becomes more difficult. Accurate estimation of the proportion of stromal cells in
the mixed sample plays an important role in detecting CNVs in tumor genomes.
We proposed a method to estimate the contamination rate from the read mapping
information. We utilize the hemizygous deletion regions to estimate the proportion
of contaminating cells in the tumor samples. In hemizygous deletion regions,
tumor genomes have copy number 1, while stromal genomes have normal copy
number 2. Hemizygous deletion regions are predicted to be copy loss regions

using the method in section 4.2.3 no matter contaminating cells exist or not.

After identifying copy loss regions using the method in section 4.2.3, allele
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frequency information is used to extract hemizygous deletions from the copy loss
regions. Each heterozygous SNP has two alleles, denoted as ‘A’ and ‘B’. In hem-
izygous deletion regions, the alleles of heterozygous SNPs are imbalanced as one
of the alleles is deleted. This information can be used as a signal to indicate
whether a copy loss region is hemizygous deletion region or not. After identifying
hemizygous deletion regions, we denote the B allele frequency (BAF) of a het-
erozygous SNP in the hemizygous deletion region as b and apply the following
strategy similar to [LLS10] to estimate the contamination rate p.

BT — bnT
BT — bTLT — (BN — b’)’LN>

p— (4.5)

where Br,ny is the B allele copy number (0 or 1) and total copy number (1) of the
heterozygous SNP in hemizygous deletion region in the tumor genome; By = 1,
ny = 2 is the B allele copy number and total copy number of the heterozygous
SNP in stromal genome. The estimates from all heterozygous SNPs in hemizygous
deletion regions are averaged to approximate the true contamination rate. In the
uncommon case that no hemizygous deletion region is identified in the sample,
higher copy numbers can also be used with the same formula to estimate the

contamination rate p.

4.2.3 Optimization

Maximizing the posterior of copy number C in Equation (4.4) is equal to maxi-
mizing the following log probability with respect to C:

N

> <1og Z[Zp il (21}; 2)C iy, 7, = z’)) +log (P(cn HP(CAC,»_l)) - (4.6)

j=1 1=2

Similar as in Chapter 3, we incorporate a penalty function coefficient § in order
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to eliminate the constraint Zf; C; = 2K. Our objective function now becomes

Z (10g2[2p+ (21K_ p>0i]P(rj’Zj = 2)) + log (P(CI)HP(Ci|Ci1>>

Jj=1

+6 <2K > C) (4.7)

=1

We optimize the objective function (4.7) through an expectation-maximization

(EM) algorithm.

Expectation-step:

2 1 _ P(Z;=ilr;) )
Q(c|IcY) Zlog < p+ p)C ]) + Z ZlogP (r;|2; = 3)P =)

j=1 =1 7j=1 =1

+ logP(C)+0 (2K -y Ci) (4.8)

i=1

Maximization-step:

C(t+1) _ 1
arg max log Ve

(225520 )]

where d; = Zjvzl P(Z; = i|rj)-

P(Ch) ([Qp + - p)Oi])dl x e 9

We solve the M-step using dynamic programming. Denote the objective func-

) % H (( i ”)C’])di x 6—50@)] S @)

Then we define f(k,z) to be the maximum function value for first k positions

tion in the M-step to be

f = log|P

when the copy number of kth position is C}, = . Now we design the dynamic
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programming solution indicated as follows:
(

log[P(Cy, = ) x ([22HLpI0%k )i 5 ¢=0Ck] if k=1

f(k,x) = § maxe, _ {f(k —1,Ch_1) + log[P(Cr|Cr_1)]}

+ 10g[([%] )d’“ X 6750’“] otherwise

Similar to the proof in Chapter 3, it can be proved that the above dynamic
programming solution returns the global optimal solution for objective function in
Equation (4.9). The maximum value of the objective function in the M-step is then
max, f(K,x). Using a backtrack process, we find the vector C' = (Cy, Cs, ..., Ck)

that maximizes the function f in the M-step. By iteratively running the E-step

and M-step, we achieve local optimal solution.

4.3 Results

In order to assess our method, we carried out experiments on simulation datasets.
We developed a simulation framework, in which the tumor genome is obtained by

altering the copy number of some regions from the reference genome.

4.3.1 Experiment on a simulated human chromosome 17

We tested our method on a simulated human genome. We obtained the human ref-
erence chromosome 17 from Feb. 2009 assembly of human genome (hgl9, GRCh37
Genome Reference Consortium Human Reference 37). After pruning all the ‘N’s,
the length of the chromosome 17 reduced to 40Mb. We utilize the similar frame-
work as in section 3.3.1 to generate the reference genome and tumor genome. The
only difference is that the reads are generated from both reference genome and
tumor genome. This is to simulate the fact that tumor samples are contaminated
by the stromal cells. Simulations are performed on different contamination rate to

assess the power of CNVmix in detecting tumor CNVs from contaminated sam-
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ples. A CNV is considered to be detected correctly when it overlaps with the true
CNV region, meanwhile the predicted copy numbers should be the same with the

true copy numbers. The results are shown in Table 4.1. We also compared our

Table 4.1: The results on the simulated human chromosome 17 under different
proportion of contamination cells. No. of predicated CNVs are the number of re-
gions CNVmix reports as CNVs. False discovery rate is the ratio between number
of false positives and number of predicted CNVs, while false negative rate is the
ratio between number of false negatives and number of true CNVs. It is obvious
that CNVmix reports false positive regions due to that fact that it calls more

CNVs than implanted in the tumor genome.

True Estimated No. of No. of False False
Contamination Contamination  Predicted  Correct  Discovery Negative
Rate Rate CNVs CNVs Rate Rate
0% 0 100 100 0 0
20% 21.2% 101 100 1.0% 0
40% 38.8% 103 100 2.9% 0
50% 52.7% 116 100 13.8% 0
60% 58.5% 123 99 19.5% 1.0%
80% 84.2% 249 93 62.6% 7.0%

reported CNVs to true CNVs by base pairs. The overlap is calculated by inter-
secting the coordinates of predicted CNVs with those of true CNVs. The results
in Table 4.2 indicate high accuracy of CNVmix in predicting the break points.
From Table 4.1 and Table 4.2, we observe that both false discovery rate and
false negative rate increase as the contamination rate increases. Nonetheless, our
method has sufficient power to detect CNVs from mixed tumor samples, even
tumor samples that are contaminated by as much as 60% normal cells. When

the contamination rate is higher than 50%, there is a dramatic rise in terms of
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false discovery rate, while the increase in false negative rate is more smooth.
This phenomenon indicates that in order to achieve high sensitivity, our method
inevitably reports false positive regions. However, most of these false positive
regions are short, and thus we have low false discovery rate in break points calling.
The false negative rate in predicting the correct quantitive copy number is always
lower than the false negative rate in calling the breakpoints of CNVs. Moreover
the false discovery rate of quantitative value for CNVs is always higher than the
false discovery rate in breakpoint calling. This illustrates that CNVmix is robust
in detecting the existence of copy variation and determining the break points of

CNVs.

Table 4.2: Measuring the accuracy of CNV break points by base pairs under
different proportion of contaminating cells. The total length of true CNVs is
491000bp. False discovery rate is the ratio between length of false positive regions
and total length of predicted CNVs, while false negative rate is the ratio between

length of false negative regions and total length of true CNVs.

True Con- Estimated Length of Length of False False

tamination | Contamination Predicted over- Discovery  Negative
Rate Rate CNVs(bp)  lap(bp) Rate Rate
0% 0 484100 478084 2.6% 1.2%
20% 21.2% 491299 482355 1.8% 1.8%
40% 38.8% 493397 482293 2.3% 1.8%
50% 52.7% 493397 482293 6.6% 1.5%
60% 58.5% 525477 477592 9.1% 2.7%
80% 84.2% 872751 445754 48.3% 9.2%
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4.3.2 Comparison of our method with CNVnator

In this section we compare our method with the CNVnator [AUS11|, which is
the state-of-the-art CNV detector. Using a similar simulation framework, we
generated the genomes in stromal cells and tumor cells from chromosome 17 of
human. We set the contamination rate to be 20% and reads are then simulated
at 30X coverage. We use the same parameter configuration as in section 3.3.1
to compare CNVmix and CNVnator. Figure 4.3.2 illustrates the intersection
of CNVs found by CNVmix and CNVnator on the simulated dataset, where 100
CNVs are implanted in the tumor genome. CNVmix finds 101 CN'Vs which include
all of the true CNVs. This indicates that CNVmix has 1 false positive and no
false negatives. However, CNVnator finds 261 CNV regions among which 99
regions are true CNVs. CNVnator fails to identify one CNV region. Moreover,
CNVnator reports 162 false positives. This results from fact that CNVnator
mistakes contaminating cells for tumor cells. Meanwhile, CNVnator randomly
places a read to one of its multiple mapping positions, and thus affects the read
depth (RD) information, from which CNVnator determines the copy variation
status. All the results indicate that CNVmix has lower false discovery rate and

false negative rate than CNVnator.

