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ABSTRACT 
 

Development of a dynamic optimal habitat model to describe the spatial and 
temporal habitat distributions of giant kelp, Macrocystis pyrifera 

By 
Natalie Alexandra Senyk 

 
Forests of giant kelp, Macrocystis pyrifera, are common features of shallow rocky                                            
bottom habitats along California’s coast.  They function as an important marine 
habitat, supporting an abundance and diversity of life, and are commercially 
harvested.  Long-term observations of giant kelp’s (kelp) distribution and 
productivity have shown great temporal variability along with a declining trend 
over the last several decades in southern California.  Hence, determining the 
distribution and persistence of kelp habitat requires an understanding of the factors 
driving variability in space and time.  The role of time was examined by developing 
a model that utilizes remotely sensed data, along with other variables, to describe 
kelp’s optimal habitat.  The model is based on habitat preferences of kelp (“optimal 
habitat descriptors” or OHDs) and consists of a set of rules generated from 
observable environmental parameters, including substrate, bathymetry, monthly 
mean sea surface temperature, and monthly mean significant wave height.  The 
study area included the northern Southern California Bight and offshore Channel 
Islands.   
 
Four model variants were developed to describe optimal habitat by relaxing various 
assumptions.  The nonsynergistic model (hn), the simplest model, assumed that 
each OHD functions independently spatially and temporally in the selection of 
optimal habitat.  The synergistic model (hs) incorporated an inverse linear 
synergistic effect between wave height and the selection of optimal substrate.  The 
model selected a wider range of substrate during months of reduced wave height 
and only rockier substrate as wave height increased.  The final two models were 
developed by incorporating a temporal autocorrelation function into the hn and hs
models, generating the nonsynergistic autocorrelative model (hna) and synergistic 
autocorrelative model (hsa) model, respectively.  In these two variants, a location 
could persist through a single month of suboptimal conditions.  The four models 
i.e., hn, hs, hna and hsa each generated a 55-month time series of optimal habitat, 
spanning March 1998-September 2002, and were used to examine temporal 
variability and persistence.   
 
All four models exhibited seasonal to interannual variability in optimal habitat.   
The annual cycle consisted of a summer season during which optimal habitat area 
reached a maximum with relatively minor monthly variability.  The winter season 
was marked by significant declines in optimal habitat, corresponding with 



increased wave heights generated by storms.  Hence, winter storms play an 
important role in annual variability. 
 
Interannual variability at various scales was also apparent.  The models showed a 
marked decrease in optimal habitat during summer 1998, corresponding with the 
1997-1998 El Nino event.  Elevated sea surface temperatures were responsible for 
the decline in optimal habiat.  An interannual trend was also apparent across all 
four models.  It was marked by a less dynamic annual cycle during 2000-2002 
relative to 1998-1999.  Monthly mean optimal habitat area during the winter season 
was relatively greater during the latter period than the earlier period.   
 
Model performance, characterized as the proportion of realized habitat identified 
from aerial surveys captured by models, was correlated with rocky substrate.  The 
models captured the greatest proportion of realized habitat in rocky beds.  The 
models also exhibited greater performance in the Channel Islands beds as compared 
to mainland beds. 
 
Persistence was examined for those beds whose performance exceeded 75% for 
each of the four models.  Persistence was more strongly correlated with rocky 
substrate in the synergistic models than the nonsynergistic models.  All four models 
showed greatest persistence with a SST range between 12-14oC. 
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1.  Introduction 
 
Giant kelp (Macrocystis pyrifera) is a common and important shallow subtidal 
macroalgae, forming underwater forests, or beds, along rocky reefs between central 
California and Baja California, Mexico.  It is a keystone species, functioning as a 
food source, nursery ground and protection for a wide variety of species (Carr 
1989; Leet et al. 2001).   It is also harvested for the abalone aquaculture, and as 
well as for extraction of alginates, which are used in products such as cosmetics, 
paint, salad dressing, ice cream, and paper. 
 
Giant kelp (kelp) is a brown macroalgae, with a heteromorphic lifecycle consisting 
of a haploid gametophyte stage and a diploid sporophyte stage, the large plants 
forming familiar beds.  An individual plant consists of a rootlike holdfast that 
attaches to hard substrates.  A long stalk, or stipe, acts as an attachment for the leaf-
like fronds,  which are the major site of photosynthetic activity.  Gas-filled bladders 
called neumatocysts support the kelp plant and allow it to grow toward the sea 
surface.  A plant may grow to lengths of 60 m with its upper fronds forming a 
dense canopy at the surface.   
 
Kelp’s preferred habitat is well defined by several environmental variables.  It is 
typically located on rocky substrate, consisting of <20% sand (Graham et al. 1997).    
However, it has also been shown to occur with moderate amount of sand on reefs 
of 1m relief (Deysher et al. 2002).   
 
However, substrate is known to vary with the amount of wave exposure.  Typically, 
where wave height is reduced, kelp can be found over more diverse substrate 
(review in Brown et al. 2002; Brown et al. 1999) 
 
In regions of reduced wave exposure, such as the protected shoreline of Santa 
Barbara County, California, kelp can also occur over softer substrate, attaching to 
worm tubes or remains of old holdfasts (Leet et al. 2002).  Giant kelp prefers 
depths less than 40 m (Dayton et al. 1999).  Its deeper depth limit is controlled by 
light intensities, needing atleast 1% of the surface irradiance (Foster and Schiel 
1985).  
 
Kelp requires <17 oC (Foster and Shiel 1985; Deysher and Dean 1986; Tegner et al 
1997).  Density of sporophyte recruitment and growth rates tend to decline in these 
conditions.  Water temperature functions as a proxy for nitrate and is the best 
indicator of harvestable kelp biomass (Tegner et al. 1996).   It is inversely 
correlated with nitrate concentration in southern California (Jackson 1977; 
Zimmerman and Kremer 1984).  Temperatures exceeding 16oC are correlated with 
nitrate depletion, which can lead to a decrease in sporophyte recruitment, reduced 
growth rates and mortality of individual kelp plants.   The length of time of low-



nitrate, warm temperature conditions will affect the magnitude of effects.  Growth 
can become nutrient limited during summer months.  During these periods of low 
seawater nitrate concentrations, kelp can sustain internal nitrogen concentrations 
for about one month of and hence delaying growth declines (Brown et al. 1997).  
 
The general location of kelp beds has been temporally consistent, but the extent, or 
actual distribution, of those beds has varied greatly over annual to interannual time 
scales (Ugoretz 2002), as reflected in harvest rates.  ISP Alginates, Inc., the 
company that harvests kelp, conducts monthly aerial surveys of kelp biomass in 
California’s beds.  The kelp bed boundaries are defined by the California 
Department of Fish and Game’s (CDFG) administrative beds (Beds) (Table 1; 
Figure 1).  The kelp biomass time series spans 1967 to the present.  During 1970-
1979, the average state-wide harvest was nearly 157,000 tons, while the average 
harvest between 1980-1989 was 80,400 tons.   
 
