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ABSTRACT OF THE DISSERTATION

Computational Methods to Study Tandem Repeats in Human Genome and Complex
Diseases

by

Mehrdad Bakhtiari

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Vineet Bafna, Chair

A central goal in genomics is to identify genetic variations and their impact on underlying

molecular changes that lead to disease. With the advances in whole genome sequencing, many

studies have been able to identify thousands of genetic loci associated with human traits. These

studies mainly focus on single-nucleotide variants (SNVs) and novel insertion and deletions in

the genome, while ignoring more complex variants. Here, I consider the problem of genotyping

Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications of short

(6-100 bp) repeating units that span 3% of the human genome.

While some VNTRs are known to play a role in complex disorders (e.g. Alzheimer’s,
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Myoclonus epilepsy, and Diabetes), the majority of them have not been studied well due to com-

putational difficulty in genotyping VNTRs on a large scale. Here, I will present our progress on

developing efficient computational algorithms to profile VNTRs from high throughput sequencing

data and identify possible variations within them. I applied our method to generate the largest

catalog of VNTR genotypes to this date, which provides insights into the landscape of VNTR vari-

ations in different populations. I show the contribution of tandem repeats in mediating expression

levels of key genes with known associations to neurological disorders and familial cancers, and

argue the causality of this relation. Finally, I will describe our efforts to directly understand the

impact of these variations on human phenotypes, which improves our understanding of genetic

architecture of complex diseases.
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Chapter 1

Introduction

1.1 Overview

A central goal in genomics is to identify genetic variations and their impact on underlying

molecular changes that lead to disease. With the advances in whole genome sequencing, many

studies have been able to identify thousands of genetic loci associated with human traits. These

studies mainly focus on single-nucleotide variants (SNVs) and novel insertion and deletions in

the genome, while ignoring more complex variants. Here, I consider the problem of genotyping

Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications of short

(6-100 bp) repeating units, and study their impact on cell mechanism and human health.

1.2 Tandem Repeats

The human genome consists of millions of tandem repeats (TRs) of short nucleotide

sequences. These are often termed as Short Tandem Repeats (STRs) if the repeating unit is < 6bp,

and Variable Number Tandem Repeats (VNTRs) otherwise. Together, they represent one of the

largest sources of polymorphisms in humans[134, 51]. VNTRs span 3% of the human genome

1



and since they can be located in coding regions[107], untranslated regions[83], and regulatory

regions proximal to a gene[43, 129], the variation in length can have a significant functional

impact. Not surprisingly, VNTRs have been implicated in a large number of Mendelian diseases

that affect millions of people world-wide[17, 19, 72].

We define VNTR genotyping in the narrower sense of determining VNTR length (number

of repeating units). Most VNTRs are highly multi-allelic due to their variable nature. VNTRs

gain and lose repeat units at high rates due to polymerase slippage during DNA replication [27].

Due to this error prone replication process, VNTRs have been reported to have a genome-wide

average mutation rate of 10−5 [10], which is orders of magnitude higher than most other types of

de novo variations.

Despite the advent of sequence based genotyping, repetitive sequences continue to be

challenging for genomic analysis. For example, ‘stutter errors’ due to polymerase slippage during

PCR amplification change VNTR length and reduce genotyping accuracy[134]. For these reasons,

VNTRs have been largely missing from genome-wide studies due to technical challenges of

genotyping and the computational expense and the majority of the VNTRs have not been studied

well.

1.3 Contributions of this thesis

In this thesis, I present our work toward identifying VNTR variations in the human

genome and assessing their effect on human disease. In the following chapters, I will present

our progress on developing efficient computational algorithms to profile VNTRs from high

throughput sequencing data and identify possible variations within them. I applied our method

to generate the largest catalog of VNTR genotypes to this date, which provides insights into the

landscape of VNTR variations in different populations. I show the contribution of tandem repeats

in mediating expression levels of key genes with known associations to neurological disorders

2



and familial cancers, and argue the causality of this relation. Finally, I will describe our efforts

to directly understand the impact of these variations on human phenotypes, which improves our

understanding of genetic architecture of complex diseases.

1.3.1 Computational tools to genotype VNTR variations

Traditionally, VNTR genotyping required labor intensive gel-based screens which limited

the size of large population based studies of VNTRs [101]. Whole genome sequencing has

the potential to detect and genotype all types of genetic variation, including VNTRs. However,

computational identification of variation in VNTRs from sequence remains challenging. Existing

variant calling methods have been developed primarily to identify short sequence variants in

unique DNA sequences that fall into a reference versus alternate allele framework, which is not

well suited for detecting variation in VNTR sequences.

Chapter 2 describes the method we developed, adVNTR, an algorithm to identify VNTR

variations from high throughput sequencing data [10]. It utilizes a unique alignment strategy

by training locus-specific Hidden Markov Models (HMMs) for VNTR loci. Then, it finds the

number of repeats and possible point mutations within each VNTR locus using statistical learning

methods to account for possible sequencing noises.

1.3.2 Contribution of VNTR variations to gene expression mediation

With the lack of an efficient method for genotyping VNTRs, large-scale studies of VNTRs

and their association with gene expression have been limited when compared to other sources of

human variation such as SNPs and CNVs[11, 75, 22]. Therefore, ‘missing heritability’–the gap

between estimates of heritability, measured for example by twin studies[47, 138], and phenotypic

variation explained by genomic variation– remains a limitation for eQTL studies[85]. It has been

speculated that the inclusion of tandem repeats in association analyses may reduce this heritability

3



gap[56, 85, 17].

Chapter 3 assesses the impact of VNTR variations on gene expression levels and describes

our efforts to reduce heritability gap for genetic variations. With a robust method to leverage

high throughput sequencing data for studying VNTRs, we were in a position to do large scale

VNTR genotyping in more than 2000 individuals for the first time [9]. Subsequently, we identify

contributions of VNTRs on cell mechanisms and specifically mediating gene expression levels in

46 different cell tissues.

1.3.3 Case study of VNTR variation effects on Breast Cancer

For carriers of pathogenic BRCA1 or BRCA2 mutations (BRCA), the lifetime risk of

developing breast cancer (up to an 80% lifetime risk) is a six-fold increase over that of average

risk women and ovarian cancer risk (up to a 44% lifetime risk) is up to a 30-fold increase [68].

Despite higher average risk, penetrance is incomplete (not all carriers will develop cancer) and

age at cancer diagnosis varies. The variation in risk, even in identical mutation carriers, suggests

that modifier factors, both genetic and environmental, affect cancer risks[79].

Through genome-wide association studies (GWAS), single nucleotide polymorphisms

(SNPs) have been identified to better define those at higher and lower risk of developing breast

cancer (e.g., [24, 69, 89]). However, these modifier variants explain only a portion of the variation

in risk, particularly for women carrying BRCA1 mutations [93]. Identifying additional genetic

modifiers will facilitate better risk estimates for clinical decision-making on timing and options

for prevention. Chapter 4 presents a systematic, genome-wide investigation of the role of VNTRs

as the causal modifiers of breast cancer risk in BRCA1 and BRCA2 pathogenic mutation carriers.
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Chapter 2

Computational tools to genotype VNTR

variations

Whole Genome Sequencing is increasingly used to identify Mendelian variants in clinical

pipelines. These pipelines focus on single nucleotide variants (SNVs) and also structural variants,

while ignoring more complex repeat sequence variants. We consider the problem of genotyping

Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications of short

(6-100bp) repeating units. VNTRs span 3% of the human genome, are frequently present in

coding regions, and have been implicated in multiple Mendelian disorders. While existing tools

recognize VNTR carrying sequence, genotyping VNTRs (determining repeat unit count and

sequence variation) from whole genome sequenced reads remains challenging. We describe a

method, adVNTR, that uses Hidden Markov Models to model each VNTR, count repeat units, and

detect sequence variation. adVNTR models can be developed for short-read (Illumina) and single

molecule (PacBio) whole genome and exome sequencing, and show good results on multiple

simulated and real data sets.
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2.1 Introduction

Next Generation Sequencing (NGS) is increasingly used to identify disease causing

variants in clinical and diagnostic settings, but variant detection pipelines focus primarily on

single nucleotide variants (SNVs) and small indels and to a lesser extent on structural variants.

The human genome contains repeated sequences such as segmental duplications, short tandem

repeats, and minisatellites which pose challenges for alignment and variant calling tools. Hence,

these regions are typically ignored during analysis of NGS data. In particular, tandem repeats

correspond to locations where a short DNA sequence or Repeat Unit (RU) is repeated in tandem

multiple times. RUs of length less than 6bp are classified as Short Tandem Repeats (STRs), while

longer RUs spanning potentially hundreds of nucleotides are denoted as Variable Number Tandem

Repeats (VNTRs)[116, 139].

VNTRs span 3% of the human genome and are often found in coding regions where the

repeat unit length is a multiple of 3 resulting in tandem repeats in the amino acid sequence. More

than 1,200 VNTRs with a RU length of 10 or greater exist in the coding regions of the human

genome[126]. Compared to STRs, which have been extensively studied [53, 127, 84, 135, 29],

VNTRs have not received as much attention. Nevertheless, multiple studies have linked variation

in VNTRs with Mendelian diseases (e.g., Medullary cystic kidney disease[64], Myoclonus

epilepsy[72], and FSHD[78]) and complex disorders such as bipolar disorder (Table 2.1). In some

cases, the disease associated variants correspond to point mutations in the VNTR sequence [64,

107] while in other cases, changes in the number of tandem repeats (RU count) show a statistical

association (or causal relationship) with disease risk. For example, the insulin gene (INS) VNTR

has an RU length of 14 bp with RU count varying from 26 to 200[104]. Variation in this VNTR

has been associated with expression of the INS gene and risk for type 1 diabetes (OR = 2.2) [32].

Notwithstanding these examples, the advent of genome-wide SNP genotyping arrays led to

VNTRs being largely ignored. They have been called ‘the forgotten polymorphisms’[17].
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VNTRs were originally used as markers for linkage mapping since they are highly poly-

morphic with respect to the number of tandem repeats at a given VNTR locus[42]. Traditionally,

VNTR genotyping required labor intensive gel-based screens which limited the size of large pop-

ulation based studies of VNTRs [101]. Whole genome sequencing has the potential to detect and

genotype all types of genetic variation, including VNTRs. However, computational identification

of variation in VNTRs from sequence remains challenging. Existing variant calling methods have

been developed primarily to identify short sequence variants in unique DNA sequences that fall

into a reference versus alternate allele framework, which is not well suited for detecting variation

in VNTR sequences.

Genotyping VNTRs in a donor genome sequenced using short (Illumina) or longer single

molecule reads, requires the following: (a) recruitment of reads containing the VNTR sequence;

(b) counting RUs for each of the two haplotypes; (c) identification of indels within VNTRs; and

(d) identification of mutations within the VNTR. Mapping tools such as BWA[82] and Bowtie

2[74] can work for read recruitment for STRs, but are challenged by insertion/deletion of larger

repeat units. Mapping issues also confound existing variant callers, including realignment tools

such as GATK IndelRealigner[26] if the total VNTR length is larger than the read length. This is

Table 2.1: Disease-linked VNTRs are generally distinguished from STRs by a longer length (≥ 6) of
the repeating unit. ‘M’ denotes Mendelian inheritance, while ‘A’ represents possibly complex inheritance
captured via Association. As it is difficult to genotype VNTRs, most cases have been determined via
association, but the inheritance mode could be high penetrance.

Gene Chr Unit Number of units Annotation Inheritance Disease
len Normal Pathogenic

PER3 1 54 4 5 coding A Bipolar disorder[12]
MUC1 1 60 11-12 single insertion coding M MCKD1[64]
IL1RN 2 86 3-6 2 intron A Stroke, CAD[137]
DUX4 4 3.3kb 11-100 1-10 M FSHD[78]
DAT1 5 44 7-11 10 (ADHD) UTR A ADHD, Parkinson’s[40, 65]
MUC21 6 45 26-27 4 bp deletion coding A Diffuse panbronchiolitis (DPB)[58]
CEL 9 33 11-21 single deletion coding M Monogenic diabetes[107]
INS 11 14-15 26-200 26-44 (T1D) promoter A T1D;T2D;Obesity[104, 32]
DRD4 11 48 2-11 7 coding A OCD, ADHD[71, 130]
ACAN 15 57 27-33 13-25 coding A Osteochondritis dissecans[37]
ZFHX3 16 12 4-5 coding A Kawasaki
GP1BA 17 39 1-4 2/3 genotype coding A ATF in Stroke[20]
SLC6A4 17 16-17 9/10/12 intron A BPSD, Alzheimer’s[55, 103]
SLC6A4 17 22 14 16 (OCD) promoter A OCD,Anxiety, Schizophrenia[55]
HIC1 17 70 1-4 5+/5+ promoter A Metastatic Colorectal Cancer[100]
MMP9 20 12 5-6 coding A Kawasaki
CSTB 21 12 2-3 12+ 5’UTR M Progressive myoclonic epilepsy 1A[72]
MAOA X 30 2-5 4 promoter A Bipolar disorder[18]
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because reads contained within the VNTR sequence have multiple equally likely mappings and

therefore will be mapped randomly to different locations with low mapping quality

citeKirby2013. Detection of point mutations in long VNTRs requires integrating information

across the entire VNTR sequence. For VNTRs whose total sequence length (RU count times

the RU length) is much longer than the read length, detection of SNVs and indels is not feasible

using existing variant callers. We focus mainly on problems (a,b) relating to recruitment and

RU counting. For problem (c), we focus on difficult case of large (≥ 250bp) VNTRs within

coding regions where the indel shifts the translation frame. We do not tackle problem (d) in this

manuscript.

Other tools have addressed the problem of RU count estimation, focusing on the related

problem of STR genotyping. Some of these tools do not accept large repeating patterns as

input [135, 84]. Others require all repeat units to be near-identical[29, 127]. In particular,

ExpansionHunter[29] looks for exact matches of short repeating sequence within flanking unique

sequences, and works for STRs, but not as well with the larger VNTRs with variations in RUs

(Results). VNTRseek[42] detects a VNTR-like pattern in reads and aligns it to tandem repeats,

but uses a complex alignment process making it difficult to run the tool. Alignment based tools

need to align reads at both unique ends, which may not be possible for short (Illumina) reads.

Single molecule reads (e.g., PacBio[36], Nanopore[23]) can span entire VNTR regions, but it is

difficult to estimate the RU count directly since the distance between the flanking regions varies

dramatically from read to read due to an excess of indel errors. For example, 14 reads spanning

the SLC6A4 VNTR in the in the PacBio sequencing data of NA12878 individual from Genome in

a Bottle[143] included fifteen distinct lengths between 292bp and 385bp, leading to length-based

RU count estimates 13, 14, 15, 16, and 18 for the diploid genome.

In contrast to methods like VNTRseek which seek to discover/identify VNTRs, we

describe a method, adVNTR, for genotyping VNTRs at targeted loci in a donor genome. For any

target VNTR in a donor, adVNTR reports an estimate of RU counts and point mutations within
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the RUs. It trains Hidden Markov Models (HMMs) for each target VNTR locus, which provide

the following advantages: (i) it is sufficient to match any portions of the unique flanking regions

for read alignment; (ii) it is easier to separate homopolymer runs from other indels helping with

frameshift detection, and to estimate RU counts even in the presence of indels; (iii) each VNTR

can be modeled individually, and complex models can be constructed for VNTRs with complex

structure, along with VNTR specific confidence scores. For longer VNTRs not spanned by short

reads, adVNTR can still be used to detect indels, while providing lower bounds on RU counts.

Also, exact estimates for RU counts could be made for shorter VNTRs. Using simulated data

as well as whole-genome sequence data for a number of human individuals, we demonstrate the

power of adVNTR to genotype VNTR loci in the human genome.

2.2 Method

A VNTR sequence can be represented as SR1R2 . . .RuP, where S and P are the unique

flanking regions, and Ri(1≤ i≤ u) correspond to the tandem repeats. For each i, j, Ri is similar

in sequence to R j, and the number of occurrences, u, is denoted as the RU count. We do not

impose a length restriction on S and P, but assume that they are long enough to be unique in

the genome. For genotyping a VNTR in a donor genome, we focus primarily on estimating

the diploid RU counts (u1,u2). However, many (∼ 103) VNTRs occur in coding regions, and

mutations, particularly frameshift causing indels, are also relevant. Our method, adVNTR, models

the problems of RU counting and mutation detection using HMMs trained for each target VNTR.

adVNTR requires a one-time training of models for each combination of a VNTR and sequencing

technology, although the user has the option to retrain models. Once models are trained, it has

three stages for genotyping: (i) Read recruitment; (ii) RU count estimation; and, (iii) variant

(indel) detection. We describe the training procedure and the three modules below.
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2.2.1 HMM Training.

The goal of training is to estimate model parameters for each VNTR and each sequencing

technology. Previous works have shown that an HMM with three groups of states could be used

to find similarities between biological sequences [34]. In this model, a profile-HMMs can model

a groups of sequences. Then, a new sequence can be aligned to a profile HMM to discover

sequence family[66]. We use an HMM architecture with three parts, which have their own three

groups of states (Fig. 2.1). The first part matches the 5’ (left) flanking region of the VNTR.

Figure 2.1: The VNTR HMM. The HMM is composed of 3 profile HMMs, one each for the left and
right flanking unique regions, and one in the middle to match multiple and partial numbers of RUs. The
special states Us (‘Unit-Start’), and Ue (‘Unit-End’) are used for RU counting. Dotted lines refer to
special transitions for partial reads that do not span the entire region.