4.4 Discussions

In this work we present a probabilistic model for detecting CNVs from HTS out-
puts, based on an Exception-Maximization (EM) method. Our method incorpo-
rates all read mapping information. It has higher accuracy in detecting the CNVs
compared to previous methods, as they either discard multiple mapping reads or
randomly place a multiple mapping read to one of the mapping positions. Con-
sidering the fact that tumor samples are easily contaminated by stromal cells,

we incorporate the contamination rate in our model and proposed a method to
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True CNVs CNVmix calls
True CNVs CNVnator calls

(a) CNVnator results (b) Our CNV results

Figure 4.1: Intersection of two CNV detection results with true CNVs. (a) We
illustrate the venn diagram of the CNVnator calling with the true CNV regions.
(b) We illustrate the intersection between the CNVmix calls and the true CNV
regions. This figure indicates that we have less false positives and false negatives

than CNVnator.

estimate the contamination rate. The simulation results indicate that our method

estimates the contamination rate accurately.

This model can identify hemizygous deletions, homozygous deletions and am-
plifications accurately according to the simulation results. However, it cannot
identify copy neutral LOH region, where one genome is deleted but the other
genome is duplicated. Our model depends on the read depth (RD) information
to detect CNVs while the copy number of copy neutral LOH is still 2 and RD
signal does not reflect the variation. A signal of BAF band centered at 0 or 1
indicates the presence copy-neural LOH. One future direction of this model is to

incorporate BAF information for detection of copy neural LOH region.
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CHAPTER 5

Gene-Gene Interactions Detection Using A

Two-stage Model

5.1 Background

Genome-wide association studies (GWAS) attempt to discover genetic variation
associated with disease traits. To perform GWAS, studies collect genetic varia-
tion of individuals and their disease status or disease related traits. GWAS studies
typically collect single nucleotide polymorphisms (SNPs) because technologies al-
low for very cost-efficient collection of SNPs. Since SNPs are so prevalent in the
genome, they are likely to be correlated with other genetic variations. Current
GWAS studies collect about a million SNPs in thousands of individuals. The
standard approach for identifying associations between SNPs and traits is that
for each SNP, we compare the average trait value of individuals who have one
allele of a SNP and that of individuals who have the other allele of the SNP. If
the difference between the two average trait values is above a certain threshold,
we declare that the SNP is significantly associated with the trait. We refer to
computing the difference in the average trait values for each SNP as the “single
marker test”, and it has successfully identified many individual SNPs associated

with several complex diseases [CSS93, BKK94, AHK00, SVL07, Con07].

Current studies on certain complex diseases have also suggested that some
SNPs influence diseases through interactions [WAP00, BSW05, YIS04]. In an

extreme scenario, two SNPs may not have any effect on a disease independently,
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but they may affect the disease when both are present. To detect an interaction
of SNPs, one needs to consider the association between a trait and a pair of SNPs.
One approach to find such associations is to divide individuals into two groups:
one group of individuals who have a certain combination of alleles for a pair of
SNPs and the other group of individuals who have different combinations of alleles
for the pair of SNPs. We then compute the difference in the average trait value
between the two groups to determine whether the pair of SNPs is significantly
associated with the trait. Finding an association between a trait and a pair
of SNPs is called the “pairwise association test”, and recently, several different

methods have been proposed [EMMO06, ZHZ10, YHW09, MCG06, LHC04].

One major challenge in discovering pairs of SNPs associated with a trait is that
it requires enormous computation. One needs to compute associations between
a trait and 4x (]\24 ) pairs of SNPs where M is the number of SNPs available for
testing. When M is close to one million as in current GWAS, an exhaustive
pairwise search that considers all pairs of SNPs considers 2000 billion pairs of
SNPs, which is a computationally challenging task. As the number of SNPs in
GWAS keeps increasing with the improvement of technologies to collect SNPs,

the exhaustive search becomes even more computationally infeasible.

In this work, we present a Threshold-based Efficient Pairwise Association Ap-
proach (TEPAA) for detecting associations between traits and pairs of SNPs using
a two-stage model. In the first stage, our method performs the single marker test
on all individual SNPs and selects a subset of SNPs that exceed a certain signif-
icance threshold (called “the first stage threshold”) for further consideration. In
the second stage, individual SNPs that are selected in the first stage are paired
with each other, and we perform the pairwise association test on those pairs. In
this method, there exists a trade-off between the probability of the method de-
tecting a pair of SNPs associated with a trait (called “statistical power of the

method”) and the computational burden (or cost). Intuitively, statistical power
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increases as we include more SNPs in the second stage, which means higher cost.
The first stage threshold determines this trade-off, and we derive the analytical
power of our method which allows us to determine the threshold and to control
this trade-off. The key insight of our approach is that we derive the joint dis-
tribution between the association statistics of single SNPs and the association
statistics of pairs of SNPs. This joint distribution allows us to provide guaran-
tees that the statistical power of our approach will closely approximate the brute
force approach. We can accurately compute the analytical power of our two stage
model at any first stage threshold and compare it to the power of the brute force
approach. Hence, we are able to choose as few SNPs as possible in the first stage

while achieving almost the same power as the brute force approach.

While recently developed methods such as TEAM [ZHZ10, ZPX09] signifi-
cantly reduce the computational burden of searching for pairs of associated SNPs,
to our knowledge very few methods are feasible to apply to full size human GWAS
datasets. The SIXPAC method developed by Pe’er and Prabhu utilizes a novel
randomization technique that requires 10x to 100x fewer tests than a brute-force
approach to find long-range interactions using standard two-locus test [PP12].
However, their method only handles case-control data and can not apply to quan-
titative traits. Wan et al. developed an approach BOOST, which designed a
Boolean representation of data and used a screening stage to filter out most non-
significant SNP interactions [XCQ10]. However, their method can not apply to

quantitative traits either.

The only existing method that is feasible on a full size human GWAS dataset
to detect SNP pairs associated with quantitative traits is FastEpistasis [SXB10].
FastEpistasis is a brute-force approach which conducts pairwise associations for
all pairs of SNPs, or SNP pairs specified by users. The advantage of FastEpis-
tasis is that their method is parallelled and utilizes high-performance computer

architectures with multiple cores. Our method utilizes a two-stage strategy and
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greatly reduced the number of pairwise association tests with little power loss.

We note that in this work, we are only considering pairs of SNPs which are
far apart from each other. There is another class of methods which consider
multiple SNPs close to each other [WKE10, WLC11, LLK13]. These problems are
completely different and characterized by very different challenges. For example,
the computational burden which is the focus of our method is different because
the number of pairs of SNPs near each other is significantly smaller than the total
number of pairs of SNPs. In addition, neighboring SNPs are typically correlated
with each other, referred to as in linkage disequilibrium (LD). Pairs of SNPs far
from each other are typically independent or unlinked which is an observation

that we leverage in our approach.

5.2 Results

5.2.1 Overview of the Two-stage Model TEPAA

We present a two-stage model, TEPAA, for detecting associations between traits
and pairs of SNPs. In this first stage, the association statistics for all SNPs
are computed. Any SNPs which have a statistic higher than a pre-determined
threshold then advance to the second stage in which all pairs of these SNPs are
evaluated. The first stage threshold is important in determining power and cost
of our method because it controls the number of SNPs to be selected in the first
stage. For a truly associated pair of SNPs to be identified using our approach,
both SNPs must advance to the second round and thus must have association
statistics higher than the first stage threshold. Clearly, the more stringent the
threshold, the smaller the number of SNPs in the second stage and the smaller
number of pairs of SNPs which must be evaluated speeds up this method. On
the other hand, more stringent thresholds increase the chance that at least one

of the pair of truly associated SNPs will not be more significant than the first
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stage threshold and the pair will not be identified by the method. Hence, there
is a trade-off between power and cost, which is determined by the first stage

threshold.

Our method chooses the first stage thresholds such that the two-stage model
loses only a small amount of power but increases computational efficiency dra-
matically compared to the exhaustive search. To find such thresholds, we first
derive the analytical power and cost of both the brute force approach and the
two-stage model. This analysis allows us to choose the threshold that yields
the desired power and cost, and hence it allows us to control the trade-off be-
tween the two. To derive the analytical power of our two stage model, we use
the framework of Multivariate Normal Distribution(MVN) to model the associa-
tion statistics [HKE09, KE13, KLE11]. We use a MVN to approximate the joint
distribution between the association statistic of single SNP and the association
statistic of pairs of SNPs. The non-centrality parameters (NCPs) of statistics are
considered to be the mean vector in the MVN and correlations among statistics
as a covariance matrix in the MVN. The NCPs and correlations can be calculated
from the data and thus we obtained all the parameters of the MVN. The details

of the analysis are discussed in Section 5.3.4.