Many factors affect the productivity and distribution of kelp over a range of spatial 
and temporal scales.  Biological, physical and anthropogenic factors have both 
direct and synergistic effects.  Herbivore grazing can affect local scale variability 
by limiting the distribution of kelp.  In some cases, grazing can lead to a complete 
removal of kelp beds, leaving an ‘urchin barren’.   Competition for benthic habitat 
with understory algae can prevent kelp recolonization once an area has been 
decimated by other factors (Dayton and Tegner 1984).     
 
Physical factors can lead to regional-scale variability in kelp distribution over 
annual to interannual frequencies.  Annual regional-scale events, such as storms 
can lead to kelp mortality and reduction in kelp productivity.  In southern 
California, the Mediterranean climate is marked by storms during the winter (Ford 
2000).  These events are characterized by increased wave exposure and storm 
surge, which can break fronds and uproot entire kelp plants.  The uprooted plants 
can entangle and further remove more kelp.  In southern California, entanglement 
with storm-dislodged kelp is a major cause of mortality (Dayton et al. 1984).   
 
Low nutrient oceanographic conditions also have an effect on kelp productivity and 
distribution.  In southern California, summer months are usually marked by 
depressed upwelling, leading to warm-water, low-nitrate conditions in the euphotic 
zone.  Such conditions stress kelp, causing a decrease in density of sporophyte 
recruitment and growth, and potentially mortality (Jackson 1977; Deysher and 
Dean 1986; Zimmerman and Kremer 1986).   
 
Interannual variability in kelp distribution and productivity is correlated with 
ENSO events.  The large-scale, low-frequency El Nino events affect the severity of 
storms and warm-water, low-nitrate conditions (Dayton and Tegner 1984; 1987; 



Ladah et al. 1999).  The increase in the number and intensity of storms can lead to 
decimation of kelp along its entire range.  The severity is typically greater in 
southern California relative to central California.  El Nino events are reflected in 
harvest rates.  The low harvest rates between 1980-1989 was attributed to the 1982-
1984 El Nino event and subsequent storms, as well a 200-year storm during 
January 1988 (Leet et al. 2001).   
 
Several strong El Nino events have occurred in the last 20 years.  The 1982-1984 
event devistated kelp survival.  A combination of reduced nitrate levels during 
summer and several severe storms decimated kelp in southern California (Dayton 
and Tegner 1984).  Subsequently, sea urchin grazing increased, preventing re-
seeding of kelp in areas where it had previously been, preventing recolonization.  
Some regions have never been recolonized.  The 1997-1998 El Nino was the 
warmest in the last two decades (Leet et al. 2001).   
 
An interdecadal trend of increasing frequency, duration and intensity of warm-
water El Nino events and a corresponding decrease in cool-water La Nina events 
since the mid 1970s is evident (Tegner et al. 2001).  This ‘regime-shift’, sometimes 
refered to as the Pacific Decadal Oscillation, is associated with increased sea 
surface temperature (Roemmich and McGowan 1995) and a shift in mean location 
of SST isotherms to the north (Tegner et al. 2001) in the northeastern Pacific.  The 
southern limit of kelp’s distribution in Baja California has also shifted further north 
since the 1982-1984 El Nino event (Ladah et al. 1999).    
 
Anthropogenic factors can also affect kelp distribution and productivity.  
Discharges of wastewater and thermal byproducts and coastal development can 
increase turbidity and sedimentation.  Increased sedimentation can prevent kelp 
spore attachment to the substrate, cause smothering, or scour microscopic 
sporophytes thereby reducing success (Devinny and Volse 1978).  As a result, kelp, 
growth, productivity, and survival may decline and mortality may increase (Dean 
and Deysher 1983).     
 
The role of anthropogenic factors is difficult to assess given concurrent natural 
variability over annual to interannual scales and a lack of a time series of kelp 
distribution to characterize variability.  Of concern is the increasing coastal 
population, which is predicted to grow XX in the next XX years, which may 
magnify the impact of anthropogenic factors on the coastal ecosystem.  Along 
southern California’s mainland, the kelp beds appear to have declined relative to 
historic levels potentially due to anthropogenic factors (Leet et al. 2001).  The 
status of several regions of kelp beds are of concern, including the kelp beds along 
Santa Barbara/Ventura (Leet et al. 2001).   
 



Concern about protecting and restoring important coastal species and habitats, such 
as kelp, have stimulated a shift in management from a single-species to ecosystem-
based approach (NAS 2000; NOAA 2000).  Marine protected areas (MPAs) are a 
zoning tool, restricting to various degrees human activities within their boundaries 
that are implemented with traditional single-species management.  Marine reserves 
are the strictest type of MPA, allowing no extractive activities within it, such as 
fishing, oil drilling.  By taking an ecosystem-based approach, MPAs protect the 
species, interactions, and ecological linkages that traditional single-species 
management cannot.    
 
In southern California, a network of MPAs was implemented by the California Fish 
and Game Commission in 2003 stimulated by a public concern that the health and 
status of the coastal ecosystem was in decline relative to historic levels.  The 
network was established in the Channel Islands National Marine Sanctuary 
(CINMS), a 6 nmi boundary along 5 southern California islands, including San 
Miguel, Santa Rosa, Santa Cruz, Anacapa, and Santa Barbara Islands.  The region 
is a biologically diverse region, located in the transition of the cold water 
Oregonian biogeographic province to the north and the warmer water Californian 
biogeographic province.  It has historically been a productive fishing area for a 
wide range of fish and invertebrates.  The high productivity sustains a wide range 
of marine mammals and sea birds.  The CINMS MPA network consists of 10 
marine reserves and 2 conservation areas located around the islands.  The 
conservation areas allow limited take.     
 
The MPA network was established to meet a variety of goals, including protecting 
ecosystem biodiversity.  The objective focused on protecting representative and 
unique marine habitats, ecological processes, and species of interest.  A network 
consisting of 10 marine reserves and 2 conservation areas, which allow limited 
extractive activities, was established to represent the biogeographic provinces and 
placed around the five islands.   
 
An integral component in developing the CINMS MPA network were habitat maps 
of the region’s species of interest.  Habitat representations are typically the central 
focus of site selection schemes of MPAs, because the lifecycle of the majority of 
economically important fish species can be reduced to several general habitat-
related patterns (Koenig et al 2000).  Large-scale habitat maps allow managers to 
visualize the spatial distribution of habitats, aiding in the planning of networks of 
MPAs and allowing habitat fragmentation to be monitored (Mumby and Harborne 
1999).  
 
