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ABSTRACT 

 

Assessing Historical Ocean Heat Content and Recent Global Mean Sea Level Rise Using 

Artificial Neural Networks 

 

by 

 

Aaron C. Bagnell 

 

Global warming arises from an energy imbalance where increased radiative forcing from 

greenhouse gases traps additional heat in the Earth system. Over recent decades, more than 

90% of this heat has gone into the ocean, causing thermal expansion that leads to sea level 

rise. Additionally, warming of the cryosphere has caused significant amounts of freshwater 

from melting ice to enter the ocean, representing another major contributor to rising sea 

levels. It is therefore essential to obtain accurate estimates of the historical changes in ocean 

heat content and sea level rise, as these are necessary to inform our understanding of future 

climate scenarios and some of the regional impacts from climate change. Improving these 

historical estimates, however, requires overcoming uncertainty related to instrumental and 

spatial sampling biases. 

Prior to 2004 estimates of ocean heat content rely primarily on temperature 

measurements from mechanical and expendable bathythermograph (BT) instruments that 

were deployed on large scales by naval vessels and ships of opportunity. These BT 

temperature measurements are subject to well-documented biases, but even the best 
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calibration methods still exhibit residual biases when compared to high-quality temperature 

datasets. In Chapter I, we use a new approach to reduce biases in historical BT data. Our 

method consists of an ensemble of artificial neural networks that corrects biases with respect 

to depth, year, and water temperature in the top 10 meters. A global correction, as well as 

corrections optimized to specific BT probe types are presented for the top 1800 m. Even 

with comparable performances at reducing the instrumental biases, distinct patterns emerge 

across the calibration methods when they are extrapolated to BT data not included in our 

cross-instrument comparison. Multiple bias corrections should therefore be incorporated into 

studies of ocean heat content. 

Sampling the deep ocean has remained a large technical challenge, leading to a sparse 

observational record below 2000 m. Due to methodological limitations at handling such 

sparse temperature data, many historical reconstructions of ocean heat content neglect this 

large volume of the ocean deeper than 2000 m. In Chapter II, we provide a global 

reconstruction of historical changes in full-depth ocean heat content based on interpolated 

subsurface temperature data using an autoregressive artificial neural network, providing 

estimates of total ocean warming for the period 1946-2019. We find that cooling of the deep 

ocean and a small heat gain in the upper ocean led to no robust trend in global ocean heat 

content from 1960-1990, implying a roughly balanced Earth energy budget within -0.16 to 

0.06 W m-2 over most of the latter half of the 20th century. However, the past three decades 

have seen a rapid acceleration in ocean warming, with the entire ocean warming from top to 

bottom at a rate of 0.63±0.13 W m-2. These results suggest a delayed onset of a positive 

Earth energy imbalance relative to previous estimates, although large uncertainties remain. 
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In Chapter III, we examine recent sea level rise due to thermal expansion of the oceans 

and the addition of freshwater from melting ice. Barystatic sea level rise caused by the 

addition of freshwater to the ocean from melting ice can in principle be recorded by a 

reduction in seawater salinity. However, instrumental biases and limited data coverage have 

thus far hindered efforts to infer barystatic sea level rise from ocean salinity measurements. 

Here, we develop an instrumental bias correction and adapt our autoregressive machine 

learning method to interpolate ocean salinity measurements to estimate salinity changes in 

the global ocean from 2001-2019. We find that the ocean mass rose by 13±3 Tt from 2001-

2019, implying a barystatic sea level rise of 2.0±0.5 mm/yr. Combined with sea level rise of 

1.3±0.1 mm/yr due to ocean thermal expansion, these results suggest that global mean sea 

level rose by 3.4±0.6 mm/yr from 2001-2019. These results provide an important validation 

of remote-sensing measurements of ocean mass changes and global sea level rise, as well as 

independent analyses of the global ice budget. 

 

 

  



 

 viii 

TABLE OF CONTENTS 

 

I. Correcting Biases in Historical Bathythermograph Data ......................................... 1 

A. Introduction ........................................................................................... 1 

B. Methods ................................................................................................. 7 

C. Results ................................................................................................. 17 

D. Discussion ........................................................................................... 45 

II. Full-Depth Ocean Heat Content and Earth's Energy Imbalance ........................... 49 

A. Introduction ......................................................................................... 49 

B. Methods ............................................................................................... 53 

C. Results ................................................................................................. 77 

D. Discussion ........................................................................................... 92 

III. Global Mean Sea Level Rise Inferred from Ocean Temperature and Salinity 

Measurements ............................................................................................................ 96 

A. Introduction ......................................................................................... 96 

B. Methods ............................................................................................... 99 

C. Results ............................................................................................... 109 

D. Discussion ......................................................................................... 114 

References ................................................................................................................ 118 

 

 



 

 1 

I. Correcting Biases in Historical Bathythermograph Data 

“© Copyright [25 Sep. 2020] AMS, https://www.ametsoc.org/PUBSCopyrightPolicy” 

A. Introduction 

The oceans play an enormous role in the Earth’s energy budget, having gained roughly 

ten times as much heat over the past half century as all other parts of the Earth system 

combined (Church et al., 2011). Reconstructing past changes in ocean heat content is 

therefore critical to understanding Earth’s climate sensitivity and energy balance (Hansen et 

al., 2005; Trenberth et al., 2014, Meehl et al., 2005). Reconstructions of ocean heat content 

(OHC) prior to roughly year 2005 are hampered by data sparsity and persistent instrumental 

biases.  Recent studies have demonstrated that issues related to the choice of calibration 

applied to instrumental biases in the historical ocean temperature record contribute to 

significant uncertainty in OHC reconstructions (Lyman et al., 2010; Boyer et al. 2016, 

Fig. I.1 The relative annual sampling coverage of individual instrument casts for a. total 

discrete samples after linearly interpolating to 350 standard depths (zstandard) and b. 

percentage of total samples due to a particular temperature instrument. 
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Cheng et al., 2016; Cheng et al., 2018; Wang et al. 2018). It is crucial to correct these biases 

and further constrain the instrument calibration methods, as better constraints on past ocean 

temperature changes will impact projections of future warming. 

The most widely-used instruments for measuring ocean temperature prior to the Argo 

era (2005-present, when autonomous profiling floats provide global data coverage) were the 

expendable bathythermograph (XBT) and its predecessor the mechanical bathythermograph 

(MBT). Excluding profiling floats, during the period 1945-present these instruments 

accounted for upwards of 60-70% of the raw temperature casts in a given calendar year (Fig. 

I.1). Additionally, because of their widespread use by the U.S. Navy and ships of 

opportunity, these instruments provide the community with vastly greater spatial sampling 

coverage (twice as much as other instruments on a 1-degree grid) in the historical ocean 

temperature record than would otherwise be afforded by scientific cruises alone. These 

instrument casts are therefore essential to numerous studies of historical ocean and climate 

trends, including assessments of ocean heat content (OHC) (Domingues et al., 2008; Ishii 

and Kimoto, 2009; Levitus et al., 2012; Cheng et al., 2017). 

The MBT probe was designed to reach nominal depths (60 m, 150 m, or 275 m 

depending on the model) and relied on being lowered on a winch at near free-fall speeds 

(Couper and LaFond, 1970). It contained instruments to measure temperature and pressure, 

which it continuously recorded on either a smoked or film-coated plate. This setup required 

that the probe be retrieved after every deployment, reducing the conditions under which it 

could be safely deployed. The XBT probe was designed to overcome this limitation by being 

expendable, with temperature recordings transmitted through a copper wire to a chart 

recorder on deck (Abraham et al., 2013). After playing out the entire spool of wire the 
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connection severs, and the probe sinks to the bottom of the ocean. Several different probe 

types were designed over the long and continued period of use of the XBT, with most 

designs able to reach roughly 400-700 meters and a small subset able to reach depths up to 

2000 m. 

However, it is well understood that both XBT and MBT observations contain global 

systematic biases on the order of 0.1 oC, significantly impacting the estimation of OHC, 

which is highly sensitive to small temperature changes. Additionally, as first identified by 

Gouretski and Koltermann (2007), the biases of the XBT/ MBT instruments vary over time, 

leading to additional uncertainty about the rate of ocean warming on sub-decadal timescales. 

The community has therefore undertaken a concerted effort to examine and address the 

causes of these biases. However, uncertainties across an ensemble of prior bias corrections 

are of the same magnitude as natural intra-decadal variation (Lyman et al., 2010; Cheng et 

al., 2014), making these corrections one of the leading sources of uncertainty in estimates of 

OHC (Lyman et al., 2010; Boyer et al., 2016) and limiting the reliability of any single 

calibration method on shorter timescales. 

Because the XBT instrument did not directly measure depth, but relied on a fall rate 

equation (FRE), this is an obvious source of systematic bias. After careful examination of a 

subset of probe deployments, Hanawa et al. (1995) proposed a modified FRE with new 

coefficients to correct for this depth bias. Against the warning of Hanawa et al. (1995) that 

this new FRE should not be introduced into original XBT data archives, the new equation 

was quickly adopted by the probe manufacturers, leading to XBT probes with a mixture of 

the old and new FRE being deployed in subsequent years (Abraham et al., 2013). In 

addition, after applying the Hanawa et al. (1995) depth correction to historical XBT data, 
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Gouretski and Koltermann (2007) identified that a previously documented warm period in 

the XBT record could not be rectified with known climate patterns and was instead related 

to a residual time-variable bias in the XBT data itself, indicating that other sources of error 

exist. This finding triggered extensive interest in investigating the causes of this time-

variable bias and generated numerous approaches to correct it (e.g. Wijffels et al., 2008; 

Ishii and Kimoto, 2009; Gouretski and Reseghetti, 2010; Good, 2011; Gouretski, 2012; 

Hamon et al., 2012; Cowley et al., 2013, Cheng et al., 2014).  

Earlier studies corrected for the time-varying bias by using a FRE that varied based on 

the year of probe deployment (Wijffels et al., 2008; Ishii and Kimoto, 2009). However, 

other studies indicated that the bias was also dependent on near-surface water temperature. 

Gouretski and Reseghetti (2010) found that the error could be further reduced by separating 

the bias into a depth dependent component and another they considered the “pure thermal” 

bias. Subsequently, Cowley et al. (2013) assembled thousands of side-by-side XBT and 

conductivity-temperature-depth (CTD) casts to look at cross-instrumental error, finding that 

there is a pure thermal bias that varies with both time and temperature but that is 

independent of depth, and also a depth error that varies not only with depth but also with 

time and perhaps with temperature.  

The side-by-side comparisons of Cowley et al. (2013) relied on relatively ideal 

conditions where a CTD could be lowered from a stationary research vessel alongside an 

XBT probe deployment. This contrasts with normal operating conditions for the XBT, 

which was designed specifically so that it could be deployed from navy and merchant ships 

with minimal adjustments to the vessels’ courses or speeds. Nevertheless, these findings 

were corroborated by Cheng et al. (2014) with a much larger global XBT dataset comprised 
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of probes deployed under more typical conditions. In addition, Cheng et al. (2014) sorted the 

XBT casts into groups of major probe types, confirming that differences in probe design not 

only led to different fall rates but also distinct time-varying bias histories.  

The residual time-dependent biases that remain after the Hanawa et al. (1995) depth 

correction, or subsequent depth corrections that accounted for the effects of near-surface 

temperature on the probe fall rate (Cheng 2011) and the effect of probe design (Cheng et al., 

2014), are likely due to multiple sources of error such as variability in sea state, weather, and 

other deployment conditions, as well as technological developments that led to a shift in ship 

speeds, increasing deck heights, and a transition from analog to digital recorders. It has also 

been speculated that changes to probe manufacturing, such as the move by Sippican (one of 

two major XBT vendors) of operations from the USA to Mexico, could cause rapid shifts in 

the bias for certain XBT probe types (Wijffels et al., 2008). These factors cannot be easily 

quantified for the global dataset without sufficient metadata. Unfortunately, in the global 

XBT dataset roughly half of the casts do not even contain the necessary metadata to assign 

them to a specific probe type. Because of this, developing a truly mechanistic model, one 

which accounts for errors using a purely physical explanation, remains difficult. Therefore, 

methods have been developed to account for only the most persistent biases, which evolve 

over multiyear time-scales.  

Prior attempts to correct BT biases generally used one of two approaches. The first 

approach uses an empirical model, informed by the physics of the system, while also making 

necessary simplifying assumptions to estimate unknown model parameters. These 

approaches include methods that modify the original XBT probe FRE using time-variable 

parameters (Wijffels et al., 2008; Ishii and Kimoto, 2009; Cowley et al., 2013; Cheng et al., 
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2014) instead of parameters that are constant with time (as with Hanawa et al., 1995). The 

other approach uses statistical methods to remove biases, producing a single correction for 

the total bias, which is the approach taken by Levitus et al. (2009) and the current study. 

Arguments can be made for or against either approach, but both approaches can lead to 

significant reductions in the observed XBT/ MBT biases. 

Here, we propose a new approach to correcting historical BT biases that sorts 

measurements from individual BT casts into categories based on the year of deployment, the 

temperature of the near-surface ocean, and the depth at which the measurement was taken, 

then uses an ensemble artificial neural network (EANN) to smooth and extrapolate the total 

BT bias to all times and locations for which BT data exist (Section B). This method is a 

statistical approach that does not attempt to separate components of the time-dependent bias, 

aside from considering the impact of different XBT probe types on the bias. While some of 

the underlying factors that contribute to the time-varying bias are likely independent of each 

other, our ability to disentangle these are limited by the completeness of available metadata. 

Therefore, for simplicity, our method considers the total bias to be an inseparable and 

nonlinear combination of the major sources of error identified in prior studies (Gouretski 

and Koltermann, 2007; Levitus et al., 2009; Gouretski and Reseghetti, 2010; Cheng et al., 

2014). We apply our correction to both XBT and MBT datasets, with an option to either 

apply one global correction (what we call EANN-G) to each instrumental dataset or, for the 

XBT, to apply corrections to the individual probe types (EANN-P) (Section C). Using the 

metrics from Cheng et al. (2018) we demonstrate that we can favorably reduce the XBT/ 

MBT bias with respect to an independent validation dataset, with our calibration performing 

as well as or better than several widely-used existing methods (Section C). We close by 
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summarizing our main findings, and highlighting unresolved issues in correcting BT biases 

that should be addressed by the community (Section D). 

B. Methods 

B.1 Constructing a correction grid 

We used individual casts of temperature data taken from the World Ocean Database 

(WOD) 2018 (Boyer et al., 2018) 

(https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html, accessed 9-30-19). 

These are provided as separate datasets for the different instrument types, which in our case 

are the two bathythermograph datasets (XBT and MBT) that will be corrected, and the 

Ocean Station (OSD) and Conductivity-Temperature-Depth (CTD) which we use as 

reference data (Fig. I.2, Step 1). Before quality control there are roughly 2.3 million XBT 

casts and 2.4 million MBT casts.  