From our analysis, we observe that the thresholds which control the power
loss of the two stage approach depend on the minor allele frequency (MAF) of the
SNPs. In particular, more common SNPs can be filtered out with less significant
thresholds than rare SNPs. In order to efficiently implement TEPAA using MAF
dependent thresholds for each pair, we group the SNPs into bins based on their
MAFs to apply the correct thresholds to each possible pair. After disregarding
rare variants with MAF < 0.05, we categorize all common SNPs into 9 bins
according to their MAF, with step size 0.05. Each pair of SNPs would have two
thresholds, one for each SNP in the first stage. In total, we have (g) +9 categories

of SNP pairs. We pre-compute the first stage thresholds for each combination of

o6



two MAFs in order to achieve 1% power loss, while achieving high cost savings.
We sort the SNPs within each bin by their association statistics and use binary
search to rapidly obtain the set of SNPs above a single threshold to efficiently

implement the first stage of our method.

5.2.2 Application of TEPAA to the NFBC Data

We applied TEPAA to the Northern Finland Birth Cohort (NFBC) data to
demonstrate the utility of our two stage model and the cost saving on a real data.
The Northern Finland Birth Cohort Data contains 5, 326 individuals, and 331,476
SNPs are genotyped. The histogram of all SNPs’ MAFs is shown in Fig. 5.1(a).
As described in detail in Section 5.3.6, we categorize all common SNPs into 9
bins according to their MAFs. The number of SNP pairs in each category is
shown in Fig. 5.1(b). The first stage thresholds of TEPAA are pre-computed for
each category in order to have the power loss at 1% using the methods described
in Section 5.3.6. The cost saving for each category is summarized in Table 5.1.
Based on Fig. 5.1(b) and Table 5.1, the estimated overall cost saving is 63.2 times,
which is the ratio between total number of pairwise association tests of brute force

approach and that of TEPAA.

Histogram of MAFs MAF of SNP B
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(a) The distribution of all SNPs’ (b) The number of SNP pairs in each category. Numbers

MAFs are shown in factor of 100 millions.

Figure 5.1: The Distribution of all SNPs” MAFs and number of SNP pairs in each

category.
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For all SNPs in each bin, we calculate the association statistics and sort the
SNPs in descending order of their statistics. We perform our analysis using the
dominant model which is standard for analysis of epistatic interactions. We note
that the basic approach of TEPAA can be extended to other models such as

recessive or additive as well.

We compare the performance of the brute force approach and TEPAA to detect
the SNP pairs associated with the phenotype “CRP” (C-reactive protein) on a
machine with 2.3 GHz AMD Opteron Processor. Since it is impractical to run the
brute force on the whole chromosome, the CPU time of the brute force approach is
estimated from one single chromosome by scaling, which is estimated to be 1,542
hours for phenotype “CRP”. The CPU time of TEPAA is 24.5 hours for the same
phenotype. We achieved 62.9 times of cost saving, which verifies our analysis
of the cost savings of TEPAA when achieving 1% of power loss. However, both
brute-force approach and two-stage model report no significant SNP interactions
under the significance threshold 107'2. This is understandable since this data
set contains only 5,326 individuals. In the next section, we show that the brute
force approach and TEPAA have similar power when there exists significant SNP

interactions.

5.2.3 TEPAA Controls Power Loss in Simulated Data

To demonstrate that TEPAA has only 1% power loss using the pre-computed first
stage thresholds, we perform simulations where we implant a significant SNP-SNP

interaction to the NFBC data and then detect the SNP pair using TEPAA.

We created phenotype data using the phenotype “CRP” (C-reactive protein)
in the NFBC data as a starting point. To simulate the significant SNP pairs, we
randomly sample the MAF of each SNP from [0.05,0.5). The alleles of each indi-

viduals at these two simulated SNPs are then sampled according to the MAF. The

o8



phenotypes of the individuals with causal alleles at the SNP pairs are increased
by a selected effect size so that the pairs has 50% power in the brute-force ap-
proach. Then we apply both the brute-force approach and the two-stage approach
to the simulated dataset. The first stage significance thresholds in the two-stage

approach are selected in order to obtain 1% power loss.

We generated 10, 000 simulated SNP pairs and applied both approaches. The
power for each approach is calculated as the proportion of experiments that the
approach detected the implanted SNP pairs among all 10000 experiments. The
power of brute-force approach is 51% while the power of TEPPA is 50.8%. The
practical power loss is 0.4%. We note that the power loss is lower than we expected
because the thresholds are chosen for MAF frequency bins to be conservative and

valid for all members of that bin.

5.3 Methods

5.3.1 Association Test between One SNP and Traits

We first illustrate the method to detect association between traits and one SNP. A
traditional approach to identify the association is that for each SNP, we compare
the average trait value of individuals who carry the causal allele at the SNP
and that of the individuals who do not have the causal allele at the SNP of
interest. If the difference between those two values is above a certain threshold,
we declare that the investigated SNP has a significant association with the trait.
This approach is referred to as “single marker test” and has been successful in
many association studies. We analyze the power of the “single marker test” as

follows.

Assume we are investigating SNP A, with minor allele frequency (MAF) to be

pa and the causal allele is the minor allele (for the case where the causal allele is
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the major allele, the analysis is similar). Let N be the number of individuals and
y; be the trait value of individual . Then the number of individuals with the minor
allele at SNP A can be denoted as Ny = N - p4 and the number of individuals
without the minor allele at SNP A can be denoted as Nog = N-p_a = N-(1—pa)
We use z! to denote the allele of individual i at SNP A. y; is any real number
and 22 € {0,1}. We set 22' = 1 when the allele of individual i at SNP A is the

minor allele and z:! = 0 otherwise.

We assume that a trait value of individual ¢ follows the normal distribution
with a certain mean p and a variance o2. If the minor allele affects the trait, the
mean trait value (u) of individuals with the minor allele will increase by a certain

value 3,4 (effect size). Now, we can obtain the distribution of y; as
yi ~ N+ Ba. 0%) (5.1)

Let Y4 be the average trait value of individuals who have the causal allele at
SNP A and Y., be the average trait value of individuals who do not carry the
causal allele at SNP A. Then we can derive the distributions of Y, and Y., as

follows:

o DiwA—1Yi o2 > iahoYi pe:
YA:LNN(,U'—FBAa )7YﬂA:LNN(M7
Ny N -pa N-4 N -p-a

) (5.2)

We normalize the difference between Y, and Y_4 to obtain the following statistic
S4, which is normally distributed with mean A4/ N (the non-centrality parame-

ter) and unit variance.

SA:YA:}ANN(/\A\/NJ), where A — BAVpA(El_pA) (5.3)
Npa-(1-pa)

Given the significance level o and the observed value of the test statistic Sy,

the SNP is deemed as significant, or statistically associated with the trait, if

|Sal > @711 — a/2), where ®~! is the quantile function of the standard normal

distribution. For simplicity, we use the notation T'= ®~'(1—a/2) as the per-SNP

threshold.
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We declare all those SNPs with statistic |S4| > T" to be associated with trait.
So the per-causal-SNP power of a putative causal SNP A, which is the probability

of |S4| > T, can be calculated as

PiA) = P(ISa] > T) = @ (~T+ AN ) +1- @ (T+20VN)  (5.4)

The average power P; is obtained by averaging per-causal-SNP powers over all

putative causal SNPs.

5.3.2 The Brute-force Approach for Pairwise Association Test

Current studies on complex disease have also suggested that some SNPs influence
traits in pairs. Only when both causal alleles appear on a pair of SNPs, the
trait value is increased. To detect the interaction of SNPs that influence the
trait, we need to consider the association between a trait and a pair of SNPs
(pairwise association test). We analyze the power of the brute force approach

which calculates the association between a trait and all pairs of SNPs as follows.

We assume there exists a SNP pair AB, composed of SNP A and SNP B, that
influence a trait. Assume the causal alleles are minor alleles at both SNPs. Our
statistic is the difference between the average trait value of individuals who have
minor alleles on both SNPs and that of individuals who do not have minor allele
on at least one of the two SNPs A and B. Here we assume the two SNPs have
same (positive) direction of effect. We use the same notation as in section 5.3.1.
The expected number of individuals who have minor alleles at both SNPs can be
computed as Nag = N - pa - pp and the expected number of individuals who do
not have minor alleles at both SNPs can be computed as N_ap = N-(1—pa-pp).
If an individual carries the causal alleles at both SNPs A and B, the mean of

trait value is increased or decreased by the effect size of the SNP pairs, which is
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denoted as S4p. Then we can write the distribution of y; as
yi ~ N(p + 228 Bap, 0?) (5.5)

Let Yap be the average trait value of individuals with causal alleles at both
SNPs and let Y_ 45 be the average trait value of individuals without causal alleles
at both SNPs. For simplicity, let >,, denote Zi:x;“=1 AaB=1> and similarly for
> 100 Do Dooo for different alleles of SNPs A and B. We can calculate Y5 and

Y_up as
_ 1 o2
Yap = — ~ N(p+ Bag, ;
NaB 43 vi (h NPAPB)
) L 3 N( o’ ) (5.6)
AB = yi ~ Ny o :
N-aB 50 ’ N(1—papB)

We normalize the difference between Y45 and Y- 45 to obtain the following statis-
tic Sap, which is normally distributed with mean A4V N (the non-centrality

parameter) and unit variance.