In the CINMS MPA process, the potential distribution of kelp, identified as a 
species of interest, was mapped using maximum extent identified using aerial 
photographs of the region between 1980 and 1989 (Ecoscan 1989).  The maximum 



extent map provides presence/absence information but does not provide any 
information on persistence or temporal dynamics.  The temporal variability of the 
coastal ecosystem, as indicated in the characterization of temporal scales of kelp, 
due to anthropogenic disturbance, oceanographic events and community changes 
can have a significant effect on species’ distributions, and hence the value of 
habitat delineated in maps (Chelton et al 1982; Roemmich and McGowan 1995; 
Carroll et al 1999; Walters and Bonfil 1999).  Hence, the development of MPAs 
requires information regarding spatial and temporal dynamics of habitats and the 
variability that exists in coastal marine systems (NAS 2000; Rieser 2000).  A need 
exists to address the dynamic effects of ecosystem processes through time-series 
analyses (Mumford 1992; Allee et al. 2000).  Characterization of temporal 
dynamics in habitat maps can aid in identifying persistent habitat.  It may also 
assist in distinguishing and characterizing the relative impacts of natural variability 
versus anthropogenic-caused trends.   
 
The primary objective of this project was to examine the role of time in kelp’s 
optimal habitat distribution and characterize persistent habitat.  The study area was 
the Channel Islands region, including mainland coast north of Point Conception to 
Ventura and the four northern Channel Islands (San Miguel, Santa Rosa, Santa 
Cruz and Anacapa Islands) (Figure 1).   
 
The approach was to develop a model that utilizes existing data sets to gain an 
understanding of and quantify the spatial and temporal variability associated in the 
coastal region affecting kelp’s optimal habitat.  Optimal habitat is defined for these 
purposes as that area where ambient environmental conditions are suitable for an 
organism to exist during a given month, or simply where an organism can exist.  It 
is delineated by optimal habitat descriptors (OHD), which are the environmental 
variables that characterize kelp’s preferred habitat, such substrate type and wave 
exposure. 
 
The approach of this research project was to develop an optimal habitat (ho) model 
that utilizes existing data sets to gain an understanding of and quantify spatial and 
temporal variability associated with the coastal region and affecting kelp habitat.   
The model utilizes data collected by other research programs and publicly 
available.  The goals were to assemble data sets that could characterize the 
temporal and/or spatial scales of OHDs, develop a model to describe space/time 
distributions of optimal habitat based upon a set of rules and OHDs, validate the 
results with aerial surveys, and analyze spatial and temporal patterns and 
persistence of kelp’s optimal habitat.  Application of the OHDs in delineating 
optimal habitat requires an understanding of species-habitat relationships.  OHDs 
can function as surrogates for identification of species’ distributions if the 
relationship between habitat and a species’ physiological tolerances can be 



constrained.  Descriptor thresholds, or parameters, can then be used to delineate 
locations of optimal habitat.   
 



-120.9oW -118.8oW
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Figure 1.  Study Area.  The study area includes a region south of Morro Bay to 
Ventura, California and the northern Channel Islands, including (west to east): 
San Miguel, Santa Rosa, Santa Cruz, and Anacapa Islands.  The California 
Department of Fish and Game (CDFG) Administrative Beds in the study area 
are delineated in green. See Table 1 for Bed names. 



Table 1.  List of CDFG Beds included in the study region.

CDFG Administrative Bed # Bed Name 
18 Ventura 
19 Rincon Point 
20 Carpinteria 
21 Summerland 
22 Santa Barbara 
23 Santa Barbara Breakwater 
24 Arroyo Burro 
25 Hope Ranch 
26 Goleta 
27 Coal Oil Point 
28 Naples 
29 El Refugio 
30 Tajiguas 
31 Gaviota 
32 San Augustine 
33 Point Conception 
34 Point Arguello 

106 Santa Barbara Island 
109 Anacapa Island 
110 Santa Cruz Island (N) 
111 Santa Cruz Island (W) 
112 Santa Cruz Island (N) 
113 Santa Rosa Island (SE) 
114 Santa Rosa Island (SW) 
115 Santa Rosa Island (NW) 
116 Santa Rosa Island (NE) 
117 San Miguel Island (S) 
118 San Miguel Island (N) 
202 Purisma Point 
203 Point Sal 



2.  Data and Methods 
 
Optimal Habitat Descriptor (OHD) Data sets 
Data sets used as OHDs in developing the optimal habitat model were selected by 
the following criteria:  (1) previous studies have shown correlations between the 
distribution of kelp and the OHD, (2) data was publicly available, (3) the temporal 
scale and/or spatial extent of each OHD data set was appropriate for this project.  
The OHD data sets needed to encompass the study area.  From a temporal 
perspective, OHD data sets that can vary on sub-monthly scales were considered 
dynamic and sub-monthly time series were required to characterize their temporal 
dynamics.   
 
Four OHD data sets were selected using these criteria, including substrate type, 
bathymetry, wave height and sea surface temperature (SST). Substrate type and 
bathymetry were defined as static OHDs in that they were assumed to not change 
over monthly to interannual scales.  Wave height and SST were defined as dynamic 
OHDs because they have sub-monthly temporal scales of variability.  Substrate 
grab samples collected by Continental Shelf Data Systems and the United States 
Geological Survey (USGS) within the Santa Barbara Channel were used to 
characterize rocky substrate.  An interpolated grid was created from these points, 
consisting of the probability of encountering rocky substrate (R).  Bathymetry (B) 
was generated from USGS Digital Line Graphs and NOAA GEODAS bathymetry 
points.  Advance Very High Resolution Radiometer (AVHRR) imagery, collected 
at the University of California Santa Barbara (UCSB), were used to generate 
monthly mean SST composites.  Daily significant wave height predictions, 
generated by the Scripps Institute of Oceanography’s Coastal Data Information 
Program, were used to generate monthly mean significant wave heights (H).  
Monthly SST and H composites spanned March 1998 and September 2002.  
 
Further processing of the four OHD data sets was needed to make them spatially 
compatible.  Each data set had a different spatial extent and resolution, so each was 
first clipped to a common spatial extent and then resampled to a 60 meter grid.  The 
grid resolution was confined by B, which had the greatest resolution.  The data sets 
were now referenced to a common coordinate system, where a row, column index 
i,j referenced the same point in each OHD data set.  
 
ho Model Description 
Four variants of an ho model were developed (Table 2).  All models utilized the 
OHD data sets to delineate monthly optimal habitat composites.  The literature 
survey of kelp’s preferred habitat was used to establish a threshold, or parameter, T 
{T = TR, TB, TSST, TH} for each OHD.  The four ho models consisted of simple 
binary logic rules using the four OHDs and associated parameters to delineate 



optimal habitat.  Each model generated a 55-month time series of optimal habitat, 
spanning the length of the dynamic OHDs.   
 
The four ho models differed in the assumptions incorporated into the binary logic 
rules.  All four models assume that OHDs decide the location of optimal habitat.  
The first model, the nonsynergistic model (hn), also assumed that no synergistic 
effects exist between OHDs and no temporal correlation exists in the selection of 
optimal habitat.  The second model, the synergistic model (hs) incorporated a 
synergistic function between R and H in the selection of optimal habitat.  The 
synergistic function assumed a linear relationship between H and TR, the R 
parameter, such that as H increased TR also increased and only rockier substrate 
was selected as optimal habitat.   
The final two models build upon the hn and hs models, but incorporate a time lag in 
the selection of optimal habitat.  An autocorrelation function, which is the 
correlation of a variable with itself over succesive time intervals, in the final two 
models allowed for persistence of optimal habitat through a single month of 
suboptimal environmental conditions.  These models are the nonsynergistic 
autocorrelative (hna) model and the synergistic autocorrelative (hsa) model.  In these 
models, ho could persist through a single month of suboptimal conditions.  Hence, 
ho = {hn, hs, hna, hsa}.  All four models generate a 55 month time series, spanning 
the temporal window of SST and H.   
 