The second part is an HMM which matches an arbitrary number of (approximately identical)

repeating units. The last part matches the 3’ (right) flanking region (Fig. A.1). The RU pattern

is matched with a profile HMM (RU HMM), with states for matches, deletions, and insertions,

and its model parameters are trained first. To train RU HMM for each VNTR, we collected RU

sequences from the reference assembly[73] and performed a multiple sequence alignment[35].

Let h(i, j) denote the number of observed transitions from state i to state j in hidden path of

each sequence in multiple alignment, and hi(α) denote the number of emissions of α in state i.

We define permissible transition (arrows in Fig. 2.1) and match-state emission probabilities as

10



follows:

T (i, j) =
h(i, j)+b0

∑i→l(h(i, l)+b0)
, Ei(α) =

hi(α)+b1

∑α′(hi(α′)+b1)
for α,α′ ∈ {A,C,G,T}.

Non-permissible transitions have probability 0, and hi(α) = 1/4 for insert state i and 0 for

deletions. The pseudocounts b0 and b1 were estimated by initially setting them to the error rate

of the sequencing technology, but they (along with other model parameters) were updated after

aligning Illumina or PacBio reads to the model. The RU HMM architecture was augmented by

adding (a) transitions from Ue to Us to allow matching of variable number of RU; (b) adding

the HMMs for the matching of any portions of left and right flanking sequences; and (c) by

adding transitions to match reads that match either the left flanking or the right flanking region.

In addition, reads anchored to one of the unique regions can jump past the other HMM using

dotted arrows.

While error correction tools for PacBio have been developed, most do not work for repeti-

tive regions,[54, 111, 7, 91, 77, 92] and others assume a single haplotype for error correction[112,

14]. In contrast, the HMM allows us to model many of the common (homopolymer) errors directly.

Insertion deletion errors are common in single molecule sequencing particularly in homopolymer

runs of length ≥ 6, and occur mostly as insertions in the homopolymer run[21]. Consider a

match state i with highest emission probability for nucleotide α. The transition probability T (i, i)

from a match state i to itself was set based on the match probabilities of α in previous k = 6

states. The model parameters were further updated using genome sequencing data of NA12878

(Supplementary Material A.1).

2.2.2 Read Recruitment.

The first step in adVNTR is to recruit all reads that match a portion of the VNTR sequence.

Alignment-based methods do not work well due to changes in RU counts (See Results), but the
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adVNTR HMM allows for variable RU count. To speed up recruitment, we used an Aho-Corasick

keyword matching algorithm available as part of the BLAST package[4] to identify all reads

that match a keyword from the VNTR patterns or the flanking regions. Note that the dictionary

construction is a one-time process, and all reads must be scanned once for filtering. The keyword

size and number of keywords were empirically chosen for each VNTR. Filtered reads were

aligned to the HMM using the Viterbi algorithm. Only reads with matching probability higher

than a specified threshold were retained. To compute the selection threshold for each VNTR, we

aligned non-target genomic sequences that passed the keyword matching step to the HMM to

form an empirical false distribution. Subsequently, we aligned VNTR encoding sequences to

the HMM to form the score distribution of true reads. Then, we used a Naı̈ve Bayes classifier to

select a threshold.

2.2.3 Estimating VNTR RU Counts.

All reads covering an RU element are aligned, or ‘matched’ to the HMM using the Viterbi

algorithm to create, in effect, a new multiple alignment. Recalling the Viterbi algorithm, let

Vk, j denote the highest (log) probability of emitting the first k letters of the sequence s1,s2, . . .sn

and ending in state j of an HMM. Let, Prevk, j denote the state j′ immediately prior to j in this

optimum parse. Then,

Vk, j = max
j′
{Vk′, j + logT ( j′, j)+ logE j(sk)}, (2.1)

Prevk, j = argmax
j′
{Vk′, j + logT ( j′, j)+ logE j(sk)}, (2.2)

where, k′ = k−1 for match or insert states; k′ = k otherwise. For each read, the Viterbi algorithm

allows for the enumeration of the maximum likelihood (ML) path by going backwards from

Prev(End,n). Ignoring all but the Us and Ue states in the Viterbi path, we get a pattern of the

form Uk1
e (UsUe)

k2Uk3
s with k1,k3 ∈ {0,1}, and k2 ≥ 0. We estimate the RU count of the read as
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k1 + k2 + k3, and mark it as a lower bound if k1 + k3 > 0 (see Fig. 2.2 for an example).

Figure 2.2: Estimates of RU counts using recruited reads. (A) (k1,k2,k3) = (1,3,1); RU count ≥ 5.
(B) (k1,k2,k3) = (0,3,1); RU count ≥ 4 (C) (k1,k2,k3) = (0,3,0); RU count = 3.

One of the main reasons for erroneous RU counts is stutter during PCR amplification.

The PCR amplification process is similar to replication errors that result on genetic RU count

variation during cell-division, except that there are multiple rounds of amplification. In each PCR

round, the number of copies might change by 1 with some probability. Once a single event has

occurred and an erroneous template is generated, the event of having another change is likely to

be independent of the previous event[50]. To model errors in read counts, we define parameter rε

s.t. r∆
ε is the probability of RU counting error by ±∆ in the estimation of the true count. Thus the

probability of getting the correct count is 1− r, where

r = 2(rε + r2
ε + r3

ε + . . .) =
2rε

1− rε

The analysis of reads at a VNTR gives us a multi-set of RU counts (or lower bounds) c1,c2, . . . ,cn.

We assume that the donor genome is diploid but do not require any phasing information in the

computation of the multi-set. Additionally, we allow the possibility that all reads are sampled

from one haplotype with the RU count of the missing haplotype being X . We define C =

{c1,c2, . . . ,cn}∪{X} and use C to get a list of possible genotypes (ci,c j) with ci ≤ c j. Then, the
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conditional likelihood of a read with RU count c is given by:

Pr(RU = c|(ci,c j)) =



1− r c = ci = c j

1
2((1− r)+ r|c−c j|

ε ) c = ci

1
2((1− r)+ r|c−ci|

ε ) c = c j

1
2(r
|c−c j|
ε + r|c−c j|

ε ) c 6= ci,c 6= c j

(1
2)(1− r) c = ci,c j = X

Similarly, the likelihood of a read with a lower bound c on the RU count is given by:

Pr(RU ≥ c|(ci,c j)) =


(1− r) c≤ ci

1
2(1− r) ci < c≤ c j

r c > c j

The likelihood of the data C is given by ∏ck∈C Pr(ck|(ci,c j)). The posterior genotype probabilities

can be computed using Bayes’ theorem:

Pr((ci,c j)|C) =
Pr(C|(ci,c j))Pr((ci,c j))

∑ci′ ,c j′∈C Pr(C|(ci′,c j′))Pr((ci′,c j′))
(2.3)

We generally set equal priors. However, in the event that we only see reads with a single

count c′, we choose Pr((c′,c′)) = Pr((c′,X)) = 1
2 . The probability of ”missing haplotype” event

is modeled as a Bernoulli process since in genome sequencing, sampling from either chromosome

is done at random and so, the probability of not observing a halplotype in each read (failure) is

1/2. If we see multiple counts, we set Pr((c′,X)) = 0 for all c′ ∈C, and give equal priors to all

other genotypes.
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2.2.4 VNTR Mutation Detection.

It is not difficult to see that alignment based methods do not work well in VNTRs. Changes

in RU counts make it difficult to align reads even for mappers that allow split-reads, as the gaps in

different reads can be placed in different locations. A similar problem appears with small indels,

as there are multiple ways to align reads with an indel in a Repeat Unit. The adVNTR HMM

aligns all repeat units to the same HMM, and this has the effect of aligning all mutations/indels

in the same column. Consider the case where reads contain a total of v nucleotides matching a

VNTR RU of length `, and RU count u. Moreover at a specific position covered by d Repeats,

suppose we observe ι indel transitions.

For a true indel mutation, we expect u`
v fraction of transitions at a location to be an indel,

giving a likelihood of the observed data as Binom(d, ι, u`
v ). Alternatively, for a homopolymer run

of i > 0 nucleotides, let εi denote the per-nucleotide indel error rate. We modeled ε1 empirically in

non-VNTR, non-polymorphic regions and confirmed prior results that εi increases with increasing

i[87]. Thus, the likelihood of seeing ι indel transitions due to sequencing error in a homopolymer

run of length i is Binom(d, ι,εi). We scored an indel in the VNTR using the log-likelihood ratio

−2ln

(
Binomial(d, ι, u`

v )

Binomial(d, ι,εi)

)
, (2.4)

which follows a χ2 distribution. We select the indel if the nominal p-value is lower than 0.01.

Command line usage of adVNTR for RU count genotyping and frameshift identification

is available in Supplementary Material A.4.

2.3 Results

Our method, adVNTR, requires training of separate HMM models for each combination

of target VNTR and sequencing technologies. The detailed training procedure is described in
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Figure 2.3: Read recruitment quality on Illumina reads. (A) Comparison of the recall (# true
recruited reads/ # true reads) of adVNTR read recruitment against BWA-MEM and Bowtie 2, as a
function of VNTR length for 1775 VNTRs with different counts (31,788 tests). Each dot corresponds to
a separate test. (B) Precision (# true recruited reads/ # recruited reads) of read recruitment.

Methods. Given trained models, adVNTR genotypes the VNTRs in three stages: (i) Selection

of reads that contain VNTR locus (read recruitment); (ii) RU count estimation; and, (iii) variant

detection. We report results on performance of adVNTR in each of these stages using simulated

and read datasets based on short-read (Illumina) and single molecule (PacBio) technologies.

2.3.1 HMM training.

Initial HMMs were trained using multiple alignments of RU sequences from the reference

assembly hg19[73], as described in methods. Similarly, HMMs were trained for the left flanking

and right flanking regions for each VNTR. The HMM models were augmented using data

from Genome in a Bottle (GIAB) project (NA12878 WGS). VNTR models were trained for

VNTRs in coding and promoter regions of the genome, for both Illumina (1755 models) and

PacBio (2944 models; Supplementary Material A.2). Subsequently, we tested performance for (a)

read-recruitment, (b) counting of Repeat Units, and (c) detection of indels.
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2.3.2 Test Data.

To evaluate performance for PacBio, we simulated haplotypes for each of the 2944

VNTRs, revising the RU count to be ±3 of the RU count in hg19, and setting 1 as the minimum

RU count. We simulated haplotype reads (15× coverage) using SimLoRD[120] and aligned

those reads to hg19 using BLASR[21]. For Illumina sequencing, we used ART[60] to simulate

haplotype WGS (shotgun 150bp) reads at 15× coverage for each VNTR and simulated VNTR

haplotype with changes in RU counts similar to PacBio. Pairs of haplotypes were merged to get

(30× coverage) diploid samples. The resulting data-sets were called PacBioSim and IlluminaSim,

respectively (Supplementary Material A.3, Table A.1). To evaluate performance of frameshift

identification, we collected a set of 115 VNTRs (Supplementary Material A.2). For each VNTR,

we simulated haplotypes that contain a deletion or an insertion in the VNTR (Supplementary

Material A.3). We simulated reads from each of these haplotypes and merged pairs of halpotypes

to obtain diploid samples. We denote this data-set as IlluminaFrameshift.

2.3.3 Read recruitment.

adVNTR takes a collection of VNTR models as input, and as a first step, recruits reads that

map to any of the VNTRs in the list. In testing recruitment for PacBio, we found that alignment

tools such as BLASR perform well in recruiting VNTR reads even in the presence of deletions

and insertions and used BLASR for all read recruitment. For Illumina reads, we tested adVNTR

read-recruitment for all 1775 VNTRs using IlluminaSim, and compared against mapping tools

BWA-MEM, Bowtie 2, and BLAST. adVNTR achieves much greater recall while maintaining

or exceeding the precision of other tools (Fig. 2.3 and Fig. A.3). Specifically, adVNTR recall

was 100% for 99.9% of the VNTRs, whereas the next best tool (BWA-MEM) achieved this only

for 68.2% of the VNTRs. The other mapping tools lose mapping sensitivity when RU counts

are increased or decreased (large indels), and perform best when the RU counts are the same as
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reference (Fig. A.2A-C), partially explaining their lower recall.

2.3.4 VNTR genotyping using PacBio reads.

Recall that sequencing (particularly homopolymer) errors can cause lengths to change,

particularly for short RU lengths and larger RU counts. To test adVNTR performance on

PacBioSim, we compared against a naı̈ve method that estimates RU counts based on read length

between the flanking regions from the consensus of reads that cover VNTR. Detailed performance

on three exemplars (INS, CSTB, and HIC1) gene showed high genotype accuracy for adVNTR

over a wide range of RU counts, and coverage (Fig. 2.4A. Similar results were obtained for all

2944 VNTRs (Fig. 2.4B). Overall, 98.45% of adVNTR estimates were correct while 26.45%

of estimates made by naı̈ve method were correct. As it is difficult for the naı̈ve mthod to call

heterozygotes, we also compared on the subset of test data with homozygous RU counts. 97.95%

of adVNTR estimates were correct, while the consensus method was correct in 66.16% of samples

(Fig. A.4). adVNTR estimates were uniformly good except at low sequence coverage. To test for

accuracy with changing RU counts, we simulated different RU counts for individuals at 3 VNTRs

(Table A.4). adVNTR RU counts showed 100% accuracy in each of the 52 different samples

tested.

To test performance on real data where the true VNTR genotype was not known, we

checked for Mendelian inheritance consistency in the AJ trio from Genome in a Bottle (GIAB)[143]

and a Chinese Han trio from NCBI SRA (accession PRJEB12236). On four disease related VN-

TRs, adVNTR predictions were consistent in each case (Fig. 2.4C). On the 2944 genic VNTRs,

the trio consistency of adVNTR calls was correlated with coverage. At a posterior probability

threshold of 0.99, 86.98% of the calls in the AJ trio, and 97.08% of the calls in the Chinese

trio, were consistent with Mendelian inheritance (Fig.2.4E). Many of the discrepancies could be

attributed to low coverage and missing data. Increasing sequence coverage threshold from 5× to

10× increased the average posterior probability from 0.91 to 0.98 and resulted in improved RU
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Results on Simulated Data

Results on Real Data
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Figure 2.4: VNTR genotyping using sequencing PacBio data. (A) RU count estimation on simulated
PacBio reads as a function of RU count and coverage for 3 medically relevant VNTRs: INS (RU length
14bp), CSTB (12 bp), and HIC1 (70bp). adVNTR performance is compared to a naı̈ve method. (B) The
effect of RU length on count accuracy over 2944 VNTRs (30418 tests). (C) Mendelian consistency of
genotypes at 4 VNTR loci in the Chinese Han and Ashkenazi trios. Note that MAOA results are consistent
with its location on Chr X. (D) LR-PCR based validation of genotypes at 5 disease-linked VNTRs
in NA12878. Red arrow correspond to VNTR lengths estimated by multiplying predicted RU
counts with RU lengths. (E) Fraction of consistent calls and number of calls across 2944 VNTRs
in AJ and Chinese trios from GIAB and NCBI-SRA. (F) Fraction of consistent calls allowing
for off-by-one errors.
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count accuracy (Fig. A.5). Also, many of these discrepancies in RU counts were off-by-one errors

(Fig. A.6). These off-by-one discrepancies could be acceptable for Mendelian disease testing as

the pathogenic cases often have large changes in RU counts. Treating the off by one counts as

correct, we found that 98.66% and 99.91% of the high confidence calls in AJ and Chinese trios,

respectively, were consistent (Fig.2.4F). Finally, some of the off-by-one counts could be natural

genetic variation.

We also performed a long range (LR)PCR experiment on the individual NA12878 to

assess the accuracy of the adVNTR genotypes using PacBio data (Table A.2 and Table A.3). The

observed PCR product lengths (black bands in Fig. 2.4D) were consistent with the adVNTR

predictions (red arrows), while being different from the hg19 reference RU count. adVNTR

correctly predicted all VNTRs to be heterozygous with the exception of SLC6A4, that was

predicted to be homozygous.

While we could not get the VNTR discovery tool VNTRseek[42] to run on our machine

(personal communication), we observed that the authors had predicted 125 VNTRs in the Watson

sequenced genome[133], and 75 VNTRs in two trios as being polymorphic. In contrast, analysis

of the PacBio sequencing data identified >500 examples of polymorphic VNTRs that overlap

with coding regions. The results suggest that variation in RU counts of VNTRs and their role in

influencing phenotypes might be greater than previously estimated.

2.3.5 VNTR genotyping using Illumina.

The adVNTR estimate correctly matched both RU counts in 91.6% of the cases in the

IlluminaSim dataset (1775 VNTRs with up to 21 diploid RU counts each) and matched at least

one RU count in 97% of the cases (Fig. 2.5A,B). Most of the discrepancies occurred in VNTRs

with longer lengths not covered by Illumina reads (Fig. 2.5C,D). While there was a drop in

accuracy for increasing lengths, 84% of the genic VNTRs are shorter than 150bp, and could be

genotyped with 94.6% accuracy. Tools such as VNTRseek require at least 20bp flanking each
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Figure 2.5: VNTR genotyping using Illumina sequencing data. (A-D) Correctness of RU count
prediction for 1775 coding VNTRs in the IlluminaSim dataset, described by (A) RU count dscrepancy,
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(E) Consistency of adVNTR calls on the AJ trio WGS data from GIAB. Red line describes the cumulative
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adVNTR calls on 5 short VNTRs using WGS of individual NA12878 from GIAB. Red arrows correspond
to VNTR lengths estimated by multiplying the RU lengths with the estimated RU counts.
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side of the VNTR and do not return a result for VNTRs with total length greater than 110bp,

while adVNTR could predict the genotype correctly in a majority of those cases (Supplementary

Material A.5). ExpansionHunter, a tool designed primarily for STR genotyping [29] provided

incorrect estimates in over 90% cases from this data-set (Fig. A.7). ExpansionHunter makes the

assumption that the different RUs are mostly identical in sequence which is valid for STRs but

not for most VNTRs, and we tested this through 52 samples on three VNTRs. adVNTR predicted

the correct genotype in all but 6 cases, with erroneous calls only in the case of high RU counts

where the read length did not span the VNTR perfectly, while ExpansionHunter did not return the

correct estimate in most cases (Table A.4).