The XBT data we obtain is modified to have the original manufacturer FRE (MFR FRE 

hereafter) applied for the period after 1995. Without such a modification, there is a rapid 

transition in the bias simply due to instrument manufacturers adopting the Hanawa et al. 

(1995) FRE (H95 FRE hereafter) in the late 1990s (see Section A for further details). To 

modify individual casts from the 1990s onwards that have been flagged by the WOD as 

having the H95 FRE applied, we multiply their sample depths by the factor 0.9675, 

following Gouretski and Reseghetti (2010), which approximates the depths that would be 

given by using the original manufacturer FRE. Other studies such as Levitus et al. (2009) 

and Cheng et al. (2014) have instead opted to use the H95 FRE as a starting point, but some 

studies (Thadathil et al., 2002; Gouretski and Resegheti, 2010) have indicated that the H95 
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Fig. I.2 Schematic of this study’s data flow and quality control, as well as the 

application of an ensemble of artificial neural networks (EANN) to calibrate 

bathythermograph data. Steps 6-9 are repeated 30 times to create an ensemble of bias 

corrections. See text for additional details on quality control, binning, and network 

architecture. 
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FRE may increase the time-dependent thermal bias relative to collocated CTD/ OSD data as 

compared to using the MFR FRE. 

In addition, we exclude data in casts that have been flagged by the WOD for quality 

control issues with any flag other than zero, as well as unrealistic values that fall outside a -3 

to 36 oC temperature range, as seawater does not normally fall outside this temperature 

range except for geographically isolated areas (e.g. hydrothermal vents) that are not relevant 

to our global study. Additionally, a cast must contain at least 4 temperature measurements as 

well as a measurement in the top 100 m in order to be included. After applying this quality 

control (Fig. I.2, Step 2), there are approximately 2.1 million XBT casts and 2.2 million 

MBT casts. 

Following Cheng et al. (2014), each XBT probe is sorted into one of nine groups based 

on manufacturer, similarity in probe design, or terminal depth for probes of unknown type. 

These groups (approximate terminal depth in parentheses) are 1. T7/DB (760 m), 2. DX 

(760 m), 3. T4/T6 (450 m), 4. SX (450 m), 5. T10 (200 m), 6. T5 (1820 m), 7. TSK-T4/T6 

(450 m), 8. TSK-T5 (1820 m), and 9. TSK-T7/DB (760 m). Probe groups 1, 3 5, and 6 are 

manufactured by Sippican, groups 7-9 are manufactured by TSK, and groups 2 and 4 are of 

unknown manufacturer/ type and are only differentiated by their greatest reported depth.  

Cheng et al. (2014) noted that operators have generally considered XBT probes able to 

reach depths roughly 20% greater than their listed terminal depths with minimal loss in 

accuracy. However, due to the sparsity of data below these terminal depths and some 

apparently spurious observations, we chose to omit these data from the training of our 

model. In the end, these data will still receive a calibration. 
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Next, we interpolated individual casts for each instrument (XBT, MBT, OSD, and CTD) 

to the standard depth levels used by Cheng et al. (2018) (Fig. I.2 Step 3). These depth levels 

are spaced 1 m apart in the top 100 m, 5 m apart from 105-700 m, and 10 m apart from 710-

2000 m, for a total of 350 depth levels.  We then separately identified casts from the CTD 

and OSD datasets that were sampled within 1 degree of latitude and longitude and within the 

same 30-day window as a cast from either the XBT or MBT datasets (Fig. I.2 Step 4). Since 

multiple CTD and OSD casts could be associated with the same BT cast, the median of these 

“collocated casts” was computed separately for both the CTD and OSD datasets. Each 

respective BT cast could then have up to two reference casts. Keeping the two reference 

datasets separate, instead of taking the median of both CTD and OSD casts, was done so that 

our correction would not overly depend on a particular dataset, since the CTD and OSD data 

have different spatio-temporal sampling histories and vertical resolutions (Cheng and Zhu, 

2014b). 

After interpolation of the BT data to standard depth levels, we set aside 50% of the OSD 

and CTD data in order to use it for validating our calibration method. Due to the vastly 

different number of casts in each XBT probe category, removing a random 50% of data 

without consideration for probe type would leave some probe types with disproportionate 

amounts of training data versus validation data, so half of all reference CTD casts and half 

of all reference OSD casts are removed for each of the nine categories of XBT probes. The 

CTD/ OSD data that we set aside for validation is then concatenated and averaged. We refer 

to this dataset as RefVAL and use it only for validation of our calibration scheme, to ensure 

that our bias corrections extrapolate well to independent high-quality data (see Section C). 

One caveat to note is that some of the XBT/ MBT data were collected by ships of 
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opportunity from areas of the ocean far from any contemporaneous CTD/ OSD data, so the 

validation dataset RefVAL has a different spatio-temporal distribution than the full XBT 

dataset. This ultimately contributes additional uncertainty to the extrapolated bias 

corrections employed by various calibrations. 

We use the remaining collocated casts RefTR to calculate the biases (bCAST) in the 

individual XBT and MBT casts, defined as 

bCAST(cast,zstandard) = BT(cast,zstandard) –RefTR(cast,zstandard).   (1) 

Because the cast level data is spatially biased towards regions, such as coasts, where 

significant repeat sampling occurred, we further bin the bCAST data to a regular grid so that 

various geographic regions are more equally represented (Fig. I.2, Step 5). Our chosen grid, 

the World Ocean Atlas 2013 (WOA13) grid, has 1x1-degree resolution and 67 depth layers 

for 0-2000 m. When binning vertically, we use the depth layer whose value is closest to the 

observation’s sampling depth (e.g. the first depth layer has a value of 0 m, the second of 5 

m, and the third of 10 m, so all raw temperature values sampled between 0-2.5 m fall in the 

0-m bin; between 2.5-7.5 m they fall in the 5-m bin). A point that lies exactly at the 

midpoint between depth intervals is binned to the shallower interval.  

We opted to bin using the median of bCAST instead of the mean, as it is more robust to 

noise caused by natural variability and instrumental errors. At sub-annual time-scales the 

time-varying biases appear to be dominated by changes in water temperature due to the 

seasonal cycle (Gouretski and Reseghetti, 2010) and not by other factors such as changes to 

probe design that occurred over multiple years (Cheng et al., 2014). Given this, we assume 

short-term changes to the temporal biases are purely a function of water temperature and are 
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not specific to a particular time or location. We can then bin bCAST to the WOA13 grid 

annually based on the year of sampling, yielding bWOA. 

𝑏𝐶𝐴𝑆𝑇(cast, zstandard) → median-binned to WOA13 grid → bWOA(lon,lat,zWOA,yr).   

(2) 

In the next step, biases on the WOA13 annual grid (bWOA) are sorted into categories 

using the variables on which the XBT and MBT biases depend, namely year, depth, and 

temperature (Fig. I.2, Step 6). This forms the basis of our “correction grid”. The dimensions 

of this grid are 52 years for the XBT and 65 years for the MBT data (at 1-year increments) 

by 67 depths (with depth increments coinciding with the WOA13) by 79 temperatures (from 

-3 to 36o at 0.5 oC increments) for a total of 275,236 elements in the correction grid for the 

XBT and 344,045 elements for the MBT. For temperature binning, we use the 10-m 

temperature from the WOA climatology at the measurement location (lon, lat), since it can 

be used as a proxy for a spatial component of the bias, which varies with latitude and has 

been proposed to be dependent on near-surface ocean temperature (Kizu et al., 2005a, 

Reverdin, 2009). Cheng et al. (2014) used the 0-100 m average temperature taken from the 

cast itself, but some of this near-surface data contains errors that cannot easily be accounted 

for by standard quality control procedures. Additionally, many casts do not contain 

measurements for the full 0-100 m depth interval, in which case a climatological value 

would need to be substituted. 

Biases whose absolute values exceed 5 oC are omitted (following Cheng et al., 2018), as 

these extremes are likely due to insufficient sampling coverage for that particular grid cell 

instead of a systematic bias. The binning of biases to the correction grid follows the same 
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median-binning procedure that we use to bin bCAST to the WOA grid. After binning to the 

correction grid, there are 150 thousand bias data points for the XBT data, and 80 thousand 

for the MBT data. Step 6 (Fig. I.2) thus yields the value of the bathythermograph 

instrumental bias on the correction grid, which we refer to as bCOR, 

𝑏𝑊𝑂𝐴(lon, lat, zWOA,yr) →   median-binned to correction grid → 𝑏𝐶𝑂𝑅( zWOA, T10m, yr). 

(3) 

We produced separate correction grids for the XBT and MBT datasets. For the XBT 

data, we consider the years 1967-2018 in our correction, while for MBT we consider the 

years 1940-2004. While certain data exists in both datasets prior to these time intervals, they 

are insufficiently sampled, leading to large apparent biases with respect to the CTD/ OSD 

data, and therefore are not considered in this study. Nine additional correction grids are 

generated for probe-specific calibrations of the XBT data. 

B.2 Creating an ensemble of artificial neural networks 

The correction grids that result from the steps described above (Fig. I.2, Steps 1-6) are 

noisy and contain holes where there are no collocated data that satisfy the requirements of 

that grid cell. We employ an artificial neural network (ANN) to smooth out the result and fill 

in the gaps (Fig. I.2, Step 7), so the correction can be extrapolated to all of the data in the 

XBT and MBT instrumental datasets, including for testing on our internal validation sets 

(Fig. I.2, Step 8).  

Our feedforward ANN is a machine learning approach that seeks to reduce cross-

instrumental biases by minimizing the following “cost function” 
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cost = ∑ ∑ ∑ (𝑏𝐶𝑂𝑅( zWOA, T10m, yr)yr − 𝐶( zWOA, T10m, yr))
2

T10mz .   (4) 

As such, the ANN is trained to produce a final correction (C) (Fig. I.2, Step 9) that 

replicates the bias (bCOR) as closely as possible, while extrapolating to areas without bias 

data. 

Given that the fall rate of a probe may be partially dependent on water temperature 

(Thadathil et al., 2002, Kizu et al., 2005a, Reverdin, 2009, Cowley et al., 2013, Cheng et al., 

2014), the vertical temperature structure likely has an impact on the resulting depth bias. For 

this reason, we also use the vertical temperature gradient derived from the annual WOA 

climatology as an additional input to our ANN (Fig. I.2, Step 7), which indirectly gives us 

spatial information about different water masses as well as their average vertical structure. 

Including the vertical temperature gradient improves the reconstructed bias in the shallow 

subsurface in our model. 

We use a fully connected network that consists of two hidden layers, with 10 nodes each 

(Fig. I.2 Step 7). This architecture keeps the ratio of free parameters (151 total weights) 

versus training samples (~10,000-150,000 depending on probe type) well below 10%, thus 

reducing the chance of overfitting the training data. The value of each node is partially 

dependent on the transfer function used to propagate information from one layer to the next. 

Initially we opted for a network with only a single hidden layer and the hyperbolic tangent 

as the transfer function, but the use of this particular transfer function introduced artificial 

structure to the extrapolated correction that was inconsistent with the raw correction grid. 

Once we opted to go beyond a single hidden layer, the obvious candidate for the transfer 
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function was the rectified linear unit. This has become the default for deep networks because 

it has fewer problems with vanishing gradients (Glorot et al., 2011). 

For the back-propagation algorithm in our ANN, which iteratively updates the values of 

the weights, we chose the Levenberg-Marquardt algorithm (Marquardt, 1963) due to its 

improved performance at achieving a lower mean squared error between predicted and 

expected values for the targets, versus other common algorithms such as gradient descent 

(Hagan and Menhaj, 1994). There is a danger of over-fitting the model, which occurs when 

the neural network is over-trained on a dataset so that it cannot extrapolate well when 

presented with new data. This becomes more difficult to avoid with more nodes in a hidden 

layer or more layers in the network (Weigend et al., 1990). To counteract this, we 

incorporate Bayesian regularization (MacKay, 1992; Foresee and Hagan, 1997) directly into 

the back-propagation algorithm to optimize the regularization procedure that prevents 

overfitting by penalizing large weights in the network.  

Additionally, we employ early stopping (Prechelt, 1998) using our internal validation 

set, which stops training when performance extrapolating to the internal validation set 

begins to degrade.  

As mentioned in Section B.1, we create an independent validation set by omitting half of 

the CTD/ OSD data before calculating the biases from the concatenated CTD/ OSD datasets 

that are then binned to the WOA and correction grids (Fig. I.2, Step 5-6). This independent 

validation dataset is not ever “seen” by the ANN or used to tune it in any way. We therefore 

also create an internal validation set (bINT) by randomly dropping 50% of the data in the 

correction grid. The remaining 50% of the data is used for training. Utilizing random 



 

 16 

validation sets helps ensure that the individual ANN generalizes well for the systematic 

biases that are independent of choice of reference dataset. For the ANN to be accepted, it 

must produce a correction (C) that reduces the sum of squared errors of the internal 

validation set (Fig. I.2, Step 8) 

∑ ∑ ∑ (𝑏𝐼𝑁𝑇 − 𝐶)
2

𝑦𝑟𝑇10𝑚𝑧 < ∑ ∑ ∑ 𝑏𝐼𝑁𝑇
2

𝑦𝑟𝑇10𝑚z .      (5) 

Steps 6-9 (Fig. I.2) are repeated until 30 validated ANNs are produced, and these 30 

ANNs are combined to produce the EANN. About 10% of models fail to fulfill the 

validation criterion set by Eq. 5 and are discarded. 

There are several advantages to using an ensemble of ANNs rather than a single ANN. 

Due to the random initialization of weights in the ANNs and differences in training sets 

across members, it is possible for many different networks to achieve similar performance 

on a validation set while extrapolating to areas with no data coverage differently.  This 

randomization is a form of data subsampling similar to bootstrap aggregating (Breiman, 

1996), which by averaging the solution across ensemble members affords better 

performance on the validation sets compared to an individual member. This ensemble 

averaging has been demonstrated to improve the robustness of the extrapolation in areas 

without data coverage (Hansen and Salamon, 1990; Lincoln and Skrzypek, 1990). The 

ensemble range also provides a measure of the uncertainty of our corrections. 

Steps 6-9 are again repeated using data binned to correction grids for individual probe-

specific bias corrections. The result is ten ensembles of corrections for the XBT and an 

additional one for the MBT. These ensembles consist of one global correction, which can be 

applied to all of an instrument’s data, as well as corrections for the nine XBT probe types 
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that are applied individually to each category of probes. Data from depths greater than the 

terminal depths of each probe type (see Section B.1) are also corrected, as our EANN 

extrapolates the correction down to 2000 m. 