Optimization of OHD parameters, T 
In order to support the selection of T from literature-defined ranges, an 
optimization procedure was developed.  The objective was to select T such that the 
resulting ho time series generated the greatest correspondence between model 
predictions of ho distribution and the realized (hr), distribution of kelp.  The ISP 
Alginates, Inc. biomass time series was used to optimize T because it spanned the 
model’s temporal frequency and period, and included data on Beds in the study 
area.  The optimization assumed that a linear relationship exists between ho area 
and biomass within a Bed and the T generating the greatest significant r2 value was 
used to delineate ho in the models.   
 
CDFG aerial surveys of kelp canopy, or realized habitat (hr), were used to examine 
the strength and significance of the relationship between hr distribution and 
biomass.  Periodic aerial surveys of California’s shallow subtidal region are part of 
the California Kelp Resources Survey and are used to monitor the States’ kelp 
resources.  The aerial photography collected during the surveys captures kelp’s 
distribution, which is then processed into ESRI Arcview software products.  Two 
CDFG surveys, conducted during 1989 and 1999, were plotted against biomass for 
Beds within the study area and showed a fit of r2 = 0.34 p<0.001 for 1989 and r2 =



0.39 p<0.001 for 1999 (Figure 2).  The significance and strength of the relationship 
supported the optimization assumption.  
 
The optimization consisted of randomly selecting T from a uniform distribution 
with bounds defined by the literature survey and generating an ho time series.   
Each Bed’s monthly ho area was then plotted against corresponding biomass  
 
A linear regression of each Bed’s monthly ho area versus corresponding biomass 
was calculated and the strength and significance of the relationship was evaluated.  
The T that generated the greatest significant r2 value was used to generate the final 
ho time series.  The optimization was run separately for the nonynergistic models 
e.g., hn and hna and synergistic models e.g., hs and hsa, generating a nonsynergistic 
T and a synergistic T. The final model products consisted of four 55-month ho
timeseries; hn, hs, hna, hsa.

Characterizing ho Model Performance 
Model performance was characterized by comparing model predictions of ho
distribution to hr distribution.  The 1999 CDFG aerial survey was used to 
characterize hr. Performance was measured by proportion of hr captured by each ho
model within each Bed in the study area.  The percent overlap between hr and ho in 
each Bed was then plotted against each Bed’s mean R, mean H and mean SST to 
characterize model performance in relation to the OHDs.  Mean H and mean SST 
were calculated using the three monthly composites corresponding with the period 
when the aerial survey was conducted (October-December 1999).     
 



Table 2.  A summary of the four optimal habitat (ho) models 
ho Model ho Variable ho Model Description 

Nonsynergistic hn Nonsynergistic; No 
autocorrelation 

Synergistic hs Synergistic effect between R 
and H; No autocorrelation 

Nonsynergistic 
Autocorrelative 

hna Nonsynergistic, 
autocorrelative 

Synergistic Autocorrelative hsa Synergistc effect between R 
and H; Autocorrelative 
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Figure 2.  Linear regression of realized habitat area (hr) vs. biomass.  hr was 
characterized using 1989 and 1999 CDFG aerial surveys of California’s 
shallow subtidal region.  Biomass was characterized using ISP Alginates, Inc. 
data.   



3.  Results 
 
Study Area--Optimal habitat (ho) time series  
The four models’ ho time series were examined.  Figure 3 shows monthly ho area 
for the entire study area.  Several observations can be made regarding the models.  
First, the autocorrelative models e.g. hna and hsa are a ‘smoothed’ version of their 
related non-autocorrelative models e.g. hn and hs. The autocorrelative models are 
less dynamic, exhibiting less variability between months but show similar annual to 
interannual patterns as their related models.  Because the autocorrelative models are 
similar to their related models, the following discussions will primarily focus on 
comparisons between the hn and hs models.      
 
The magnitude of ho area varied between the hn and hs models.  The hs model 
selected significantly greater area relative to the hn model.  The hs model had a 
mean 9,231 hectares/month while the hn model had a mean 4,258 hectares/month.  
April 1999 was the only month when all models converged on the amount of ho
area.   
 
All four models did exhibit an annual cycle with two distinct seasons.  The season 
of minimum area occurred in late winter/spring (winter season), corresponding with 
the occurrence of winter storms.  ho area then increased to a maximum in 
summer/late fall season (summer season).  This season of increased area exhibited 
less variability relative to the winter/early spring season.  The hn model was more 
dynamic than the hs model between seasons.  The hn model exhibited more than a 
60% difference in ho area between seasons while the hs model exhibited a 20% 
difference.  
 
An interannual trend was also evident in all four models.  The trend was marked by 
decreased seasonal and annual variability during the latter period of the time series 
e.g., 2000-2002 relative to the earlier period e.g. 1998-1999.  The summer season 
was less variable between months during the latter period.  Also, mean monthly ho
area during the winter season was relatively greater during the latter period, The hn
model exhibited a 31% difference between the two periods’ average winter season 
ho area while the hs model exhibited a 16% difference.    
 
Subregions—ho time series 
The study area was broken up into three subregions and ho time series were 
similarly examined.  The subregions were delineated based on well-defined 
boundaries in physical oceanographic patterns and marine populations as well as 
distance from human influence (Leet et al. 2002; Ugoretz 2002).  The Oregonian 
subregion was spatially defined as the area north of Point Conception, California 
and included Beds 33, 34, 202 and 203.  The Californian subregion was defined as 



the California mainland coast south of Point Conception, including Beds 18-34.  
Finally, the Islands subregion was defined as all of the Beds around San Miguel 
Island, Santa Rosa Island, Santa Cruz Island, and Anacapa Islands, including Beds 
109-118.  
 
Several model differences evident at the scale of the study area also appeared in the 
subregions.  First, similar to the entire study area, the autocorrelative models were a 
‘smoothed’ version of their related non-autocorrelative models so discussions will 
continue to focus on the hn and hs models (Figure 4).  Second, the hs model 
consistently captured more area than the hn model across all three subregions.  
Third, several significant declines were evident across subregions and models 
during which models converged on the magnitude of ho area.  All models showed a 
decline during summer 1998, corresponding with an El Nino and in April 1999, 
corresponding with a winter storm.   
 
The relative magnitude of annual variability between the hn and hs models was not 
uniform across subergions.  In the Californian subregion, the hs mdoel exhibited 
greater relative annual variability.  This differed from the Oregonian and Islands 
subregions, as well as the study area, where the hn model exhibited greater relative 
annual variability. 
 