On the AJ trio from GIAB, 98.08% of the high confidence adVNTR calls were consistent

with Mendelian inheritance (Fig. 2.5E). Note that 95.93% of all calls were high confidence (pos-

terior probability ≥ 0.99). We validated adVNTR calls on 12 VNTRs using Gel electrophoresis

(Table A.3). adVNTR predicted the correct RU counts in all cases, except in two cases where

the PCR primers failed to produce a band (Fig. 2.5F, A.8). We also compared adVNTR against

ExpansionHunter on 7 disease related short VNTRs in the AJ trio and obtained similar results

(Table A.5).

To test adVNTR for population-scale studies of VNTR genotypes using WGS data

replacing labor intensive gel electrophoresis[18, 20], we scanned the PCR-free WGS data for

150 individuals (50 in each population) obtained from 1000 genomes project[124]. We observed

population specific RU counts (frequency difference > 10%) in 97 of 202 VNTRs tested (Table

S7). Fig. 2.6 shows the RU count frequencies for a disease-linked VNTR in the coding region of

CSTB and a coding VNTR in CCDC66. The results suggest an increase in VNTRs with higher

RU counts with an increase in divergence time from Africa. Thus RU3 is more prevalent in both

VNTRs. We also observed RU4 in CSTB VNTR in the Asian and European populations, where

RU counts 4 and above have been associated with progressive myocolonal epilepsy [72].
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Figure 2.6: Population-scale genotyping of VNTRs. (A) RU count frequencies for the VNTR in
CCDC66 gene, and (B) CSTB in African, Asian, and European population samples from 1000 genomes
project. RU counts of 4 and higher in CSTB are associated with myoclonal epilepsy.

2.3.6 VNTR mutation/indel detection.

As a proof of concept for other applications, we tested indel detection, focusing in

particular on frameshifts in coding VNTRs. The CEL gene is known to contain a VNTR where a

deletion changes the coding frame. We simulated Illumina reads from 20 whole genomes after

introducing a single insertion or deletion in the middle of the VNTR region in the CEL gene.

As a negative control, we simulated 10 WGS experiments with a range of sequence coverage

values. We ran adVNTR, SAMtools mpileup[81], and GATK HaplotypeCaller[26] which uses

GATK IndelRealigner, to identify frameshifts in each of the simulated datasets, and the 10 control

datasets. On the control data, none of the tools found any variant. On the simulated indels,

adVNTR made the correct prediction in each case (Suppl. Table A.6), while SAMtools and GATK

were unable to predict a single insertion or deletion. This result is not surprising as the reads have

poor alignment scores, and the indel can be mapped to multiple locations (Suppl. Fig. A.9)[109].

We note that mapping ambiguity in aligning each read made it difficult to pinpoint the location

of single indel. However, by integrating the information across all reads, we could predict the

occrrence of a frameshift in the VNTR. We next tested adVNTR frameshift prediction on the 115

VNTRs in the IlluminaFrameshift dataset, simulating 4090 total cases. Overall, the frameshifts in

the VNTR regions were predicted with 51.7% sensitivity and 86.8% specificity, in contrast with
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the 49.7, 43.5% sensitivity, specificity achieved by GATK. Detailed performance of methods for

each VNTR is available in Table S7. Note that the performance is model specific and depends

upon the similarity of different Repeat Units in a VNTR. For 29 of the 115 VNTRs, adVNTR

showed high sensitivity (≥90%) and specificity (100%).

As frameshifts in the VNTR region of the CEL gene have been linked to a monogenic

form of diabetes[107], we tested for frameshifts in CEL using whole Exome sequencing (WES)

data from 2,081 cases with Type 2 Diabetes [41] and compared the numbers to 2,090 control

individuals. WES data analysis is challenging as high GC-content makes it difficult to PCR-

amplify this VNTR. adVNTR found that while none of the controls had any evidence of a

frameshift, 8 of the 2,081 diabetes cases showed a frameshift in this VNTR region (Suppl.

Fig. A.10).

2.3.7 Compute requirements for genotyping.

adVNTR is multi-threaded. In genotyping mapped PacBio reads at 30× coverage, ad-

VNTR took 6 hours using Intel Xeon(R) 4-core CPUs (≤ 24 CPU-hours) to genotype all 2944

VNTRs, and 14:15 hours (≤ 57 CPU-hours) for 70× coverage. For Illumina reads at 40× cov-

erage, adVNTR took 87:30 cpu-hours on a single core to complete read recruitment as well as

genotyping of 1775 VNTRs.

2.4 Discussion

The problem of genotyping VNTRs (determining diploid RU counts and mutations) is

increasingly important for clinical pipelines seeking to find the genetic mechanisms of Mendelian

disorders. As VNTRs have not been extensively studied, existing research is often focused on

their discovery. One of the contributions of this paper is the separation of initial VNTR discovery

from VNTR genotyping, and a focus on the genotyping problem. adVNTR genotypes VNTRs
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using a hidden markov model for each target VNTR, providing a uniform training framework, but

still allowing us to tailor the models for complex VNTRs on a case by case basis. The problem of

mismapping due to indels introduced by changing RU counts confounds most mapping based

tools, but is solved here by collapsing all RU copies and building HMMs that allow for variation

in the RUs. adVNTR was tested extensively on data from different sequencing technologies,

including Illumina and PacBio. As some of the data sets used were mapped only to hg19,

especially the 150 whole genome sequencing data set from the Polaris project, we decided to

use hg19 as the reference throughout, including simulations. Validation of the data used either

orthogonal information (e.g. trios or experiments), or simulations and would not be affected by

the use of GRCh38.

Like other STR genotyping tools, adVNTR works best when reads span the VNTR.

However, even with this limitation, there are (a) close to 100,000 VNTRs in the genic regions

of human genome that can be spanned by Illumina reads; (b) indel detection is possible even

when RU counting is not, for long VNTRs; (c) lower bounds on RU counts can separate some

pathogenic cases from normal cases particularly when the normal VNTR length is shorter than

the read length, while the pathogenic case is much longer (e.g. CSTB). Finally, dropping costs

for long read sequencing (esp. PacBio, and Nanopore) will allow us to span and genotype over

158,000 genic VNTRs.

The choice between short and long read technologies offers some trade-offs. Specifically,

long reads allow for the targeted genotyping of a larger set of VNTRs (559,804), and are becoming

increasingly cost-effective. However, the large numbers of indels in these technologies reduce

the accuracy somewhat, and they are best used when there is a big difference between normal

and pathogenic cases in terms of RU counts, or when the VNTRs are too long to be spanned by

Illumina.

In contrast, short-read Illumina sequencing is increasingly used for Mendelian pipelines,

and can be easily extended to include VNTR genotyping, with higher accuracy than PacBio.
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Also, the large number of VNTRs (458,158) that can be spanned by Illumina reads makes it the

technology of choice for association testing and population based studies.

In this research, we also provided initial results on genotyping frameshift errors in coding

VNTRs, focusing on the easier case when all RUs have the same length. Future work will focus

on extending the target VNTRs for RU counting and frameshift detection for VNTRs that are

of medical interest, population genetics of VNTRs, and algorithmic strategies for speeding up

VNTR discovery and genotyping.

Software availability

adVNTR source code can be found in the Supplementary Material and it is also available

at https://github.com/mehrdadbakhtiari/adVNTR.
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Chapter 3

Contribution of VNTR variations to gene

expression mediation

Variable Number Tandem Repeats (VNTRs) account for significant genetic variation in

many organisms. In humans, VNTRs have been implicated in both Mendelian and complex

disorders, but are largely ignored by genomic pipelines due to the complexity of genotyping

and the computational expense. We describe adVNTR-NN, a method that uses shallow neural

networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining high

accuracy.

We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals. Associating

VNTR length with gene expression in 46 tissues, we identify 163 ‘eVNTRs’. Of the 22 eVNTRs

in blood where independent data is available, 21 (95%) are replicated in terms of significance

and direction of association. 49% of the eVNTR loci show a strong and likely causal impact on

the expression of genes and 80% have maximum effect size at least 0.3. The impacted genes

are involved in diseases including Alzheimer’s, obesity and familial cancers, highlighting the

importance of VNTRs for understanding the genetic basis of complex diseases.
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3.1 Introduction

The human genome consists of millions of tandem repeats (TRs) of short nucleotide

sequences. These are often termed as Short Tandem Repeats (STRs) if the repeating unit is

< 6bp, and Variable Number Tandem Repeats (VNTRs) otherwise. Together, they represent one

of the largest sources of polymorphisms in humans[134, 51]. While multiple resources have been

developed for genome-wide analysis of STRs, here we focus specifically on VNTRs, which have

been largely missing from genome-wide studies due to technical challenges of genotyping and

the computational expense.

We define VNTR genotyping in the narrower sense of determining VNTR length (number

of repeating units). As VNTRs can be located in coding regions[107], untranslated regions[83],

and regulatory regions proximal to a gene[43, 129], the variation in length can have a significant

functional impact. Not surprisingly, VNTRs have been implicated in a large number of Mendelian

diseases that affect millions of people world-wide[17, 19, 72]. They also are known to modulate

quantitative phenotypes in several other organisms [38], and have shown pathogenic effects in

other vertebrates including dogs [30]. VNTRs are also an important source of variations in bacteria

and have commonly been used to study epidemiology and genetic diversity of Mycobacterium

tuberculosis and Yersinia pestis [131, 123]. They have influenced primate and human evolution

through gene regulation and differentiation of great ape populations[118]. Recent studies have

identified VNTRs that have expanded in the human lineage or are differentially spliced or

expressed between human and chimpanzee brains[122].

Single nucleotide polymorphisms (SNPs) that associate with gene expression, often

referred to as expression Quantitative Trait Loci (eQTLs), are molecular intermediates that drive

disease and variation in complex traits[99, 98, 44]. Studies have shown that causal variants for

diseases often overlap with cis-eQTL variants in the affected tissue [11]. Therefore, we focus

on the specific application of identifying expression mediating VNTRs (‘eVNTRs’), or VNTRs
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located in regulatory regions whose length is correlated with the expression of a proximal gene.

Examples of ‘eVNTRs’ include a VNTR in the 5’ UTR of AS3MT which is strongly associated

with AS3MT gene expression and lies in a schizophrenia associated locus[83] and a 12-mer

expansion upstream of the cystatin B (CSTB) gene is associated with gene expression and with

progressive myoclonus epilepsy[72, 16].

Despite their importance, the full extent of VNTRs in mediating Mendelian and complex

phenotypes is not known due to genotyping challenges. Traditionally, VNTR genotyping used

capillary electrophoresis which did not scale to large cohorts. Despite the advent of sequence

based genotyping, repetitive sequences continue to be challenging for genomic analysis. For

example, ‘stutter errors’ due to polymerase slippage during PCR amplification change VNTR

length and reduce genotyping accuracy [134]. While tools for genotyping STRs have been

developed[134, 29, 52], they generally do not detect or genotype VNTRs, which have non-

identical and larger repeat units. Recently, a few specialized computational methods (including

our own method, adVNTR) have been published to tackle the problem of genotyping VNTRs

from sequence data [10, 42]. However, these methods are too computationally intensive to scale

to functional studies with hundreds of individuals and 104 VNTR loci (Results). There have also

been recent, successful efforts to genotype VNTRs using long-read sequencing technologies such

as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)[25, 94, 10]. While

these methods (which include adVNTR) are quite accurate, the technologies are currently too

expensive for population scale sequencing.

For these reasons, large-scale studies of VNTRs and their association with gene expression

have been limited when compared to other sources of human variation such as SNPs and CNVs[11,

75, 22]. While the standard whole genome sequencing (WGS) frameworks often ignore repetitive

regions, there is some progress towards ‘harder’ variant classes such as eSTRs[106, 53, 39] and

‘eSVs’[22]. Therefore, ‘missing heritability’–the gap between estimates of heritability, measured

for example by twin studies[47, 138], and phenotypic variation explained by genomic variation–
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remains a limitation for eQTL studies[85]. It has been speculated that the inclusion of tandem

repeats in association analyses may reduce this heritability gap[56, 85, 17].

Here, we describe adVNTR-NN, a method that uses shallow neural networks for fast read

recruitment followed by sensitive Hidden Markov Models for genotyping. We test the speed and

accuracy of adVNTR-NN on extensive simulations to demonstrate accuracy. We use adVNTR-NN

to genotype over 10,000 VNTRs in 652 individuals from the GTEx project and associate VNTR

length with gene expression in 46 tissues. We additionally validate eVNTRs in blood tissues

in 903 samples from an Icelandic cohort and 462 samples from the 1000 genome project with

Gene expression data (Geuvadis cohort). We compare the strength of genic eVNTR association

against proximal SNPs and identified many of the eVNTRs as causal. Our results suggest that

it is computationally feasible to genotype VNTRs accurately in thousands of individuals, and

multiple eVNTRs are likely to causally impact the expression of key genes involved in common

and complex diseases.
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3.2 Materials and Methods

3.2.1 Genotyping in adVNTR-NN

Filtering trade-off calculations

Let A(r) denote the HMM genotyping time using r reads. The goal of filtering is to

reduce the number of reads supplied to each VNTR HMM. Any filter is characterized by three

parameters:

run-time: Let P(r) denote the running time of the filter for r reads for each VNTR locus;

efficiency: Let fk denote the fraction of reads that were retained for any VNTR. The efficiency

is defined as 1− fk so that high efficiency implies only a small fraction being retained by

the filter.

sensitivity/recall: The fraction of true VNTR overlapping reads that were accepted for each

VNTR.

Consider a data-set with r unmapped reads and among the mapped reads, an average of r′ reads

are assigned to each VNTR locus. Assuming that the filtered reads are distributed equally among

the VNTRs, each HMM will receive fkr+ r′ reads on the average. The total genotyping time for

n VNTRs is given by:

TadVNTR(n,r,r′) = indexing-time+n
(
P(r)+A

(
fkr+ r′

))
, (3.1)

Empirically, A(r) = 0.32r seconds per VNTR. The keyword match filter for adVNTR achieved

fk = 7.7×10−5. For a 55X coverage WGS with r = 4.2×106 reads, P(r) = 111.22(s), r′ = 18,

we run the HMM on an average of fkr+ r′ = 341 reads per VNTR on the average. The running
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time is:

TadVNTR(n,r) = 60.23+n
(

1.853+
0.32
60
×7.7×10−5×4.2×106 +

0.32
60
×18

)
(3.2)

= 60.23+3.68n mins., (3.3)

The genotyping time for n=10K VNTRs is about 631 hours per individual.

Read Filtering

For each VNTR locus V , and each read R, consider a binary classification function

f : V ×R→{0,1}, where f (R,V ) = 1 if and only if read R maps to locus V . For each read and

each of N loci V1, . . . ,VN , the neural recruitment method computes independent classification

functions fi(Vi,R). Note that a read can be assigned to multiple VNTR loci, or to none. As an

initial step toward this task, we perform a fast string matching based on prefix tree (trie) to assign

each read to the VNTR loci that share an exact match with the read. For an efficient matching,

we generate a separate aho-corasick trie[2] using every k-mer in VNTR loci as dictionary X . A

trie is a rooted tree where each edge is labeled with a symbol and the string concatenation of

the edge symbols on the path from the root to a leaf gives a unique word (k-mer) X . We label

each leaf with a set of T VNTRs that contain corresponding k-mer. On the other hand, the string

concatenation of the edge symbols from the root to a middle node gives a unique substring of X,

called the string represented by the node. We add extra internal edges called failure edges to other

branches of the trie that share a common prefix which allow fast transitions between failed string

matches without the need for backtracking[2]. Testing whether a query q has an exact match

in the trie can be done in O(|q|) and we require additional O(|T |) time to assign read q to all T

VNTR loci that share the keyword. The overall complexity of this algorithm is linear based in the

length of original dictionary (VNTRs in the database) to build the Trie and recover matches plus

the length of queries (sequencing reads). Hence, after construction of the trie, the running time is
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proportional to just reading in the sequences.

Neural Recruitment

To further reduce the set of reads assigned to each VNTR, we use a 2-layer feedforward

Neural Network to compute fi, using a k-mer based embedding to encode DNA strings. Specifi-

cally, we use a DNA string w of length k, consider an bijection φ that maps w to a unique number

in [0,4k−1]. Each read R can be defined by a collection of overlapping k-mers. We map read

R to a unique vector vR ∈ {0,1}4k
, such that vR[i] = 1 if and only if φ−1(i) ∈ R. Details of the

neural network architecture and hyper-parameters are presented below.

Network Architecture

Let v denote the mapping of a read. We use a shallow architecture with an input layer

used to present v to the network. We add two layers of fully connected nodes as the hidden layers,

with each node being a ReLU function. In the output layer, there are two nodes zero and one

which specify that whether read should be classified as true (containing VNTR) or false (Fig. 3.1).

