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Abstract 
 

We present the beginnings of an account of how 
representations and processes developed for the purposes of 
reflective reasoning provide a basis for reflexive reasoning as 
well.  Specifically, we show how the symbolic-connectionist 
representations that underlie the DORA model (Doumas & 
Hummel, 2005), and the comparison based routines that 
DORA exploits in the service of addressing reflective 
problems, such as analogy making and the discovery of novel 
relations, can be extended to address reflexive reasoning 
phenomena.  We use the reflexive reasoning routines 
developed in DORA to simulate findings demonstrating that 
reflexive processes operate when subjects solve real-world 
mathematics problems.   

 
Keywords:  Reflexive reasoning, reflective reasoning, relational 
reasoning, representation. 
 

Reflective and Reflexive Reasoning 
Relational processing plays a central role in human 

perception and thought.  It permits us to perceive and 
understand the spatial relations among an object’s parts 
(Hummel, 2000; Hummel & Biederman, 1992; Hummel & 
Stankewicz, 1996), comprehend arrangements of objects in 
scenes (see Green & Hummel, 2004, for a review), and 
comprehend abstract analogies between otherwise very 
different situations or systems of knowledge (e.g., between 
the structure of the solar system and the structure of the 
atom; Gentner, 1983; Gick & Holyoak, 1980, 1983; 
Holyoak & Thagard, 1995).  Relational thinking is powerful 
because it allows us to generate inferences and 
generalizations that are constrained by the roles that 
elements play, rather than strictly the properties of the 
elements themselves.  For example, in the analogy between 
the an atom and a solar system the sun is similar to the 
nucleus of the atom, not because of its literal features, but 
because of their shared relations to planets and electrons, 
respectively.  Moreover, given that gravity causes the earth 
to revolve around the sun, you can infer that some force 
might also cause electrons to revolve around atoms.  This 
kind of inference is effortful and requires reflective thought 
(Hummel & Choplin, 2000; Hummel & Holyoak, 2003).   

 While relational reasoning is reflective, in that it is 
effortful and deliberate, many of the inferences we routinely 
make are so effortless that we are hardly even aware of the 
fact that we are making them.  For example, if you are told 
that Susan went to the movie theater you might infer that 
Susan saw a movie.  Moreover, you probably assume that 
Susan is human and a female (as opposed to, say, a male 
raccoon).  This kind of inference is made so automatically 
that it is often referred to as reflexive (e.g., Shastri and 
Ajjanagadde, 1993).   

In the study of human cognition, reflexive and 
reflective inference have, for the most part, been examined 
separately.  For example, reflexive inference is often studied 
in the context of reading and story comprehension (e.g., 
Kintsch & van Dijk, 1978; Shastri & Ajjanagadde, 1993; St. 
John, 1992; St. John & McClelland, 1990), while reflective 
inference is emphasized in studies of problem solving and 
higher level reasoning (e.g., Anderson & Lebiere, 1998; 
Byrne & Johnson-Laird, 1989; Forbus, Gentner, & Law, 
1995; Gentner, 1983, 2003; Holyoak & Thagard, 1989, 
1995; Newell, 1990).  Consequently, most computational 
models of reflexive reasoning are not suited to account for 
reflective processes (e.g., Shastri & Ajjanagadde, 1993; St. 
John, 1992), and models of reflective reasoning are not 
suited to account for more reflexive inferences (e.g., 
Falkenhainer et al., 1989; Forbus et al., 1995; Holyoak & 
Thagard, 1989).   

While reflexive and reflective processes do seem to 
follow different kinds of computational constraints (Shastri 
& Ajjanagadde, 1993), in many cases, these two types of 
processes interact and need to be integrated in the 
performance of a single task. For example, a mathematical 
solution that requires a reflective rule-based reasoning often 
involves retrieval of arithmetic facts (e.g., 3 + 5 = 8). The 
activation of such facts is highly reflexive (e.g., LeFevre, 
Bisanz, & Mrkonjic, 1988; Niedeggen & Rosler, 1999).  
For this reason, it might be limiting to view reflective and 
reflexive reasoning as isolated phenomena.  After all, both 
occur within the same cognitive architecture, and both 
processes should operate on the same set of mental 
representations (Hummel & Choplin, 2000).    
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In this paper we provide initial ideas about how a 
representational architecture that can support structured 
relational (i.e., heavily reflective) reasoning might also 
provide a basis for more reflexive forms of reasoning.  This 
work follows from initial ideas presented by Hummel and 
Choplin (2000).  We show how the same basic 
representations and processes that underlie DORA 
(Discovery Of Relations by Analogy; Doumas & Hummel, 
2005; Doumas, Hummel & Sandhofer, submitted), a model 
built to handle heavily reflective reasoning processes such 
as relational reasoning and inference, and the discovery and 
predication of relational concepts, can also provide the basis 
for an account of reflexive reasoning.   