Our correction grid organizes BT bias corrections into categories based on sample depth, 

year, and temperature in the top 10 m. Because our correction grid has the depth levels of 

the WOA13 grid, we linearly interpolate the correction grid to the 350 depth levels of our 

cast data. XBT/ MBT casts are corrected by identifying the grid cell in the interpolated 

correction grid that corresponds to each measurement in the XBT/MBT cast (based on 

standard depth level, year, and 10-m temperature), and applying the corresponding 

correction. The end result is 60 (30) different corrected datasets of individual XBT (MBT) 

casts, obtained by combining the two different correction schemes (global vs. probe type) 

with the 30 ensemble members of the EANN. 

We compare the XBT/ MBT casts calibrated with the EANN ensemble to the 

independent validation set RefVAL (Fig. I.2, Step 10) as a final test of our method’s ability to 

correct “never-before-seen” BT biases.  

C. Results 

In order to compare the performances of multiple existing XBT calibrations, Cheng et al. 

(2018) proposed a set of metrics that can be used to gauge the residual biases with regards to 

depth, probe type, year, and latitude, variables on which the bias has been demonstrated to 

depend (Gouretski and Koltermann, 2007; Levitus et al., 2009; Gouretski and Reseghetti, 

2010; Cheng et al., 2014). We have used four of these metrics to assess our own method’s 
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performance when compared to 

the two top performing 

calibrations, L09 (Levitus et al., 

2009) and CH14 (Cheng et al., 

2014), as determined by Cheng 

et al. (2018) 

These previous calibrations 

are dissimilar from this current 

study as well as from each other 

in their approach. L09 calculated 

the total bias as the difference 

between XBT data and a 

combined reference dataset of 

both OSD and CTD data after 

each dataset had been binned to a 

regular grid. Next, they took the 

global median of the bias for 

each depth level and year as their 

correction after smoothing with a 

5-year moving average filter. 

CH14 applied independent depth 

and pure thermal bias 

corrections, while taking into 

Fig. I.3 Global median extrapolated XBT bias 

(uncorrected XBT - corrected) for 0-700 m by year 

(a) and depth (c) for various XBT calibration 

methods (CH14, L09, and our EANN-G and 

EANN-P) after binning to the WOA13 grid. Also 

shown are residual biases with respect to our 

validation dataset (corrected XBT - RefVAL) for data 

corrected with the various XBT calibration methods, 

and the uncorrected XBT data (Unc), after binning 

to the WOA13 grid and taking the median by year 

(b) and depth (d). 
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account the various probe types with respect to a reference set of CTD casts (later updated 

with a reference set of OSD, CTD, and PFL casts). Our method uses correction grids 

(Section B.1) that have been smoothed and filled using ensembles of artificial neural 

networks to reduce biases with respect to year, depth, water temperature in the top 10 m, and 

probe types.  

We use four metrics adapted from Cheng et al. (2018), as well as a new metric of our 

own, to compare the residual biases of these disparate methods with respect to the same 

reference dataset of CTD/ OSD data (RefVAL) after the residual biases of the individual casts 

are binned to the WOA13 grid (Section C.1). Additionally, given the uncertainty across 

different ocean heat content estimates on basin scales (Wang et al., 2018), we compare how 

these methods perform and extrapolate in the various ocean basins (Section C.2). We also 

consider differences in how these methods extrapolate to locations where there is no 

collocated reference data (Section C.3). Similarly, we consider both the residual biases and 

extrapolated biases for the MBT dataset using our calibration method as well as those of L09 

and GR10 (Gouretski and Reseghetti, 2010) (section C.4). Our main analysis and figures use 

the global (EANN-G) and probe-specific (EANN-P) corrections to XBT data that uses the 

MFR FRE, but we also provide metrics for EANN methods that have been applied to XBT 

data that use the H95 FRE (see Tables I.1 and I.2). 

C.1 Assessing global XBT bias correction 

The World Ocean Database 2018 provides XBT data that have been pre-calibrated using 

some of the most popular XBT corrections including the CH14 and L09 corrections we 

consider here. We opted to use these pre-calibrated XBT data in our comparison, as we 
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could download, quality-control, and process them exactly in the same way as the 

uncorrected data (Section B.1). As with the uncorrected data, XBT data from the WOD 2018 

corrected with the CH14 and L09 methods were interpolated to the 350 standard depth 

levels used in Cheng et al. (2018). The residual biases for the uncorrected XBT data, as well 

as the CH14, L09, and EANN corrections were then calculated by subtracting our reference 

validation set of CTD/ OSD data (RefVAL) from the interpolated XBT casts.  

Next, these biases were binned to the WOA13 grid using the same procedure discussed 

in Section B.1. Calculating these residual biases on the individual casts and then binning 

them to a regular grid preserves information gained from the higher vertical resolution of the 

individual casts while also ensuring more frequently sampled regions, such as coastal areas, 

are not disproportionately represented in the metrics that follow. Additionally, this method 

Table I.1 Performance metrics of the Uncorrected XBT (Unc), CH14, L09, EANN-G, and 

EANN-P methods against a reference validation dataset REFVAL (data that is not seen by the 

EANN calibrations). The choice of fall rate equation that each method uses, either the 

original manufacturer (MFR) or Hanawa et al. (1995) (H95) is also listed. Bolded values 

indicate best performance for that metric.  

  

 



 

 21 

of comparison provides a reasonable compromise given that L09 biases were originally 

calculated on a regular grid, while the CH14 biases were calculated on interpolated casts at a 

much higher vertical resolution. Performance of the calibrations on a regular grid is the most 

relevant for studies of OHC, since studies of OHC rely on gridded temperature anomalies. 

The five metrics that follow for assessing the original and residual XBT biases rely on 

taking a global median of the bias (represented as an overbar in the equations) on this 

regular grid (bWOA in Eq. 3) to sort them into relevant bins that isolate components such as 

the temporal and depth biases. 

The first metric we consider measures the reduction in the temporal bias, with a good 

method having minimal time variance in the residuals. As in Cheng et al. (2018), we too use 

a five-year moving filter when compositing our biases to annual temporal bins, however we 

opt to bin using the global median instead of the mean, as this has proven to be more robust. 

Thus, the first metric measures the standard deviation of the temporal component of the bias 

after aggregating the total XBT bias to annual bins using a five-year moving filter. 

Metric 1 = 𝜎[𝑏𝑊𝑂𝐴̅̅ ̅̅ ̅̅ ̅(yr)  (6) 

Fig. I.3a shows the global median extrapolated temporal bias (uncorrected XBT - 

corrected) of the various calibration schemes for 0-700 m. In our analysis, negative 

(positive) bias implies the uncorrected XBT data is too cold (warm) relative to the corrected 

data. All extrapolations from these different methods follow the same general temporal 

pattern with a few exceptions. CH14 and L09 show an earlier peak in the bias during the 

1970s, occurring prior to 1975, while EANN-G and EANN-P peak after 1975. All methods 

show minimal bias in the late 1980s, with small biases persisting through the 1990s. The 
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CH14 and EANN methods are 

in general agreement 

throughout the 1990s, whereas 

the L09 method indicates that 

the bias becomes negative in 

the 1990s (Fig. I.3a). All 

methods agree that a positive 

bias re-appears in the 2000s, 

although the magnitude and 

temporal pattern of the bias 

differs between the various 

corrections by as much as > 

0.05 oC. Both EANN-G and 

EANN-P exhibit a smooth 

leveling off in their 

extrapolated bias, whereas 

CH14 and L09 exhibit an 

oscillatory pattern (Fig. I.3a). 

The choice of FRE also 

impacts the extrapolated bias of 

individual XBT probes 

(Supplementary Fig. I.1a). 

While at high latitudes (> 30o) 

Supplementary Fig. I.1 Median extrapolated XBT 

bias (uncorrected XBT - corrected) for 0-700 m by 

year (a) and depth (c) for the EANN-P XBT 

calibration method using either the MFR (blue) or 

H95 (red) fall rate equation and considering either the 

low latitudes (solid) or high latitudes (dashed). Also 

shown are residual biases with respect to the CTD 

casts (not binned to a regular grid) for data corrected 

with these same XBT calibration methods, taking the 

median by year (b) and depth (d). 
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the difference is negligible, at low latitudes (30oS – 30oN) the extrapolated bias for the 

EANNP method using the H95 FRE is colder than the same method using the MFR FRE 

after 1970. Not only is the difference in the extrapolations due to the choice of FRE 

nonlinear, it also results in the extrapolations having the opposite sign after 2005 

(Supplementary Fig. I.1a). 

All four methods reduce the temporal bias against our independent validation dataset to 

within 0.05 oC for the entire period 1967-2018, as shown in Fig. I.3b. However, CH14 and 

the EANN methods appear to underestimate the positive bias in the XBT data for the period 

after 2010, when data becomes sparser. Prior to the minimum in the uncorrected XBT bias 

in 1987, the L09 method has a slight cold bias against the validation dataset, while the 

EANN methods have a slight warm bias (Fig. I.3b). The residual biases for all methods, 

including the uncorrected XBT bias, converge at the 1987 minimum and diverge again 

afterwards. The L09 residual bias transitions from positive in the early 1990s to negative in 

the early 2000s. The CH14 method is in broad agreement with the two EANN methods after 

1990, except for a few years in the late 1990s where the CH14 method has a small warm 

bias and the EANN methods have a small cold bias. Overall, all methods perform quite 

similarly on Metric 1 (Table I.1), with a slight edge given to EANN-P or EANN-G, 

depending on the choice of FRE. Unlike the extrapolated biases, the residual time-dependent 

biases versus the available CTD data do not indicate a clear or consistent difference arising 

due to the choice of FRE (Supplementary Fig. I.1b). 

The second metric we consider measures the residual depth bias, expressed as the 

average of the absolute XBT biases across depth bins from 1 to n (1 being the 0 m bin and n 
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= 41 being the 700 m bin). Once again, we bin using the global median since it is more 

robust to outliers.  

Metric 2 = ∑ |𝑏𝑊𝑂𝐴̅̅ ̅̅ ̅̅ ̅(𝑧𝑊𝑂𝐴i)|
n
i=1 /𝑛  (7) 

Fig. I.3c shows profiles of the global median depth-dependent extrapolated biases of 

XBT data for the various calibrations for 0-700 m, demonstrating a positive XBT bias in the 

top 150 m and a negative bias below ~200 m for all calibration methods. EANN-P and L09 

predict slightly larger extrapolated biases in the top 100 m, but the L09 extrapolated bias 

diminishes more rapidly, becoming negative at the shallowest depth of any of the methods 

(Fig. I.3c). All methods exhibit a transition in their extrapolated biases around 450 m, as this 

is the terminal depth of certain probe types and represents a change in the makeup of the 

probe data. The residual biases against our reference validation dataset (Fig. I.3d) 

demonstrate maximal disagreement among the methods at ~450 m depth, where the L09 

method is biased cold and the EANN-G method is biased warm, while the probe-specific 

calibrations, CH14 and EANN-P, have smaller residual biases. Globally, all methods 

significantly reduce the depth-dependent bias, but EANN-P is slightly better than the other 

methods based on Metric 2 (Table I.1). Both the extrapolated and residual depth dependent 

biases reveal the impact of the choice of FRE, though the effect is most apparent for lower 

latitudes (Supplementary Fig. I.1c-d). 

Although there is significantly less XBT data below 700 m (roughly 3 percent of that for 

0-700 m), these data are nonetheless important to studies that consider warming in the deep 

ocean. While certain calibrations have previously been applied to deep XBT data, the 

performance of these methods has not been well investigated. We therefore briefly consider 
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the global median temporal and depth biases for 700-2000 m. The L09 method is not 

included here, as it was originally only applied to the 0-700 m depth interval (although in the 

WOD 2018, TSK-T5 probes have received a correction using the method of Kizu et al., 

2005, in addition to having the H95 FRE applied). 

The temporal component of the extrapolated XBT bias below 700 m differs widely 

between the CH14 and EANN methods prior to the mid-1980s, when the methods disagree 

about both the sign and magnitude of the extrapolated bias (Fig. I.4a). This disagreement can 

mainly be attributed to the fact that the CH14 method employs a depth correction to the 

FRE, which adjusts the sampling depths of the XBT measurements and thus the overlap in 

gridded data with the uncorrected XBT data using the MFR FRE, whereas the EANN 

method only considers a thermal bias and makes no adjustment to the sampling depths. 

From the 1980s onwards, the CH14 extrapolated bias oscillates with both a similar period 

and phase to the extrapolated temporal bias in the top 700 m (Fig. I.3a), though the sign of 

the bias is reversed. This contrasts with the EANN methods, which exhibit a smoother time-

dependence. The residual time-dependent bias (Fig. I.4b) for the uncorrected XBT data prior 

to 1990 likely isn’t well resolved due to the sparsity of deep casts from this period, but it 

does indicate a larger temporal bias during the pre-1990s period, which is consistent with the 

timing and magnitude of this bias for depths shallower than 700 m (Fig. I.3b). After 1990 

the temporal bias is quite minimal, indicating that deep probe types (such as the T5 and 

TSK-T5) may not suffer from a significant time-varying bias. For the period after 1990, it is 

not clear that any of the calibration methods have much of an effect or are even necessary. 

Prior to 1990, the CH14 method is more successful than the EANN methods at reducing the 

temporal bias. 
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Certain probe types have 

terminal depths at 760 m, 

producing a rapid transition in 

the extrapolated bias of the 

CH14 and EANN methods 

around this depth (Fig. I.4c). 

In the case of the EANN-P 

method this includes a reversal 

in the sign of the bias, though 

the magnitude remains stable 

below 800 m. This contrasts 

with the EANN-G method, 

which undergoes a smoother 

shift in the extrapolated bias 

with depth, and a change in 

sign at roughly 1200 m. In the 

case of the CH14 method, the 

extrapolated bias briefly 

reverses sign around 1000 m 

and again below 1600 m. The 

residual bias of the uncorrected XBT data below 700 m demonstrates that the deep probe 

groups do not exhibit significant bias at these depths (Fig. I.4d). The residual bias of the 

calibrated XBT data is not much improved from the uncorrected data, aside from the CH14 

Fig. I.4 Same as Fig. I.3 but for the 700-1800 m 

depth interval. 
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method for depths below 1500 m. The EANN-G method is a global correction and cannot 

handle the transition in the makeup of the probes around 760 m, leading to an increased 

residual bias compared to the uncorrected XBT data above 1000 m (Fig. I.4d). Based on the 

metrics (Table I.3), we find that the CH14 correction is most effective at reducing the bias 

for the 700-1800 m depth interval, however we emphasize that the uncorrected XBT data 

using the MFR FRE may already be sufficient, whereas the use of the H95 FRE greatly 

increases the bias with depth. We recommend using either the uncorrected XBT with the 

MFR FRE, or the CH14 or EANN-P corrections.  

Our third metric considers the depth-dependent bias separately for individual probe 

types, as depth profiles show distinct biases for different probes. Metric 3 is the same as 

Metric 2, but it is applied to the nine categories of XBT probes specified in Cheng et al. 

(2014) whose biases with respect to RefVAL have been separately binned to the WOA13 grid. 