We used the training set to train the network with Adam optimization algorithm [63].

The number of hidden layers N1 and N2 were chosen empirically. Too many nodes would

increase both training time and test time and possibly cause over-fitting. We performed the

training with the number hidden nodes of each layer varying from 10 to 100 with 10 increase

in each step and selected N1 = 100 and N2 = 50 as the best parameters according to validation

performance.

Choosing the optimal k-mer length

The choice of k-mer length is important. Increasing the k-mer size could decrease

sensitivity in our case as small variation will significantly change the k-mer composition, whereas

lowering k-mer size reduces the features that are discriminative for a pattern[142]. In addition,
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our embedding size exponentially grows with respect to the k so there is also a practical upper

bound on the k. Following Zhang [142] and Dubinkina[31], we trained and tested in the range

4≤ k < 9. The accuracy remains comparable in this range (Fig. S23), and we chose k = 6 as its

mean validation accuracy is the highest compared to four other values of k.

Effect of different loss functions

To choose the best loss function, we examined three regression loss functions: Mean

Squared Error (MSE), Mean Squared Logarithmic Error (MSLE), and Mean Absolute Error

(MAE), as well as three binary classification loss functions Hinge, Squared Hinge, and Binary

Cross-Entropy. We compared the validation performance of our models for these 6 different loss

functions. Each distribution in Supplementary Fig. S24 shows the accuracy on validation set across

1905 genomic loci. We analyzed these distributions using one-way analysis of variance (ANOVA)

and none of them were significantly better than others. We chose binary cross-entropy as it

obtained the highest mean accuracy (99.95%) among loss functions and its binary classification

nature fits our requirement.

Speed and efficiency of neural network filtering

The neural-network filtering achieved a speed of N(r)' 0.03r seconds for r reads, greatly

increasing filtering efficiency ( fn f ′k < 10−6) to input only 14 reads per VNTR on the average

when r = 4.2×106. The running time using the two filters could be modeled as

TadVNTR-NN(n,r) = n
(
P′(r)+N

(
f ′kr
))

+nA
(

fn f ′kr
)
+nA(r′)

= 25.48+0.13n+0.07n+0.09n = 25.48+0.29n min.,
(3.4)
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Simulated data for training and testing

We used ART[60] to generate r = 6× 108 reads from human reference genome (30X

coverage) with Illumina HiSeq 2500 error profile. For each target locus, we modified the number

of the repeats to be ±3 of the original count in the reference with setting 1 as minimum number

of repeats, and simulated reads from those regions. For each locus, we assigned labels to reads as

being true reads or not, based on exact location. We divided the original set of reads into three

parts: 70% for training, 10% for validation and 20% for testing. We trained all neural network

models using the training and validation sets, and reported performance on the test dataset.

To augment the data, we added random single nucleotide variations in the genome

sequences of the dataset before simulating the sequencing reads [90]. For each sequence in the

dataset, we replaced its nucleotides with a random one with probability rm. We set rm = 10−5, the

novel base substitution mutation rate within VNTRs[61]. This method of dataset augmentation

helps include ‘mutated’ k-mers in the embedding of reads, making the method more robust.

adVNTR-NN accuracy versus other methods

To test and compare genotyping accuracy against VNTRseek (v1.10.0), we started with a

random selection of 10,000 target VNTR loci (< 140 bp) and filtered them out if a VNTR locus

was marked as indistinguishable in VNTRseek. As a result, 9,638 target VNTRs remained. We

used ART[60] to generate heterozygous samples by simulating 15X coverage reads from each

modified haplotype which contained a non-reference allele and combined those with 15X reads

that were simulated from reference. The non-reference allele for each VNTR was chosen to be

in the range [c− 3,c+ 3], where c is the reference count. Together, this provided six diploid

simulated data-sets for each locus, at 30X coverage.

Similarly, to test and compare genotyping accuracy against GangSTR[97] (v2.4.5) for, we

selected VNTR loci with repeat unit length ≤ 20 bp. A total of 6,508 target VNTRs remained.

Following the method for VNTRseek comparisons, we used ART[60] to generate a homozygous
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sample and six heterozygous samples by simulating 30X paired-end reads with Illumina HiSeq

2500 error profile.

Performance test

We measured running time of adVNTR-NN and VNTRseek by running them with default

parameters on a single core of Intel Xeon CPU E5-2643 v2 3.50GHz CPU. To measure the

accuracy of genotyping, we ran adVNTR-NN and VNTRseek on diploid simulated data of

heterozygous VNTRs and measured the number of correct calls divided by total number of VNTR

loci.

3.2.2 Data and preprocessing

We accessed 30X Illumina WGS data from the GTEx cohort (652 individuals) through

dbGaP (accession id phs000424.v8.p2). Specifically, we accessed CRAM files containing read

alignments to the GRCh38 reference genome through cloud-hosted SRA data using fusera v1.0

and downloaded VCF files containing SNP genotype calls from dbGaP.

As genotyping VNTRs remains computationally expensive, we focused on the smaller

set of VNTRs located within coding, untranslated, or promoter regions of genes, which are

most likely to be involved in regulation. We identified VNTRs in coding exons and UTRs by

intersecting VNTR coordinates with refseq gene coordinates downloaded from UCSC Table

Browser. To identify VNTRs that appear within promoter regions, we considered 500bp upstream

of the transcription start site of genes as the promoter regions. Overall, this procedure identified

13,081 VNTRs, of which 10,262 were within the size range for short-read genotyping (Fig. 3.1A).

We subsequently added two VNTRs previously linked to a human disease to obtain 10,264 target

loci[132, 132]. We genotyped these VNTR loci in 652 individuals from GTEx cohort using

adVNTR-NN on Amazon Web Services (AWS) cloud, which allowed us to do the computation in

parallel for different samples.
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We compared the most common allele of each VNTR with the reference allele (GRCh38)

to observe representation of each VNTR in the reference. We also searched for VNTRs with

multiple observed alleles to estimate a rate of polymorphism for VNTRs and find how common

each allele was. To call a VNTR polymorphic, we set the minor allele frequency at 5% and any

variation below that frequency was discarded. In addition, we identified the amount of base-pair

difference that they make in genome of each individual by comparing the copy number difference

of VNTRs between reference and the sample and multiplied that by the pattern length of each

locus. We computed how many loci on average differed between an individual and reference by

combining all non-reference calls in at least one haplotype from all individuals and dividing it

by all called variants. VNTRs whose allele frequencies did not meet the expected percentage

of homozygous versus heterozygous calls under Hardy–Weinberg equilibrium (P < 0.05 for

two-sided binomial test) were eliminated. We further removed VNTRs that were monomorphic

(only one allele) in the entire GTEx cohort or had minor allele frequency lower than 1% among

the individuals with expression data in every tissue. We used the resulting 2,672 VNTRs for

subsequent analysis ([9]).

We obtained processed RNA-expression data (RPKM values) from 54 tissues from dbGaP

(phs000424.v7.p2) and limited analysis to 46 tissues which had data for at least 100 individuals.

‘Non-expressed genes’– genes with median RPKM level zero– in each tissue were removed from

analysis. For the remaining genes, we quantile-normalized RPKM values of each tissue to a

normal distribution. We analyzed VNTR-Gene pairs for each VNTR and its closest gene based

on refseq annotations in each of the 46 tissues.

3.2.3 Identification of eVNTRs

Before the analysis of the association of VNTR genotypes and gene expression levels, we

adjusted gene expression levels for each tissue in order to control for covariates of sex, population

structure, and technical variations in measuring expression. For population structure, we used the
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top ten principal components (PCs) from a principal components analysis (PCA) on the matrix of

SNP genotypes to provide a correction for population structure. To generate the SNP genotype

matrix, we used the VCF files for GTEx cohort (accession phg001219) and filtered biallelic

SNP sites MAF > 0.05 using plink [105]. To correct for non-genetic factors such as technical

variations in measuring RNA expression levels (e.g batch effects, environmental variables), we

applied PEER factor correction and used the top 15 factors[119]. We removed the effect of

covariates by regressing them out from the RNA expression matrix of each tissue and subtracting

their factor contributions and used the residuals for all eQTL association analyses.

We normalized the individual raw gene expression values to N(0,1) by subtracting the

mean and dividing by the standard deviation of the expression values for that cohort. For a

gene-VNTR pair v, let yiv denote the normalized expression value of gene in v for individual i

and xiv denote the genotype of the VNTR in v for individual i. Then,

yiv = βvxiv +∑
k

γkPCik +∑
k

δkRik + εiv (3.5)

where, PCik denotes the strength of the k-th principal component, and Rik the value of the k-th

PEER factor. We performed the association test for each VNTR-gene pair separately for each

tissue type using Python statsmodels linear regression, Ordinary Least Squares (OLS)[115],

and computed a nominal p-value of the strength of association for each VNTR-gene pair using

two-sided Fisher’s exact test.

Multiple Testing Correction

We used permutation tests and the Benjamini–Hochberg procedure to estimate a 5% False

Discovery Rate (FDR) significance cut-off for each tissue. The significance thresholds for each

of the 46 tissues ranged from 10−3 to 3.8×10−5 (Fig. S13). Overall, 759 significant tests were

observed from total of 73,609 tests in all tissues and 163 unique VNTRs passed the significance
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test in at least one tissue.

We performed a similar correction for the Geuvadis cohort. Specifically, we performed

100 permutations and used a Benjamini-Hochberg procedure to control the False Discovery rate

at 5%. For the Icelandic cohort, only the VNTRs that showed significant associations in GTEx

were tested using unmapped reads plus reads mapped to those specific loci. Hence, we used the

conservative p-value cutoff from whole-blood tissue of the smaller GTEx cohort.

Fine-mapping of Causal Variants

To compare the strength of the VNTR association relative to proximal SNPs, we extracted

all SNPs from 50kb 5’ to the transcription start, from the gene body, and up to 50kb 3’ to the end

of the transcript using the GTEx variant calls. To perform a fair comparison, we used the same

test and covariates for VNTRs and repeated it for each SNP by replacing the genotype to obtain

the strength of association for each SNP. Then, we ranked all variants based on their association

P value.

We further used a fine-mapping method, CAVIAR, as an orthogonal method to identify

the causal variant for the change in gene expression level. CAVIAR is a statistical method that

quantifies the probability that a variant is causal by combining association signals (i.e., summary

level Z-scores) and linkage disequilibrium (LD) structure between every pair of variants[59].

We ran CAVIAR with parameter -c 1 to identify the most likely causal variant, along with the

causality probability distribution for each variant site. We ranked variants based on their causality

probability given by CAVIAR and called it the causality rank.
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3.3 Results

3.3.1 Target VNTR loci.

Using Tandem Repeat Finder[13], 502,491 VNTRs were identified that contained at least

two repeating units in the GRCh38 human assembly and had repeat unit lengths between 6bp and

100bp. Over 80% of these had total length < 140bp (Fig. 3.1a) and could be genotyped using

Illumina sequencing. As genotyping VNTRs remains computationally expensive, we focused on

the 13,081 VNTRs located within coding, untranslated, or promoter regions of genes (Methods)

as they are most likely to be involved in gene regulation. Of those, we identified 10,262 VNTRs

that were within the size range for short-read genotyping (Fig. 3.1a). We added two additional

VNTRs that were previously linked to a human disease ([9]) to obtain 10,264 target loci [33, 132].

3.3.2 adVNTR-NN improves genotyping speed.

Our previously published tool, adVNTR, used customized Hidden Markov Models

(HMMs) for each VNTR and showed excellent genotyping accuracy, based on trio-analysis,

simulations and PCR[10]. However, HMMs are compute-intensive, and despite some filtering

strategies used by adVNTR(Methods), the time to genotype n=10K VNTRs was about 631

hours per individual. In developing adVNTR-NN, we first made significant improvements to

pre-processing time. Next, we deployed a second filtering step with a 2-layer feed-forward

network trained separately for each VNTR that accepted the k-mer composition for each read

and filtered it specifically for that VNTR (Fig. 3.1b,c and Methods). The neural-network filter

required 0.03s per read, and filtered reads with high efficiency in filtering reads. For 55X whole

genome sequencing (WGS) with r = 4.2×106 unmapped reads, the NN supplied an average of

14 previously unmapped reads to each VNTR HMM. Combining with the mapped reads, each

HMM received an average of 32 reads per VNTR locus. This reduced the running time for n
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VNTR loci to

TadVNTR-NN(n) = 25.48+0.29n mins. (Fig. 3.1d), (3.6)

allowing each individual to be genotyped at n = 10K VNTRs in 50 CPU hours, a 13× speedup

over adVNTR.

3.3.3 adVNTR-NN outperforms alternative alignment methods at VNTRs.

While adVNTR was highly accurate by itself, its final accuracy depended upon reads

filtered for genotyping, and specifically on false negatives–reads that were incorrectly removed

by a filter. Formally, a read sampled from a VNTR was considered to be true positive (TP) if it

passed the filter for that VNTR, and false negative (FN) otherwise. False positives (FP)–reads

that passed the filter despite not being from the VNTR locus–were a lesser concern because they

would eventually be discarded by the HMM for not aligning well to the model. However, high

false-positives increase the running time. To account for this, we measured the trade-off between

efficiency (1− (TP+FP)/r) and recall TP/(TP+FN).

For comparisons with alternative filters, we used Bowtie2 as a representative read-mapping

tool[74]. These tools are designed for fast mapping of reads and are accurate for most of the

genome, but are not specifically designed for VNTR mapping genotyping (could have high FN).

As a second comparison, we used adVNTR[10], which has high recall (low FN) for VNTR

mapping. We used a mix of real and simulated reads to test performance (Methods).

In terms of efficiency (1− (TP+FP)/r), Bowtie2 was the most efficient retaining only

0.9 in 106 reads for further processing for 90% of the VNTRs. Both adVNTR and adVNTR-NN

were slightly less efficient retaining about 1.2 reads per million for 90% of the VNTRs. However,

they had significantly better recall. adVNTR-NN filtered reads with at least 90% recall for 99% of

the target VNTR loci (Fig. 3.1e). In comparison, 80% of the loci achieved that recall for adVNTR,

and only 27% of the loci had a recall of 90% for Bowtie2. Notably, adVNTR-NN had much better
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recall compared to adVNTR while also being more efficient, and therefore faster.

3.3.4 adVNTR-NN speed and accuracy on simulated VNTR alleles.

We had previously measured adVNTR genotyping accuracy[10] using trio-consistency,

comparison to long reads and other methods. Similarly, we used a mix of whole genome

sequencing data and simulated reads (Methods) to measure adVNTR-NN accuracy.

The accuracy of VNTR genotyping using short reads depends critically on total allele

length and length of repeat unit itself. adVNTR was 90% accurate on reads up to 90 bp in length,

but its accuracy dropped subsequently (Supp. Fig. S1). Similarly, its accuracy remained high for

repeat unit length up to 40bp, as long as the total allele length did not exceed the read-length

(Supp. Fig. S2). We reiterate that a majority of the known VNTRs have small allele length

(Fig. 3.1a), and therefore the overall accuracy remains high.

Next, we compared the overall running time and accuracy of adVNTR-NN genotyping

with VNTRseek[42], which was not available at the time of original release of adVNTR. Notably,

VNTRseek combines VNTR discovery and genotyping and does not customize genotyping for

each VNTR. Therefore, its running time on 55X WGS ranged from 9640-9686 minutes, and

was largely independent of the number of target VNTRs (Supp. Fig. S3). This was in contrast

to the 1,696 minutes required by adVNTR-NN. The speed advantage for adVNTR-NN could

largely be attributed to filtering strategies which could potentially be used to improve VNTRseek

genotyping time as well. On simulated heterozygous reads with 30X coverage (Methods),

adVNTR-NN was highly accurate. It achieved 100% accuracy in 7343 (76%) of 9638 VNTRs

compared to VNTRseek’s median accuracy of 60% (Supp. Fig. S4). In contrast with adVNTR-

NN, VNTRseek’s genotyping accuracy was sharply asymmetric, with much lower accuracy for

decreasing VNTR length (Supp. Fig. S5).

GangSTR is a method designed for Short Tandem Repeats (STRs), but can genotype

repeat units up to 20bp[97]. Therefore, we compared its accuracy against adVNTR-NN for
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these short motifs. GangSTR uses total allele length which could result in an incorrect call if

there are significant changes in repeat unit length. Indeed, on reference data, GangSTR was

accurate in 82.4% of the VNTR loci and under-counted the allele by 1 in 12.3% of the cases.

adVNTR-NN called the genotype correctly in 98.5% of the loci ([9]). On simulated heterozygous

reads, GangSTR accuracy lagged that of adVNTR-NN (Supp. Fig. S6).

3.3.5 adVNTR-NN consistency on trio data.

A reference database of VNTR allele counts is not available for testing performance on

real data. Instead, we tested for consistency of adVNTR-NN calls on 10,264 VNTRs WGS

data of 537 trios from 1000 Genomes Project[1] (5,511,768 tests total). We observed 98.4%

consistency in the calls obtained by adVNTR-NN. The inconsistent alleles had longer length

(median 90bp) in contrast to the length of the consistent alleles (median 52bp, Supp. Fig. S7) a

range in which VNTR genotyping is more likely to be erroneous. Moreover, in a third of the

inconsistent cases (0.5% of total), the RU count of the inconsistent allele was ±1 of a parent’s

RU count, suggestive of a de novo mutation. Comparing adVNTR-NN genotypes with adVNTR,

the calls were identical in 99.81% of the loci showing high similarity in accuracy between two

genotyping methods ([9]).