Oregonian Subregion    
The Oregonian subregion exhibited relatively large seasonal variability, leading to 
a prominent annual cycle across all models (Figure 4a).  The hn model frequently 
declined to zero, predicting no ho area during those months.  These declines 
typically occurred during the winter/early spring season.  These windows of 
suboptimal conditions occasionally ccurred for up to two consecutive months, 
marked by declines in the hna model.   
 
Californian Subregion 
As stated previously, the Californian subregion was the only subregion where the hs
model exhibited relatively greater annual variability, leading to a prominent annual 
cycle (Figure 4b).  The hn model wa almost static, periodically declining during 
both seasons.  The El Nino decline in late summer 1998 was most evident in this 
subregion.  During this time, both the hn and hs models declined to zero.   
 
Islands Subregion 
Similar to the Oregonian subregion, the hn model exhibited relatively greater 
annual variability for the Islands subregion (Figure 4c).  The amplitude of the 
annual cycle is greatly reduced in the hs model.   
 



Effect of Synergistic Function 
The synergistic function had a more profound effect on temporal dynamics and 
model performance than the autocorrelation function.  The synergistic function 
used monthly mean significant wave height to generate the TR parameter, or the 
threshold that defined the lower limit of rocky substrate in the selection of ho, As H 
increased, TR also linearly increased so that the range of R values decreased.   
The effect of the synergistic function was usually a dampened annual cycle.  The 
synergistic models often exhibited reduced temporal variability relative to the 
nonsynergistic models.  This was evident in the study area, as well as in the 
Oregonian and Islands subregions.  The synergistic function acted as a type of 
buffer in these areas, allowing locations of rockier substrate to persist through 
months of increased wave heights when the nonsynergistic models exhibited 
decreases in ho area.  These periods of increased wave heights tended to occur 
during the winter season, when storms generated increased H.  Hence, the 
synergistic models were relatively more resilient to winter storms in these areas. 
 
The synergistic models’ relatively dampened annual cycle was not seen in all areas.  
In the Californian subregion, the synergistic models were more dynamic, exhibiting 
relatively greater annual variability as compared with the nonsynergistic models.  
The nonsynergistic models were almost static, with few declines in ho area during 
both summer and winter seasons.  The greatest discrepancy in area between the 
synergistic and nonsynergistic models also occurred in the Californian subregion.  
A 3 to 4 order magnitude difference was evident across most of the time series 
(Table 3; Figure 4).   
 
The combined effect of softer substrate and low wave heights in the Californian 
subregion offers insight on the effect of the synergistic function.  The subregion has 
relatively softer substrate (R<0.2) and lower mean monthly significant wave 
heights relative to the Oregonian and Islands subregions (Figures 5 and 6).  The 
relatively greater proportion of softer substrate does not affect the nonsynergistic 
models because it does not exceed the nonsynergistic TR parameter (TR = 0.27).  
However, the effect of lower wave heights causes the nonsynergistic models to 
capture more persistent area because wave height does not typically exceed 0.7 m, 
the nonsynergistic TH parameter.  Hence, wave height plays a more minor role in 
driving temporal variability in the Californian subregion.  Indeed, optimal habitat is 
relatively stable, showing a few declines in both the summer and winter season.    
 

The effect of the Californian subregion environmental conditions is markedly 
different in the synergistic models.  The subregion’s low wave heights, which cause 
the nonsynergistic models to have a more stable habitat distribution, along with 
softer substrates cause the synergistic models’ greater relative variability.  The 
average significant wave heights in the subregion range from 0.11-0.61 (mean = 



0.36, std dev = 0.25).  The corresponding TR parameter range is 0.11-0.29, which 
includes a significant proportion of the Californian subregion. 
 
It is the softer substrate, that the nonsynergistic models do not capture, along with 
lower wave heights that causes the synergistic model’s greater temporal variability 
in the Californian subregion.  The combined effect of soft substrate and low wave 
heights on the synergistic function is a lower TR parameter, and a wider range of 
optimal substrate.  Hence, the synergistic models capture a greater amount of area 
than the nonsynergistic models.   
However, the softer substrate is more sensitive to small increases in wave height 
than rockier substrate.   A relatively small increase in wave height causes a increase 
in the TR parameter such that the softer substrate may be excluded.  Wave heights 
range  
 
It is the relatively greater area of softer substrate in the Californian subregion, that 
the nonsynergistic models miss, that causes the synergistic models to capture more 
area than the nonsynergistic models.  The combined, synergistic effect of softer 
substrate and low wave height causes the synergistic models to exhibit greater 
temporal variability. 
 

Model Performance 
All models overpredicted the amount of area relative to hr, characterized by the 
CDFG 1999 aerial survey, for both the entire study area and the three subregions.  
Table 3 shows hr area calculated using the 1999 aerial survey and ho area predicted 
by the four models.  The synergistic models predicted more area relative to the 
nonsynergistic models across all regions.  For the study area and the Islands 
subregion, the synergistic models predicted twice as much area relative to the 
nonsynergistic models.  The greatest discrepancy between models occurred in the 
Californian subregion where predictions ranged by a factor of four.  The greatest 
discrepancy between ho and hr occurred in the Oregonian subregion, where the 
nonsynergistic models captured an order or magnitude more area and the 
synergistic models captured two orders of magnitude greater area.   
 
A portion of the discrepancy between hr and ho area can be explained by the 
mismatch in scale of the aerial photography and the ho time series.  hr has a 
resolution of 2 meters, which is determined by the aerial photography.  The ho
models are mapped onto a 60 meter resolution grid.   
 
Model performance, characterized by the proportion of hr captured by ho, varied by 
subregion.  The synergistic models captured a greater proportion of hr relative to 



the nonsynergistic models across all subregions (Table 4).  The nonsynergistic 
models captured the same proportion across all regions.  All models performed 
poorly in the Californian subregion and only slightly better in the Oregonian 
subregion.  All models captured the greatest proportion of hr in the Islands 
subregion. 
The relationship between model performance and OHDs was examined.   All 
models showed a correlation with R and H.  However, R exhibited greater relative 
correlation with model performance.  No relationship existed between model 
performance and SST because the period examined corresponded with relatively 
cooler waters of late fall that did not exceed TSST parameter.  Hence SST does not 
limit the selection of optimal habitat during this time period.  Also, no relationship 
existed between B and model performance. 
Beds with greater mean R exhibited greater model performance (Figure 7a; Table 
5).  Beds with lower mean R correlated with a large range in model performance.  
The nonsynergistic models’ performances had the greatest correlation (r2 = 0.66; 
p<0.001) with R.  The hs and hsa models showed lower relative correlation (r2 =
0.59 and r2 = 0.52, respectively), but were still significant (p<0.001).   
Similarly, the nonsynergistic models showed relatively greatest correlation with H 
(r2 = 0.30; p<0.001) (Figure 7b; Table 5).  The hs and hsa models showed lower 
correlation (r2 = 0.23 and r2 = 0.21, respectively), although those relationships were 
also significant (p<0.001).   