Yaig — Y, 1—
Sap = AB 4B N()\AB\/N, 1), where Aap = 5AB\/]9APB( pApB)(S.?)

o2 g
Npapp(1—papB)

According to [PP12], we set the per-SNP-pair significance level a = 1072,
The per-SNP-pair statistic threshold is then T, = —®~(«/2) = 7.13. The per-

causal-SNP-pair power of a putative causal SNP pair AB can be estimated as
Pgr(AB) = @ (-T2 + AABJN) Y1-d (TQ + AAB\/N) (5.8)

The average power Ppp is obtained by averaging per-causal-SNP-pair powers over

all putative causal SNP pairs.

Assuming the total number of SNPs is M, we define the cost of brute-force
method to be the total number of SNP pairs needed for association analysis, that

iS, CBF(M> = (M)

2
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5.3.3 Two Stage Model

In the brute force approach, the total number of SNP pairs to be considered is
(]\24 ) and we need to compute the statistic Sap for all these pairs. Considering
the number of SNPs involved in current GWAS, the computational burden makes

this strategy infeasible.

We propose a two-stage model to reduce the number of tests needed while
maintaining similar power with the brute force approach. In the first stage, we
propose two statistic thresholds T, and 7, and perform the single marker test on
all SNPs. In the second stage, we pair all SNPs that are significant under threshold
T, with those significant SNPs under threshold 7,. Then we perform a pairwise
association test between traits and all those pairs. The SNP pairs which pass the
per-SNP-pair statistic threshold T, are considered to be statistically associated
with the trait.

The analysis of single marker test in the first stage is quite similar to that of
the one SNP association test in Section 5.3.1. We derive the similar equations
with (5.1), (5.2) and (5.3) except that the effect size of SNP A becomes ppfag,
when the pair of SNP A and SNP B is the causal SNP pair. So the statistic S
of SNP A becomes

Ya— Y., /oa(l —

Sa=—2"A ~ N(OVN,1), where Mg = PBPaB i"‘( Pa) (59
N-pa-(1-pa)

The analysis of SNP B is the same except that we switch ps and pp in the

equations.

Assume a pair of SNPs A and B are putatively associated with a trait. The
underlying effect size fap could either be positive or negative. Here we first
analyze the case where the true effect size is positive. To find such positive
pairwise association in our model, S, must be no less than T,, Sg must be no less
than 7T}, (or vice versa, but here we only analyze one case since we will show in

Section 5.3.6 that the other case is not necessary) and Ssp must be at least T5.

63



Hence, we need to consider three statistics and three thresholds to compute the
analytical power of the two-stage model. Under the assumption that we are aware
the effect size is positive, the per-causal-SNP-pair power of a putative causal SNP

pair AB can be denoted as

P;(AB):P(SAZTQ,SBZTI) and SABZTQ) (510)

However, considering the fact that whether the effect size is positive or negative
is hidden from us, we also need to calculate the probability where S4p is less than

—T5, that is,

PQ_(AB) = P(SA S _TmSB S —Tb and SAB S —TQ) (511)

So, the per-causal-SNP-pair power of a putative causal SNP pair AB is

P,(AB) = P}/ (AB) + P, (AB) (5.12)

The analysis for the case where the true effect size is negative is exactly the

same except that the non-centrality parameters for S4, Sp and Sap are negative.

To calculate the value of P,(AB) in Equation (5.12), we need to take into
account correlations between statistics. The two statistics S4 and Sap are corre-
lated because both involve SNP A. Similarly, we have a correlation between Spg
and Spp. We assume SNPs are independent, and hence there is no correlation
between S, and Sp. The average power P, is obtained by averaging per-causal-
SNP-pair powers over all putative causal SNP pairs. Computing the analytical
power of the two-stage model is complicated as a result of the correlations be-

tween statistics. We estimate the power using a multivariate normal distribution

(MVN) framework as in Section 5.3.4.

Denote the per-SNP significance level corresponding to the statistic thresholds

T, and Ty in the first stage to be ay and ag, respectively. Then we have ay =
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20(—T,) and ag = 2®(—T,). The cost of the two stage model can be computed
as Crs(M, aa, ap) = M?asap.
Let’s measure the cost saving by the ratio between cost of brute-force method

(Cpr) and that of the two-stage model (Crg):

CorM) _ _(5) 1 (5.13)
Crs(M,aa,ap) M?*asap 20408 '

And we define the power loss to be

o (5.14)
PBF

For a given dataset, there exists a trade-off between the power loss and cost
saving. The trade off is controlled by the two thresholds T, and T,. We carefully
design the thresholds to achieve high cost saving while maintaining low power

loss. The details of the algorithm is summarized in Section 5.3.6.

5.3.4 Estimating the Two Stage Power Using the MVN

In this section, we provide an approach to compute the power of the two stage
model in Equation (5.12). The distribution of association statistics Sa, Sp and
Sap has been derived in Section 5.3.2 and 5.3.3. We aim to compute the power
in Equation (5.12) for any given thresholds 7,, T, and T5.

For many widely used statistical tests, the statistics over multiple markers
asymptotically follow a Multivariate Normal Distribution(MVN) [SMO05, Lin05].
To derive the analytical power of our two stage model, we use the framework of
MVN proposed by [HKEQ09]. This method creates a MVN using the non-centrality
parameters (NCPs) of statistics as a mean vector in the MVN. The NCPs of Sy,

Sp, and Sap are already derived in Equations (5.7) and (5.9). So the mean
vector is ()\A\/N, )\B\/N, )\AB\/N). The covariance matrix in the MVN will be
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the correlations among statistics. We assume SNPs are independent of each other,
so the correlation between S, and S, is 1, and the correlation between S, and

Sg is 0. The covariance matrix is as follows:

1 0 Cor(Sa,SaB)
0 1 Cor(Sp,SaB)
COT(SA,SAB) COT(SB,SAB) 1

We only need to compute the correlation between S, (or Sp) and Sap to
derive the complete MVN. To find a correlation between two statistics, S4 and
Sap, we use the following formula where Var(X) denotes the variance of X and

Cov(X,Y’) denotes the covariance between X and Y,

Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y) (5.15)

In our model, X = Sy and Y = Sup, and Var(S4) = Var(Sap) = 1. Then we

can compute Cov(Sy, Sap) as

COV(SA, SAB) = (1/2)Var(SA + SAB) —1 (516)

Hence, we need to derive Var(S4+Sap) to find the covariance or the correlation
between statistics. The covariance and the correlation are equivalent in this case

because variances of statistics are 1.

Using Equations (5.7) and (5.9), we can write Sy + Sap as

Sa+ Sap = \/.]\/Y/(T2 (9,4 (YA — Y/_.A> + 04p (YAB — YQAB)) (517)

where 04 = \/pa(1 —pa) and Oap = \/papp(l — papp).

We then decompose Yy, Y4 and Y,z in Equation (5.17) in terms of alleles of
SNPs A and B (2! and 2P). Substituting Equations (5.1), (5.2), (5.5) and (5.6)

into Equation (5.17) and rearranging common terms, we have
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/N
Sa+ Sap = F

QA QAB QA QAB

PZ%‘"‘QZ%‘—RZ%—SZ% (5.18)
11 10 01 00

where

P = + , = —
Npa  Npaps C=% pa  N(1—papp)
_ (9,4 X GAB _ eA + 9AB
N1 —=pa) N —paps)’ N(1—pa) N(1—paps)

Note that Equation (5.18) consists of independent terms: each ) _, y; term rep-
resents a sum of trait values of disjoint individuals, where ab = 11, 10, 01 and 00,
respectively. Hence, if we take the variance of Sy + S4p, covariances among all
terms are 0, and Var(S4 + Sap) is a sum of variances of ), y; terms. Also, note
that Var(y;) = o2, and hence Var (>, y;) is a sum of o2 over individuals who
have minor alleles at both SNPs A and B. We can then compute the variance of
Sa+ Sap as

PQVar( Z yi) + Q*Var ( Z yi) + RQVar< Z yi) + SQV&Y( Z yz)]

11 10 01 00

o2

= N [P’Npapp + Q*Npa(1 —pg) + R*N(1 - pa)pp + S*°N(1 - pa)(1 - pp)] (5.19)
We can also compute Var(Sg+Sap) similarly using Equation (5.19) by exchanging
pa and pp.

Up to now we obtained all parameters for the MVN framework. Then, we
can compute the power as the area outside of the significance threshold under the
MVN we created. Fig. 5.2 helps to illustrate the ideas. We can see that in the
three dimension space of the MVN framework for statistics Sy, Sp and Sy, the
two cubes on the corners correspond to the significance region. Using the MVN,
we can compute the power of our two stage model for any given thresholds T,
T, and Ty by summing up the volume of these two cubes under the MVN. This
method yields a very accurate estimate of power when there exist correlations
among statistics, and hence it provides an appropriate framework to compute the

analytical power of our model.
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MVN of TEPAA

S
(—oo,—00,4T)) A (-00,+00,+T,)

(+00,—00,T,) | (roote,-T)

Figure 5.2: The volume of the two cubes under the MVN is the power of our two

stage model.