3.3.6 Data-sets for identifying eVNTRs.

To identify expression-mediating VNTR Loci (eVNTRs), we primarily used data from

the GTEx project[11] (Methods). The GTEx project provided WGS for 652 individuals as well

as RNA-seq for each of these individuals from 46 tissue types including whole-blood. A majority

(86.0%) of the donors were of European origin; another 11.5% were African American and the

remaining were Asian and American Indian. For validation, we used a second cohort of 903

Icelandic individuals[48] with associated whole blood RNA expression data and WGS. We also
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chose a smaller, third cohort from the Geuvadis[75] project which provided gene-expression data

in lymphoblastoid cell-lines for 462 samples, where the WGS for the samples was available from

the 1000 genomes project[1]. The Geuvadis cohort was dominated by individuals of European

ancestry (80.7% of cohort). Most of the remaining (19.3%) were of African ancestry. Due to the

match of tissue type and ethnicity, the Icelandic and Geuvadis whole blood data were used for

validation of methods for identifying eVNTRs discovered from the GTEx project.

3.3.7 eVNTR identification.

We genotyped 10,264 VNTR loci in all 652 samples from GTEx to study the role of

VNTRs in mediating gene expression of proximal genes. As expected, the most frequent allele

matched the reference allele in 96.8% of the cases (Supp. Fig. S8).

Despite the GTEx data being predominatly European, 51% of the target VNTRs were

polymorphic. Consistent with evolutionary constraints, VNTRs in promoters were most likely

to be polymorphic (57%) followed by Untranslated regions (UTRs) (51%) and coding exons

(47%) (Fig. 3.2a). Each individual in the GTEx cohort had a non-reference allele in at least

839 (8.2%) of the tested VNTR loci, with an average of 1,259 (12.3%) non-reference VNTRs

per individual. Altogether, the 10,264 VNTRs inserted or deleted an average of 47,197bp per

individual (Fig. 3.1f). As this represents < 10% of all VNTRs, the results highlight VNTRs as an

important source of genomic variation. The minimum variation in a non-reference VNTR allele

involved at least 6 basepairs and the average change in each variant site was 37bp or about 3

repeat units (Supp. Fig. S9).

To perform association analysis, we excluded 1817 (17.7% of total) VNTRs that were

monomorphic , 1445 (14.1%) VNTRs that violated Hardy-Weinberg equilibrium constraints

and 4330 (42.2%) VNTRs that had minor allele frequency <1% after removing individuals

in the GTEx cohort with no expression data for the specific gene (Methods). We investigated

VNTRs that violated HWE. Similar to trio-inconsistent VNTRs but distinct from all VNTRs,
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these VNTRs were longer, had long common alleles (Supp. Fig. S10, S11), or their flanking

regions had a strong (> 5 bp) match to the sequence of the repeating units (Supp. Fig. S12).

The filtering resulted in a set of 2,672 VNTRs (26%) available for association analysis.

We used linear regression to measure the strength of association between average VNTR length of

the two haplotypes, and adjusted gene expression level of the closest gene (Fig. 3.2b and Methods).

To account for confounding factors, we included sex and population principal components of each

individual as covariates. We also added PEER (probabilistic estimation of expression residuals)

factors to account for experimental variations in measuring RNA expression levels (e.g batch

effects, environmental variables)[119]. Briefly, PEER infers hidden covariates influencing gene

expression levels, and we removed their effect by producing a residual gene expression matrix

and using it for linear regression (See Methods).

We measured association with gene expression in each of the 46 tissues. To control False

Discovery Rate (FDR), we used the Benjamini-Hochberg procedure to identify a tissue-specific

5% FDR cutoff (Supp. Fig. S13 and Methods). Combining data from all tissues, 759 tests

tied to 163 unique VNTR loci passed the significance threshold (Fig. 3.2c). We refer to these

(VNTR, gene) pairs as eVNTRs. Unlike VNTRs that failed HWE (median length: 92bp), eVNTR

allele lengths were much smaller (median:48bp, Supp. Fig. S10), and in a range where VNTR

genotyping is highly accurate (Supp. Fig. S1).

Not surprisingly, a larger fraction (6.8%; Fig. 3.2a) of the UTR and regulatory (6.0%)

variants were associated, compared to coding VNTRs (4.9%). The strength of association did not

depend upon the location of the VNTRs (Supp. Fig. S14). However, VNTRs within 100bp of the

Transcription Start Sites (TSS) were twice as likely to be eVNTRs compared to other locations

(P = 6×10−6; Fisher’s exact test), consistent with their known roles in core-promoters[121].

The number of eVNTRs observed in each tissue type generally correlated with the number

of individuals samples for each tissue type (Supp. Fig. S15). Consistent with previous results

on eQTLs[11], and eSTRs[39], testis and fibroblasts had the largest number of eVNTRs, while
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fewer eVNTRs were identified in whole blood and skeletal muscle, relative to the sample size.

Only 4% of the eVNTRs were tissue specific (Fig. 3.2d). We used the method mash[128] to test

for reproducibility in other tissues. Mash exploits the power gains that come from cross-sharing

the effect of an eVNTR in multiple tissues. The analysis suggested that many (38%) eVNTRs

were significant in at least half (23) of the tissues tested (Supp. Fig. S16).

Twenty-three of the 163 unique eVNTRs showed significant association in whole blood

(Table 3.1), a tissue type in which we could validate the eVNTRs using independent data from the

Icelandic cohort of 903 individuals. The VNTRs that showed significant associations in GTEx

were replicated on the Icelandic cohort using the conservative p-value cutoff from the smaller

GTEx cohort. Two of the 23 VNTR loci could not be used for replication in the Icelandic cohort

due to missing expression data for TRIM15 and SNHG16 genes. 18 (86%) of the 21 VNTRs

showed significance at a similar level and same direction of effect in Icelanders, highlighting the

strong reproducibility of the associations. The Geuvadis data were acquired for a smaller cohort

compared to the Icelandic data and measured expression in lymphoblastoid cells–transformed

B cells, which are a component of whole blood tissue. Therefore, we recomputed 5% FDR

cut-offs using the Benjamini-Hochberg method on 100 permuted samples. Despite the caveats,

12 of the eVNTRs were replicated. Combined, 91% (20/22) of eVNTRs could be replicated in

an independent cohort where data was available. We also tested for correlation of effect-sizes

between the Icelandic and GTEx data and found strong correlation (Supp. Fig. S17; Spearman

correlation coefficient 0.88; p-value = 1.15×10−7). A similarly strong correlation was observed

between the Geuvadis cohort and GTEx (Supp. Fig. S18; Spearman correlation coefficient 0.70;

p-value: 4.57×10−4).In all cases, the direction of effect was also maintained.

STR genotyping software such as HipSTR[134] can also genotype repeats up to 6bp.

Therefore we compared GTEx association results on hexamer repeats from a recent eSTR

study[39]. 15 loci were identified as eSTR/eVNTR in at least one of the two studies (Supp.

Table B.2). Despite differences in genotyping methods, filtering, FDR controls, choice of co-
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variates, and reference assemblies, all 15 loci were at least nominally significant in both tests, and

6 of 15 were identified as eSTRs/eVNTRs in both studies.

In 65% of the cases, VNTR length had a positive correlation with gene expression; the

remaining cases had a negative correlation (Fig. 3.2e). This was consistent with the hypothesis

that many VNTRs encode transcription factor binding sites and increasing length improved the

TF binding affinity. Moreover, the overall effect size was also large and 80% of the eVNTRs had

a maximum effect-size 0.3 or higher.

We computed correlation of eVNTR effect size between each pair of tissues using the

Spearman rank test. Despite the multi-tissue activity of most eVNTRs, each tissue showed

distinct behavior with low correlation to most other tissues (Fig. 3.2f). Similar tissue types

were expectedly correlated (e.g. brain). Some correlations were seen among glandular tissues

(salivary, prostate, pituitary) and also between adipose tissue and nearby tissues and organs (heart,

esophagus muscularis, artery, breast). Fotsing et al.[39] used eSTRs to cluster a subset of 17

tissue types. When restricted to that subset (Supp. Fig. S19), the eVNTR clustering was highly

consistent with the eSTR clustering. Both analyses showed distinct clades for (a) the two skin

tissues with esophageal-mucosa possibly due to an abundance of squamous cells and (b) the two

adipose tissues with esophageal-muscularis. Moreover the second clade was part of a larger one

containing the arterial tissues, the tibial nerve, thyroid and lung in both analyses. Thus, even

though most eVNTRs are shared across tissues, we hypothesize that the combined effect of active

eVNTRs is tissue-specific and leads to unique regulatory program for each tissue type.

Similar to SNPs, and due in part to power considerations, VNTR loci generally showed a

negative correlation between Minor Allele Frequency (MAF) and effect size, so that common

variants generally had low effect size with larger effects mainly shown by rare variants[15]

(Fig. 3.2g). However, we still observed many eVNTRs where common VNTR (MAF > 0.05)

showed large effects. These eVNTRs had highly significant p-values (Supp. Fig. S20) and in many

cases, the proximal genes were associated with known diseases or phenotypes (Supplementary
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Table B.1). As these represent potentially the most interesting eVNTR findings, we tested them

further for causality and function.

3.3.8 VNTRs mediate expression of key genes.

Only a small number of examples have been reported where VNTR repeat unit counts

have a causative on gene expression[83]. Each of these cases has been discovered by gel analysis

or Sanger sequencing on individual loci in specifically chosen cohort. One well known example is

the AS3MT gene which is involved in early brain development, where the VNTR was associated

with expression and was in LD with SNPs associating with schizophrenia[83].

To investigate causality, we ranked each eVNTR against all SNPs within 100kbp by

(a) comparing the relative significance of association with gene expression (r1); and (b) using

the tool CAVIAR[59] to measure the causality of association (r2)(Methods). Remarkably, the

two rankings were very similar with mean discrepancy 2|r1− r2|/(r1 + r2) = 2.3×10−3 across

the 163 eVNTRs. We used the harmonic mean (2/(1/r1 +1/r2)) of the two ranks to order the

eVNTRs. Of the 163 VNTRs, 81 of the eVNTRs were ranked 1 which are likely causal (Supp.

Fig. S21), indicating that the 49.6% of the eVNTRs had the highest posterior probability of

causality compared to all other variants tested. Separating tissue types, 170 (22%) of the 759

significant associations were possibly causal. These results suggest a large fraction of causal

eVNTRs even with the caveat that we only tested ‘genic’ VNTRs.

Looking at individual eVNTRs, we recapitulated a previous result by identifying an

eVNTR in the AS3MT gene. The lowest association p-value measured in any tissue using 652

samples was 3.9×10−54, which was orders of magnitude higher than the significance reported

with 322 samples[83](Fig. 3.3a,b). Its CAVIAR rank was 1 and it had an effect size of 0.33 in

Brain Cortex in contrast to the effect-size of 0.16 for the top SNP in Brain Cortex. Finally, the

VNTR is located in a regulatory region of the genome as identified by H3K27Ac and DNase

marks (Fig. 3.3c).
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The other eVNTRs, including the 81 with CAVIAR rank 1, represent novel findings.

Many mediate the expression of genes (Supplementary Table B.1) involved in key functions.

For example, Proopiomelanocortin (POMC) is a precursor protein for many peptide hormones

with multiple roles including regulation of appetite and satiety[57]. Hypermethylation of POMC

(and reduced expression) in peripheral blood cells and melanocyte-stimulating hormone positive

neurons was strongly associated with obesity and body mass index[70]. Surprisingly, POMC

over-expression also predisposed lean rats into diet-induced obesity[80]. Our analysis identified a

VNTR in the coding region of the POMC gene as the causal variant governing expression levels

in 15 tissues, including adipose and nerve tissues. The 6R allele had 1.8-fold higher expression in

blood and nerve cells (Fig. 3.3d), and the correlation with expression was much stronger than

neighboring SNPs (Fig. 3.3e). The eVNTR had an effect size of 0.48 in Nerve tissue, compared

to 0.27 for the top SNP using the same model. Moreover, the VNTR was located within an

H3K27Ac mark that was topologically close to the promoter of the gene based on chromatin

conformation (Fig. 3.3f).

The ZNF232 gene is differentially expressed in ovarian and breast cancers[114, 117].

Also, the chr17 locus containing the gene has been associated with Alzheimer’s in a recent large

meta-GWAS study on the UK Biobank data[88]. We identified an eVNTR in the promoter region

where expanded alleles (at least 5 repeat units) had 2-fold higher median expression relative to

RU3 (Fig. 3.3g). The VNTR was ranked 1 in 40 of 46 tissues including 7 brain sections, and

specifically the Hippocampus, which is the affected region in Alzheimer’s[102, 46] (Fig. 3.3h)

and was also ranked 1 in ovary and breast (Supplementary Table B.1). In Hippocampus, the

eVNTR effect size was 0.34 for eVNTR compared to 0.07 for top SNP using the same model.

The RPA2 gene product is part of the Replication Protein A complex involved in DNA

damage checkpointing[76]. Its over-expression is identified as a prognostic marker for colon can-

cer and bladder cancers[45]. A VNTR that overlapped the Transcription Start Site (TSS) of RP2A

with lower VNTR length showed 1.9-fold higher expression of RPA2 in multiple tissues including
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colon (Supp. Fig. S22 and Supplementary Table B.1). Supplementary Table B.1 identifies other

important genes including NBPF3 (Neuroblastoma[125]), TBC1D7 (lung cancer[113]), ZNF490

(colorectal cancer[49]), MSH3 (myotonic dystrophy[95]) and others. We note that the VNTR in

MSH3 is a 9bp repeat that is distinct from the trinucleotide expansion mediated by MSH3[136].

Taken together, our results suggest that VNTRs mediate the expression of key genes.
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Figure 3.1: Genome-wide VNTR genotyping performance. (a) Length distribution of all known
VNTRs (red) and selected targeted VNTRs (blue) across the GRCh38 human genome in base pairs.
(b) The genotyping pipeline. (c) Neural network architecture for each VNTR which uses a mapping
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Figure 3.2: Effect of VNTR genotypes on mediating gene expression. (a) Location of target
VNTRs and e-VNTRs relative to the proximal genes. (b) Pipeline to identify eVNTRs and
assign causality scores. Ancestry, Sex, and PEER factors are included in C as covariates. We
associate VNTR genotype with expression residuals after correcting for the effect of C. (c)
Quantile-quantile plot showing p-values of association signals separated by tissue. Green line
represents the p-values using 100 permutations. (d) Number of unique and shared eVNTRs
in each tissue. (e) Trend of RU count correlation with gene expression level. (f) Spearman
correlation of eVNTRs effect sizes for each pair of tissues. (g) Scatter-plot correlating effect
size versus Minor Allele Frequency (MAF).
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Table 3.1: Replication of whole blood VNTRs in independent cohorts. Each row describes an
eVNTR in whole blood from GTEx project(n=652 individuals) identified with false discovery rate (FDR)
< 0.05 based on 100 permutations. Replication of the signal in whole blood tissue of the Icelandic cohort
of 903 samples and in lymphoblastoid cell-lines from the Geuvadis cohort (462 samples) with the same
direction of effect and FDR < 0.05. For the Icelandic cohort, only the VNTRs that showed significant
associations in GTEx were tested using unmapped reads plus reads mapped to those specific loci. Hence,
we used the conservative p-value cutoff from the smaller GTEx cohort. Length (respectively, RU length)
refers to the total (respectively, repeat-unit length) of the VNTR.

Replication

Locus Length RU Length Effect Size Gene Annotation Ic
el

an
di

c

G
eu

va
di

s

1 chr1:21440112-21440147 35 6 0.43 NBPF3 UTR Y Y
2 chr2:24084339-24084414 75 25 -0.12 TP53I3 UTR Y Y
3 chr2:25161573-25161616 43 9 0.22 POMC Coding Y Y
4 chr2:112542424-112542500 76 25 -0.18 POLR1B Coding Y Y
5 chr3:56557249-56557289 40 20 -0.12 CCDC66 Coding Y Y
6 chr6:13328502-13328532 30 6 0.12 TBC1D7 UTR Y Y
7 chr7:64337190-64337240 50 13 0.09 ZNF736 UTR Y Y
8 chr8:86508719-86508765 46 23 0.13 RMDN1 UTR Y Y
9 chr10:102869497-102869605 108 36 0.22 AS3MT Coding Y Y

10 chr21:46228815-46228863 48 9 -0.03 LSS UTR Y Y
11 chr17:75589192-75589228 36 6 -0.06 MYO15B Coding Y -
12 chr1:46609102-46609134 32 16 0.09 MOB3C UTR Y N
13 chr5:80654880-80654954 74 9 0.04 MSH3 Coding Y N
14 chr9:137063433-137063550 117 39 -0.15 SAPCD2 UTR Y N
15 chr14:61762420-61762454 34 17 0.03 SNAPC1 UTR Y N
16 chr19:12577507-12577551 44 22 -0.09 ZNF490 UTR Y N
17 chr21:41316673-41316756 83 13 -0.19 FAM3B UTR Y N
18 chr22:37805258-37805313 55 6 0.11 H1F0 UTR Y N
19 chr1:202187007-202187042 35 7 0.06 PTPRVP UTR N Y
20 chr17:18208488-18208544 56 7 -0.13 ALKBH5 UTR N Y
21 chr17:76564106-76564152 46 9 0.11 SNHG16 UTR - N
22 chr17:56978047-56978107 60 20 0.15 SCPEP1 UTR N N
23 chr6:30163542-30163579 37 12 0.14 TRIM15 UTR - -

3.4 Discussion

VNTRs are the “hidden polymorphisms.” Despite high mutation rates and known exam-

ples of function modifications, VNTR genotyping is not a component of Mendelian or GWAS

pipelines. This is primarily due to technical challenges. Here, we use a combination of fast

filtering followed by a hidden markov model-based genotyping to accurately determine VNTR

genotypes. Our method, adVNTR-NN, can genotype 10K VNTRs for an individual in 50 cpu-

hours with high accuracy. We used adVNTR-NN to genotype close to 2,000 human samples at

10K loci. The use of neural networks as a filtering strategy is novel, and we believe that further

improvements could lead to another order of magnitude reduction in compute time, making it
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practical to genotype ≥ 105 individuals in the future.