 
The DORA Model 

DORA is a symbolic connectionist network that learns 
structured representations of relations from unstructured 
inputs.  DORA is an extension of Hummel and Holyoak’s 
(1997, 2003) LISA model of relational reasoning.  Like 
LISA, DORA dynamically binds distributed (i.e., 
connectionist) representations of relational roles and objects 
into explicitly relational (i.e., symbolic) structures.  The 
resulting representations enjoy the advantages of both 
connectionist and traditional symbolic approaches to 
knowledge representation, while suffering the limitations of 
neither (see Doumas & Hummel, 2005).  DORA’s basic 
representational scheme is adapted from LISA.  In DORA, 
propositions are encoded in LTM by a hierarchy of structure 
units (Figures 1).  Predicate and Object (PO) units (triangles 
and large circles in Figure 1) locally code for specific roles 
and fillers.  While LISA must use different types of units to 
code for roles and their fillers, DORA uses the same types 
of units to code both roles and fillers and differentiates 
between roles and fillers via its binding mechanism (see 
below; though for the purposes of clarity, in figures we use 
triangles for POs representing roles and circles for POs 
representing fillers).  For example, the proposition bite 
(Fido, Brian) would be represented in part by PO units 
representing the relational roles biter and bitten, and the 
fillers Fido and Brian.  POs are connected to semantic units 
(smaller circles in Figure 1) that code their semantic features 
and represent both objects and relational roles in a 
distributed fashion.  For example, the PO unit representing 
Fido would be connected to a set of semantic units denoting 
Fido’s features (e.g., “dog”, “male”, “fierce”) and the PO 
unit representing Brian to a set of semantic units denoting 
Brian’s features (e.g., “cat”, “male”, “tabby”).  Similarly, 
the biter and bitten roles would be connected to the 
semantic units denoting their features.  Role-binding units 
(RBs; rectangles in Figure 1) bind roles to objects in LTM.  
Bite (Fido, Brian) requires by two RBs, one binding Fido to 
biter, and one binding Brian to bitten.  At the top of the 
hierarchy, proposition (P) units (oval in Figure 1) binding 
sets of RBs into whole relational propositions.  In Figure 1 a 
P unit binds the RBs representing biter+Fido to bitten+Brian, 
thus encoding the relational proposition bite (Fido, Brian).   

 

 
Figure 1.  A proposition in DORA.  Triangles are used to 
denote roles and circles to denote objects for clarity.  In 
DORA, the same types of units code both roles and fillers. 

 
In this representation, the long-term binding of roles to 

their fillers is captured by conjunctive RB and P units.  This 
is sufficient for storage in LTM, however, when a 
proposition enters WM, its role-filler bindings must also be 
represented dynamically on the units that maintain role-filler 
independence (i.e., POs and semantics).  In DORA, roles are 
dynamically bound to their fillers by systematic asynchrony 
of firing (see also Love, 1999).  When a proposition enters 
working memory (i.e., becomes active), bound objects and 
roles fire in direct sequence, carrying the binding 
information in the proximity of firing and the role/filler 
distinction in the order of firing (e.g., with fillers following 
the roles to which they are bound).  To illustrate, in order to 
bind Fido to the biter role and Brian to the bitten role (and 
so represent bite (Fido, Brian)), the units corresponding to 
the biter role fire directly followed by the units 
corresponding to Fido, then the units for the bitten role fire 
directly followed by the units for Brian.  A system that is 
sensitive to couplets (or pairs) of activation can use this 
information to represent the bindings of Fido to the biter 
role and Brian to the bitten role.  As a result, DORA (as 
opposed to LISA) uses the same pool of semantic units to 
represent both predicates and objects (Doumas & Hummel, 
2005). 

DORA uses comparison-based intersection discovery to 
isolate and explicitly predicate the shared properties of 
compared objects and to bind these new predicates to fillers 
to form bound role-filler pairs.  DORA can then learn whole 
relational representations by joining sets of role-filler pairs 
(see Doumas & Hummel, 2005; Doumas et al., submitted).   