Metric 3 = ∑ |𝑏𝑊𝑂𝐴̅̅ ̅̅ ̅̅ ̅(𝑧i, probe)|
n
i=1 /𝑛   (7) 

The results indicate that global calibrations such as L09 and EANN-G perform similarly 

to probe-specific calibrations such as CH14 and EANN-P at reducing the bias of the most 

common XBT probe types (Fig. I.5 and Table I.2). While probe-specific calibrations are 

better overall (Table I.2), the global XBT bias is dominated by only a few probe types that 

Table I.3 Performance metrics of the Uncorrected XBT (Unc), CH14, EANN-G, and 

EANN-P methods against a reference validation dataset REFVAL (data that is not seen by the 

EANN calibrations) for the 700-1800 m depth interval. The choice of fall rate equation that 

each method uses, either the original manufacturer (MFR) or Hanawa et al. (1995) (H95) is 

also listed. Bolded values indicate best performance for that metric.  
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the global calibrations can adequately handle. The choice of FRE can also have a major 

impact on the residual bias of certain calibrations. As an example, the T5 and TSK-T5 

probes have very little bias below 700 m, but applying the H95 FRE significantly increases 

Fig. I.5 Residual XBT biases with respect to our validation dataset (corrected XBT - 

RefVAL) for various XBT calibration methods (CH14, L09, and our EANN-G and 

EANN-P) after separating the data into nine probe types, binning to the WOA13 

grid, and taking the median by depth. 
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the depth dependent bias, especially for the L09 method, which does not perform a 

correction below 700 m aside from applying the method of Kizu et al. (2005) to the TSK-T5 

probes. In addition, the most common probe types (Fig. I.5a.-d.) tend to have smaller biases 

for the uncorrected XBT data, which could be the result of having more collocated data to 

actually resolve the bias or due to mixing of probe types of different manufacturers for the 

unknown groups. 

Due to insufficient metadata, nearly half of all XBT casts cannot be directly assigned to 

a manufacturer or probe type. Instead they are sorted into categories of shallow probes (SX) 

and deep probes (DX). Shallow probes are those with maximum reported depths less than 

450 m, which could be probes that have reached their terminal depths (e.g. T4/ T6 from 

either Sippican or TSK and the Sippican T10) or any other probe type that was deployed 

without reaching terminal depth, which is likely in many coastal areas. Deep probes have 

maximum depths less than 930 m, including T7/ DB probes and some T5 probes.  

Table I.2 Results of applying Metric 3 to the Uncorrected XBT (Unc), CH14, L09, 

EANN-G, and EANN-P methods for each of the nine probe types considered in this study. 

The choice of fall rate equation that each method uses, either the original manufacturer 

(MFR) or Hanawa et al. (1995) (H95) is also listed. Bolded values indicate best 

performance for that probe type.  
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Manufacturer origin appears to have an impact on the depth bias of some probe types, 

which a global correction cannot address. For T4/ T6 probes (Fig. I.5c and Fig. I.5g.), the 

sign of the bias below 100 m depends on the manufacturer, and the resulting bias of the 

mixed probes of the SX group (Fig. I.5d.) falls somewhere in between. Global calibrations 

are also not suitable for T5 (Fig. I.5f) or TSK-T5 (Fig. I.5h) probes, as these apparently have 

different bias histories at intermediate depths. On the other hand, the use of probe-specific 

calibrations may run the risk of overfitting for the least common probe types. Considering 

the TSK-T4/T6 probes (Fig. I.5g), for instance, not many casts are known to exist, which 

could explain the poor performance of the CH14 method using our validation set (Table 2).  

The fourth metric considers the reduction in the spatial component of the bias. An 

existing zonal bias may in fact be related to water temperature (Thadathil et al., 2002, Kizu 

et al., 2005, Reverdin, 2009, Cowley et al., 2013, Cheng et al., 2014) as well as the vertical 

temperature gradient (Gouretski and Reseghetti, 2010). Neither the CH14 nor the EANN 

calibrations directly correct for the zonal component of the XBT bias, but they do include 

factors to correct for a temperature-dependent bias. L09 corrects for total XBT bias as a 

function of both depth and year but does not consider a temperature-dependent bias. 

However, the L09 method uses the H95 FRE, which produces a spatial pattern in the bias 

correction relative to the MFR FRE that varies with water temperature. While the H95 depth 

correction factor attempted to be optimal for the global ocean, this appears to break down on 

regional scales due to in part to the time-varying pure thermal bias (Gouretski and 

Reseghetti, 2010).  
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We express the fourth metric as the average bias over n depth layers (n = 1 at 0 m to n = 

41 at 700 m) and m latitudinal bins (m = 1 at 69.5o S to m = 140 at 69.5o N and progressing 

by 1o intervals) after binning using the global median. 

Metric 4 = ∑ ∑ |𝑏𝑊𝑂𝐴̅̅ ̅̅ ̅̅ ̅(𝑧𝑖, lat𝑗)|
𝑚
𝑗=1

𝑛
𝑖=1 /(𝑛 ∙ 𝑚)    (8) 

The uncorrected zonal 

XBT bias exhibits a fairly 

symmetric pattern across 

the equator (Fig. I.6a), 

with positive biases 

below 100 m at high 

latitudes transitioning to 

negative biases at the low 

latitudes in a pattern that 

resembles the zonally 

averaged water 

temperature and vertical 

temperature gradient 

(Gouretski and 

Reseghetti, 2010, their 

Figure 12). Aside from a 

small overcorrection in 

the Southern Hemisphere 

Fig. I.6 Residual XBT biases with respect to our validation 

dataset (corrected XBT - RefVAL) as a function of both 

depth and latitude for uncorrected XBT data (Unc) (a) , data 

corrected with the CH14 method (b), data corrected with the 

L09 method (c), data corrected with the EANN-G method 

(d), and data corrected with the EANN-P method (e). 
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and in the tropics, the CH14 correction removes most of the original spatial pattern of the 

XBT bias (Fig. I.6b). At both high and low latitudes, the L09 method overcorrects, turning 

positive biases negative and vice versa (Fig. I.6c). Both the EANN-G (Fig. I.6d) and EANN-

P (Fig. I.6e) calibrations reduce much of the original spatial bias in the XBT data. However, 

below 100 m the EANN methods under-correct the most prominent biases, most notably the 

strong negative biases in the low latitudes. Due to the lower vertical resolution of the OSD 

casts, including the interpolated OSD data in this comparison exaggerates the apparent 

spatial biases compared to the CTD data alone. However, reviewing the bias of the original 

XBT casts versus the CTD data at high vertical resolution prior to binning to the WOA grid 

shows that the overall pattern remains consistent (Supplementary Fig. I.2a-c). Additionally, 

these low-latitude negative biases can be eliminated by first applying the H95 FRE and 

subsequently the EANN 

correction (Supplementary 

Fig. I.2d), which based on 

Metric 4 does best at reducing 

the spatial bias on our 

combined reference dataset of 

both CTD and OSD data 

(Table I.1). This indicates that 

the H95 FRE is effective at 

reducing spatial biases in the 

XBT data, even though 

Supplementary Fig. I.2 Median residual biases with 

respect to latitude and depth compared to individual CTD 

casts (not binned to a regular grid) for a. Uncorrected 

XBT casts, b. the CH14 method, and the EANN-P 

method using either c. the MFR or d. the H95 fall rate 

equation.  
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without additional corrections it worsens the overall XBT quality (Table I.1). 

Our final metric is a combination of the first two metrics and considers both the depth 

and time dependent bias components. Conceivably a low score in Metric 2 could be 

achieved by having a positive bias and a negative bias of similar magnitudes in the same 

part of the water column but in different years of the time series. A similar logic could be 

applied to how a low value for Metric 1 might also be achieved. While such an occurrence 

for one metric would degrade the value of the other, the possibility of having uncorrected 

biases of different signs that can partially compensate for each other warrants this additional 

metric. After using the global median to bin with regards to both year (using a 5-year 

moving filter for the temporal binning) and depth, we consider the standard deviation of the 

temporal component at each depth bin and then average these values over all depth bins to 

obtain Metric 5, 

Metric 5 = ∑ 𝜎[𝑏𝑊𝑂𝐴̅̅ ̅̅ ̅̅ ̅(yr, 𝑧i)]
n
i=1 /n  (9) 

The global median uncorrected XBT bias exhibits a nonlinear time evolution at different 

depth levels. It is always positive at depths shallower than 100 m, peaking in the mid-1970s, 

while below 100 m the bias shifts from positive in the 1970s to negative in the 1980s to 

more positive/ neutral  again after 2000 (Fig. I.7a). The L09 method (Fig. I.7c) slightly 

overcorrects the original XBT bias in much of the top 600 m during the 1970-1990 period. 

CH14 (Fig. I.7b) and the EANN methods (Fig. I.7d-e) do not eliminate the shallow warm 

XBT biases from the mid-2000s onward but remove the majority of the bias prior to this. 

However, EANN-G (Fig. I.7d) under-corrects the bias prior to 1980 around the terminal 
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depth of some probe types at 450 m. Overall, the EANN-G, EANN-P, and CH14 

calibrations all perform quite well based on Metric 5 (Table I.1).   

C.2 XBT calibration performance in individual basins 

The XBT calibrations differ in their performance on basin scales. In order to ensure that 

the performance of the XBT calibrations on Metrics 1, 2, 4, and 5 discussed in Section C.1 is 

not merely due to a canceling of errors across basins, we reproduced these metrics for the 

Atlantic, Pacific, and Indian Oceans. The geographic constraints we use for these basins are 

found in Supplementary Supplementary Fig. I.3. All metrics are calculated the same as in 

Section C.1 aside from Metric 4, which differs in the number of latitudinal bins for the 

Pacific (m = 135) and Indian (m = 95).  

The Atlantic Basin exhibits a similar pattern in the uncorrected XBT bias with regards to 

depth and year as was seen globally, with alternating positive and negative biases over time 

Supplementary Fig. I.3 Map of the basin extents used to do ocean basin 

scale analyses in the main text. The Pacific is in teal, the Atlantic blue, and 

the Indian yellow. The Arctic is grouped with the Atlantic and the Southern 

Ocean is grouped with other respective ocean basins due to the sparsity of 

data in these regions. 
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below 100 m (Fig. I.7f).  However, the transition from positive to negative bias is double 

peaked for the global bias, with one negative peak in the late 1980s and a subsequent one in 

the 1990s, while for the Atlantic there is only one distinct negative peak that occurs later 

than the first peak in the global bias. Both CH14 and L09 overcorrect the initial positive bias 

to some extent before 1980 (Fig. I.7g-h), with the exception of L09 in the top 200 m after 

Fig. I.7 Residual XBT biases with respect to our validation dataset (corrected XBT - RefVAL) 

as a function of both depth and year for uncorrected XBT data (Unc), data corrected with the 

CH14 method, data corrected with the L09 method, data corrected with the EANN-G 

method, and data corrected with the EANN-P method, globally and for individual basins 

(Atlantic, Pacific, and Indian). 
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year 2000 where it overcorrects. The EANN methods (Fig. I.7i-j) reduce the bias more 

evenly across time and depth but under-correct significantly after 2010. CH14 also under-

corrects to some extent after 2010, including extending the positive bias to greater depths 

like the EANN methods, whereas the L09 overcorrects during the same period. All methods 

perform similarly on Metric 5 in the Atlantic (Table I.1). 

The shape of the uncorrected XBT bias in the Pacific (Fig. I.7k) dominates the global 

pattern (Fig. I.7a), but the pattern in the Pacific is more pronounced, as the offset in the 

timing of the negative bias in the top 450 m of the Atlantic partially compensates for that in 

the Pacific on global scales. All methods (Fig. I.7l-o) under-correct the positive biases in the 

1970s and 2010s, but the EANN-G (Fig. I.7n) and EANN-P (Fig. I.7o) calibrations do a 

slightly better job at correcting the biases after 2010 below 200m. Again, based on the 

metrics, all methods perform quite similarly (Table I.1).  

In the Indian Ocean (Fig. I.7p-t), the uncorrected XBT biases are larger and noisier than 

in the other basins because there is less data in this basin. The existing data does indicate 

that a pattern of positive biases before 1980 transitioning to negative biases in the 1980s and 

1990s, that again transition to positive after 2000, is largely consistent across all of the ocean 

basins. Additionally, while the sparse data in the Indian makes it difficult to establish the 

performance of the different calibrations with any great certainty, it appears that all 

calibrations reduce the bias from the uncorrected XBT (Fig. I.7p). In the top 450 m, both 

CH14 and L09 (Fig. I.7q-r) appear to overcorrect the bias prior to 1980 and under-correct 

from the 1990s onward. The EANN (Fig. I.7s-t) methods leave a residual cold bias above ~ 

300 m depth, and introduce a residual warm bias below 300 m. After 2010, there are large 

biases that no method is able to correct. 
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 After reviewing the performance of the methods for individual ocean basins, all of the 

calibrations reduce the original XBT biases considerably. The differences in performance 

across the calibrations considered here are marginal, and we cannot distinguish a single best 

correction based on these metrics alone. 

C.3 Spatial patterns of the extrapolated XBT bias for different methods 

Each XBT calibration method reduces the biases present in the original uncorrected 

XBT data, but their different assumptions about the form of these biases and how to best 

correct for them lead to significant differences in how each correction generalizes to regions 

with no reference data to verify the calibration. The differences in how these calibrations 

extrapolate can contribute to uncertainty in estimates of ocean heat content on intra-decadal 

timescales and ocean basin scales. The ability of these products to extrapolate has previously 

been validated using independent datasets such as EN4 (Cheng et al., 2018) or by 

withholding substantial amounts of CTD/ OSD, as was done in this study, but clearly 

reductions in the original XBT biases can be achieved by different methods with varying 

success on the global scale while leading to significant differences in the temporal and 

spatial patterns of the extrapolations. 

On a global scale, the extrapolated biases of the CH14 and L09 methods over depth and 

year (Fig. I.8a-b) exhibit a similar pattern, but the L09 extrapolation is often of greater 

magnitude. One major distinction between CH14 and L09, and the EANN-G (Fig. I.8c) and 

EANN-P (Fig. I.8d) calibrations, is the presence of 2-3 distinct peaks of negative bias in the 

1980s-2000s in the two former methods, versus a single peak of negative bias around 1990 

in the latter two methods. The EANN-P method does infer a bias with a semblance of two 
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negative peaks but remains smooth like the EANN-G after 2000. The EANN-P method is 

also distinguished from the EANN-G by a more distinct transition and stronger cold bias 

below 450 m, a depth that coincides with changes in the probe types. 

The CH14 and L09 (Fig. I.8e-f) extrapolated biases in the Atlantic share a similar form 

that is mainly distinguished by a larger magnitude in the L09 extrapolation, especially for 

areas of negative bias, which is apparent at shallower depths in L09. EANN-G (Fig. I.8g) 

has a smoother extrapolated bias that is generally smaller than the other methods. The 

EANN-P (Fig. I.8h) method infers a larger bias but shallower positive bias above 200 m and 

after 2000 than the other methods. 