Some VNTRs have complex multi-repeat structure making it difficult to map reads and

count the repeating units. However, unlike other VNTR genotyping methods, our method cus-

tomizes the genotyping for each VNTR. Future research will focus on improving the genotyping

for the hard cases, possibly by building HMMs with separate profiles for each distinct repeating

unit, as well as the use of long-reads to improve anchoring to the correct locations. We pursue

a targeted genotyping approach which has the disadvantage of not being able to discover new

VNTRs, and we rely on other methods for the initial discovery of VNTRs. However, we note

that the discovery is a one-time process while genotyping must be repeated for each cohort, and

therefore, it makes sense to separate the two problems. For maximum sensitivity, discovery of

VNTRs could be performed on a new cohort prior to genotyping. Even if the reference contained

0 copies, knowledge of the repeat pattern and location would allow us to genotype donors with

multiple repeat units.

The relatively large number of VNTRs violating HWE suggests that genotyping accuracy

could be improved by filtering problematic VNTRs. We are developing strategies to filter VNTRs

based on similarity to other VNTRs, matching sequence of repeat-units and flanking regions, and

other tests for long alleles. As more data is collected, we will be able to assess the accuracy of

these strategies.

adVNTR-NN can be used for association of a VNTR genotype chosen from a large

collection of target VNTRs, against categorical or quantitative phenotypes. We used it to identify

eVNTRs, where VNTR allele changes associated strongly with gene expression. It is possible that

the largest allele or some other regrouping has the strongest effect for some VNTRs, and this idea

may be used to strengthen the eVNTR association. However, we did not have a consistent strategy

for grouping the VNTRs and therefore did not try this approach for the VNTRs in our study.

Nevertheless, for individual VNTRs that are on the borderline for significance, this approach

could be tried prior to functional tests.
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We found that VNTRs were strongly associated with the expression of proximal genes

with over 6.1% of the 2672 VNTRs tested showing genome wide significant association. Nearly

half of the eVNTR loci were more significant compared to neighboring SNPs. While the high

fraction of causal eVNTRs can partly be explained by the choice of ‘genic’ VNTRs for testing, we

believe that non-genic regions will identify additional causal eVNTRs. In testing for causality, it

would be best to compare against all other forms of variation including SNPs (which include small

indels), structural variations, and other STRs. However, there is significant complexity in calling

these variants. For example many STRs and even VNTRs are mis-annotated as structural variants.

We will address these concerns in future work. In summary, ongoing technical innovations in

speed and accuracy of VNTR genotyping are likely to improve our understanding of human

genetic variation, and provide novel insights into the function and regulation of key genes and

complex phenotypes.
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Figure 3.3: Causal effect of VNTR genotypes on mediating expression of key genes. (a) Association
of AS3MT VNTR genotype with gene expression in Brain-Cortex (n=148 samples, Fisher’s two-sided
P: 2.78×10−12). Box plots display the median, 25th and 75th percentiles. (b) Association with gene
expression (upper panel) and CAVIAR causality probability of proximal SNPs– all SNPs in 100kbp
window on either side of the AS3MT VNTR (red-star). (c) Location of AS3MT VNTR relative to known
regulatory elements. (d,e): Association with gene expression of the POMC VNTR (n=378 samples,
Fisher’s two-sided P: 1.53×10−9) and its causality probability relative to proximal SNPs. Box plots
display the median, 25th and 75th percentiles. (f) Location of POMC VNTR relative to other regulatory
regions and its spatial proximity with the promoter region revealed via Hi-C. (g,h) Association with gene
expression of the ZNF232 VNTR (n=114 samples, Fisher’s two-sided P: 5.47×10−9) and its causality
score relative to proximal SNPs. Box plots display the median, 25th and 75th percentiles.
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Chapter 4

Case study of VNTR variation effects on

Breast Cancer

4.1 Introduction

For carriers of pathogenic BRCA1 or BRCA2 mutations (BRCA), the lifetime risk of

developing breast cancer (up to an 80% lifetime risk) is a six-fold increase over that of average

risk women and ovarian cancer risk (up to a 44% lifetime risk) is up to a 30-fold increase [68].

Despite higher average risk, penetrance is incomplete (not all carriers will develop cancer) and age

at cancer diagnosis varies. The limited understanding of factors that modify cancer risks in BRCA

carriers hampers clinical decision-making ability, including decisions about the appropriate type

and timing of preventive strategies. Therefore, there is a critical clinically-relevant need for more

refined estimates of risk.

The variation in risk, even in identical mutation carriers, suggests that modifier factors,

both genetic and environmental, affect cancer risks [79]. Studies to identify “modifier genes” that

govern the phenotypic expression of BRCA mutation carriers have been ongoing for the past

decade, conducted largely through the Consortium of Investigators of Modifiers of BRCA1/2
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(CIMBA) [6]. Through genome-wide association studies (GWAS), single nucleotide polymor-

phisms (SNPs) have been identified that, when combined into a polygenic risk score (PRS), better

define those at higher and lower risk of developing breast cancer (e.g., [24, 69, 89]). However,

these modifier variants explain only a portion of the variation in risk, particularly for women

carrying BRCA1 mutations [93]. Identifying additional genetic modifiers will facilitate better

risk estimates for clinical decision-making on timing and options for prevention.

A limited number of studies of VNTRs and breast cancer risk have been published to

date that reported an association of rare alleles in a HRAS1 VNTR and development of cancers,

including breast cancer [67], and a meta-analysis of 13 breast cancer studies found an association

with breast cancer risk [141]. Functional analysis showed that this HRAS VNTR altered CpG

DNA methylation. Another breast cancer-associated VNTR is a CAG-repeat polymorphism in the

androgen receptor; a meta-analysis of 17 studies found an association of longer CAG repeats with

an increased risk of breast cancer in Caucasian women [86]. For MNS16A, a VNTR in the hTERT

promoter, a meta-analysis found that it was significantly associated with development of breast

cancer (OR 1.46; 95% CI, 1.16-1.84) [140]. These studies were targeted at individual VNTRs

located at or around candidate genes. Thus, although there is ample suggestive evidence that

VNTRs may increase risk of developing breast cancer, there has been no systematic, genome-wide

investigation of VNTRs such as proposed herein.

In this chapter, we will systematically assess the role of Variable Number Tandem Repeats

(VNTRs) as genetic modifiers of breast cancer risk in BRCA1 and BRCA2 pathogenic mutation

carriers, and as a determinant of age at diagnosis. VNTRs are known to modulate biologic

processes including gene transcription and protein function [17, 53]. These eVNTRs (expression

Quantitative Trait Loci) also mediate risks of developing various cancers [110] including breast

cancer [67]. Unlike SNPs, where fine-mapping is often needed to identify the causal SNP, the

VNTR at a locus, is more likely to be the causal alteration because of the disruption due to the

multiple alleles and insertion/ deletion of multiple base pairs[17]. This will be the first study to
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conduct a genome-wide investigation to identify VNTRs that may act as genetic risk factors for

the development of breast and ovarian cancers. We hypothesize that VNTRs act as modifiers of

risk of developing breast cancer in female BRCA-mutation carriers.

4.2 Materials and Methods

One reason for the lack of genome-wide investigation of VNTRs has been feasibility due

to a lack of high-throughput genotyping and computational methodologies. Historically, VNTR

genotyping required gel-based screens which are not amenable to high-throughput genotyping

[101]. Microarray-based technologies, such as used for SNP GWAS studies, do not exist for

VNTR genotyping. With the advent of high throughput sequencing, it is possible to identify

variation ranging from SNPs to large structural variation. With a robust method that we developed

to study VNTRs (adVNTR), we could genotype VNTRs from next generation sequencing (NGS)

data including whole genome (WGS), whole exome (WES), and targeted sequencing data.

adVNTR uses Hidden Markov models (HMMs) to model each VNTR, count repeat units,

and detect sequence variation. Using this approach, we conducted a pilot study using targeted-

capture sequence of VNTRs, called genotypes with adVNTR, and explored the association of

VNTRs and breast cancer in BRCA1 carriers.

To identify VNTRs that show association with breast cancer risk in women carrying

pathogenic BRCA1 and BRCA2 mutations, we conducted targeted sequencing of 6271 VN-

TRs located in gene coding and regulatory regions on 552 DNA samples from female BRCA

pathogenic mutation carriers. We used adVNTR to assign VNTR genotypes and conducted

a GWAS of VNTRs using modified statistical association tests. We then used retrospective

likelihood approaches within a survival analysis framework to test the associations.
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4.3 Improving VNTR genotyping accuracy

With the exception of single nucleotide polymorphisms, identifying genomic variations

have not reached near perfect accuracy. For example, the sensitivity of identifying insertion

or deletion within the genome is estimated at 75% to 97% depending on the variant caller and

sequencing coverage[3]. Similarly, the accuracy of VNTR genotyping using short reads is

reported to be 98.08% in the most accurate experiments[10]. Here, we took additional steps to

close the accuracy gap as much as possible to achieve the perfect genotyping with the exception

of experimental shortcomings (e.g. PCR stutter error or low sequencing coverage)[50].

After genotyping 6271 VNTRs in 552 samples, we found the following categories of

erroneous genotype calls reported with their frequency:

Lack of enough sequencing coverage

One assumption in the sequencing is that each amplification that leads to read generation

happens independent of others and has a 1/2 probability of occurrence in each haplotype in

the sample. So, if r reads are generated, it is reasonable to assume 1
2r probability that all reads

are sequenced from one haplotype and the data from the other haplotype is missing in the data.

Therefore, when the coverage < 10X for hundreds of loci, we expect to miss reads from one

haplotype in a few of them. If these cases are heterozygous VNTRs in the sample, then missing a

read from one haplotype will lead to an erroneous homozygous call since all the reads support

one specific allele.

To find the expected number of VNTRs with this error, we looked at the coverage of reads

for every 6271 target VNTR in 552 samples. While the majority of them had high coverage (with

a mean 57.9X and a median of 35X), 10.6% of the calls had less than 7 reads in at least one

haplotype. Assuming less than 50% of them are polymorphic with a heterozygous underlying

genotype, we expect that less than 1% of the genotyped VNTR suffer from this error[9]. In
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addition, there are post processing methods to deal with the trade-off between the number of

genotyped loci to include in the downstream analysis and the probability of missing reads from

one haplotype [96], where including loci with more reads reduces the probability of this error

while removing many correct calls. Using these methods, a user specific threshold could be

chosen to filter less reliable calls.

Similar VNTRs appeared multiple times on genome

Some of the VNTRs are located within a large segmental duplication or other evolu-

tionary process have copied them to another chromosome or another location within the same

chromosome. Therefore, the reads sequenced from these VNTRs are indistinguishable due to the

similarity of pattern and flanking regions even though they may have different genotypes.

We found out 1495 VNTRs (23.8%) out of 6271 target VNTRs are located in more than

one place in the genome (e.g as part of SINE or LINE elements in the genome or segmental

duplications that contain VNTRs). Although in some cases it may be possible to differentiate

the reads of similar VNTRs depending on the evolutionary history of VNTRs, we removed the

duplicated VNTRs from our downstream analysis.

Incorrectly recruited reads

Initially, adVNTR’s read recruitment was designed based on the assumption that mutations

occur with the same rate in the VNTR region. However, as it later turned out, mutations are up to

103X more likely within the tandem repeats of the VNTR compared to the flanking regions [10].

Assuming a high mutation rate within the flanking regions results in accepting the reads that do

not have a perfect match in the flanking regions and are not sequenced from the VNTR region.

Using these erroneous recruited reads will later interfere with the statistical model estimating

the underlying genotype in the sample. To resolve this, we introduced additional filters in the
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read recruitment stage to enforce high similarity in the flanking regions observed in the reads.

To quantify its effect, we measured the sequence identity of flanking regions within 115,988

recruited reads for every genotyped VNTR in 552 samples before enforcing the filter. Although

the alignment score had a median of 98% meaning majority of the reads had near identical

flanking regions, 7.4% of the reads had low quality alignments for flanking regions of VNTRs.

By enforcing high similarity in flanking regions (> 95%) we could eliminate the incorrectly

recruited reads.

Erroneous heterozygous call with weak support

adVNTR was initially developed to leverage whole genome sequencing data which

resulted in expecting ∼ 30X sequencing coverage. So, all the parameters of the method and

the model were trained to find erroneous reads or strong support for an allele using WGS data

with a reasonable variation in coverage. However, using the targeted sequencing approach in

this project we generated more than 100%X sequencing data for VNTRs and we observed close

to 200 reads covering some VNTRs. While in a typical whole genome sequencing experiment

having 5 reads is a sign of strong support for an allele, having 5 reads with PCR stutter error is

to some degree expected out of 200 reads. So in a case where the sample is homozygous at a

particular locus, sequencing would result in an imbalanced support for the correct allele and a

few reads supporting the erroneous genotype. To resolve this issue and account for this scenario,

we did introduce additional parameters looking at the assignments of reads to each haplotype so

that adVNTR models could use data generated with targeted sequencing approach.

Multiple repeating unit types

Another novel property of VNTRs that we have found is that while repeating units are

not identical, they can be grouped together as some of them are more similar to each other.
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Additionally, not all repeats of the same group appear in tandem and more different patterns can

occur in between (Fig. 4.1). We found out that when we merge all such repeats to generate one

profile HMM, the resulting profile does not represent every unit equally which in turn makes the

alignments (and thus counting number of repeats) imperfect.

To tackle this problem, we developed an enhanced approach using Hidden Markov Models

(HMMs) that instead of merging all repeating units together to generate a profile of repeating

pattern, uses multiple profile of patterns that each represent one repeating group (Fig. 4.1). Using

the enhanced model each repeating unit will match with its corresponding HMM with high quality

alignment and it becomes possible to discard all the reads with low quality matches.

VNTR

Enhanced Model

Figure 4.1: The Enhanced VNTR HMM. The HMM is composed of 3 profile HMMs, one each for
the left and right flanking unique regions, and one in the middle to match multiple and partial numbers of
RUs. Since not all repeating units are similar, we divide them into groups and introduce a new profile
HMM for each group. The special states Us (‘Unit-Start’), and Ue (‘Unit-End’) are then connected to all
possible repeating unit HMMs.

Similarity of repeating pattern and flanking regions

One reason that adVNTR’s HMMs fails to accurately count the number of repeats is when

a prefix of repeating pattern is similar to the prefix of the right flanking region. In this case, the
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HMM cannot clearly identify the sequence as the repeating unit or flanking region and may make

erroneous assignment. Likewise, the similarity between the suffix of repeating pattern and the

suffix left flanking region results in the same confusion in counting the repeats. The relation

between these similarities and erroneous calls is measured in Fig. B.12, which shows while most

of the VNTRs do not suffer from this error, there are cases in which distinguishing repeating units

and VNTR borders are not perfect.

Additionally, we found out this ambiguity is more likely when the VNTR region is made

up of complex repeats in the genome and multiple VNTRs appear within one another (e.g. the

repeating unit itself is a VNTR) or have intersection with each other (e.g. smaller part of one

repeating units is repeated multiple times as another VNTR). We found out 1586 of our target

VNTRs (25.3%) have these properties and thus more likely to suffer from this problem. To

systematically solve the issue, we modified the model so that a specific number of base pairs

should be aligned in order to make a call on whether a pattern belongs to the repeating units or

flanks. So, part of the information in reads could be discarded if it is not possible to resolve the

ambiguity. To modify this method, we made this threshold a VNTR specific parameter that is

dynamically determined based on VNTR sequence. We define it as the shortest prefix (or suffix,

when applicable) where repeating unit and flanking region are at least 70% different so the read

sequence can be assigned to the repeating unit or flank unambiguously.

Presence of multiple alleles longer than read length

The last limitation that we observed using adVNTR was the inability to distinguish

between genotypes that are both longer than the length of a single sequencing read. However,

since we divide the genotypes of a VNTR into two groups of short and long alleles, the length

of a read length can still be considered as the threshold dividing the risk group and rest of the

samples. Since we focus on the short VNTR in the genome, the majority of alleles will be shorter

than sequencing reads and we do not find cases where two frequent alleles are longer than the
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Table 4.1: Number of alleles in the 2494 VNTRs in female BRCA1 mutation carriers.

Number of repeat alleles observed in a VNTR
Alleles 2 3 4 5 6 7 8 9 10 11+ Total
Number of VNTRs 305 522 430 326 233 157 104 86 91 240 2494

read length. However, we believe further improvements similar to other variant callers can make

it feasible to infer accurate lengths up to 800bp using the variations of insert size of paired reads

[97].

4.4 Identifying VNTRs associated with the risk of developing

breast cancer

We excluded monomorphic markers and those where there were fewer than 3 heterozygous

genotypes((heterozygosity < 0.01), as well as those that violated Hardy-Weinberg equilibrium

(HWE) measured by p-value < 0.01. These resulted in a total of 2494 VNTRs (40% of the target

loci) for the association tests (Table 4.1).