DORA provides an account for a number of empirical 
phenomena including the discovery of relational 
representations that support analogical thinking (i.e., 
representations that are both structure sensitive and 
semantically rich), children and adult’s learning of 
dimensions and relational representations, the role of 
comparison and progressive alignment in relation learning, 
and the shape bias observed in early childhood 
categorization (see Doumas & Hummel, 2005; Doumas et 
al., submitted; Hummel & Doumas, 2005).  DORA is a 
model of reflective reasoning, however, as noted by 
Hummel and Choplin (2000), the representational structure 
of LISA (and, by extension, DORA) provides an interesting 
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starting point for an account of reflexive reasoning as well.  
In both DORA and LISA, propositions are retrieved into 
WM from LTM via a form of guided pattern matching. 
During retrieval and comparison, propositions are divided 
into two mutually exclusive sets: a driver and one or more 
recipients.  Comparison is controlled by the driver. 

As a proposition in the driver becomes active, it 
generates a systematic pattern of activation on the semantic 
units.  During retrieval, propositions in LTM are allowed to 
respond to this activation pattern via their shared semantic 
connections.  For example, if the proposition bites (Fido, 
Brian) becomes active in the driver, units encoding biter 
will become active, followed by units encoding Brian, and 
so forth.  As each PO unit becomes active, it activates a 
subset of the propositions in LTM (those with shared 
semantics).  As propositions in LTM become active in 
response to patterns of activation imposed by units in the 
driver, they will themselves feed-back activation to the 
semantic units.  For example, as Fido becomes active in the 
driver, it might activate other propositions about dogs in 
LTM (recall that Fido is a dog).  These propositions will, in 
turn, pass activation to any semantic units to which they are 
connected.  The basic idea is to use the feedback from 
structures in LTM (including both general schemas and 
specific situations) to reflexively infer additional semantic 
content of predicates and objects in the driver.  As a PO in 
the driver becomes active and excites a set of propositions 
in LTM, the semantics that are activated by those LTM 
representations can be inferred about the PO in the driver.   

Consider a minimal case where Fido in the bite (Fido, 
Brian) proposition was connected only to the semantic unit 
“dog” (i.e., all DORA knows about Fido is that it is a dog).  
When the biter role becomes active it activates a subset of 
propositions in LTM about biting, and when Fido becomes 
active, it activates propositions about dogs.  The result is a 
set of active propositions in LTM about biting dogs, which 
activate a set of semantics connected to biting dogs.  These 
semantics can then be inferred about Fido (i.e., connected to 
the Fido PO via simple Hebbian learning).  The result is a 
set of features of biting dogs reflexively inferred about an 
object based on its relational context.   

However, in order for this form of reflexive inference to 
work, the amount of activation that propositions in LTM can 
pass to semantic units must be limited.  The reason is that, 
left unchecked, spreading activation will simply activate all 
propositions in LTM.1  There are a number of ways to limit 
the spreading activation that results during reflexive 
inference.  One simple way, and one often imposed by the 
constraints of the task at hand, is to use time.  Often we 
simply do not have the time to allow runaway activation 
because we must make inferences quickly.  Another way to 
limit the effects of spreading activation is to tier or grade the 
effect that LTM propositions have on the activation of the 
                                                 
1 In short, as a result of one set of LTM propositions becoming active and 
then activation their semantics, a new set of LTM propositions (those that 
shared some semantic overlap with the active propositions) will become 
active, and so forth. 

semantics.  For example, during reflexive inference the 
activation of semantics can be graded as a function of when 
they became active: Semantics that become active earlier 
have more of an effect than semantics that become active 
later during inference.  In DORA this is accomplished by 
scaling the activation of semantic units by an inverse 
exponential function of the iteration they become active (i.e., 
scaled(ai) = aie-t, where ai is the activation of semantic unit i, 
scaled(ai) is the scaled activation of unit i, and t is the time 
that unit i became active).  There is evidence for this type of 
graded spreading activation from the literature on memory 
(e.g., Anderson, 1974).   

We are not claiming that either of these methods is the 
only form of limiting activation spread during reflexive 
inference (the two are, after all, not mutually exclusive).  
We are simply using these methods as a demonstration that 
it is that not difficult to avoid the spreading activation 
problem that arises during reflexive inference, in a network 
like DORA.  What is interesting is that this account of 
reflexive reasoning arises from the same processes and 
representations that underlie DORA’s account of explicitly 
reflective processes like analogy, relation discovery, and 
relational inference.   

Below, we use DORA’s reflexive inference algorithm 
to simulate subjects N400 ERP responses.  Because the N 
400 response occurs between 300-500ms after the onset of 
the stimulus, there is only a short amount of time during 
which reflexive inference can occur.  