5.3.5 Another Strategy to Computer the parameters of MVN

In Section 5.3.4, we proposed a complicated but step-by-step inference to compute

the covariance of two test statistics in the MVN framework.

Now we study SNP pair AB from another direction. First we make a virtual
SNP C. The allele of SNP (' is exactly the same with the value of the SNP pair
AB. The minor allele frequency of SNP C' is denoted as pc = pag = papr. The
statistic S¢ will be equivalent to statistic Syp. Instead of computing Cor(Sa, Sag)

in the covariance matrix of the MVN, now we can compute Cor(Sy, Sc).

The genotype of SNP A and SNP C are binary values under dominant model.
The pearson correlation r 4o between the genotypes of SNP A and SNP C' is then

_ po(l —pa) _ paps(l —pa)
Vpo(l —pe)pa(l —pa)  \/paps(l — paps)pa(l — pa)

TAC (520)

Under the case where SNP pair AB are the causal SNP pair of the phenotype,
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we are not observing SNP C' but instead indirectly observing SNP A. Using the
theory of indirect association study, the correlation Cor(Sy4, Sc) between the test
statistic S4 and S¢ is equal to r4c. Similarly, we can compute the correlation
Cor(Sp,Sap). The correlation computed from the formula (5.20) will be exactly

same with our calculation in Section 5.3.4. We prove it as follows.

Proof. In Section 5.3.4, we compute the correlation between S, and Syp as in

Equation (5.16). And the variance of Sy + Sap is computed as in Equation (5.18).

Now let us simplify Equation (5.18) as follows.
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N [P*Npapp + Q*Npa(l — pg) + R*N(1 — pa)ps + S°N(1 — pa)(1 — pp)]

= N [P’Npaps + Q*Npa(1 —pg) + R*N(1 — pa)]

1—pa 1— pApB 1 —pa DAPB
= (\/ + \/ paps + ( )2(pa — papB)
DA DAPB 1 —paps

ba PAPB 2
+ + 1 -
(\/1—PA \/1—pAPB> (1=pa)

paD V1 —=pav1—pape\/Paps
= LA 2papp + 2

ba VPA
V1-— pA\/pAPB\/pA DPADPBPA

+1

a2 V1 —paps Ti- PADB
_PAPB o V1 = PAVPAPBPAPB  PAPEPAPB
pA VPav1—paps 1 —paps
LPa Ly VPa  \/PADB L _Paps
1—pa  V1—pav1—papp 1—paps
_ Papa . /PAVPAPEPA _ PAPBPa

1—pa V1 —=pav/1—papp 1—paps

V1 =pav1—paps/paps 5V I— pA\/pApB\/pA 5V 1 — pa\/PADBPAPE

= 242
VDA v1—paps VPaV'1 —paps
19 VPA \VPAPB _9 VPA+\/PAPBDPA

V1—pa/1—paps V1 —pav1—paps

V1 =pav1—paps/paps 5V I— pA\/pApB\/pA 5V 1 — pa\/PADBPAPE

- e N V= pars VAT paps
2\/1)7\/%@
VI—paps
2\/1 — paV'1 — papp\/PAPB N o V1= Pay/Papspaps
VDA VPAVT = paps
papp(l —pa)

= 242

VPa(l —pa)\/paps(l — paps)

So now we have the correlation between S4 and Sup as

Cor(Sa,Sag) = (1/2)Var(Ss+ Sap) — 1

_ . papp(l —pa) B
-0 (2+2\/Z?A(1 — pa)yv/paps(l —pApB)) :
paps(l —pa)

VPa(l = pa)\/paps(l — papp)

70



Since pap = paps, this is exactly same with the correlation in the Equation (5.20).

]

Now we conclude that we can just use the correlation in Equation( 5.20) to
compute the correlation between S, and S4p. And we obtained all parameters of

the MVN using this simple formula to compute the power of TEPAA.

5.3.6 Efficient Pairwise Association Test Using TEPAA

In previous sections, we have illustrated how to calculate the power and cost
savings of our two stage model for any given threshold. In this section, we provide
a framework, TEPAA, to determine the first thresholds which generate a relatively
small number of SNP pairs for pairwise association test in the second stage while

losing a small amount of power compared to the brute force approach.

From Equation (5.12) and Section 5.3.4, we can see that the joint distribution
between the association statistics of single SNPs and the association statistic of
a pair of SNPs depends on the MAFs of the pair of SNPs. MAFs are observable
values, so we can categorize all SNP pairs based on the combination of their MAF's.
Since MAF's are continuous value, we can discretize the MAF's into bins to have a
small number of combinations. After removing rare variants, we can categorize all
SNPs into 9 bins, with step size 0.05. In order to detect the pairwise association

for all SNP pairs, we break all combinations of SNP pairs into two cases. First

9

2) categories. The second

we pair SNPs within different bins and this results in (
case is to combine SNPs within one bin. So totally we have (g) +9 categories of

SNP pairs.

Assuming the power of the brute force approach is 50%, we can calculate the
effect size S4p from Equation (5.8). Then for each category of SNP pairs, we can
compute the power loss and cost savings from Equations (5.13) and (5.14) with

the MVN, given two first stage significance levels a4 and ag. We do an exhaustive
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search over the space [0, 1) with a small step size to find the optimal values of a4
and ap to achieve best cost saving while maintaining power loss 1%. The values

of a4 and a g are shown in Table 5.1 when there are 5, 326 samples in the dataset.

For SNPs in each bin, we carry out the single marker test and sort the asso-
ciation statistics of single SNPs. Then for each category of SNP pairs, we do a
binary search in each involved bin to find all SNPs that pass the pre-computed
thresholds. The selected SNPs are then paired for the second stage pairwise as-
sociation test. Based on the pre-computed values of a4 and ap, we can estimate
the cost savings for each category of SNP pairs as in Table 5.1. We propose a
threshold for each bin for each category of SNP pairs, and the bins are disjoint.
So, in the calculation of Equation (5.10), we only need to consider the case where
Sy > T, and Sg > T;, and it is not necessary to consider the case S4 > T, and

Sp > T,. We have the same conclusion in the calculation of Equation (5.11).
We summarize the framework of TEPAA as in Algorithm 3.

Although the calculation is based on the assumption that the brute force ap-
proach has power 50%, our approach is robust to the effect size. We did simula-
tions for different effect sizes, which generate different power for the brute force
approach. The cost saving of TEPAA is stable when achieving 1% power loss

under various effect size.

5.4 Discussions

In this work, we proposed a two-stage model to detect SNP pairs associated with
trait. The key idea behind our method is that we model the joint distribution
between association statistics at single SNPs and association statistics at pairs of
SNPs to allow us to apply a two-stage model that provides guarantees that we
detect associations of pairs of SNPs with small number of tests while losing very

little power. We rapidly eliminate from consideration pairs of SNPs which with
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Algorithm 3: Framework of TEPAA

Input: A GWAS data set with genotype and phenotype for each
individual.

Output: SNP pairs associated with the phenotype.

1 Remove rare variants, categorize rest SNPs into 9 bins according to MAFs,
with step size 0.05.

2 Pre-compute the thresholds for each combination of bins as in Table 5.1,
which only depends on the second stage threshold.

3 For SNPs in each bin, we carry out the single marker test and sort the
association statistics of single SNP.

4 For each category of SNP pairs, we do a binary search in each involved bin
to find all SNPs that pass the pre-computed thresholds in Table 5.1.

5 Pair up the selected SNPs with positive statistics from different bin in Step
(4) to perform pairwise association test. Then pair up the selected SNPs

with negative statistics in Step (4) to perform pairwise association test.