We performed statistical analysis to identify the association between the VNTR genotype

and breast cancer risk using a retrospective likelihood approach which models the likelihood of

observing the VNTR genotypes given the observed disease phenotypes [5, 28]. In the model, the

breast cancer incidence is assumed to depend on the underlying VNTR genotype through a Cox

Proportional Hazards model. Women are censored at the first of: (a) age at diagnosis of breast

cancer; age at prophylactic surgery; or age at last-follow-up. We considered participants with a

first breast cancer as affected. In the primary association, the VNTR genotype was defined as a

continuous variable using the average length of a participant’s two alleles in the genotype[9]. We

considered the study group, country of residence, and race/ethnicity determined by the top three

principal components (PCs) from the principal component analysis of SNPs as the covariates

in the model. Analyses were done separately for each VNTR. We then adjusted probability
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values for multiple comparisons using the False Discovery Rate (FDR) method of Benjamini and

Hochberg. For VNTRs with associations with FDR < 0.25 in the primary association analysis,

we performed a secondary association analysis to identify the specific risk groups of repeat alleles

using a sliding window method of dichotomizing repeat alleles into short (shorter or equal to a

repeat cut-point) and long (longer than a repeat cut-point) alleles using a sliding cut-point along

the observed small-to-large repeat length distribution of the VNTR [108]. This will convert the

VNTR genotype of an individual to homozygous-short-allele genotype (S/S), heterozygous-short-

and-long-allele genotype (S/L), or homozygous-long-allele genotype (L/L); in the secondary

analysis, the effect of the long allele will be modeled as a per-allele hazard ratio by comparing

women carrying two, one, or zero copies of the L alleles and breast cancer incidence. The optimal

repeat allele cut point was then determined by the smallest p-value among the multiple association

tests. This secondary analysis allowed us to identify critical cut points along the continuous repeat

allele distribution in a VNTR for which breast cancer risk may be modified and then to estimate

the effect size of association related to the specific repeat alleles.

In the primary analysis to test the association of breast cancer risk and a continuous VNTR

variable for 2494 makers using the average repeat length of the two alleles of the VNTR genotype,

we found 46 VNTR markers with p value ¡ 0.01, and 9 with FDRs ¡ 0.25. After performing the

secondary test for them (Fig. 4.2), we experimentally validated the genotypes we obtained for

the samples using NGS data. To validate the calls, we tested 10 samples such that they represent

all observed alleles for the VNTRs. We then designed primers and tested a set of primers and

accuracy of the VNTR genotype call. We ran a 2% agarose gel to measure the PCR product length

and observed concordance for all VNTRs except one, which due to having a small repeating unit

is not clearly separable with agarose gel.
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Figure 4.2: Association of VNTR genotypes with risk of developing breast cancer. The age onset
of cancer is shown for each sample on the y-axis. For each VNTR, alleles are divided into two groups of
short and long genotypes and samples are assigned to the corresponding homozygous or heterozygous
genotype. In BAZ2A gene, the shorter alleles are associated with earlier age onset of cancer while longer
allele of ATP9B VNTR is associated with earlier age onset of cancer.
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A.1 Model Structure and Parameter Setting

Each VNTR is represented by three Hidden Markov Models. A detailed sketch of the

Repeat Match HMM is shown in Fig. 2.1. Here, we show the structure of two other parts in

Fig. A.1. We repeated the blue silent states (Start, US, Ue, and End) to show how these three

models are connected.

To set the transition and emission probabilities of repeat matcher, we used the parameter

obtained by pair HMM of repeating units in reference genome. We set pseudocounts equal to

error rate of sequencing technology in all three HMMs to allow for mutations and sequencing

errors. After the initialization of each model, we updated them using sequencing data of NA12878

(Table A.2). To update each model, we ran read recruitment on sequencing data of NA12878 and

extracted repeating units as described in Methods. Then, we aligned the repeating units to the

HMM, and used the new aligned reads to update HMM parameters. We measure fitness of model

by the sum of log-likelihood of the recruited reads, as follows:

fitness = ∑
r∈reads

log(likelihood(r)),

where likelihood of read r is defined as the probability of most likely path in the HMM to emit r.

We continued to iterate the model alignment, and parameter update steps until convergence of

fitness values.

As described in Methods, we compute the likelihood using the Viterbi algorithm. Let

Vk, j denote the highest (log) probability of emitting the first k letters of the sequence s1,s2, . . .sn

and ending in state j of an HMM. Let, Prevk, j denote the state j′ immediately prior to j in this
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optimum parse. Then,

Vk, j = max
j′
{Vk′, j + logT ( j′, j)+ logE j(sk)},

Prevk, j = argmax
j′
{Vk′, j + logT ( j′, j)+ logE j(sk)},

where, k′ = k−1 for match or insert states; k′ = k otherwise. Then, for a read sequence r with

length n, max jVn, j over all states j in the HMM determines the maximum likelihood.

A.2 Selecting Target VNTRs

We selected sets of target models that could be analyzed based on their characteristics and

the sequencing technologies as follows: We started with the human VNTR list created by Tandem

Repeat Finder. To select the most important loci, we considered VNTRs that had an intersection

with coding regions of human genome. Next, we excluded cases where the flanking regions of

VNTR were not known (e.g. VNTR is close to telomere; the flanking region doesn’t exist in

reference genome; and there is a sequence of ‘N’ adjacent to the VNTR.). Finally, we added

17 VNTRs that are in promoter or intron of the genes but are known to be linked to a disease

(Table 2.1). We removed VNTRs that appear multiple times in different loci of the genome with

identical patterns and flanking regions, but with different number of copies. To find such similar

VNTRs, we compared each pair of VNTRs by comparing the flanking regions and repeating unit

with BLAT [62] and eliminating the VNTRs if their similarity was higher than 75%.

This procedure resulted in 2944 ‘coding’ VNTRs out of 3147 VNTRs that intersected

with coding regions of human genome. The 2944 VNTRs were used for PacBio analysis. For

Illumia analysis, we used a subset of 1775 VNTRs of the 2944, whose length was shorter than

140bp. Finally to create a difficult test case for testing frame-shifts, we selected 115 of 2944

VNTRs for which the total length was ≥ 250bp, and all Repeat Units had the same length, and
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used those to simulate indel (frameshift) data-sets.

A.3 Test Datasets

Multiple test cases were generated using the three lists containing 2944, 1775, and

115 VNTRs, respectively as described in the previous section. We started by generating a

distinct human genomic sequence VNTR I X reference.fa for each I ∈ [1,2944] and each value

X ∈ [−3,3] (20,608 total sequences). Each sequence VNTR I X reference.fa was identical

to the human reference except that it had X’ copies for I-th VNTR, where X’ takes the RU

count in reference genome ±X . To increase the RU count of a VNTR, we added the repeating

units from the first repeat to the last unit, one at a time. We additionally generated ∼ 4920

reference sequences VNTR I Deletion P.fa and VNTR I Insertion P.fa for all I ∈ [1,115]

VNTRs indexing the third list, and a single insertion or deletion at the Pth base pair of the Ith

VNTR. We set P to every position in the VNTR that was a multiple of 10 and was at least 140bp

apart from each side of the VNTR. These reference templates were used for generating simulated

datasets as follows:

IlluminaSim Dataset. We used the following command to simulate the reads from haplotypes

using ART:

art illumina -ss HSXt -sam -i VNTR I X reference.fa -l 150 -f 15 \

-o VNTR I X set

Then, we merged every pair of haploid datasets with RU counts X and Y to get diploid

sequencing data with genotype (X,Y) for VNTR I by appending VNTR I X set.fq to the

end of VNTR I Y set.fq to get VNTR I XY set.fq. Then, we aligned these diploid reads

to the reference genome using Bowtie 2 as follows:

bowtie2 -x hg19 bowtie2 index -U VNTR I XY set.fq -S VNTR I XY aln.sam
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PacBioSim Dataset. We used the following command to simulated the reads for Ith VNTR

using SimLoRD:

simlord -rr VNTR I X reference.fa -pi 0.12 -pd 0.02 -ps 0.02 \

-c 15 VNTR I X pb set

Next, we merged each pair of reads (fastq files) to get the diploid set of reads at 30×

coverage.

PacBioLong Dataset. The dataset is similar to PacBioSim but with higher RU counts for 3

VNTRs 120, 40, and 25 for VNTRs in INS, CSTB, and HIC1 genes, which represent the

largest expansion known for these VNTRs. Again, we used SimLord to generate reads.

simlord -rr VNTR I X reference.fa -pi 0.12 -pd 0.02 -ps 0.02 \

-c 30 VNTR I X pb set

PacBio Coverage Dataset. We simulated different levels of coverage for the three VNTRs using:

simlord -rr VNTR I X reference.fa -pi 0.12 -pd 0.02 -ps 0.02 \

-c C VNTR I X C set

Here, 1≤C ≤ 40×.

IlluminaFrameshift Dataset. We simulated these datasets using following commands:

art illumina -ss HSXt -sam -i VNTR I Deletion P.fa -l 150 -f 15 \

-o VNTR I Deletion p

art illumina -ss HSXt -sam -i VNTR I Insertion P.fa -l 150 -f 15 \

-o VNTR I Insertion p

We also simulated reads from reference genome without the frameshift:

art illumina -ss HSXt -sam -i hg19.fa -l 150 -f 15 -o normal haplotype
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Finally, we merged fastq read files of a haplotype with frameshift with that of normal

haplotype to get the diploid sample at 30× coverage and aligned the reads with Bowtie 2

similar to “IlluminaSim Dataset”.

Table A.1: Simulated dataset summary.

Dataset Name Profile Depth # of VNTRs
Illumina Genotyping Dataset HiSeqX TruSeq 30X 1775
PacBio Genotyping Dataset PacBio 30X 2944
PacBio Long Expansion Dataset PacBio 30X 3
PacBio Coverage Dataset PacBio 1≤C ≤ 40 3
Frameshift Dataset HiSeqX TruSeq C ∈ {10,20,30,40} 123

WGS data used for testing was taken from Genome in a Bottle, NCBI sequence read

archive, Polaris, while exome data was obtained from GoT2D. See Table A.2

Table A.2: Real sequencing data used in tests.

Samples Study Profile PCR Depth Access
free

AJ Child GIAB PacBio - 70X http://jimb.stanford.edu/giab-resources
AJ Father GIAB PacBio - 30X http://jimb.stanford.edu/giab-resources
AJ Mother GIAB PacBio - 30X http://jimb.stanford.edu/giab-resources

Chinese Child PRJEB12236 PacBio - 70X ncbi.nlm.nih.gov/sra/ERX1322863
Chinese Father PRJEB12236 PacBio - 35X ncbi.nlm.nih.gov/sra/ERX1322861
Chinese Mother PRJEB12236 PacBio - 35X ncbi.nlm.nih.gov/sra/ERX1322862

AJ Child GIAB HiSeq 2500 Y 40X http://jimb.stanford.edu/giab-resources
AJ Father GIAB HiSeq 2500 Y 40X http://jimb.stanford.edu/giab-resources
AJ Mother GIAB HiSeq 2500 Y 40X http://jimb.stanford.edu/giab-resources
NA12878 GIAB PacBio - 70X http://jimb.stanford.edu/giab-resources
NA12878 GIAB HiSeq 2500 Y 30X http://jimb.stanford.edu/giab-resources

Subset of 1KGP Polaris HiSeq X Y 30-40X ebi.ac.uk/ena/data/view/PRJEB20654
Diabetes WES GoT2D HiSeq 2000 N 82X phs001095, phs001096, and phs001097

A.4 Running adVNTR

adVNTR is available at https://github.com/mehrdadbakhtiari/adVNTR. As stated in the

repository, the best way to install it is to use conda package manager and running conda install
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advntr. After installation, advntr command invokes the program with four possible commands

genotype, addmodel, viewmodel, and delmodel. Detail of each command as well as complete

tutorial on installation and usage are available at http://advntr.readthedocs.io/. Also, passing -h

argument to each command will show the correct command line usage of the command. We used

following commands to run adVNTR on each simulated datasets:

IlluminaSim Dataset

advntr genotype --alignment file VNTR I XY aln.bam -vid I \

-wd ./working dir

PacBioSim and PacBioLong Datasets

advntr genotype --alignment file VNTR I X pb set.fastq.bam -vid I \

-p -wd ./working dir

PacBio Coverage Datasets

advntr genotype --alignment file VNTR I X C set.fastq.bam -vid I \

-p -wd ./working dir

IlluminaFrameshift Dataset

advntr genotype --alignment file VNTR I Insertion p.bam -vid I \

-fs -wd ./working dir
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A.5 VNTRseek

In order to make a call on a VNTR, VNTRseek requires both ends to be anchored with a

minimum of 20bp on each side of VNTR. This limits the length of VNTRs that can be identified

using VNTRseek is limited to 110bp using Illumina sequencing technology. Also, it compares

each VNTR in the sequencing reads to every VNTR in reference genome which makes the process

computationally demanding, and inaccessible for large data-sets. For these reasons, extensive

VNTRseek comparisons were not conducted.
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A.6 Supplementary Figures and Tables
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B

B

Figure A.1: Flanking region matcher HMMs. (A) Shows the structure of Left Flank Matcher, which
matches a suffix of left flanking region of the VNTR. In this part, the dotted edges allows skipping of
adjacent base pairs at the beginning of the flanking region, and the rest of region (base pairs on the right)
should be matched to the states and this is how matching of a suffix is insured. (B) Shows the structure of
Right Flank Matcher, the model that matches a prefix of right flanking region of the VNTR. Here, dotted
edges ensure the matching of a prefix of the flanking region sequence.
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Figure A.2: Sensitivity of Illumina read recruitment at specific VNTR loci. Comparison of ad-
VNTR read selection with BWA-MEM and Bowtie 2 mapping for Illumina reads (short VNTRs). Each
plot shows the sensitivity of mapped/selected reads as a function of the number of repeats for different
VNTRs. These plots show examples of alignment tools’ behavior when RU count of VNTR deviates
from the RU count in the reference genome. (A) Shows the comparison for the VNTR in CSTB gene, in
which the pathogenic cases have more then 12 repeats and as it is shown alignment tools perform poorly
in those cases. (B) Shows the comparison for the VNTR in MAOA gene, where the 4 repeats corresponds
to both pathogenic case and number of repeats in reference genome. However, other tools perform poorly
in normal cases. (C) Shows the comparison for the VNTR in GP1BA gene, and again, alignment tools
only perform well when RU count is same as RU count in reference genome.
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Figure A.3: Read recruitment accuracy on Illumina reads. (A) Shows the comparison of the recall
of adVNTR read recruitment with BWA-MEM, Bowtie 2, and BLAST. (B) Shows the precision for read
recruitment. These figures show that adVNTR has much higher recall compare to standard alignment
tools without losing precision.
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Figure A.4: Comparison of adVNTR genotyping with consensus method on homozygous simu-
lated data. adVNTR and consensus method comparison on homozygous testcases in PacBioSim.
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Figure A.5: Association of PacBio sequencing coverage in VNTR region and posterior probability
of RU count calling. The figure shows posterior probability of RU count estimation in AJ trio sequencing
data form GIAB. Most of calls with low posterior probability (low confidence calls) result from low
coverage in VNTR region. With at least 10 reads that span the VNTR, we will get 0.98 posterior
probability for estimated genotype.
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Figure A.6: Distribution of discrepancies on trio calls using PacBio reads. This figure shows the
distribution of discrepancies in adVNTR estimates on AJ and Chinese trios. As shown in the figure, most
of non consistent calls in AJ trio have one discrepancy in estimated RU counts.
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Table A.3: Primers for gel electrophoresis validation. Last column shows whether we used the
primers were used for a long range PCR. We used long range PCR to validate adVNTR calls on longer
VNTRs (using PacBio reads).

hg19
Gene Locus (hg19) Forward primer Reverse primer product Long

length reads

MAOA
chrX:43514348-
43514468

GGCTACACCCACG
TCTACTC

CACTCTTGGAGTC
GGAGTCA 679 Y

IL1RN
chr2:113888105-
113888449

ATTCCTGTCCTGG
TAGTTCTCC

AGAGGGGAGGGTC
AGGTTAAT 701 Y

GP1BA
chr17:4837118-
4837278

AGGACTGTGGTCA
AGTTCCC

GCTTTGGTGGCTG
ATCAAGT 586 Y

DRD4
chr11:639988-
640180

CCGTGTGCTCCTT
CTTCCTA

GACAGGAACCCAC
CGACC 481 Y

SLC6A4
chr17:28564157-
28564483

AGGGACTGAGCTG
GACAAC

AGGCAGCAGACAA
CTGTGTT 632 Y

JAKMIP3
chr10:133954073-
133954190

CAAACAGACAGGA
CGGACC

GTGCCCGAGTCAG
CTATCA 249 N

SRSF8
chr11:94800727-
94800790

CAGGTGGCGCGCT
ATG

GAGACCGGCTATA
GCGAGAA 214 N

SSTR1
chr14:38679763-
38679811

CGTCTTCCGTAAT
GGCACCT

CCCTGGATACCGT
CCCTTT 153 N

C14orf180
chr14:105055118-
105055145

CCTATACTGCGGC
CGGG

CCTAGTTAGCCCT
CAGGCAG 265 N

EIF3G
chr19:10229726-
10229768

GGCAGAAGGGGAA
AAACAGA

AGCTGACTCCTCC
TTCCTAC 247 N

STK39
chr2:169103796-
169103845

AACTGTTGAAGCC
AGTAGGC

AGTTTCAAGTGGA
AGGTCGT 408 N

BRWD1
chr21:40585353-
40585415

TGCCCTATTTGTT
CATTGGACT

TCCTTGCCAACAA
GTCACTAC 249 N

CSTB
chr21:45196323-
45196359

GAGGCACTTTGGC
TTCGGA

GCGCCCGGAAAGA
CGATA 193 N

UBXN11
chr1:26608801-
26608909

GCCTTTCCTACGT
GCCTG

AGATCTTCAGCAC
ATTCCCG 321 N

CLCA4
chr1:87045895-
87045932

CTCAGAAGAAAAT
GCAACCCAC

CACAGACAATACC
AGCGTAGA 214 N

LCE4A
chr1:152681679-
152681727

ATCCCCAAGTATC CC-
CCAAA

GACCTATGGTGTC
TGTGGTG 152 N

PAOX
chr10:135202324-
135202464

CAGTGGTTCCTTG
CTGAGAA

GGCAATGAACCCA
CAGAGAA 214 N
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Figure A.7: Expansion Hunter’s performance on VNTR genotyping using Illumina reads. Expan-
sion Hunter’s performance on IlluminaSim dataset.
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Table A.4: VNTR genotyping results on simulated data. For two cases, (MAOA 1/1 and CSTB 1/1)
Expansion Hunter doesn’t find any RU count.