Fig. I.8 Median of the extrapolated XBT bias (uncorrected XBT - corrected) as a function of 

depth and year for data corrected with the CH14 method, data corrected with the L09 

method, data corrected with the EANN-G method, and data corrected with the EANN-P 

method, globally and for individual basins (Atlantic, Pacific, and Indian).  
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Due to the amount of XBT data in the Pacific, this basin contributes an outsized amount 

to the shape of the global extrapolated bias, masking some of the distinctions arising in the 

Atlantic and Indian. Nonetheless, certain differences that were not as well resolved on the 

global scale become apparent when specifically considering the Pacific. For instance, in the 

1960s and early 1970s there is a period where both the CH14 and L09 methods (Fig. I.8i-j) 

consider XBT data around 400 m to have a negative bias. The EANN methods (Fig. I.8k-l) 

differ from L09 and CH14 in their characterization of the bias below 450 m in the 1970s, 

Fig. I.9 Decadal averages of the extrapolated XBT bias (uncorrected XBT - corrected) 

averaged over the top 700 m for data corrected with the CH14 method, data corrected with 

the L09 method, data corrected with the EANN-G method, and data corrected with the 

EANN-P method during the 1970s, 1980s, and 1990s. 
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which for the EANN methods is close to neutral while for L09 and CH14 the bias remains 

positive. 

In the Indian, the extrapolated biases of the CH14 (Fig. I.8m) and L09 (Fig. I.8n) 

methods are highly distinct from those of the EANN methods (Fig. I.8o-p). While all 

methods consider some XBT biases to be negative in the 1960s, they disagree on the sign of 

the bias below 200 m in the 1970s, with CH14 and L09 indicating that the bias is positive, 

and the EANN methods indicating that it is neutral to negative. The L09 extrapolation also 

indicates that there are peaks of negative XBT biases at two different depths in the 1980s 

and 1990s, one around 200 m and one around 600 m (Fig. I.8n). The CH14 method shows a 

shallower peak in this negative bias (Fig. I.8m), while the EANN-G method spreads the 

negative bias more evenly across the water column (Fig. I.8o), and the EANN-P method 

concentrates this bias below 450 m (Fig. I.8p).  

Maps of the extrapolated bias with the median taken over the top 700 meters for 

different decades reveal distinct spatial patterns in the biases over time (Fig. I.9). In the 

1970s all methods overwhelmingly treat the uncorrected XBT data as warmer than the 

corrected, but while the CH14 method (Fig. I.9a) and L09 (Fig. I.9b) are more homogenous 

the EANN methods (Fig. I.9c-d) demonstrate an overall positive bias that is latitudinally 

dependent, with higher latitudes having larger biases than lower latitudes. 

The four calibration methods have more distinct latitudinal patterns in the 1980s. While 

all methods indicate data in the high latitudes have a positive bias, data in tropics and 

subtropics differ in the sign of the bias across methods (Fig. I.9e-h). Both the CH14 (Fig. 

I.9e) and L09 (Fig. I.9f) have negative biases at low latitudes but these differ on basin 
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scales, with negative biases in the CH14 extrapolation being more extensive and farther west 

in their respective ocean basins than for the L09 extrapolated bias. The EANN-G method 

(Fig. I.9g) extrapolates positive biases at all latitudes, whereas the EANN-P method (Fig. 

I.9h) indicates a neutral to slightly negative bias in the tropics. For both EANN methods the 

positive bias peaks near 30o N and S. 

During the 1990s, these various methods diverge the most of any decade in the spatial 

patterns of their extrapolated biases. Although the CH14 (Fig. I.9i) and L09 (Fig. I.9h) 

methods share similarities, with high latitudes exhibiting positive biases and low latitudes 

having negative biases, the L09 method indicates larger magnitudes for the bias and a 

greater homogeneity to the negative biases. The EANN methods (Fig. I.9k-l) consider the 

XBT bias to be neutral at most latitudes, aside from bands of positive biases around 30o N 

and S that mirror those from the 1980s. 

C.4 Performance and extrapolation of the MBT calibrations 

Systematic biases in the MBT data remain less well studied than the XBT, even though 

they are the dominant source of temperature data prior to 1967 (Fig. I.1). As with the XBT 

data, we consider the performance of several MBT calibration methods at removing depth- 

and time- dependent biases, as well as the form of the global extrapolated biases. 

The global median extrapolated temporal biases are quite distinct for the different 

calibration schemes (Fig. I.10a), with the GR10 and L09 calibrations abruptly varying in the 

magnitude of their bias. This contrasts with the extrapolated bias inferred by the EANN-G 

method, which is temporally smooth (Fig. I.10a). The uncorrected time-dependent bias with 

respect to our validation dataset is also smooth (Fig. I.10b), peaking in 1954 around 0.1 oC 
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and declining steadily so that by 

1990 the remaining bias is 

almost zero. After 1990, the 

bias in the uncorrected MBT 

data increases again, but there is 

very little MBT data during this 

period. GR10 slightly under-

corrects the original positive 

bias in the MBT data with 

respect to the validation dataset, 

whereas the EANN-G slightly 

overcorrects this positive bias 

(Fig. I.10b). However, both 

calibrations significantly reduce 

the original bias, outperforming 

the L09 method, which 

overcorrects for most of the 

period and offers no correction 

after 1994 (Fig. I.10b). 

The median extrapolated 

biases with depth (Fig. I.10c), 

and the residual depth biases of 

the corrected data with respect 

Fig. I.10 Global median extrapolated MBT bias 

(uncorrected MBT - corrected) for 0-300 m by year 

(a) and depth (c) for various MBT calibration 

methods (GR10, L09, and our EANN-G) after 

binning to the WOA13 grid. Also shown are residual 

biases with respect to our validation dataset 

(corrected MBT - RefVAL) for data corrected with the 

various MBT calibration methods, and the 

uncorrected MBT data (Unc), after binning to the 

WOA13 grid and taking the median by year (b) and 

depth (d). 
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to our validation dataset (Fig. I.10d), tell a similar story. GR10 has a smaller extrapolated 

bias, and positive residual biases in the top 100 m, whereas the EANN-G method exhibits a 

larger extrapolated bias that also peaks at a shallower depth, leading to negative residual 

biases in the top 50 m (Fig. I.10c-d). L09 creates a larger extrapolated bias than the other 

methods (Fig. I.10c), leading to a residual negative bias with respect to the validation data 

that is similar in magnitude to the original positive bias (Fig. I.10d). L09 also does not offer 

a correction for the sparse data below 250 m. While the residual bias with depth is smallest 

using the EANN method, the GR10 method performs almost as well (Fig. I.10d). 

Examining the residual MBT biases with respect to the validation dataset as a function 

of both depth and year, we find that the structure of the uncorrected MBT bias remains 

Fig. I.11 Global residual MBT biases with respect to our validation dataset (corrected MBT 

- RefVAL) as a function of both depth and year for uncorrected MBT data (Unc) (a), data 

corrected with the GR10 method (b), data corrected with the L09 method (c), and data 

corrected with the EANN-G method (d). 
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mostly positive throughout its period 

of use (Fig. I.11a). The GR10 

calibration (Fig. I.11b) largely 

reduces these positive temperature 

biases but slightly overcorrects biases 

in the 1940s and slightly under-

corrects biases in the 1990s. By 

comparison, the L09 method (Fig. 

I.11c) overcorrects MBT biases 

throughout much of the water column 

but leaves the biases after 1990 

essentially untouched. Similar to the 

GR10 method, the EANN-G 

calibration (Fig. I.11d) removes the 

majority of the systematic bias but 

under-corrects biases to some extent 

in the 1950s and 1990s. 

Similar patterns appear when 

examining the extrapolated biases for 

these methods as a function of both 

depth and year. The GR10 extrapolation (Fig. I.12a) has a somewhat striated pattern 

throughout the water column prior to 1975 and suggests no bias in the MBT data during 

1980s. The L09 method (Fig. I.12b) produces a maximum extrapolated bias in the mid-

Fig. I.12 Median of the global extrapolated MBT 

bias (uncorrected MBT - corrected) as a function 

of depth and year for data corrected with the 

GR10 method (a), data corrected with the L09 

method (b), and data corrected with the EANN-G 

method (c). 
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1950s at roughly 50 m, which also roughly coincides with the maximum in the original 

MBT bias with respect to the validation dataset (Fig. I.11a). A second strong positive bias in 

the L09 extrapolation occurs in the mid-1960s (Fig. I.12b). The EANN-G method (Fig. 

I.12c) also produces a maximum extrapolated bias around 50-100 m, but the pattern is much 

smoother across the 1950s and 1960s than the other methods. EANN-G also does not infer a 

large positive bias below 200 m in the 1950s, nor does it indicate negative MBT biases 

around 250 m in the late 1970s, unlike the other two methods (Fig. I.12c). 

A recently released study by Gouretski and Cheng (2020) further examined the MBT 

bias and found similar results regarding the performance of the GR10 and L09 correction 

schemes as we have here. They also indicate in their study that country of origin for the 

MBT probes has an impact on the bias history, a factor which we have not considered, and 

the new corrections they present in their study take an empirical approach when considering 

the other known sources of bias. After applying some of the metrics from Cheng et al. 

(2018) to the MBT dataset, they found that their corrections outperformed other available 

methods; our method was not yet available for comparison. Additionally, they concluded 

that the L09 correction does not reduce the total bias compared to the original uncorrected 

MBT data, but that the GR10 method is acceptable. Given the performance of L09, the 

EANN-G method may present an alternative statistical approach to correct the MBT data. 

D. Discussion 

In this study, we developed and implemented a new approach to correct global 

systematic temperature biases in mechanical and expendable bathythermograph (BT) 

datasets using an ensemble of artificial neural networks trained on global data (EANN-G), 
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and another using probe-specific data (EANN-P). Our method offers a simple correction for 

the total time-variable BT bias that is explicitly dependent on a combination of year, depth, 

and water temperature. Additionally, we compared the performance of this method, on both 

global and basin scales, to that of several popular methods (Levitus et al., 2009 and Cheng et 

al., 2014 for XBT and Levitus et al., 2009 and Gouretski and Reseghetti, 2010 for MBT) 

using some of the metrics proposed by Cheng et al. (2018). Finally, we examined 

differences in how these calibration methods extrapolate the bias both spatially and 

temporally.  

Our results demonstrate: 

1. The use of EANN-G and EANN-P methods greatly reduces time, depth, and 

latitudinal components of the XBT bias, performing on par with the best available 

methods when compared to an independent validation dataset. Based solely on 

performance it is difficult to distinguish EANN-G and EANN-P, except for their 

performances correcting the biases of certain probe types. There is some benefit to 

using a probe-level correction, however the XBT dataset is skewed towards only a 

few probe types and the metadata is not complete. Both global and probe-level 

methods would likely need to be incorporated into studies examining OHC in order 

to fully characterize the uncertainty due to the choice of XBT bias correction. 

2. Both the EANN-G and EANN-P calibrations are simple to implement and, like 

CH14 for XBT, L09 for XBT in the top 700 m, and GR10 for MBT, can extrapolate 

well to new BT data in areas where we have complimentary CTD/ OSD data, 
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indicating that both empirical and statistical approaches to calibrating the global BT 

data are reasonable avenues. 

3. All of the calibration methods considered here offer valid corrections for BT biases 

on global and basin scales, potentially with the exception of L09 for the MBT, but 

examinations of the extrapolated biases reveal key distinctions among methods, 

which will contribute to uncertainty in OHC estimates on intra-decadal and basin 

scales. 

4. The choice of XBT fall rate equation (FRE), either opting to use the original 

manufacturer equation (MFR) or the H95 equation, impacts the extrapolated XBT 

bias correction, even for what would otherwise be the same calibration method. Our 

method provides calibrations for both FRE, and we recommend that both corrections 

be incorporated into global OHC studies in order to fully characterize the uncertainty 

arising from correcting for historical XBT biases. Considering the effects that 

different XBT calibrations have on deep OHC may be especially important given the 

negative impact that the use of the H95 FRE has on the XBT bias for the 700-1800 m 

depth interval.  

There remains room for improvement in both empirical and statistical approaches to 

reducing biases in historical BT data, and further refinements to existing methods (including 

the one presented here) could be developed by more deeply examining underlying 

contributors to the bias, which perhaps can be gleaned from further laboratory studies, 

numerical simulations, or a comprehensive examination of the available probe metadata. For 

example, most calibration methods to date (including the one presented here) have assumed 
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that BT biases depend on the year of deployment, which does not directly represent the 

underlying technological, manufacturing, and design changes that ultimately drive the time-

varying bias. Without additional refinement, existing BT calibration methods are likely only 

suitable for global or perhaps probe-level calibrations, and corrections to individual casts 

should not necessarily be considered reliable at this time. For certain geographic regions and 

the deep ocean especially, where there may not be enough direct data to fully characterize 

the problem, the community may need to be satisfied with an ensemble of calibration 

methods that at least impose maximum bounds on our uncertainty. 
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II. Full-Depth Ocean Heat Content and Earth's Energy Imbalance 

Material From: ‘Bagnell and DeVries, 20th century cooling of the deep ocean contributed 

to delayed acceleration of Earth’s energy imbalance, Nature Communications, published 

[2021], [Springer Nature]’ 

A. Introduction 

Global climate change is driven by imbalances in Earth’s energy budget due to both 

anthropogenic and natural influences (Myhre et al., 2013; Meyssignac et al., 2019). 

Estimating historical changes in Earth’s energy imbalance (EEI) is essential for accurately 

quantifying climate sensitivity to greenhouse gas emissions, benchmarking climate models 

used in making future climate projections, and for understanding the contribution of natural 

events and climate patterns to modulating the global climate response to anthropogenic 

forcing (Meyssignac et al., 2019; Trenberth, 2014). The ocean is currently the largest energy 

reservoir in the Earth’s climate system and is responsible for absorbing and storing more 

than 90% of the excess heat in the Earth system that results from anthropogenic climate 

change2,3,4. Thus, measurements of the global ocean heat content (OHC) over time provide 

one of the best ways of estimating historical trends in the EEI (Meyssignac et al., 2019; 

Trenberth, 2014; von Schuckmann et al., 2016). 

Historical changes in global OHC can best be reconstructed from in-situ temperature 

observations. Over the past 15 years, the Argo program (Roemmich et al., 2019) has 

deployed thousands of autonomous floats which provide continuous observations of the 

temperature in the upper half of the ocean, to a depth of 2000 m. This has allowed for a 

convergence in estimates of OHC over the last fifteen years (Meyssignac et al., 2019; 
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Roemmich et al., 2019) and increased confidence in calculations of the ongoing EEI in light 

of independent confirmation from modern satellite observations (Meyssignac et al., 2019; 

Allan et al., 2014; Loeb et al., 2012). However, several challenges exist for reducing 

uncertainty in estimates of total ocean warming and extending it over longer time periods. 