73



high probability are not associated with the trait. Using extensive simulations,
we show that our approach can reduce computation time by a factor of 60 while

only losing approximately 1% of the power obtained by the brute-force approach.
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Table 5.1: The threshold for SNP A/SNP B and cost savings in various combina-
tion of MAFSs to achieve power loss of 1%. Here we assume the MAF of SNP A
is smaller than that of SNP B in each pair. The first and second number in each
cell is the threshold for SNP A (ay4) and SNP B (ag), respectively. These two
thresholds are scaled by 1072. The third number in each cell is the cost saving,

which is the ratio between cost of brute-force method and that of the two-stage

model.
MAF of SNP B
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1 34/34 | 8/50 | 7/58 | 5/62 2/76 | 0.82/84 | 0.26/79 | 0.10/84 | 0.02/90
/8 /25 /25 /32 /66 /145 /487 /1190 /5555
0.15 - 14/14 | 3/24 | 3/31 2/46 1/58 0.35/54 | 0.13/62 | 0.03/69
/51 /139 | /107 /108 /172 /529 /1241 /4830
< 02 - - 5/5 2/9 2/16 1/21 0.47/31 | 0.19/58 | 0.05/69
% /400 /556 /312 JAT6 /686 /907 /2899
“ | 025 - - - 3/3 2/5 1/7 1/16 0.26/21 | 0.10/42
& /1100 | /1000 /1429 /625 /1831 /2380
2| 03 - - - - 1/1 1/3 1/4 0.62/12 | 0.13/16
/1eb /3333 /2500 /1344 /4807
0.35 . - . . - 0.6/0.6 0.5/1 0.1/2 0.03/8
/2.7Ted /2e4 /5ed /4ed
0.4 - - - - - - 0.3/0.3 | 0.1/0.6 0.1/1
/1.1e5 /1.6¢5 /1e5
0.45 - - - - - - - 0.2/0.2 | 0.1/0.5
/2.5e5 /2e5
0.5 - ) . . ) - . . 0.1/0.1
/1e6

)



CHAPTER 6

Fast Detection of IBD Segments Associated

With Quantitative Traits

6.1 Background

Two individuals are identical-by-descent (IBD) at a locus if they have alleles in-
herited from a recent common ancestor. Several methods have been developed to
detect the IBD segments between purportedly unrelated individuals. The current
state-of-the-art methods such as GERMLINE [GLS09] and Beagle [BB10, BB11]
can detect even small (2 centimorgan) IBD segments shared between individu-
als from whole genome sequence data. The IBD segments detected by an IBD
detection method can be used in various applications such as haplotype phas-
ing [KMFO08], imputation [JAS12] and heritability analysis in founder popula-
tions [PHT11, ZHS12, BB13].

One promising application of IBD information is in association mapping [PNTO07,
GKL11, BT12, HKR13|. The traditional approach for association mapping is to
perform a statistical test between a single SNP and the observed case/control
status or quantitative phenotypes. These single-SNP-based association testing
approaches are designed to have high power to detect association for common
SNPs (minor allele frequency > 0.01). Unfortunately, rare causal variants will
not be identified by these traditional approaches. Association testing based on
IBD information is an alternative to standard association testing methods which

may have advantages for discovering associations in loci where rare variants play
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a role.

Rare causal variants are likely to have been introduced into a population re-
cently. These mutations are initially “private” to the individual in which they
occurred, but then are passed on to progeny. IBD segments containing these re-
cently derived rare alleles are likely to be discovered, because these rare alleles
actually can help IBD detection algorithms to detect IBD segments between indi-
viduals. If the shared IBD segments contains these rare causal alleles, IBD map-
ping approaches can identify the loci harboring the rare causal mutation through

the association mapping between IBD segments and the phenotypes of interest.

Two categories of methods have been proposed to discover IBD segments as-
sociated with the phenotype. The first category of methods compare the IBD
rate of case/case pairs with the background IBD rate to detect excessive IBD be-
tween cases, and is referred to as pairwise methods [PNT07, BT12, HKR13|. The
motivation for pairwise methods is that if a rare variant occurred in a relatively
recent ancestor, cases are more likely to share an IBD segment containing the
causal variant. The second category of methods is referred to as clustering meth-
ods [GKL11]. Individuals are divided into clusters based on the IBD information,
and then each cluster is tested for association assuming that the cluster tags a

rare causal variation.

There are several computational challenges in pairwise methods. The first
challenge is computational inefficiency. In pairwise methods, since the statistic is
dependent on two individuals sharing IBD segments, it is difficult to analytically
obtain the asymptotic distribution of the test statistic. In order to compute the
p-value for the test statistic, one needs to approximate the null distribution of
the test statistic through permutations, where the vector of phenotype traits is
permuted. In the genome-wide association studies (GWAS), the p-value thresh-
old is necessarily low due to multiple testing [BT12]. Thus one must perform a

large number of permutations, which can be computationally demanding. The
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second challenge is fine-mapping. In GWAS, after one identifies significant loci,
it is important to pinpoint the most significant peak within the loci for follow-up
studies. However, in the permutation test, the smallest p-value one can estimate
is constrained by the number of permutations, often resulting in many SNPs with

the same minimal p-values in the region.

Previously proposed pairwise methods are only applicable to case/control data
since they explicitly classify each IBD segment as either being shared between two
case individuals or otherwise. In this section, we present a IBD association map-
ping method designed for quantitative traits. In our method, we first construct
the IBD graph based on detected IBD information given by IBD detection algo-
rithm at a locus similar to case/control data [HKR13]. Then the test statistic for
hypothesis testing can be computed based on the graph representation of the IBD
information, which is referred to as the edge-based statistic. Similar to the pair-
wise method, the asymptotic distribution of the edge-based statistic is not easily
obtained. Thus assessing the significance of the association requires permutation
testing, which becomes a great burden when we obtain small p-values. However
we show that permutation testing is not necessary, by showing the connection
between the edge-based statistic and a linear model. We demonstrate the equiv-
alence between the permutation test and the linear model both analytically and
empirically on real data. Using the linear model, we can obtain the p-values for

each locus very efficiently.

A further advantage of the connection to linear models is that we can include
any covariate and/or random effects terms in the model, because the proposed
IBD mapping statistic is reduced to a simple linear model. Incorporating study-
specific covariates such as age, sex and other environment factors in the model
can greatly improve the statistical power of the association mapping. The ability
to include random effects term in the model is particularly useful for controlling

population structure. In IBD association mapping, if two individuals are closely
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related, their genomes are more likely to share an IBD segment at each genomic
locus. In addition, if they share the causal variants, their phenotype will also be
similar. This causes a correlation between the IBD structure and the phenotype
at many loci, which leads to false positive association signals and inflation of p-
values. To correct for the population structure caused by the genetic relatedness
between individuals, we utilize a mixed model and include a random effect term
which follows normal distribution with covariance of kinship matrix reflecting the
closeness between individuals. We demonstrate that our method can control the
population structure by applying it to the 1966 North Finland Birth Cohort Data
for 10 phenotype traits.

6.2 Methods

6.2.1 The IBD graph

Given N individuals, the IBD information at a genomic locus can be represented
as an IBD graph with N vertices (Figure 6.1). An edge exists between a pair of
vertices if two individuals are IBD at the locus. The value y; for each vertex i is
the trait value of the corresponding individual, and the vector Y = (y1, 99, ..., yn)

contains the phenotypes for all individuals.

6.2.2 Edge-based IBD association mapping statistics

Let V be the set of individuals and let E be the set of edges in the IBD graph,
that is, all IBD relationships. We define the edge statistic for IBD association
mapping at genomic locus k as
S= 3 i+ ) (6.1)
(i,))eE
The intuition behind this statistic is that, if a genomic locus contains the causal

mutation affecting the phenotype of interest, we would expect that individuals
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IBD information

(pairs of individuals that are IBD) AL gyf)
; ) = \ VB Cy) Fo) Gy
(A,C) graph
3 |(B.C)
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5 |(G,H)

Ya : The trait value of individual A

Figure 6.1: An example of IBD graph. IBD detection method provides IBD
information as shown in the table. Then we build a graph where vertices are

individuals and edges are IBD relationships.

sharing IBD at this locus tend to have higher or lower phenotype values than
others not sharing IBD. Each of these values contribute more than once to the
statistic S, and will distinguish the associated genomic locus from other loci.
Since the statistics are based on the edges which are dependent on two individuals,
asymptotic distribution of Sy is difficult to obtain analytically. In this case, one
straightforward way to compute the significance of the association is through

permutation.

6.2.3 Permutation Test

To approximate the distribution of .S, under null hypothesis, we can permute the

phenotype of all individuals. Let
v = (v1,V2,....,0n),Vv; €Y

be the vector of trait values of N individuals, where v; denotes the phenotype value
for i-th individual in the permutation. A single permutation can be thought of as
randomly permuting a vector of the trait values. The test statistic, Sy, is a function
of v. Let v be the vector of observed phenotype vector. The standard permutation

test is equivalent to sampling a new v from all possible permutations of ¥ assuming
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a uniform distribution. Let B be the set of sampled v. The estimated p-value is

5= g 2 00S.(0)| = IS0) (62)

veB
where 9 is the indicator function. The drawback of this approach is its inefficiency
because it requires a large number of permutations to obtain a small p-value. The
denominator |B| in Equation (6.2) needs to be large enough to make the value p

small and thus large number of permutations are required. To assess a p-value p

with standard error p/10, we need approximately 100/p permutations.

6.2.4 IBD-degreetype

To obtain the edge statistic S, we sum the trait values involved with each edge
in the IBD graph. From the view of vertices, the trait value of each individual
contributes d; times to the statistic Sy, where d; is the degree of the correspond-
ing vertex in the IBD graph. We introduce a concept called the IBD-degreetype
which is simply the degree of each individual in the IBD graph. We denote
D = (dy,ds, ...,dy) to be the vector of IBD-degreetypes of N individuals. Obtain-
ing the degrees of vertices is equivalent to splitting all edges and counting how
many edges are adjacent to each vertex (Figure 6.2). Then we assign these num-
bers to the vertices. Given this, we consider the IBD-degreetype as conceptually
similar to a genotype where the alleles of each individual are analogous to the

degree of corresponding vertex in the IBD graph.