 
Simulations 

Bassok and her colleagues (e.g., Bassok et al., 1998) 
have demonstrated that people are sensitive to the fit 
between a mathematical operation and the elements upon 
which the operation is performed.  For example, people are 
happy to add cars and trucks but refrain from adding cars 
and mechanics.  Similarly, people are much happier 
dividing cars among mechanics then cars among trucks.  
Such “semantic alignments” make sense in light of the fact 
that people frequently apply arithmetic operations to solve 
real world problems (Bassok et al., 1998).  Guthormsen and 
colleagues (2004) used ERP methodology to test the fluency 
of such alignments. Subjects watched aligned and 
misaligned addition or division “applied” problems, such as 
8 roses + 9 daises, flash across a computer screen in 
sequence.  For example, a subject would see the number 8, 
followed by the word roses, followed by +, followed by the 
number 9, followed by the word daisies (each number, word, 
or symbol was presented for 650ms).  The subject’s task 
was to solve the problem and generate a numerical answer 
with an object label.  The ERP recording was locked to the 
second (target) word.  

Guthormsen and colleagues (2004) found that the N400 
magnitude was significantly larger for target words that 
created misaligned problems than for those that created 
aligned problems. This pattern of brain responses is similar 
(in its polarity, timing, and scalp distribution) to that 
observed in language comprehension, when people integrate 
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the meaning of consecutive words in a sentence; it is 
commonly referred to as the N400 effect (Kutas & Hilyard, 
1980). That is, presented with a word that does not fit the 
mathematical operation (e.g., baskets in: 5 apples + 3 
baskets), subjects demonstrated the same neural response 
that is observed when people encounter words that are 
difficult to integrate in a sentence (e.g., shoes in “he drove 
to the shoes”). These findings provide strong evidence that 
people integrate mathematical and conceptual knowledge in 
“real time,” while reading the problem.   

Our goal was to simulate the effects observed by 
Guthormsen et al. (2004) using DORA’s reflexive inference 
algorithm.  We constructed DORA’s LTM (i.e., the 
knowledge structures that would drive reflexive inference) 
to reflect the fact that people learn and use mathematics in 
the context of solving real-world problems. To this end, we 
randomly selected 22 addition and 22 division word 
problems constructed by undergraduates in a different study 
(Reaume & Bassok, 2005). In that study, students were 
presented with simple addition or division arithmetic 
problems (e.g., 2 + 7 = 9; 12 / 3 = 4, respectively) and asked 
to generate corresponding word problems. An example of an 
addition word problem is: “You have 2 oranges and 7 apples, 
how many fruit do you have in all?” An example of a 
division word problems is: “Johnny has 12 puppies and 
wants to put them in 3 baskets, how many puppies should he 
put in each basket?” These word problems reflected 
people’s experience with real world situations in which 
simple arithmetic operations might be used, and with word 
problems they encountered in school.  

To construct DORA’s LTM, we first listed the objects 
involved in the mathematical operations (i.e., what was 
being added/divided).  Then, we had two undergraduate 
research assistants create lists of features describing each of 
these objects.  Each of the 44 word problems (22 addition 
and 22 division) was input into DORA’s LTM as a single 
proposition (see Figure 2).  Each proposition consisted of 
the objects involved in the mathematical operation (e.g., 
added (roses, tulips), divided (apples, baskets)).  Each object 
was attached to the features the undergraduate coders had 
used to describe it.  Each mathematical operation was tied to 
semantics describing the operation itself (i.e., “division”, 
“dividend”, “divisor”).   

 

 
Figure 2.  Example of a proposition in DORA’s LTM. 
 

To simulate a trial in Guthormsen et al.’s (2004) 
experiment we presented DORA with one of the words in its 
LTM (i.e., a word it knew) by placing a representation of 
that word in the driver as a PO unit attached to a single 
semantic unit (the semantic unit named the object; e.g., if 
the word was “apple” the PO unit was attached to the 
semantic “apple”).  This corresponded to the first word 
subjects in Guthormsen et al.’s (2004) experiment saw.  We 
then allowed DORA’s reflexive inference algorithm to run 
by allowing the PO in the driver to activate propositions in 
LTM, and allowing these propositions to feedback 
activation to the semantics (see Figure 3a).  For example, if 
the word was “apple”, a PO attached to the semantic “apple” 
was activated in the driver, it began to activate propositions 
in LTM about apples.  We then placed a representation of 
either addition or division in the driver. 2   Addition was 
represented by a PO unit attached to the semantics, 
“addition”, “addend1”, and “addend2”, and division by a PO 
unit attached to the semantics, “division”, “dividend”, and 
“divisor”.  Of course we are not claiming that these are the 
“right” semantic primitives of the relations addition and 
division.  Rather, our claim is that relations and their roles 
are coded by distributed sets of features. The labels we 
attach to these features are arbitrary and mean nothing to 
DORA.  They are only used to help interpret the model’s 
behavior. 