First, the deep ocean below 2000 m remains poorly observed, even during the Argo era, 

which leads to additional uncertainty on current estimates of total warming. While absolute 

temperature changes in the deep ocean are small (Purkey and Johnson, 2010), the large 

volume of the ocean below 2000 m makes it a potentially meaningful contributor to the 

global heat inventory. Repeat hydrographic sampling indicates that the deep ocean may be 

warming significantly in some regions (Desbruyeres et al., 2016), particularly the Southern 

Ocean (Purkey and Johnson, 2010), whereas other regions may still be cooling as a response 

to cold periods in the past millennium (Gebbie and Huybers, 2019), making it critical to 

include the heat content of the deep ocean in global estimates of ocean warming. The second 

issue is that, prior to 2005, data collection was conducted primarily by scientific research 

vessels and ships of opportunity, leaving areas outside of major trade routes or research 

transects with few direct observations (Meyssignac et al., 2019; Cheng et al., 2017). This 

leaves large gaps in the observational record that must be filled in order to estimate OHC.  

Several methods have been devised to overcome these gaps in ocean temperature 

observations and to produce estimates of historical changes in OHC. One common approach 

applies objective mapping to interpolate the sparse temperature records in space and time 

(Cheng et al., 2017; Levitus et al., 2012; Ishii et al., 2017). However, while these objective 

mapping products can reconstruct ocean temperatures back to ~1950, they do not extend 

below 2000 m due to the sparse sampling at these depths. Dynamical data-assimilation 
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models offer an alternative approach to objective mapping and provide full-depth estimates 

of OHC (Boisséson et al., 2018; Palmer et al., 2017), but data sparsity means these models 

are poorly constrained at depth, leading to large cross-model variance (Palmer et al., 2017). 

Another approach based on the passive transport of surface temperature anomalies into the 

interior ocean (Gebbie and Huybers, 2019; Zanna et al., 2019) can also reconstruct full-depth 

temperature anomalies and OHC changes, but relies on the potentially incorrect assumption 

of steady-state circulation (Zanna et al., 2019) and is sensitive to the initial condition used in 

the simulation (Gebbie and Huybers, 2019; Zanna et al., 2019)  and to poorly-known surface 

ocean temperatures dating back several millennia (Gebbie and Huybers, 2019). Finally, 

statistical methods have been used to detect large-scale trends in the deep ocean temperature 

from repeat hydrographic sampling (Desbruyeres, et al., 2016), but these have coarse spatial 

resolution and do not cover the period prior to the mid-1980s. An interpolation product 

based on in-situ temperature data that covers the deep ocean below 2000 m, allowing for a  

full-depth OHC estimate, remains crucial to reliably estimating historical changes in EEI 

(Loeb et al., 2018; Palmer et al., 2011). 

Here, we interpolate historical ocean temperature data using an autoregressive artificial 

neural network (ARANN) to produce a single consistent estimate of the top-to-bottom OHC 

change for 1946-2019 using in-situ temperature data from the World Ocean Database (Boyer 

et al., 2018). This approach (Supplementary Figs. II.1-2) adapts an established machine 

learning method to perform an iterative autoregression that adjusts spatio-temporal 

correlation scales over time from the in-situ temperature data itself, and effectively 

propagates information from well-sampled times and regions to more sparsely-sampled 

areas to produce global maps of temperature anomalies at roughly annual resolution  
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(Supplementary Fig. II.3). This approach is robust to sparse data, allowing our estimates of 

OHC change to be extended below 2000 m to the seafloor (Fig. II.1). We have tested the 

method on datasets from two ocean models used in the Climate Model Intercomparison 

Project Phase 6 (CMIP6) (Tatebe and Watanabe, 2018; Voldoire et al., 2019), demonstrating 

the ability to accurately reconstruct OHC changes on both global and basin scales 

(Supplementary Figs. II.4-7) at all depths of the ocean, and to recreate modeled temperature 

anomalies at spatial scales of ~1000 km or larger (Supplementary Figs. II.8-11), even in the 

presence of realistic geophysical noise that is present in the observations but not the models 

(Supplementary Figs. II.4-12). We apply the ARANN in an ensemble approach designed to 

take into account sources of uncertainty arising from the sparse distribution of temperature 

observations (Meyssignac et al., 2019; Cheng et al., 2017), documented instrument biases 

(Levitus et al., 2009; Cheng et al., 2014; Gouretski and Reseghetti, 2010; Bagnell and 

DeVries, 2020) (Supplementary Fig. II.13), and choice of reference climatology used to 

define the temperature anomalies (Cheng and Zhu, 2015; Boyer, 2016)  (Supplementary Fig. 

II.14).  

Four instrumental bias corrections and six decadal climatologies are combined with 

random selections of temperature data to produce the 240 ensemble members used in this 

study. This ensemble is used to assess the uncertainty of our OHC reconstruction and 

provide bounds on our estimates of ocean warming. All estimated warming rates come from 

fitting a linear trend to the mean ARANN OHC estimate and uncertainties in these rates are 

calculated by taking 2 standard deviations across all ensemble members. Where ranges are 

given, these compare the mean ARANN estimate to other products. For simplicity, OHC 

estimates from other studies are not plotted with their respective confidence intervals, as the 
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methodology for calculating these varies by study, but they generally possess uncertainty 

levels similar to those provided by the ARANN. 

B. Methods 

B.1 Observational Datasets and Data Processing 

We used a dataset of historical ocean temperature observations from 1946-2019 

consisting of individual temperature casts from the World Ocean Database (WOD) 2018 

(Boyer et al., 2018) (Supplementary Fig. II.1a, Step 1). We used temperature casts from 

multiple instruments, including mechanical bathythermographs and expendable 

bathythermographs (MBT and XBT), ocean station data (OSD), conductivity-temperature-

depth (CTD) profiles, autonomous profiling floats (PFL), and autonomous pinniped 

bathythermographs (APB). We quality controlled these data using the strictest quality 

control procedures of the World Ocean Database (WOD), which exclude any data with a 

flag other than 0. Additionally, we excluded casts that have less than 5 discrete temperature 

samples, while also requiring that one of these samples occurs in the top 100 m. These extra 

steps reduce the possibility of including data from casts that have had much of their data 

removed by flags, casts that had insufficient samples to be properly quality controlled to 

begin with, or casts where much of the data was removed in the near-surface due to an 

excessive vertical temperature gradient (0.7 oC m-1 for the WOD). 

Next, individual casts were linearly interpolated to the 102 standard depths of the World 

Ocean Atlas56 (WOA) grid. Before the data from the various instrument types was 

combined, systematic errors in the bathythermographs were corrected (Supplementary Fig. 

II.1a, Step 2) using some of the best available calibration methods (see Supplementary Fig. 

II.13). Then, these data were binned to the WOA grid at monthly resolution based on the 
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year and calendar month of their collection (Supplementary Fig. II.1a, Step 3). We binned 

using the median of observations within each grid cell, to reduce the influence of outliers. 

After binning the temperature data to the WOA grid, we subtracted a monthly 

temperature climatology to create a field of monthly temperature anomalies (Supplementary 

Fig. II.1a, Step 4). For this step, we used one of six WOA decadal climatologies covering 

years [1955-64, 1965-74, 1985-94, 1995-2004, 2005-2017]. These climatologies are 

monthly in the top 1500 m and seasonal below that. The choice of climatology produces a 

difference in the mean total OHC change from 1946-2019 of up to 49 ZJ. The impact of 

climatological choice is small for the final three decades of the OHC record but has a more 

significant impact on the global OHC estimate in the deep ocean and further back in time 

(see Supplementary Fig. II.14).  

Supplementary Fig. II.1 (a) Summary of the data processing steps for creating 

temperature anomaly fields from raw temperature observations, and (b) expansion of 

Step 4 in (a) demonstrating the procedure for smoothing and binning these temperature 

anomalies to a 6-month time-step.  
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 Finally, we smoothed the resulting monthly anomaly maps using a 12-month moving 

average, and then binned the smoothed monthly anomaly maps to 6-month time intervals 

that span either Jan-Jun and Jul-Dec (Supplementary Fig. II.1b), or Apr-Sep and Oct-Mar. 

The choice of either Winter/Summer-centered or Spring/Fall-centered anomalies also enters 

into our ensemble, but has little impact on the final results. The end result is 148 three-

dimensional temperature anomaly fields spanning 1946-2019 at 6-month time intervals. 

Each anomaly field (except for the first and last) contains temperature data from within an 

18-month window, with more weight given to observations within each 6-month 

window. Thus, our final OHC estimates resolve OHC variability at roughly annual 

resolution. 

B.2 Description of the interpolation process 

The inputs to the ARANN include a set of basis functions that are used to approximate 

the spatial autocorrelations of the temperature anomalies. These basis functions consist of a 

set of sinusoids, which are used to approximate the correlation length scales found in the 

spatial maps of the temperature anomalies. To obtain these basis functions, we averaged the 

gridded temperature anomalies over the top 700 m for the years 2005-present and took the 

first 6 principal components of the resulting anomaly map, which explain > 90% of the 

variance, in both the meridional and zonal directions. We also found that we obtained very 

similar principal components if we used the 700-2000 m layer instead of the 0-700 m layer. 

Using these principal components, we then estimated the periods of their autocorrelations, 

which then became the periods of our sinusoids. In the meridional direction, the 6 periods of 

the sinusoids are [360 180 90 60 45 30] degrees and in the zonal direction they are [180 120 
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90 60 45 22.5] degrees. Both the cosine and sine functions are used for each period, leading 

to a total of 24 basis functions. Due to how these sinusoids are constructed, they each 

represent a basis function that is merely a 2-dimensional array of numbers between -1 and 1 

with a characteristic length scale ranging from roughly 1,000 km to 18,000 km.  

With these basis functions, the ARANN can reconstruct temperature anomalies on 

horizontal scales of roughly 500-1,000 km. The ARANN is not designed to capture small-

scale features and the OHC changes reconstructed by this method should be interpreted on 

scales of ~1,000 km or larger. Indeed, when the ARANN is applied to temperature anomaly 

fields from global ocean models, the residuals contain features on the order of several 

hundred km even where the spatial sampling is relatively dense and evenly distributed (see 

Supplementary Figs. II.8-11). The presence of geophysical noise and sparse sampling 

further reduces the scales that we are able to resolve. 

Supplementary Fig. II.2 (Schematic of (a) the iterative process of the ARANN method, 

which propagates information from near the sea surface and in modern times to less 

sampled time periods and depths, and (b) the architecture of the ARANN, which uses 

sinusoidal basis functions, prior time-steps, and prior depth levels to estimate 

temperature anomalies at the current time-step.  
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 While the ARANN uses sinusoidal basis functions to capture spatial variability in the 

temperature anomalies, there are no explicit variables for time or depth. Instead, the 

ARANN uses a sweep from higher data coverage to lower data coverage in order to capture 

the depth and temporal dependencies (Supplementary Fig. II.2a). This is done by slicing the 

3-dimensional temperature anomaly fields into two-dimensional “chunks” and applying a 

separate ANN to each consecutive 2-dimensional temperature anomaly field, using 

temperature anomalies from previous depth- and time-slices as additional input features. 

Vertical mixing is important in certain regions and contributes to deep water formation, so 

surface warming of the ocean would be expected to display some imprint on the layers 

below. Because the ARANN is iterative, it optimizes for each depth interval during its 

sweep from the surface to seafloor. Relationships identified by the ARANN at depth will 

therefore evolve from those found at the surface. In this way, the ARANN mimics in a 

parameterized way the circulation and mixing processes that connect the surface and deeper 

layers of the ocean, and encodes some “memory” to capture the temporal evolution and 

persistence of temperature anomalies. The ARANN has limited memory, or what is 

sometimes called finite impulse, in that it does not retain knowledge of all prior time-steps 

but only those that have occurred most recently. This simplification mimics the fact that the 

correlation between temperature anomalies at a given location in the ocean diminishes over 

time as heat is circulated and mixed away. Since the autocorrelations in the anomalies 

evolve over time, the ARANN refines and evolves the relationship between temperature 

anomalies and the input fields at each step. 

The iterative process is described in detail below. At each step of this process, a new 

ARANN is developed, trained, and validated, following the procedure described in the next 
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section. 

1. Starting with the most recent 6-month period in the time-series (i.e. Jul-Dec 2019), 

we begin by randomly choosing the size of our initial depth window, which consists 

of between two and six depth layers. This corresponds to a depth interval of 10-150 

m above 300 m. Starting with the depth window closest to the surface, we randomly 

select 50% of the data within that depth window for training the ARANN, setting 

aside the remaining 50% for validation (a similar 50/50 training/validation split is 

maintained through all subsequent steps). We then interpolate the temperature 

anomalies in this initial near-surface depth window using only the 24 sinusoidal 

basis functions as inputs to the ARANN. This is iterate (1,1) in Supplementary Fig. 

II.2a. 

2. Moving down to the next depth interval, we again choose a random depth window 

consisting of between two to six depth layers. The data sampling and interpolation 

within this depth window are repeated as in Step 1, using the interpolated 

temperature anomalies from the prior depth window as an additional input to another 

ARANN (again, a new ARANN is trained at each iteration). This is iterate (2,1) in 

Supplementary Fig. II.2a. 

3. Step 2 is repeated iteratively, moving down an additional depth level at each iterate, 

and using the interpolated temperature anomalies from all prior depth windows as 

additional inputs to the ARANN interpolation at each depth level. This means that at 

each new depth level, there are 24+i inputs to the ARANN, where i is an index 

corresponding to the number of vertical depth intervals used in the interpolation. 
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Below 300 m, the depth window is expanded to between six and twelve depth layers 

(corresponding to a depth interval of 150-1200 m) to ensure that adequate amounts 

of data are available to the network. Randomizing the size of the depth window at 

each iteration ensures the model is not fixed to specific depth intervals and will 

eventually produce a smooth transition in the vertical gradient. Steps 1-3 complete 

the initial sweep over depth levels and fills in iterates (1,1) to (i,1) in Supplementary 

Fig. II.2a. The total number of depth intervals used from the surface to the seafloor 

ranges from 11 to 27 intervals, depending on the (random) choice of depth layers 

used at each interval. 

4. Steps 1-3 are then repeated iteratively, marching backwards in time at 6-month 

intervals through the time series. At each time step, interpolated temperature 

anomaly fields from six prior time intervals (or the maximum number available if 

less than six) are used as additional inputs to the ARANN. Using temperature 

anomalies from prior time intervals as additional inputs to the ARANN mimics the 

temporal autocorrelation of temperature anomalies and allows the propagation of 

information from well-sampled time periods to more sparsely-sampled period. We 

do not fix the autocorrelation timescale (other than limiting the inputs to 6 previous 

time steps, or 3 years), but rather let the network decide at each iteration how much 

weight to put on previous iterates when interpolating anomalies at each time-step. At 

the conclusion of Step 4, we have 148 gap-filled three-dimensional datasets of 

temperature anomalies at 6-month resolution from 1946 to 2019. 