The IBD-degreetypes can be used for statistical testing in the IBD association
mapping. According to the definition of IBD-degreetype, we can rewrite the test
statistic S as

Sk = diy;=D"Y (6.3)
eV
We refer to this statistic as the sum statistic. The intuition is that individuals

sharing IBD segments containing causal variants are likely to have similar (high)
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Figure 6.2: Equivalence between two IBD statistics.

trait value and have higher degrees. The trait value of individuals with causal
haplotype at this locus can be aggregated by the weighted sum of trait values,
where the weight for each individual is the corresponding degree in the IBD graph,
which is what Equation (6.3) computes exactly. In the next section, we show how

this property could help us to compute the p-value efficiently.

6.2.5 Efficient computation of p-values

The formulation of the statistic in equation (6.3) closely resembles the regression
estimator in linear models. We can use this observation with an additional as-
sumptions to obtain p-values analytically which eliminates the need for performing

permutation.

If we assume that the phenotype follows a normal distribution with variance
0%, then we can represent the phenotype using the linear model which includes

the IBD-degreetype and the effect of the IBD-degreetype on the phenotype ~

Yi = p+yd; + € (6.4)
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where ¢; is normally distributed with mean 0 and variance 0%, ¢; ~ N(0,0?).

Written using vector notation
Y=pl+9D+e (6.5)

where 1 is a column vector of “1”s and e is a random vector where each element

is independent and has variance o2.

This can be represented using a multivariate normal distribution where the
covariance matrix is 0°I and I is the identity matrix, e ~ N (0, 0I). We note that
if the region is not involved in the phenotype, then v = 0. However, if the region
is involved in the phenotype, then v # 0. We can obtain an estimate of v, using

ordinary least squares (OLS) estimates.

DTy — % «1TDx17Y

§= (6.6)
D'D— L« (17D)
1 1
=—1TY — —A1"D 6.7
=N N (6.7)

The estimated residuals €; = y; — 1—%d; can be used to estimate the standard error

0 =1/ ]'f[T_eQ Since the studies are large, the association statistic will approximately

follow the normal distribution

. 5’
¥ ~N (% ﬁ) (6.8)
We note the close relationship between Equation (6.6) and Equation (6.3).
Since 1 * 17D % 17Y and DTD — + * (17 D)? are all constants in Equation (6.6),
we denote them as 7 and Cj respectively. Now we can derive Sy from 4 by

scaling a constant factor Cy and then shifting a constant factor C as follows
Sy = DTY = Co¥ + Oy (6.9)

So Sy will approximately follow the following normal distribution

252
Cso

Sy ~ N(C3v + O, N

) (6.10)
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Under the null hypothesis where v = 0, we can obtain the p-value of Sy using

the quantile of the normal distribution without needing to apply permutation test.
. . .. . S, —C _

We declare the investigated locus to be significant if |m\ > o1 — a/2),

where « is the significance level.

We see that the p-value of Sy is equal to the p-value of 4 since there is a linear
transformation between S, and 4. The permutation test just gives another way
to compute the p-value of Sy, where the null distribution of Sy is approximated
by permuting the vector Y. So, we can compute the p-value of Sy rapidly using

the linear model.

6.2.6 Control for population structure

There are two reasons that population structure affects association mapping. The
first is that variants other than the one which is being tested in the statistical test
might affect the phenotype. The second is that different individuals might have
different total amounts of shared IBD segments. We extend our proposed IBD
mapping method to correct for the effect of populations structure due to both
reasons. The first challenge is that the results can be confounded by relatedness
among the individuals affecting variants outside the locus under consideration.
Intuitively, if two individuals are closely related, at each position in their genome
they are more likely to share an IBD segment. In addition, their genetic relat-
edness will cause their phenotypes to be more similar. This causes an apparent
correlation between the IBD-degreetype and the phenotype at each position in

the genome.

In order to motivate how we address this problem we first consider the standard
Fisher polygenic model where each variant in the genome affects the phenotype

independently. In this case, the generative model for the phenotype is

M
=1
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where the effect of each variant on the phenotype is ;, the phenotypic mean is
w1 and ¢; is the contribution of the environment on the phenotype which is nor-
mally distributed with variance o2, denoted €; ~ N(0,02). Since most of the
variants do not affect the phenotype, 8; = 0 for most variants. We note that the
inherent assumption for this model is the “additive” assumption in that the vari-
ants all contribute linearly to the phenotype value and ignore more sophisticated

phenomenon which include non additive effects or gene-by-gene interactions.

If we denote the vector of phenotypes Y and vector of effect sizes 3, the matrix
of genotypes X and the vector of environmental contributions e, then the model

for the population can be denoted as
Y=pl+Xp3+e (6.12)

where 1 is a column vector of 1’s, and e is a random vector drawn from the
multivariate normal distribution with mean 0 and covariance matrix ¢2I, denoted
as e ~ N(0,071).

Our IBD statistic Equation (6.3) makes the same assumptions as linear re-
gression which assumes that the phenotype of each individual is independently
distributed. Unfortunately, this is not always the case. The reason is due to
the discrepancy between the statistical model in Equation (6.3) which is used for
testing compared to the true genotype phenotype model in Equation (6.11) which
generated the data. If we are considering region k and represent the variants
which are not in the region with ¢ ¢ k. the terms which are missing from the test-
ing model, Zigé i Bixij, are referred to as unmodeled factors. These unmodeled
factors correspond to the variants that affect the phenotype in the genome other
than the variant which is being tested in the statistical test. After we incorporate

the IBD-degreetype, the generative model can be denoted as

Y = pul + v Dy + Z Gix; + e (613)
itk
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If the values for these unmodeled factors are independently distributed, then
these factors will increase the amount of variance, but not violate the indepen-
dently distributed assumption of the statistics. However, if the unmodeled factors
are not independently distributed, which is the case when individuals in the sam-
ple are related to different degrees. Then this will violate the assumptions of the

statistical test in Equation (6.3).

This problem is referred to as “population structure” where differing de-
grees of relatedness between individuals in the GWAS cause an inflation of the
values of the association statistics leading to false positives. Many methods
for addressing population structure have been presented over the years includ-
ing genomic control [DR99] which scales the statistics to avoid inflation, prin-
cipal component based methods [PPP06] and most recently mixed model meth-

ods [KZW08, KSS10, LLL11, ZS12).

The basis of the mixed model approach to correct population structure is the
insight that the proportion of the genome shared corresponds to the expected
similarity in the values of the unmodeled factors. More precisely, the covariance
of the unmodeled factors is proportional to the amount of the genome shared.
The amount of genome shared is referred to as the “kinship matrix” and since
the genotypes are normalized, the kinship is simply K = X X7 /M where X is the
N x M matrix of the normalized genotypes. We then add a term to the statistical

model to capture these unmodeled factors resulting in the statistical model
y=pl+yDr+u+e (6.14)

where e ~ N(0,02I) and u ~ N(0,07K). u represents the contributions of
the unmodeled factors and e represents the effect of non-genetic factors on the
phenotype. When performing an association, mixed model methods estimate the

maximum likelihood for parameters u, v;, 03 and o2 using the likelihood
L(N,y, 1,02, 0%, K) = (Qﬂ)—%w;K + 02| e 3@ KATID T ) (6.15)
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One intuition to explain mixed models is that they decompose the variance
of phenotype into a portion corresponding to the genetics (u) and a portion cor-
responding to the environment (e). The idea behind our method is that we can
use the mixed model to obtain the values of the genetic portion and then remove
them from the phenotypes obtaining a set of corrected phenotypes which are not
affected by population structure. The way this is done is that after the estimates
of o7 and o7 are estimated, we can then compute the maximum likelihood es-

timates for 4;. Our new phenotypes are then y, = y; — 4; and can be used in

Equation (6.5).

The second challenge comes from the fact that some individuals have more
IBD segments than others. If some individuals are closely related to each other,
they will have higher IBD-degreetype over the genome and their phenotype will
contribute many times to the test statistic .Sy, which further increases the variance
of our test statistic. We normalize the IBD-degreetype for each individual by
subtracting the mean of IBD-degreetype over the genome, which addresses the

problem.

6.3 Results

6.3.1 Equivalence between the permutation test and the linear model

The asymptotic distributions of the statistic in Equation (6.1) is difficult to obtain
analytically. This is because the statistic is based on the edges that depend on pair
of individuals. For this reason, we have to do a permutation test to assess the sta-
tistical significance. However, the permutation test is computationally inefficient.
If the true p-value is small, which is required in genome-wide association studies,
we will need a large number of permutations. For the genome-wide threshold of
IBD association testing(6 x 107%, [BT12]), more than 10 million permutations

are required.
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We have shown that the edge statistic in Equation (6.1) is equivalent to the sum
statistic in Equation (6.3). We further demonstrated in Equation (6.10) that the
sum statistic S; will approximately follow the normal distribution under the null
hypothesis and can be used to determine whether the test statistic is significant.
We here show by running experiments on the 1966 North Finland Birth Cohort
(NFBC66) dataset to further confirm the equivalence between permutation test

and linear model.