Table 3.  Area comparisons between the 1999 CDFG kelp canopy aerial survey (hr) 
and the four ho models.  A maximum ho composite was generated for each model 
using the three month period of October-December 1999, corresponding with the 
CDFG aerial survey.  Area units are hectares.  The table compares the area 
estimates for the entire study region as well as for each of the three biogeographic 
regions. 

 SUBREGIONS 
(All areas 

in 
hectares) 

Entire Study 
Region 

Oregonian Californian Islands 

hr 908 12 135 761 
hn 4746 731 279 3735 
hna 4833 793 279 3760 
hs 8171 1117 876 6178 
hsa 8722 1183 1147 6392 

Key: 
hr—1999 kelp canopy aerial survey 
hn—nonsynergistic model   hs—synergistic model 
hna—nonsynergistic autocorrelative model hsa—synergistic autocorrelative model 
 
Table 4.  Proportion of the 1999 CDFG kelp canopy aerial survey e.g. hr identified 
by each model.  The hr total column shows the area measured by the aerial survey 
for both the study region and the biogeographic regions.  The hn, hna, hs, and hsa 
columns show the proportion of hr that each model captures for both the study 
region and the biogeographic regions. 
 hr

Total hn hna hs hsa 
Study Area 908 0.47 0.47 0.63 0.69 

SUBREGIONS 

Oregonian 12 0.17 0.17 0.46 0.54 

Californian 135 0.04 0.04 0.18 0.35 

Islands 761 0.55 0.55 0.72 0.77 



Table 5.  Linear regression parameters of model performance and R and H. 
R is the probability of rocky substrate and H is wave height 
 

OHD ho Model Linear Model r2

(p< 0.001) 
R hn/hna y = 105x  – 1    0.66 
R hs y = 123x + 11 0.59
R hsa y = 121x + 15 0.52
H hn/hna y = 94x – 15 0.30
H hs y = 101x  – 3 0.23 
H hsa y = 101x  + 1 0.21 



Figure 3.  Timeseries of optimal habitat area per month for the entire study 
area.  Timeseries spans March 1998 to September 2002 with June and 
December months delineated.   
LEGEND
Yellow line --hs model         blue line—hsa model  
red line--hn model                 green line--hna model  
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Figure 4.  Timeseries of optimal habitat area per month for the Oregonian, 
Californian, and Islands subregions.  Subregions were delineated by a 
distinct biogeographic boundary and proximity from human populations.  
The time series of monthly optimal habitat area (hectares) span March 1998 
to September 2002 with June and December months delineated to show the 
two distinct seasons.    A.  Oregonian Subregion   B. Californian Subregion 
C.  Islands Subregion 
LEGEND
Yellow line --hs model         blue line—hsa model  
red line--hn model                 green line--hna model  
 



Figure 5.  Relative histogram of rocky substrate (R) in the three subregions.  R is the 
probability of encountering rocky substrate.  Only the shallow subtidal portion (depth 
>-15 meters) of each subregion was used in this characterization to reflect the depth 
range of optimal habitat.  The Californian subregion has the greatest amount of soft 
substrate, with over 70% of the area has an R<0.20.  
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 Figure 6. Time series of each subregion’s mean monthly significant wave height (H).  
Only the shallow subtidal portion (depth >-15 meters) of each subregion was used in 
this characterization to reflect the depth range of optimal habitat.  Light gray is the 
Oregonian subregion, dark gray is the Islands subregion and black is the Californian 
subregion.  The horizontal dashed line reprsents the nonsynergistic TH parameter 
(0.7m).  The plot shows that the Californian subregion has the lowest wave heights, 
and the Oregonian has the greatest wave heights, where wave heights frequently 
greatly exceed the nonsynergistic TH.



A.  Model Performance and Rocky Substrate (R)
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B.  Model Performance and Wave Height (H)
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Figure 7.  Relationship between model performance and optimal habitat descriptors 
(OHDs).  Model performance, mean probability of rocky substrate (mean R), and 
mean monthly maximum wave height were calculated for each of the 29 CDFG 
administrative beds (Bed) in the study area.  Model performance is the proportion 
of realized habitat (hr) captured by the four models in each Bed.  The 1999 CDFG 
kelp aerial survey was used to calculate hr. A. Mean probability of rocky substrate   
B. Mean monthly wave height (H).           



4.  Discussion 
 
Four optimal habitat (ho) models were developed by relaxing two assumptions in 
the selection of optimal habitat (ho).  The first relaxed assumption was that no 
synergistic effects exist between the optimal habitat descriptors, or OHDs, when 
selecting optimal habitat.  Each OHD functions independently in the selection of 
ho. The second relaxed assumption was that ho was not temporally correlated, or 
autocorrelated, with itself.  Hence, the selection of ho was independent of the 
previous month.  The simplest model, the nonsynergistic (hn) model, incorporated 
both assumptions.  The synergistic (hs) model slightly relaxed the first assumption 
by incorporating a linear synergistic function between wave height (H) and the 
selection of rocky substrate.  The nonsynergistic autocorrelative (hna) model 
evolved from the hn model but incorporated an autocorrelation function such that 
the selection of ho was correlated to the previous month’s conditions.  Finally, the 
synergistic autocorrelative (hsa) model, which evolved from the hs model, relaxed 
both assumptions.     
 
The two assumptions had different effects on ho temporal dynamics and model 
performance.   The autocorrelation function had a minor effect on temporal 
dynamics and model performance.  The autocorrelative models e.g., hna and hsa 
exhibited a similar temporal pattern as their related models e.g., hn and hs,
respectively.  However, the autocorrelative models were not affected by high 
frequency (<2 months) variation. Hence, these models were more resilient and 
impacted only by longer periods of suboptimal conditions. 
 

Although they differed in their assumptions, all four models showed an interannual 
trend in ho area.  The trend was apparent to varying degrees at both the study area 
and subregion scales.   The interannual trend coincides with a negative evident in 
all models corresponds with a La Nina event that is evident in the multivariate 
ENSO index (MEI) (Figure 8).     
 

All models overpredicted the amount of ho area relative to hr area, as well as 
underpredict localized patches of kelp canopy in the 1999 CDFG kelp canopy aerial 
surveys.  The degree to which models exhibit a mismatch varies by subregion.  
Possible sources of discrepancy and error may include:  biological controls (such as 
predation and competition),  differences in scale between realized habitat and 
optimal habitat, model assumptions,   Binary ‘presence/absence’ model approach in 
selecting optimal habitat, the linear assumption of biomass and cover used in 
optimization, and/or substrate data.   



Rocky substrate was responsible for most of the locations missed by the models 
because these locations are not included during any month of the time series 
 
across all regions because the majority of missed locations did not exceed models’ 
TR parameters and were thus excluded.   
The interpolated substrate grid of probability of rocky substrate in these locations 
did not exceed the respective models’ R parameter.  These underpredicted hr
locations are characterized as soft substrate.  Because soft substrate can be 
dynamic, influenced by waves, it does not provide an attachment source for the 
kelp’s holdfast to adhere.  Kelp can grow on sandy substrate in locations sheltered 
from wave exposure (Leet et al. 2001).  Old holdfasts can function as attachment 
sites.   
 