5. After running the model backwards from 2019 to 1946, steps 1-4 are repeated, this 

time running time forwards from 1946 to 2019. In this forward sweep, we use 
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interpolated temperature anomalies from three prior time intervals and three 

subsequent time intervals as additional inputs to the ARANN at each time step. This 

forward sweep helps to further propagate information through the network and is 

particularly helpful for smoothing results from the transient stage at the beginning of 

the backward run when the model had less information on temporal autocorrelations. 

This is most important in the abyssal ocean where temporal autocorrelations are 

longer and data is sparser. 

6. Steps 1-5 are repeated 10 times for each possible climatology, generating an 

ensemble of 60 ARANNs for interpolation, from which we can derive uncertainties 

related to data sampling, interpolation, and climatology. 

7. Steps 1-6 are repeated 4 times, each time applying a different calibration method to 

the XBT and MBT data (see Supplementary Fig. II.13). 

An example of the resulting temperature anomaly field from this mapping method 

(Supplementary Fig. II.3) reveals how our method takes the original binned temperature 

anomalies and interpolates the data to produce filled anomaly fields for a single realization 

of the ARANN. In the upper 50 m for the year 1960, the observational sampling neglects 

much of the southern hemisphere, but by leveraging information from prior iterations, the 

ARANN method produces a smooth product that fills gaps that would not be captured by 

traditional objective mapping. In the year 2010, the upper 50 m has much more regular 

sampling, and the ARANN method captures the large-scale patterns while smoothing over 

small-scale features. For 900-1100 m in the year 1960, temperatures are very sparsely 

sampled, but the ARANN method still produces large-scale regional structures that would 
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not be captured by traditional objective mapping. The ARANN also smooths over most of 

the small-scale noise in the observations at these depths. This noise is quite apparent when 

considering the anomalies fields for 900-1100 m in the year 2010. The ARANN 

interpolation of this data captures the large, near basin-scale spatial patterns, while ignoring 

most mesoscale to sub-mesoscale patterns, which can be seen in the residuals (ARANN – 

Obs.) of the temperature anomalies. 

B.3 Architecture of the ARANN and method of solution 

Each step of the individual autoregressive artificial neural network (ARANN) 

(Supplementary Fig. II.2b) consists of an input layer that contains 24 naïve basis functions 

(B), as well as filled temperature anomalies for six adjacent time steps time steps (if 

available) (𝜃𝑡), and anomalies for all prior depth intervals for the current time step (𝜃𝑧). 

Each input is organized as a vector with a length n, equal to the number of spatial grid points 

in the gridded temperature anomaly fields. In total, there are m input fields, where m is 

between 24 and 46 (24 basis functions, 6 filled temperature anomaly fields from adjacent 

time-steps, and up to 16 filled temperature anomaly fields from prior depth intervals). These 

inputs are organized as an array I with size (n x m), 

I = [𝐵 𝜃𝑡 𝜃𝑧] .    (1) 

 In the ARANN, the input “layer” connects to a single hidden “layer” with 10 nodes, 

producing a network with (m x 10) input “weights” organized as an array (W1). We selected 

this number of nodes by experimenting with adding more free parameters, the weights, until 
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the performance of the ARANN on internal validation sets comprised of data sampled  

during periods of high data sparsity (pre-2005) no longer improved. The values for the 

hidden layer (H) produced by the ARANN are 

Supplementary Fig. II.3 (Top panels) Temperature anomalies for the 0-50 m depth 

interval for (a-c) January to June 1960 and (d-e) January to June 2010 from (a,d) 

observations, (b,e) a single realization of the ARANN interpolation of the observed field, 

and (c,f) the residuals between the ARANN product and the original observations. 

(Bottom panels) Temperature anomalies for the 900-1100 m depth interval for (g-i) 

January to June 1960 and (j-l) January to June 2010 from (g,j) observations, (h,k) a 

single realization of the ARANN interpolation of the observed field, and (i,l) the 

residuals between the ARANN product and the original observations. 
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𝐻 = 𝐹(𝐼 ⋅ 𝑊1 + 𝑏1),   (2) 

 where F is the “transfer function” used to propagate information in a non-linear fashion 

through the network, and b1 is a [1 x 10] array of “biases”, with all values in a given column 

being identical. We use the hyperbolic tangent as the transfer function, which is commonly 

employed for interpolation (Krasnopolski et al., 1995; Maier and Dandy, 2001; Hasni et al., 

2012)  by fully-connected feedforward networks like the ARANN. The output “layer” 

connects to the hidden layer using another [10 x 1] array of weights W2 and a single bias [1 x 

1] b2 to produce the predicted temperature anomalies for the interpolation (𝜃intp), 

𝜃intp = 𝐻 ⋅𝑊2 + 𝑏2 .    (3) 

In all, each network has (10 x m) + 21 free parameters, representing the (10 x m) weights 

W1 of the input layer, the 10 bias terms of the input layer, and the one bias term and the 10 

weights W2 of the output layer. These free parameters are iteratively adjusted to achieve a 

minimum of a cost function that measures the mean sum of squares difference between the 

interpolated temperature anomalies (𝜃intp) and the observed temperature anomalies in our 

training dataset (𝜃obs
train), 

cost =  
∑ (𝜃intp

𝑘 −𝜃obs
train,𝑘)

2
𝑁
𝑘=1

𝑛
 ,    (4) 

where N is the number of observations within the training dataset at each iteration. As 

discussed in the prior section, the training dataset consists of a random 50% selection of all 

available data at each iteration. For the back-propagation algorithm in our network, which 

iteratively updates the values of the weights to minimize the cost function, we chose the 

Levenberg-Marquardt algorithm (Marquardt, 1963) due to its improved performance at 
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reducing the error between predictions and 

observations versus other common 

algorithms such as gradient descent (Hagan 

and Menhaj, 1994). 

For each network, we withhold the 

50% of data not selected for the training 

set as validation of the network. This 

validation dataset (𝜃obs
val ), is used to prevent 

overfitting of the network, which occurs if 

the network is over-trained on a dataset so 

that it cannot extrapolate well when 

presented with new data.  We use an early 

stopping technique (Prechelt, 1998) to 

avoid overfitting, whereby the interpolated 

temperature anomalies are periodically 

checked against the validation dataset, and 

training is terminated when the root-mean 

squared error of the interpolated 

temperature anomalies against the 

validation dataset begins to decrease. 

B.4 Required smoothness constraints 

After each time-step, we perform a further check on the interpolated temperature 

anomalies to ensure that they satisfy certain vertical and temporal smoothness conditions in 

Supplementary Fig. II.4 (Global ocean 

heat content estimates based on an 

original MIROC CMIP6 climate model 

simulation (black), the ARANN 

reconstruction based on modeled 

temperature anomalies reduced to 

observational sparsity (ARANN w/o 

noise, blue), and the ARANN 

reconstruction based on modeled 

temperature anomalies with additional 

noise added to mimic geophysical noise 

occurring in the observations (ARANN 

w/ noise, red) for the depth intervals (a) 

0-700 m, (b) 700-2000 m, and (c) 2000-

5500 m. Error bars for the ARANN 

reconstructions are the 2 standard 

deviation range across 30 ensemble 

members.  
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their basin-averaged temperature anomalies. These checks are performed individually for the 

Atlantic, Pacific, Indian, and Southern Ocean basins (the Arctic is not considered due to data 

sparsity) using information about the natural rates of change derived from observations 

during the Argo Era (defined as 2005 onwards). These checks are only performed for time-

steps prior to 2005. The boundaries for these ocean basins are the same as defined in the 

main text and utilize the WOA 1-degree mask (Garcia et al., 2019). 

First, we calculate the change in basin-averaged temperature anomaly at each depth level 

from the current temporal iteration to the previous temporal iteration,  Δ𝜃𝑡(basin, 𝑧), from 

the interpolated temperature anomalies during the well-sampled Argo period (2005-2019). 

We also calculate the difference in basin-averaged temperature anomaly at each iteration 

from one depth level to the previous depth level,  Δ𝜃𝑧(basin, 𝑧), for the Argo period. This 

yields 28 values of Δ𝜃𝑡and Δ𝜃𝑧for each basin and depth level. We then require that 

 Δ𝜃𝑡(basin, 𝑧) and  Δ𝜃𝑧(basin, 𝑧)  for the current iteration not exceed the 3rd standard 

deviation (𝜎) of  Δ𝜃𝑡(basin, 𝑧) and  Δ𝜃𝑧(basin, 𝑧) during the Argo period. That is, 

 Δ𝜃𝑡(basin, 𝑧)
current <  3𝜎 [( Δ𝜃𝑡(basin, 𝑧))

Argo
],     (5) 

 Δ𝜃𝑧(basin, 𝑧)
current <  3𝜎 [( Δ𝜃𝑧(basin, 𝑧))

Argo
].    (6) 

If a network does not pass both time and depth constraints for all ocean basins, then that 

network is rejected and the network must start over at the same time-step and depth interval. 

To allow for some additional flexibility, in the event that a network is rejected more than 5 

times in a row, the run that produced the lowest average exceedance of these smoothing 

constraints is accepted and the procedure continues as usual. This is an uncommon 

occurrence, appearing only a few times in a single run from 2019 to 1946, but it most often 
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occurs due to sharp changes in the temperature anomalies of the deep Pacific during the 

early 1970s. 

B.5 Validating the mapping method 

 One of the major challenges faced 

by any mapping method for estimating 

OHC changes are the presence of 

sampling biases and significant 

geophysical noise in the observed 

dataset. Sampling biases arise from the 

sparse and irregular sampling of ocean 

temperature observations. Due to the 

relative difficulty of retrieving 

observations from remote regions of 

the ocean, sampling has historically 

favored coasts, the Northern 

Hemisphere, and depths shallower 

than 700 m, leaving much of the ocean 

unobserved. Given that temperature 

sampling in the  historical record is 

also heavily biased towards the Argo 

era (the period after 2005), our method 

seeks to leverage the autocorrelation of 

temperature anomalies by using the 

Supplementary Fig. II.5 Global ocean 

heat content estimates based on an 

original CNRM CMIP6 climate model 

simulation (black), the ARANN 

reconstruction based on modeled 

temperature anomalies reduced to 

observational sparsity (ARANN w/o 

noise, blue), and the ARANN 

reconstruction based on modeled 

temperature anomalies with additional 

noise added to mimic geophysical noise 

occurring in the observations (ARANN 

w/ noise, red) for the depth intervals (a) 

0-700 m, (b) 700-2000 m, and (c) 2000-

5500 m. Error bars for the ARANN 

reconstructions are the 2 standard 

deviation range across 30 ensemble 

members.  
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well sampled near-surface and present periods to predict the anomaly fields for the ocean 

interior at depths greater than 2000 m and for years prior to 2005 when ocean temperature 

data is sparser.  

 To demonstrate that our mapping method is robust to irregular sampling coverage, we 

Supplementary Fig. II.6 Basin-scale ocean heat content (OHC) anomalies based on an 

original MIROC CMIP6 climate model run (black), the ARANN reconstruction based on 

modeled temperature anomalies reduced to observational sparsity (ARANN w/o noise, blue), 

and the ARANN reconstruction based on modeled temperature anomalies with additional 

noise added to mimic geophysical noise occurring in the observations (ARANN w/ noise, 

red). OHC is presented for the Atlantic Ocean at depth intervals (a) 0-700 m, (b) 700-2000 

m, (c) 2000-5500 m; for the Pacific Ocean at depth intervals (d) 0-700 m, (e) 700-2000 m, 

(f) 2000-5500 m; for the Indian Ocean at depth intervals (g) 0-700 m, (h) 700-2000 m, (i) 

2000-5500 m; and for the Southern Ocean at depth intervals (j) 0-700 m, (k) 700-2000 m, (l) 

2000-5500m. Error bars for the ARANN reconstructions are the 2 standard deviation range 

across 30 ensemble members. Ocean basins are defined using the World Ocean Atlas mask, 

with the Southern Ocean considered everything south of 50o S. 
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used the sparsity of the combined instrumental datasets to decimate simulated temperature 

fields from individual historical runs of the MIROC (r1i1p1f1) (Tatabe and Watanabe, 2018) 

and CNRM (r1i1p1f2) (Voldoire et al., 2019) CMIP6 models, interpolated to the WOA grid.  

These were obtained from the CMIP6 data archive at https://esgf-

node.llnl.gov/projects/cmip6/, last accessed on Jul. 16, 2020. The decimated model 

temperature fields then have the same data sparsity as the observations on the WOA grid.  

Supplementary Fig. II.7 Basin-scale ocean heat content (OHC) anomalies based on an 

original CNRM CMIP6 climate model run (black), the ARANN reconstruction based on 

modeled temperature anomalies decimated to observational sparsity (ARANN w/o noise, 

blue), and the ARANN reconstruction based on modeled temperature anomalies with 

additional noise added to mimic geophysical noise occurring in the observations (ARANN 

w/ noise, red). Panels and definitions are the same as those defined for Supplementary Fig. 

II.6. 
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We generate a monthly climatology by averaging the model data in the period 2005-2014, 

which we then subtract from the temperature fields to create the temperature anomalies. 

Then we apply the same 12-month moving average filter and bin the data to 6-month time-

steps, as we do with the observations. We next use the ARANN procedure (Supplementary 

Fig. II.1) to interpolate the decimated model data in an attempt to recreate the original model 

temperature anomalies. For our test, we ran the ARANN gap-filling backwards from July 

2014 to January 1946, then forwards again across the same time interval, producing 30 

ensemble members for each CMIP6 model. We found that the OHC calculated from the 

ARANN-reconstructed temperature anomalies matched the original modeled CMIP6 OHC 

very well on global and basin scales (Supplementary Figs. II.4-7) with minimal bias that 

generally did not exceed the uncertainty (2 standard deviations) of our mapping method. 

The ability of the ARANN procedure to accurately reconstruct the modeled OHC 

changes from observed sparsity is reassuring and demonstrates that the ARANN is robust to 

the presence of large observational gaps. However, the task of accurately reconstructing the 

modeled temperature anomalies is easier than reconstructing the observed temperature 

anomalies, since sub-mesoscale processes in the ocean produce additional variability in the 

temperature observations that is not present in the coarse-resolution models. Comparing the 

residual error between the ARANN reconstruction and the modeled temperature anomalies 

(Supplementary Figs. II.8-11, d-e), and the corresponding residual error between the 

ARANN reconstruction and the observed temperature anomalies (Supplementary Fig. II.3, 

c, f, i, l), it is clear that the residuals are far larger and more randomly distributed for the 
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difference between the ARANN and observations, than for the difference between the  

ARANN and CMIP6 models. This is also demonstrated in Supplementary Fig. II.12 for the  

residuals between the ARANN reconstruction and the CMIP6 models and observations over 

time in both the shallow (0-700 m) and deep (700-5500 m) ocean. 