We first run Beagle [BT12] to obtain the IBD segments with threshold 107,
which is a commonly used threshold. Then we build a IBD graph for each genome
position. In the IBD graph, each vertex corresponds to one individual, and we
connect two vertices with an edge if the two individuals share an IBD segment at

this position. The IBD-degreetype is simply the degree of each vertex as defined.

We first compute the test statistic using Equation (6.3). The test statistic
is computed for the phenotype body mass index (BMI). Then we permute the
phenotype 10,000 times and compute the corresponding test statistic for each
permutation to approximate the null distribution of S,. The p-value is then

estimated using Equation (6.2).

We also compute the p-value for the association between each locus and the
phenotype BMI using model in Equation (6.14), which is much faster. The correla-
tion between p-values computed from permutation test and linear model is plotted
as in Figure 6.3. We can see that the p-values computed from the two methods
are highly correlated. This confirms the correctness of our proposal method that
we can use the linear model to compute the p-value for each genome position,

instead of doing permutation test, which is computational inefficient.

88



Correlation of p-values from linear regression and permutation test
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Figure 6.3: The correction between p-values computed from permutation test and
linear model. The red vertical line represents the lower bound of p-values that

permutation test can approximate given the number of permutations.

6.3.2 Correcting for population structure

We applied our method to the 1966 North Finland Birth Cohort (NFBC66)
data to detect the IBD segments associated with the quantitative traits. The
NFBC66 data contains genotypes over 330,000 SNPs for 5,326 individuals. Ten
quantitative phenotypes are collected for each individual. We first applied Bea-
gle [BB10, BB11] to detect the IBD information from the genotypes. The output
of Beagle shows the IBD segments shared between individuals across the genome.

Then for each genomic locus, we represent the IBD information using an IBD
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graph as defined in section 6.1. Each vertex in the graph represents an individual
and we build an edge between two vertices if the corresponding individuals are
IBD at this locus. The IBD-degreetype is computed for each vertex. We estimate

the p-value of each variant using a linear model.

Since the population structure may cause substantial inflation of test statistic
and possibly spurious association, we evaluate the performance of our method
using the inflation factor. The inflation factor A is the ratio of median chi-squared
test statistics to the median of an expected 1 degree-of-freedom chi-squared dis-
tribution [DR99]. An inflation factor greater than 1 indicates the presence of
inflation. We first applied the linear model without correction for population
structure over all ten phenotypes. From the middle column of Table 6.1, we can

see that inflation exists for most phenotypes.

In order to correct for the population structure, we incorporate a random ef-
fect term into our linear model. We first compute a pairwise relatedness matrix,
the kinship matrix, from genotypes to represent the population structure. Then
we estimate the contribution of the population structure to the phenotype using
a variance component model, resulting in an estimated covariance matrix of phe-
notypes. The covariance matrix models the effect of genetic relatedness on the
phenotypes. Finally we applied a generalized least square test at each variant to
detect the association. The inflation factors are also computed for all ten pheno-
types and the results are summarized in the third column of Table 6.1. We can see
that we can decrease the inflation factor in most cases. In four cases, the inflation
factor increases slightly. We also show the distribution of inflation factors in a
box plot as in Figure 6.4. We can see that with population structure correction,

the inflation factor is corrected to be close to 1.
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Phenotype | without correction | with correction
crp 1.028 1.029
height 1.065 0.904
dia 1.067 1.075
glu 1.074 1.039
hdl 0.977 0.981
ins 0.988 1.000
1d1 1.055 0.975
Sy 1.132 1.076
bmi 1.000 0.983
tg 1.011 0.995

Table 6.1: Inflation factors for ten phenotypes from NFBC66 data. Phenotype
abbreviations are CRP, C-reactive protein; TG, triglyceride; INS, insulin plasma
levels; DBP, diastolic blood pressure; BMI, body mass index; GLU, glucose; HDL,
high-density lipoprotein; SBP, systolic blood pressure; LDL, low density lipopro-

tein.
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Effect of Population Structure Correction
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Figure 6.4: A Distribution of inflation factors of IBD mapping statistics on
NFBC66 data, without (No) and with (Yes) population structure correction re-

spectively.

6.4 Discussions

In this section, we proposed a test statistic and a fast approach to detect the
significant IBD segments associated with quantitative phenotype traits. Previous
methods have been proposed to detect significant IBD segments in case-control
data, but are not suitable for continuous phenotypes. We proposed a test statistic
for continuous traits based on the IBD graph, which is built from the IBD infor-
mation. In the IBD graph, each vertex represents an individual and the edges
between vertices indicate the presence of IBD between the two individuals. Since
the asymptotic distribution of the test statistic is hard to derive analytically, we
conduct the permutation test to compute the p-value for each SNP. The drawback
of this approach is its inefficiency because it requires a large number of permu-

tations to obtain a small p-value. We further proposed a linear model where the
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independent variable is the IBD-degree type. We proved the equivalence between
the p-value of the coefficient in the linear model and the p-value from the per-
mutation test, both analytically and from simulation. The linear model is a fast
approach. However, one more challenge is the population structure, where the dif-
fering degrees of relatedness between individuals in the GWAS cause an inflation
of the values of association statistics leading to false positives. We incorporated
this relatedness into our linear model to correct for the population structure. We
applied our method to the North Finland Birth Cohort Data and determined that

our method can correct the inflation factor toward 1.

The true utility of the IBD association testing is on detecting significant as-
sociations on rare variants that cannot be found using single SNP tests [BT12].
IBD association testing can be conducted without additional cost compared to
traditional GWAS on genotype data. The only extra effort is to compute IBD
segments from genotype data and build the IBD graph, which is computationally
feasible. Our approach is also fast compared to previous IBD association testing
methods. After we build the IBD graph, our method has the same computation
time as traditional GWAS approaches. Our method connects IBD mapping to
linear models. This permits analysis of the statistical power of IBD mapping,
which will depend on the effect sizes of the underlying variants and the genetic
structure in terms of the relatedness between individuals in the samples. This
type of analysis may motivate the development of novel IBD mapping statistics
which have higher statistical power than approaches currently being used. We
expect that our new method will promote the wide use of IBD association testing

and facilitate further research on the power and utility of IBD association testing.
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CHAPTER 7

Conclusion

In this dissertation, I presented several methods for detecting and analyzing
genetic variants. Genetic variants range from single nucleotide polymorphisms
(SNPs) to chromosomal structural variations (SVs). High-throughput Sequenc-
ing(HTS) technologies provide great opportunities for both detecting the genetic
variants and uncover genetic basis of complex traits and diseases. Although the
sequencing cost has decreased dramatically with the development of HTS tech-
nologies, it is still infeasible to sequence a large number of individuals in a study

due to budget constraints.

I first proposed a strategy to sequence many individuals simultaneously using
overlapping pools. Under this strategy, multiple individuals are grouped into one
pool and are sequenced together. The cost is reduced because only one sample
preparation is necessary per pool. In chapter 2, I presented an approach to recover

the genotype of all individuals accurately.

Structure variations, especially CNVs, play an important role in many com-
plex diseases and traits. In chapter 3, I proposed a statistical model to detect
the boundaries and copy numbers of CNVs. This method utilized read mapping
uncertainty where a read can be mapped to multiple positions in the reference
genome. It is the first attempt to predict CNVs at nucleotide resolution, and the
first to utilize uncertainty of read mapping. I further extended this approach to
detect CNVs from tumor genomes. The challenge of detecting CNVs in tumor

genomes lies in the fact that tumor samples are easily contaminated by normal
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stromal cells in the sample preparation step. I proposed a method to estimate the
contamination rate and incorporated it into the statistical model. In chapter 4,
I showed that this method can estimate the contamination rate precisely and we

can detect CNVs in tumor genomes with high accuracy.

For some complex diseases, SNPs may also influence the disease through inter-
actions. In an extreme scenario, two SNPs may not have any effect on a disease
independently, but they may affect the disease when both are present. The de-
tection of SNP interaction is a great computational challenge since we have to
consider all possible pairs of SNPs. I designed a two-stage model to reduce the
computational time greatly in chapter 5, and prove that some SNPs do not need
to be considered for combinations with other SNPs. This approach achieved 63

times speed up while maintaining 99% of the power of the brute force approach.

GWAS has identified many significant common SNPs associated with diseases
and traits. However, rare variants will not be identified in traditional GWAS. Rare
causal variants are likely to have been introduced into a population recently and
are likely to be in shared Identity-By-Descent (IBD) segments. If the segmental
IBD haplotype contains the disease causing mutation, then the individuals who
share this particular IBD segment are likely to share the disease as well. In
chapter 6, I proposed a new test statistic to detect IBD segments associated with
quantitative traits, and made a connection between the proposed statistic and
linear models so that it does not require permutations to assess the significance of
an association. In addition, the method can control for population structure by
utilizing linear mixed models. I applied the method to the 1966 North Finland
Birth Cohort (NFBC66) and demonstrated that our method could control for
populations structure. Also simulations proved the equivalence between the linear

model and permutation test.
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