The accuracy of the substrate grid may contribute to the discrepancy between hr
and ho. The average minimum distance of 300 m between substrate samples in the 
shallow subtidal region limits the ability to characterize smaller scale variability of 
substrate.  The result is that the substrate grid may incorrectly characterize areas 
because of lack of sampling.  The substrate map also does not characterize substrate 
dynamics. Lack of characterization of substrate dynamics may also contribute to 
the models’ inaccuracy.  The substrate may shift, rocky areas may be covered by 
sand.   
 
Suggestions for model improvement include: 

• Improved substrate data—finer scale and a measure of temporal dynamics 
• More frequent kelp canopy aerial surveys 
• Development of a probabilistic model 
• Consideration of other OHDs—irradiance, turbidity;  
• Field studies to characterize and quantify OHD synergistic effects and their 

role in affecting kelp dynamics 
 

Persistence Analysis 
Persistence patterns were analyzed for those Beds where each model captured 75% 
or more of hr, which was defined by the 1999 CDFG kelp aerial survey.  The 
threshold was selected because it roughly separated two modes in model 
performance.  Persistence patterns were characterized by the average number of 
continuous months of ho for those Beds exceeding the threshold for each model.  
The average number of consecutive months was then plotted against R, mean SST, 
and maximum H for each model.  Mean SST and maximum H were global statistics 
of the entire time series and calculated for each location within Beds that exceeded 
the 75% persistence threshold.  Both nonsynergistic models exceeded the 75% 
threshold for two Beds: 115 and 116.  The hs model exceeded the threshold for five 



Beds:  110, 111, 114, 115, 116.  The hsa model exceeded the threshold for seven 
Beds:  23, 110, 111, 114, 115, 116, 117.  Bed 23 was not used in persistence 
measures because it grossly overpredicted (by one and one-half orders of 
magnitude) the amount of realized habitat (e.g. hsa = 60 hectares and hr = 1
hectare).    
 
The persistence analysis indicated that patterns varied across beds and models.   
 
The nonsynergistic models showed a greater average number of consecutive 
months for Bed 116 relative to Bed 115 (Figure 9).  The discrepancy between the 
two nonsynergistic models’ average number of continuous months was similar for 
both Beds 115 and 116 (e.g. 53%, 52%, respectively).   
 
The discrepancy between synergistic models was not uniform across beds.  The 
synergistic models exhibited a greater number of months for Beds 114, 115 and 
116 relative to Beds 110 and 111.  Bed 117 fell between the ‘lower’ group e.g., 
Beds 114 and 115 and the ‘upper’ group e.g., Beds 110 and 111.  For Bed 116, the 
two synergistic models showed almost the same number of months (hs model:  43 
months; hsa model:  47 months).  The greatest discrepancy occurred between the 
synergistic models for Beds 111 and 115 (52% for Bed 111 and 46% for Bed 115).   
 
Santa Rosa Beds 115 and 116 were used to compare models because they were 
characterized by all models.  More variation in average number of consecutive 
months was evident for Bed 115 than Bed 116 (ranges for 115:  7-50 months;  
ranges for 116: 23-51 months).  The hn model predicted the lowest average number 
of consecutive months for Bed 115, increasingly followed by the hna model, the hs
model and finally the hsa model.  The pattern was similar for Bed 116, except that 
the model with the greatest average number of months was the hna model.   
 
The average number of consecutive months of optimal habitat was then plotted 
against the OHDs (R, mean(SST) and max(H)) to examine their role in persistence.  
A few general observations can be made about the models.  First, the range of 
average number of consecutive months varies across models (Figures 10-12).  The 
hn model exhibits the narrowest range (6.1-27 months).  The other models have a 
spanning to 55 months, or the length of the time series.  Second, many of the same 
average number of consecutive months repeat within and across models.   
 
The first plot is of mean(R) and average number of consecutive months.  The lower 
end of the R range is 0.27 for the nonsynergistic models and 0.11 for synergistic 
models (Figure 10).  A wide range of months correspond with low R values across 
all models so that a clear relationship does not exist between less rocky locations 
and persistence.  The maximum end of the R range for all models is 1.  For the 
nonsynergistic models, greater R values correspond with a lower range of average 



number of consecutive months so that locations with the greatest R also tend to be 
locations of lower persistence.  The synergistic models show a stronger correlation 
between rocky substrate and persistence.  Greater values of R tend to correlate with 
greater average number of consecutive months.   
 
The second plot is of mean SST and the average number of consecutive months of 
ho (Figure 11).  The nonsynergistic models have a narrower range of mean SST 
(e.g. 12-14oC) relative to the synergistic models (e.g. 12-15.5oC).  The 
nonsynergistic models do not show a relationship between mean SST and 
persistence.  The greatest number and least number of months span the entire range 
of mean SST.  For the synergistic models, the greatest persistence corresponds with 
a mean SST range of 12-14oC.  Higher values of mean SST (SST>14.3oC) 
correspond with a lower average number of consecutive months (<30 months) for 
the synergistic models. 
Field studies in southern California have shown that the highest densities of 
sporophyte recruitment occur at temperatures below 14oC (Deysher and Dean 
1986).   
 

The final plot is of maximum H and the average number of consecutive months of 
ho (Figure 12).  The range of maximum H values is similar across all models.  The 
maximum H values corresponding with the greatest average number of consecutive 
months is narrower for the nonsynergistic models relative to the synergistic models.  
The nonsynergistic models exhibit a stronger correlation between greater 
persistence and lower H.  Conversely, lower persistence is correlated with greater 
wave height.  The synergistic models do not have as clear of a relationship between 
persistence and H.  A wider relative range of H values corresponds with the 
greatest average of months for both synergistic models.  However, greater H have 
greater persistence relative to the nonsynergistic models.   
 
To summarize, persistence patterns were not uniform across the Island subregion 
Beds.  Variability existed across beds and between models.  Persistence was greater 
for autocorrelative models relative to their related models.  The synergistic models 
tended to have greater persistence relative to the nonsynergistic models and 
exhibited persistence patterns that varied by island.   
 
Santa Rosa Beds (Beds 114-116) appear almost static in their temporal variability.  
The average number of consecutive months of optimal habitat approaches the 
temporal length of the ho time series indicating that only a few months were 
suboptimal during the time series. The exception is the synergistic Bed 115 where 
persistence is about 24 months.   
 



The Santa Cruz Beds (Beds 110 and 111) are more dynamic.  They have 
persistence lengths that are shorter.  Both models show that Bed 110 has an average 
length of one year, while Bed 111 is predicted to have one totwo year average, 
depending on the model.  Because Because the hs model converges with the hsa 
model, Bed 110 has  longer periods (atleast > 2 months) of suboptimal habitat.   