Again, we allowed DORA’s reflexive inference 
algorithm to run by allowing the PO in the driver to activate 
propositions in LTM, and allowing these propositions to 
feedback activation to the semantics (Figure 3b).  For 
example, when the addition semantics became active they 
began to activate propositons in DORA’s LTM about 
addition.  As a result of activating the initial word 
representation (e.g., apple), and the representation of the 
mathematical operation (e.g., addition) propositions in LTM 
about performing the given mathematical operation on the 
object tended to become most active, and thus activate 
semantics about objects that commonly entered the specific 
mathematical operation with the specific object.  Continuing 
our example, if apple was activated followed by addition, 
then propositions about adding apples tended to become 
active in LTM, which tended to activate the semantic 
features of objects that were frequently added to apples 
(namely, “fruit”).   

We used the set of semantics that had become active as 
a measure of what DORA expected to see when the second 
word appeared.  The second word was also a word from 
DORA’s LTM (i.e., one it already knew).  The difference 
between the semantics that had become active during 
reflexive inference and the semantics of the second word 
was used as a measure of DORA’s “surprise” given the 

                                                 
2 We did not present DORA with numbers on these trials because it was 
not our goal to simulate the mathematical reasoning subjects performed.  
Rather, we were concerned with whether DORA’s reflexive inference 
algorithm would lead it to expect a certain semantic category given a 
semantic prime (a word) and a specific mathematical operation (addition or 
division). 
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second word.  The less over-lap between the semantics that 
had become active by reflexive reasoning and the second 
word, the greater the “surprise”.   

Just like the subjects in Guthormsen et al.’s experiment 
DORA demonstrated greater surprise for mathematical 
problem where the elements did not fit with the 
mathematical operation (e.g., when apples were added to 
baskets).  Just as Guthormsen et al.’s subjects showed a 
significantly higher N400 response (i.e., between 300 and 
500 ms) in response to a word that did not fit with the 
mathematical context than did subjects who were shown a 
word that did fit the mathematical context, DORA was more 
“surprised” by words that did not fit with a given 
mathematical context, than by words that did.  Specifically, 
when elements did not fit, only 8% of the semantic features 
attached to the second word were already active upon 
presentation.  However, when the second word did fit with 
the mathematical operation, 31% of the semantic features 
attached to the second word were already active upon 
presentation.  In other words, DORA reflexive inference 
algorithm predicted the words that did fit, but did not 
predict the words that did not. Exactly as we had hoped, 
DORA provides an encouraging beginning for 
understanding how a system built to model reflective 
processes might be extended to address the problems of 
reflexive inference.   
 

Discussion 
Using simple operations that were already in place for 

the purposes of reflective reasoning, DORA has been able to 
account for the reflexive reasoning phenomena observed by 
Guthormsen and colleagues (2004).  When DORA’s LTM 
consists of math word problems generated by undergraduate 

students, DORA reflects the same biases for the fit between 
mathematical problems and real world elements 
demonstrated by adult reasoners.  Just like the subjects in 
Guthormsen et al.’s experiment, DORA was more 
“surprised” when encountered mathematical word problems 
where the elements did not fit naturally with the 
mathematical operation, then when it encountered word 
problems where the elements did fit naturally with the 
mathematical operation.  This suggests that the symbolic-
connectionist representational structure and the mapping 
based reflexive inference routines that DORA performs in 
the service of reflective tasks like analogical mapping, 
memory retrieval, and relation discovery might provide the 
beginnings of an account of reflexive inference as well.  At 
the very least DORA, following from Hummel and 
Holyoak’s (1997, 2003) LISA model provides evidence that 
the same representational structures and basic processes 
might underlie and operate in the service of both reflective 
and reflexive reasoning process.   

As a theory of reflexive inference, however, DORA is 
far from complete.  We have demonstrated DORA’s ability 
to account for simpler reflexive inferences, but it is not clear 
whether DORA would scale up to account for more 
complex reflexive inference.  For example, as noted in the 
introduction, if you are told that Susan went to the movie 
theater you might infer she saw a movie.  If DORA’s LTM 
contained a number of propositions about seeing movies at 
movie theaters it might be able to infer that Susan saw a 
movie when she went to the theater, but it is not clear how 
DORA could reflexively infer structured propositions such 
as saw (Sally, movie) solely given feedback to semantic 
units from LTM.  However, DORA does suggests a 
promising starting point for investigating the requirements 
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that a representational system must meet in order to account 
for both reflective and reflexive inference.   
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