RU Count Discrepancy
PacBio Dataset Illumina Dataset

VNTR Simulated Genotype adVNTR Expansion Hunter adVNTR
MAOA 1/1 0/0 -/- 0/0
MAOA 1/2 0/0 0/-1 0/0
MAOA 1/3 0/0 0/-2 0/0
MAOA 1/4 0/0 0/-3 0/0
MAOA 1/5 0/0 0/-4 0/0
MAOA 2/2 0/0 -1/-1 0/0
MAOA 2/3 0/0 0/-1 0/0
MAOA 2/4 0/0 -1/-3 0/0
MAOA 2/5 0/0 -1/-4 0/0
MAOA 3/3 0/0 -2/-2 0/0
MAOA 3/4 0/0 -2/-3 0/0
MAOA 3/5 0/0 -2/-4 0/0
MAOA 4/4 0/0 -3/-3 0/0
MAOA 4/5 0/0 -3/-4 0/0
MAOA 5/5 0/0 -4/-4 -1/-1
GP1BA 1/1 0/0 0/0 0/0
GP1BA 1/2 0/0 0/0 0/0
GP1BA 1/3 0/0 0/-1 0/0
GP1BA 1/4 0/0 1/-2 0/-1
GP1BA 2/2 0/0 0/0 0/0
GP1BA 2/3 0/0 0/-1 0/0
GP1BA 2/4 0/0 0/-2 0/-1
GP1BA 3/3 0/0 -1/-1 0/0
GP1BA 3/4 0/0 -1/-2 0/0
GP1BA 4/4 0/0 -2/-2 -1/0
CSTB 1/1 0/0 -/- 0/0
CSTB 1/2 0/0 1/0 0/0
CSTB 1/3 0/0 2/0 0/0
CSTB 1/4 0/0 3/0 0/0
CSTB 1/5 0/0 4/0 0/0
CSTB 1/6 0/0 4/-1 0/0
CSTB 1/7 0/0 3/-3 0/0
CSTB 1/8 0/0 4/-3 0/0
CSTB 1/9 0/0 3/-5 0/0
CSTB 1/10 0/0 4/-5 0/0
CSTB 1/11 0/0 4/-6 0/0
CSTB 1/12 0/0 4/-7 0/0
CSTB 1/13 0/0 4/-8 0/0
CSTB 1/14 0/0 3/-10 0/-1
CSTB 2/2 0/0 0/0 0/0
CSTB 2/3 0/0 1/0 0/0
CSTB 2/4 0/0 1/-1 0/0
CSTB 2/6 0/0 3/-1 0/0
CSTB 2/8 0/0 3/-3 0/0
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Table A.5: Genotyping comparison on AJ trio using Illumina reads from GIAB. Table shows the
genotype found by adVNTR and ExpansionHunter in disease causing VNTRs that are shorter than
Illumina reads. -/- denotes ExpansionHunter has not found any genotype for the VNTR. It worths
mentioning the genotypes found by adVNTR for MAOA are not inconsistent as this VNTR is located on
ChrX and the son has haploid RU counts inherited from mother.

Estimated Genotype
adVNTR ExpansionHunter

VNTR AJ Child AJ Mother AJ Father AJ Child AJ Mother AJ Father
DRD4 4/5 4/5 4/4 -/- -/- -/-
ZFHX3 4/4 4/4 4/4 3/3 -/- 3/3
GP1BA 2/5 2/3 3/4 2/2 1/1 2/2
SLC6A4 13/13 11/13 13/13 -/- -/- -/-
MMP9 3/3 3/3 3/3 -/- -/- -/-
CSTB 2/2 2/2 2/2 3/3 2/2 1/1
MAOA 5/5 4/5 4/4 -/- -/- -/-
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Figure A.8: Validation of adVNTR genotyping on short VNTRs. In experiment for C14orf180 the
primers were repeated in another region of genome which resulted in having extra band. Even with zero
copy of VNTR patterns, the distance of primers around VNTR is 238bp which means the extra band
(∼100bp) is resulted from another region of genome. Also, PCR amplification failed for STK39 and no
band is visible. Results of all other 10 experiments are consistent with adVNTR’s estimates.
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Figure A.9: Alignment in VNTR region with the presence of a frameshift. Alignment of a simulated
data after running GATK IndelRealigner, when there is a deletion. With a sequencing mean of 30×, 25
reads contain the deletion but even after running realigner, deletions are mapped to five different repeating
units.
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Figure A.10: Frameshift in CEL gene. Multiple alignment of sequenced reads and reference repeating
unit shows a deletion in diabetes patient genome. Due to low PCR amplification in GC rich VNTR region
(84.8%), the coverage of VNTR region is 14× and 6 reads support the deletion.
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Table A.6: Comparison of indel detection with SAMtools and GATK

# of Samples # of samples that frameshift has been identified
Samtools Our Method GATK

10X Insertions 20 0 20 0
Deletions 20 0 20 0

20X Insertions 20 0 20 0
Deletions 20 0 20 0

30X Insertions 20 0 20 0
Deletions 20 0 20 0

40X Insertions 20 0 20 0
Deletions 20 0 20 0
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B.1 Supplementary Figures
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Figure B.1: Distribution of genotyping accuracy of adVNTR-NN stratified by VNTR
length on simulated VNTRs. Heterozygous alleles were simulated by inserting or delet-
ing repeating units in one reference allele to transform its RU count c to c+x, where c is the
hg19 reference count, and x ∈ [−3,3]. Source data are provided as a Source Data file.
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Figure B.2: Distribution of genotyping accuracy of adVNTR-NN stratified by repeat
length for simulated heterozygous reads. Heterozygous alleles were simulated by insert-
ing or deleting repeating units in one reference allele to transform its RU count c to c+x, where
c is the hg19 reference count, and x ∈ [−3,3].
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Figure B.3: adVNTR-NN and VNTRseek running time comparison. Running time compar-
ison on 1, 10, 100, 1,000, and 10,000 VNTR loci of one individual (NA24149) with 1.16×109

reads.
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Figure B.4: adVNTR-NN and VNTRseek genotyping accuracy on simulated heterozygous
reads. The genotyping accuracy for each scenario is defined by the the number of VNTR loci
correctly genotyped correctly divided by the number of VNTR loci. Six different heterozygous
VNTR scenarios were tested; specifically, c/c-3, c/c-2, c/c-1, c/c+1, c/c+2, c/c+3, where c is
the hg19 reference count. The number of VNTR loci modified for contraction scenarios were
9,638 (c-1), 5,078 (c-2), and 2,084 (c-3), with the reductions happening due to a requirement of
at least 1 repeating copy for each VNTR allele. All expansion scenarios had 9,638 VNTRs.
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Figure B.5: Distribution of genotyping accuracy of adVNTR-NN and VNTRseek on sim-
ulated heterozygous reads. The genotyping accuracy for each VNTR is defined by the number
of loci genotyped correctly divided by the number of loci. Six different heterozygous VNTR
scenarios were tested; specifically, c/c-3, c/c-2, c/c-1, c/c+1, c/c+2, c/c+3, where c is the hg19
reference count. The number of VNTR loci modified for contraction scenarios were 9,638 (c-1),
5,078 (c-2), and 2,084 (c-3), with the reductions happening due to a requirement of at least 1
repeating copy for each VNTR allele. All expansion scenarios had 9,638 VNTRs. adVNTR-NN
had 100% accuracy in 7,343 (76%) of 9,638 VNTRs.
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Figure B.6: Comparison of adVNTR-NN versus GangSTR accuracy on simulated het-
erozygous reads for short RU lengths (≤ 20). Seven scenarios were tested; specifically, c/c-3,
c/c-2, c/c, c/c-1, c/c+1, c/c+2, c/c+3, where c is the hg38 reference count. The genotyping
accuracy for each scenario is defined by the number of VNTR loci genotyped correctly divided
by the number of VNTR loci. The number of VNTR loci modified for contraction scenarios were
6,508 (c-1), 4,763 (c-2), and 2,805 (c-3), with the reductions happening due to a requirement of
at least 1 repeating copy for each VNTR allele. All expansion scenarios and the homozygous
case had 6,508 VNTRs.
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Figure B.7: Length distribution of VNTRs. The violin plots show the distribution of VNTR
lengths in 537 Trios from the 1000 Genomes Project (n=10,264 VNTRs for each trio). White
dots show median values and boxes span from the 25th percentile (Q1) to the 75th percentile
(Q3). VNTRs that showed consistency with Mendelian inheritance patterns had a median length
of 52bp, while inconsistent calls have a median of 90bp.
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Figure B.8: Genotype difference in VNTR loci between donors and GRCh38. For each
VNTR, the difference between the most common allele in the GTEx cohort and the GRCh38
reference repeat count was recorded. The plot shows the distribution of the differences.
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Figure B.9: Base pair difference in VNTR loci between donors and GRCh38. For each
VNTR and each individual allele in a GTEx donor, the difference in length from the GRCh38
reference VNTR length was recorded. The plot shows a distribution of differences.
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Figure B.10: Length distribution of VNTRs in the GTEx cohort (n=4,280 VNTRs). White
dots show median values and boxes span from the 25th percentile (Q1) to the 75th percentile
(Q3). The length distribution for all VNTRs that passed filters had a median of 61, slightly
larger than eVNTRs (median length: 48bp). In contrast, the VNTRs that failed the HWE test
had a length distribution (median: 92bp), which was similar to VNTRs that showed inconsistent
Mendelian inheritance patterns in trios from the 1000 Genome data (median: 90 bp; Fig. B.7).
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Figure B.11: Fraction of VNTRs with a common long allele. Only one (0.6%) of the eVN-
TRs had a common allele (present in > 10% of samples) that was longer than a read length,
while (125) 8.06% of VNTRs that fail HWE test had a common long allele. Shorter alleles are
genotyped more accurately.

103



0 2 4 6 8 10
Alignment Score of RU and the most similar flanking region

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 V

NT
Rs

Similarity of Flanking Regions and RU
eVNTRs
VNTRs that Fail HWE

Figure B.12: Similarity of VNTR repeating pattern with flanking region. Distribution of
the number of bases in the repeat unit of VNTRs that identically match a flanking region. Higher
similarity of repeating unit and flanking region makes it more challenging to distinguish the
VNTR boundary and make an accurate genotype call.
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Figure B.13: Distribution of significance thresholds for association test. Significance thresh-
olds for each of the 46 tissues.
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Figure B.14: Cumulative distribution of eVNTR p-values for different classes. The plots
suggest that the relative location of a genic VNTR does not significantly change the strength of
association with gene expression.
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Figure B.15: Correlation between number of eVNTRs and sample-size. Overall, we see
a strong correlation between the number of samples and eVNTRs. Testis and transformed-
fibroblasts had relatively higher number of eVNTRs, while fewer eVNTRs were identified in
Whole blood and Skeletal muscle, relative to the sample size.

107



0 10 20 30 40

Number of Tissues

0.00

0.02

0.04

0.06

0.08

0.10

P
er

ce
nt

ag
e

of
V

N
T

R
s

Figure B.16: Tissue sharing of eVNTRs. The fraction of eVNTRs that are active in a specific
number of tissues as determined by mash. 38% of eVNTRs were significant in at least half (23)
of all tissues.
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Figure B.17: Reproducibility of effect sizes in Icelandic Cohort. The scatter plot compares
the effect sizes of each eVNTR association in the GTEx cohort (x-axis) against the Icelandic
cohort (y-axis) for blood tissue. The Spearman’s correlation coefficient was 0.88 (p-val: 1.15E−
07).
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Figure B.18: Reproducibility of effect sizes in the Geuvadis Cohort. The scatter plot com-
pares the effect sizes of each eVNTR associations in GTEx cohort (x-axis) against the Geu-
vadis cohort (y-axis) for blood tissue. The Spearman’s correlation coefficient was 0.7 (p-val:
4.57E−04).
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Figure B.19: Spearman correlation of eVNTRs effect sizes for pairs of tissues. The corre-
lation was restricted to the subset of 17 tissue types used in Fotsing[39], Fig. 1d for comparison.
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Figure B.20: Significance of VNTR association with gene expression plotted against Minor
Allele Frequency. The shaded region represents tissue specific false discovery rate cut-offs.
Note that all significant tests for a single VNTR appear in a single column.
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Figure B.21: Causality rank of eVNTRs measured using strength of association (blue), CAVIAR
(red), and mean harmonic rank (green). The P-value and CAVIAR based ranks coincide.
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Figure B.22: Association of RPA2 VNTR genotype with gene expression level. n=254
samples, P-value 3.79× 10−25. Increase RPA2 expression has been associated with worse
survival outcomes in colon cancer[45]. Only two samples had a homozygous (2, 2) genotype.
Their normalized expression levels were 0.85 and 0.99, which is consistent with the trend.
However, they were excluded from analysis due to the small counts. Horizontal lines show
median values, boxes span from the 25th percentile (Q1) to the 75th percentile (Q3). Whiskers
extend to Q1−1.5× IQR (bottom) and Q3+1.5× IQR (top), where IQR is the interquartile
range (Q3−Q1).
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Figure B.23: Effect of kmer length on accuracy. Performance of the neural network model
on validation set for different k-mer lengths. k=6 was used for all test runs as it had the highest
mean accuracy of 99.95%.
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Table B.1: eVNTRs with known phenotypes. Top 20 VNTRs loci that were previously linked
to a phenotype.

Locus

RU Length

Effect Size
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Phenotype
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Figure B.24: Effect of loss function on accuracy. Performance of the neural network model
on validation set for different loss functions. The mean of each distribution is shown by a blue
dot. Binary cross-entropy was used as the loss function for all tests.
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Table B.2: Comparison of hexamer eVNTRs using differing methods. Each row describes
a 6-bp variant identified either as eVNTR here or as an eSTR in Fotsing[39]. Fotsing et al.
identified eSTRs with false discovery rate (FDR) < 10% in contrast to our cut-off of 5% FDR.
Therefore, the nominal p-value of each association is presented for easier comparison. Despite
differing methodologies and versions of GTEx, the loci are at least nominally significant (p
< 0.05) in both tests.

Replication

Locus adVNTR P-value HipSTR P-value[39] eV
N

T
R

eST
R

1 chr6:13328502-13328532 3.39×10−14 7.89×10−13 Y Y
2 chr5:160421950-160422000 7.86×10−12 8.59×10−11 Y Y
3 chr22:37510301-37510338 2.29×10−9 5.39×10−7 Y Y
4 chr17:63703959-63703989 4.14×10−7 9.17×10−4 Y N
5 chr10:70132751-70132793 2.25×10−5 3.74×10−3 Y N
6 chr11:6390700-6390749 5.80×10−5 2.22×10−5 Y Y
7 chr20:35652812-35652848 1.12×10−4 3.99×10−2 Y N
8 chr6:148343091-148343168 1.80×10−4 3.78×10−3 Y N
9 chr22:37805258-37805313 2.12×10−4 4.82×10−10 Y Y

10 chr3:51993818-51993872 2.79×10−4 9.70×10−9 Y Y
11 chr16:71922603-71922638 7.05×10−4 4.91×10−5 N Y
12 chr13:113119135-113119222 5.27×10−3 9.45×10−8 N Y
13 chr16:67416367-67416422 9.93×10−3 7.44×10−5 N Y
14 chr1:151511435-151511510 1.56×10−2 6.37×10−5 N Y
15 chr11:8964363-8964423 1.56×10−2 1.55×10−6 N Y
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Brendan Blumenstiel, Chun Ye, Daniel Aird, Christine Stevens, James T Robinson, et al.
Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1
missed by massively parallel sequencing. Nature genetics, 45(3):299–303, 2013.

[65] J Kirchheiner, K Nickchen, J Sasse, M Bauer, I Roots, and J Brockmöller. A 40-basepair
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macher, Peter Schürmann, Lukas Schwentner, Christopher Scott, Rodney J. Scott, Caroline
Seynaeve, Mitul Shah, Mark E. Sherman, Martha J. Shrubsole, Xiao Ou Shu, Susan Slager,
Ann Smeets, Christof Sohn, Penny Soucy, Melissa C. Southey, John J. Spinelli, Christa
Stegmaier, Jennifer Stone, Anthony J. Swerdlow, Rulla M. Tamimi, William J. Tapper,
Jack A. Taylor, Mary Beth Terry, Kathrin Thöne, Rob A.E.M. Tollenaar, Ian Tomlinson,
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