Spatial scales were determined by size of disturbed area while temporal scales were 
driven by seasonality of disturbance, algal reproductive condition and aperiodic 
episodes ofcool, nutrient-rick waters advected into the patch (Dayton et al. 1984).  
“Within any given area, the relative patch stability was determined by biological 
relationships; Between areas, patch stability patterns were attributable to physical 
differences”. (Dayton et al. 1984). 
Clearly, peristence of giant kelp’s optimal habitat varies spatially across beds and 
islands.  Even though the ability of models to characterize temporal dynamics was 
not quantitatively evaluated, the models did capture the expected southern 
California’s annual cycle of kelp distribution as well as interannual variability 
resulting from El Nino and maybe PDO in the study area as well as in portions of 
the Islands subregion.  The nonuniform persistence pattern indicates that areas may 
have different responses under various climatic and anthropogenic disturbances.   
 
Long term maximum extent composites are frequently used to map static species’ 
distributions, such as kelp.  These composites only indicate the potential spatial 
extent of a species.  Does not say the probability that that species will actually be 
encountered.  Many marine species exhibit spatial and temporal scales that are 
affected by oceanographic conditions.   It is well documented that the distribution 
of kelp can vary greatly on annual scales and is especially affected by El Nino.  The 
1997-1998 El Nino had a significant effect on several spatial scales.  The southern 
boundary of kelp distribution moved north becuase reduced upwelling caused water 
temperatures to increase and nutrient levels to decrease enough to stunt kelp growth 
and stress the plant to causing kelp beds to deteriorate.  Some locations have still 
not recovered from the El Nino.  A maximum extent composite can overpredict the 
distribution and could identify areas where the species may only exist infrequently.  
Models such those developed and analyzed in this modeling exercise, could 
indicate temporal scales of variability and characterize the probability that the 
species/habitat will persist and actually be encountered.  The maximum extent 
composite characterizes all locations evenly by not providing probability of 
encountering that habitat. 
 
A characterization of persistence is important in developing MPAs.  MPAs are 
being implemented more frequently across the world to protect and restore marine 
species and ecosystem linkages, as well as a tool for fisheries management.  
Essential in designing MPAs are maps of species distributions which are an 
important consideration when deliberating on locations for MPA establishment that 



will provide protection of species of interest and meet the goals of MPAs.    Habitat 
maps are frequently used as a proxy for species distributions.  In order to meet 
MPAs goals, the MPAs must protect the  
Characterization of temporal dynamics and persistence provide a measure of 
protecting species of interest.   
 
A characterization of temporal variability and persistence is also important in 
evaluation of MPAs.  It can assist in deciphering natural variability due to 
oceangraphic forcing from trends due to biological activity such as urchin grazing 
and anthropogenic disturbances.  Long time series of habitat distributions or 
oceanographic variables can be extremely valuable in evaluating if declines in 
canopy cover are a trend potentially caused by anthropogenic disturbances or a part 
of the interdecadal oceanographic cycle.  
 
This is especially important for kelp.  An analysis of  the effects of MPAs is 
important in identifying if MPAs are meeting their goals.  A characterization of 
persistence can play an important role in MPA effectiveness by ensuring the 
inclusion of the habitat and/or species within the MPA and hence its protection.  A 
greater probability of meeting goals because greater probability of actually offering 
protection.  Also, may offer some prediction of MPA performance.  If a species 
within an MPA exhibits variability over a certain time scale, such as during El Nino 
events,  a characterization of temporal dynamics may assist in distinguishing 
between MPA performance from natural variability 
 
Potential impact of human acitivities, such as wastewater and thermal discharge 
and increased coastal development, are difficult to identify because of a lack of 
baseline data.  Such information would assist resource managers in proving 
damages and seeking compensation.   
 



Figure 8.  Multivariate ENSO Index (MEI).  This index is used to monitor ENSO by 
basing the index on observed environmental variables over the tropical Pacific.  The 
variables include sea-level pressure, surface winds, sea surface temperature, air 
temperature, and total cloudiness fraction of the sky (C).   MEI is calculated by the 
NOAA Climate Diagnostics Center.   
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/ 
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Figure 9.  Persistence of CDFG Administrative Beds.  Persistence is defined as the 
average number of consecutive months of optimal habitat (ho) for those CDFG 
Administrative Beds (Beds) that captured 75% or more of realized habitat, hr (defined 
by the 1999 CDFG kelp aerial survey).      
Model abbreviations are:   
hn--nonsynergistic model  hna--nonsynergistic autocorrelative model  
hs--synergistic model   hsa--synergistic autocorrelative model      
 
See Data and Methods for a description of models. .    



Figure 10.  Relationship between persistence and rocky substrate.  Persistence is 
defined as the average number of consecutive months of optimal habitat, ho, for 
locations within CDFG Administrative Beds (Beds) that captured 75% or more of 
realized habitat, hr (defined by the 1999 CDFG kelp aerial survey).   R is the 
probability of rocky substrate.  The four plots are A) hn model; B)hna model; C)hs
model D) hsa model.  See Data and Methods for a description of models and 
Discussion for Beds included in the persistence analysis.    
. .
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Figure 11.  Relationship between persistence and mean sea surface temperature (SST) .  
Persistence is defined as the average number of consecutive months of optimal habitat, 
ho, for locations within CDFG Administrative Beds (Beds) that captured 75% or more 
of realized habitat, hr (defined by the 1999 CDFG kelp aerial survey).   Mean SST is 
calculated using the entire 55-month time series for each location within the selected 
Beds and Celcius units.  .  The four models’ patterns are plotted separately.   
A) hn model; B)hna model; C)hs model D) hsa model.   
See Data and Methods for a description of models and Discussion for Beds included in 
the persistence analysis. 
.



A. C.

B. D.

Figure 12. Relationship between persistence and maximum significant wave height 
(max H).  Persistence is defined as the average number of consecutive months of 
optimal habitat, ho, for locations within CDFG Administrative Beds (Beds) that 
captured 75% or more of realized habitat, hr (defined by the 1999 CDFG kelp aerial 
survey).   Max H is the greatest is calculated using the entire 55-month time series for 
each location within the selected Beds and Celcius units.  .  The four models’ patterns 
are plotted separately.   
A) hn model; B)hna model; C)hs model D) hsa model.   
See Data and Methods for a description of models and Discussion for Beds included in 
the persistence analysis. 
 
Mean SST is calculated using the entire 55-month time series for each location within 
the selected Beds and Celcius units.  .   
 The four plots are A) hn model; B)hna model; C)hs model D) hsa model.   
See Data and Methods for a description of models and Discussion for Beds included in 
the persistence analysis.  .  .   



5.  Conclusions 
 

• The distribution of optimal habitat was not uniform through time, exhibiting 
annual to interannual variability  

• The synergistic effect between rocky substrate and wave height had a 
significant impact on annual variability 

• Model performed well at islands and in relatively rockier beds 
• Persistence patterns were not uniform across the Island Beds 
• High resolution seafloor mapping and more frequent canopy aerial surveys are 

priorities for improving model  
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