To assess the ability of the ARANN to reconstruct the “true” temperature variability in 

the presence of small-scale variability that affects real-world observations, we added 

simulated geophysical noise fields to the CMIP6 modeled temperature anomalies. For these  

Supplementary Fig. II.8 Temperature anomalies for Jan-Jun 1960 over the 0-50 m depth 

interval for (a) a MIROC CMIP6 model run, (b) the MIROC model after being reduced to 

observed sparsity, and (c) the MIROC model at observed sparsity with added geophysical 

noise. The middle row shows (d) a single realization of the ARANN interpolation of the 

MIROC temperature anomalies and (e) the ARANN interpolation of the MIROC 

temperature anomalies with added geophysical noise. The bottom row shows (f) residuals 

between the original MIROC model and the ARANN interpolation and (g) residuals using an 

ARANN interpolation with additional geophysical noise added to the modeled temperature 

anomalies. The middle panels also show the R2 between ARANN-reconstructed temperature 

anomalies (shown in each respective panel) and the original MIROC temperature anomalies 

in panel (a). 
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noise fields, we used the residuals between a single member of the ensemble of ARANN- 

reconstructed temperature anomalies and observed temperature anomalies at each time-step 

and depth level, for example as shown in Supplementary Fig. II.3 (c, f, i, l) for a couple 

times and depth levels. We interpret these residuals as due primarily to the geophysical noise 

present in the observations, although it also includes any additional systematic biases in our 

interpolation versus the observations. After adding these residuals to the CMIP6 modeled 

temperature anomaly fields, we then repeated our data processing and interpolation 

Supplementary Fig. II.9 Temperature anomalies for Jan-Jun 2010 over the 0-50 m depth 

interval for (a) a MIROC CMIP6 model run, (b) the MIROC model after being reduced to 

observed sparsity, and (c) the MIROC model at observed sparsity with added geophysical 

noise. The middle row shows (d) a single realization of the ARANN interpolation of the 

MIROC temperature anomalies and (e) the ARANN interpolation of the MIROC 

temperature anomalies with added geophysical noise. The bottom row shows (f) residuals 

between the original MIROC model and the ARANN interpolation and (g) residuals using an 

ARANN interpolation with additional geophysical noise added to the modeled temperature 

anomalies. The middle panels also show the R2 between ARANN-reconstructed temperature 

anomalies (shown in each respective panel) and the original MIROC temperature anomalies 

in panel (a). 
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procedure to see if the ARANN could still faithfully reproduce the original OHC trends in 

the presence of this more realistic temperature variability. 

  When interpolating the CMIP6 temperature anomalies with this additional noise that 

mimics the geophysical noise in the observations, the residuals between the ARANN-

reconstructed and the modeled temperature anomalies are larger and more randomly 

distributed (Supplementary Figs. II.8-11, g) than those reconstructed from the original 

modeled temperature anomalies (Supplementary Figs. II.8-11,f). The effect of geophysical  

Supplementary Fig. II.10 Temperature anomalies for Jan-Jun 1960 over the 900-1100 m 

depth interval for (a) a MIROC CMIP6 model run, (b) the MIROC model after being 

reduced to observed sparsity, and (c) the MIROC model at observed sparsity with added 

geophysical noise. The middle row shows (d) a single realization of the ARANN 

interpolation of the MIROC temperature anomalies and (e) the ARANN interpolation of the 

MIROC temperature anomalies with added geophysical noise. The bottom row shows (f) 

residuals between the original MIROC model and the ARANN interpolation and (g) 

residuals using an ARANN interpolation with additional geophysical noise added to the 

modeled temperature anomalies. The middle panels also show the R2 between ARANN-

reconstructed temperature anomalies (shown in each respective panel) and the original 

MIROC temperature anomalies in panel (a). 
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noise on the ARANN reconstruction is also shown in Supplementary Fig. II.12 for the   

residuals over time: by adding realistic geophysical noise to the CMIP6 models, we obtain 

residual errors that are similar in magnitude to those obtained from the observations in both  

the shallow (0-700 m) and deep (700-5500 m) oceans, indicating that small-scale variability 

has been adequately accounted for in our validation. Even with the larger residuals, the 

underlying large-scale temperature anomaly patterns are reconstructed well (Supplementary 

Figs. II.8-11, compare panels d and e to a). The residuals show features on the order of ~103 

Supplementary Fig. II.11 Temperature anomalies for Jan-Jun 2010 over the 900-1100 m 

depth interval for (a) a MIROC CMIP6 model run, (b) the MIROC model after being 

reduced to observed sparsity, and (c) the MIROC model at observed sparsity with added 

geophysical noise. The middle row shows (d) a single realization of the ARANN 

interpolation of the MIROC temperature anomalies and (e) the ARANN interpolation of the 

MIROC temperature anomalies with added geophysical noise. The bottom row shows (f) 

residuals between the original MIROC model and the ARANN interpolation and (g) 

residuals using an ARANN interpolation with additional geophysical noise added to the 

modeled temperature anomalies. The middle panels also show the R2 between ARANN-

reconstructed temperature anomalies (shown in each respective panel) and the original 

MIROC temperature anomalies in panel (a). 
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km (Supplementary Figs. II.8-11, f-g), which is smaller than what is needed to assess global 

and basin-scale OHC. The reconstructions are also robust to regions with large amounts of 

missing data. For example, at 1000 m in the year 1960 (Supplementary Fig. II.10), sampling 

biases have left the South Pacific and Southern Ocean with large gaps in coverage. 

Nevertheless, patterns in these regions are reconstructed with reasonable accuracy. 

Importantly for the results discussed in the main text, the bias on the global and basin 

scale remains relatively small and almost always of lesser magnitude than the uncertainty  

(Supplementary Figs. II.4-7), although the uncertainty roughly doubles when geophysical 

noise is included. The performance does somewhat depend on the distribution of 

temperature anomalies, which is governed by processes in the underlying model. For 

instance, the ARANN reconstruction (both with and without added geophysical noise) for 

the CNRM OHC contains a systematic bias that slightly exceeds the estimated uncertainty 

for the period prior to 1955 and depths greater than 2000 m (Supplementary Fig. II.5). This 

is not the case with the MIROC reconstructions (Supplementary Fig. II.4), indicating that 

the impact of sampling bias will depend on the “true” anomaly field. 

Further comparing the temperature anomaly fields of the original MIROC CMIP6 model 

run versus a single realization of the ARANN reconstruction (Supplementary Figs. II.8-11), 

we find that large scale patterns can be well reproduced both with and without added 

geophysical noise. For the upper 50 m in the year 1960 (Supplementary Fig. II.8), the 

ARANN recreates most large-scale patterns, though the presence of geophysical noise yields 

somewhat larger residuals (Supplementary Fig. II.8f vs. II.8g). The impact of geophysical 

noise becomes even more apparent in the year 2010, where in the upper 50 m there is very 

even sampling (Supplementary Fig. II.9). Here the residual temperature anomalies are 
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smaller than in 1960, but the addition of geophysical noise still leads to anomalies that are 

both larger in magnitude and spatial extent. In 1960 at 900-1100 m (Supplementary Fig. 

II.10), sampling coverage is even sparser than in the upper 50 m, but the ARANN 

reconstruction still performs well at 

reconstructing the original 

temperature anomaly fields  (R2 = 

0.69), although the addition of 

geophysical noise reduces the 

performance  substantially (R2 = 

0.43) in the presence of such sparse 

data. In  2010, there is much better 

sampling coverage in the deep 

ocean (Supplementary Fig. II.11), 

but the ARANN performance is 

similar to that in 1960, with an R2 

of 0.67 without geophysical noise, 

and 0.31 with geophysical noise. At 

all times and depths, the residuals 

between the ARANN 

reconstruction and the original 

modeled temperature anomalies 

remain relatively small-scale 

(<~1000 km), even in the presence 

Supplementary Fig. II.12 Root-mean 

squared error (RMSE) between the 

observed temperature anomalies and the 

ARANN reconstruction over time (black 

curve) for (a) the upper 700 m and (b) for 

the depth range 700-5500 m. Also shown 

for comparison is the RMSE between the 

CMIP6 modeled temperature anomalies and 

the ARANN reconstructions of the CMIP6 

models for the MIROC (red dashed) and 

CNRM (blue dashed) models. Note the 

much larger RMSE for the ARANN 

reconstruction of the observed temperature 

anomalies than for the ARANN 

reconstruction of the modeled temperature 

anomalies. When additional noise is added 

to the modeled temperature anomalies to 

mimic geophysical noise in the 

observations, the RMSE between the 

MIROC (solid red) and CNRM (solid blue) 

temperature anomalies and the ARANN 

reconstruction is very similar to the RMSE 

between the ARANN and the observations 

(black). 
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of realistic geophysical noise (Supplementary Figs. II.8-11, f-g). We therefore conclude that 

the ARANN can overcome both biases in sampling coverage and geophysical noise to 

reproduce most regional and basin-scale features necessary to assess changes in OHC over 

time. 

B.6 Statistical information 

240 ARANN OHC members are used for all depth intervals in this study, representing 

10 members for each combination of the four bias corrections (Levitus et al., 2009; Cheng et 

al., 2014, Gouretski and Reseghetti, 2010; Bagnell and DeVries, 2020) and six decadal 

climatologies (Garcia et al., 2019). All estimated warming rates for the periods specified in 

the text are calculated from the mean linear trend of the ARANN OHC members, and the 

uncertainty in these warming rates are calculated as 2 standard deviations across the 

individual linear fits for the ensemble members. All estimates in W m-2 are for the entire 

surface area of the Earth. Total warming estimates in ZJ come from multiplying the 

warming rate derived from a linear fit by the length of the time period under consideration. 

Error bars in Fig. II.1, 2, and 4 represent 2 standard deviations computed from the 

ARANN ensemble members. In Fig. II.3, the trends for each grid cell are considered 

significantly different from zero only if the trends exceed twice the sum of two components 

of uncertainty, 1. the ensemble-mean standard error of the linear fit, which is a measure of 

the amount of uncertainty due to short term variability in the warming rate at a given 

location, and 2. the standard error of the cross-ensemble linear trends, which is a measure of 

the uncertainty due to the ARANN mapping method.  

For Fig. II.5, warming rates for the specified periods are calculated from the mean linear 

trend of the ensemble and the error bars for the ARANN estimates represent the maximum 
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and minimum warming rates after excluding the 6 members with the highest rates and the 6 

with the lowest, representing the 95% confidence interval. Error bars in Fig. II.5 for 

previously published warming rates come from the uncertainties calculated by these other 

studies, which may differ somewhat from each other due to methodological choices but 

roughly represent the 95% confidence interval. 

C. Results 

C.1 Global and basin-scale OHC changes 

 Estimates of the global full-depth OHC from the ARANN method show that there was 

no net ocean warming during the four decades from 1950-1990, but instead the OHC 

fluctuated by ~50 ZJ on roughly decadal timescales (Fig. II.1a). However, since 1990 there     

Supplementary Fig. II.13 Global ocean heat content estimates for the depth intervals (a) 0-700 

m and (b) 700-2000 m using various corrections for the systematic biases in the bathythermograph 

data, with their respective XBT fall rate equation in parentheses. Each curve represents the 

ensemble mean for a given correction method after running an ensemble of ARANNs comprised of 

60 members. The XBT corrections used in this study are from L09, CH14, and EANN-P (see 

chapter I). Two EANN-P calibrations are applied to the XBT data using either the original 

manufacturer fall rate equation (MFR) or a modified one (H95). 
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has been a rapid acceleration in ocean warming, with the ocean gaining 303±56 ZJ of 

thermal energy in the past three decades (Fig. II.1a). This temporal pattern is roughly 

consistent throughout the water column, with minor warming prior to 1990 in the upper 700 

m, no warming in the 700-2000 m depth range, and cooling in the deep and abyssal layers 

below 2000 m (Fig. II.1b-d). Warming rates accelerated substantially after 1990 throughout 

the entire water column, with the deep ocean switching from cooling to warming after 1990 

(Fig. II.1b-d).  

Passive transport methods Gebbie and Huybers, 2019; Zanna et al., 2019) that 

propagate surface temperature anomalies to the deep ocean using steady-state ocean 

circulation patterns provide internally consistent estimates of full-depth OHC that can be 

directly compared to ARANN, after adjusting their baselines to coincide with the ARANN 

estimate during the Argo era (2005 onwards) (Fig. II.1a). These passive transport estimates 

differ from the ARANN and from each other. Both show an earlier onset of ocean warming 

than the ARANN, with full-depth ocean warming starting in the mid-1970s for the 

optimized mixing model (OPT-0015) (Gebbie and Huybers, 2019) and going back to the 

1950s in the Green's function (GF) (Zanna et al., 2019) product (Fig. II.1a). The OPT-0015  

method shows very little ocean warming prior to the mid-1970s, in agreement with the  

ARANN reconstruction, while the GF method suggests a nearly constant ocean warming 

trend throughout the past ~70 years. 

  Estimates of OHC from objective mapping products can be compared to the ARANN 

estimates in the upper 2000 m (Fig. II.1b-c). There is broad agreement about the total 

change in OHC among the objective mapping products and with the ARANN ensemble for 

much of 1980-2019, with the JMA (Ishii et al., 2017) estimate on the very edge of the  
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ARANN uncertainty range for the 700-2000 m depth interval (Fig. II.1c). Prior to 1980, the 

mapping methods diverge somewhat in their predictions over the upper 2000 m, and the 

Fig. II.1 Estimates of ocean heat content (OHC) changes for (a) the global ocean from surface to 

seafloor, (b) the upper 700 m of the ocean, (c) the depth range 700-2000 m, and (d) the depth 

range 2000-5500 m. The mean estimates derived from this study (ARANN, blue) are shown 

with shading covering two standard deviations from the mean over the 240 ARANN ensemble 

members. The zero anomaly is defined such that the mean OHC of the ARANN estimate for the 

period 1946-2019 is zero. Also shown are the mean OHC anomaly from the IAP (red), NOAA 

(yellow), and JMA (purple) objective mapping products, which cover the 0-2000 m depth 

interval as shown in panels (b)-(c). These products have been adjusted to the mean ARANN 

OHC anomaly for 2005-2019. Shown for (a) the full ocean depth and (d) the deep ocean are 

OHC anomalies from passive ocean heat uptake models using Green’s functions (GF) (light 

blue) and an optimized mixing model (OPT-0015) (green). The passive ocean heat uptake 

products are adjusted to the mean ARANN anomaly for 1955-1985. Repeat hydrographic 

sampling (RHS) gives temperature trends since 1985 in the deep ocean (maroon; panel d). The 

RHS method gives a linear trend from 1985-2000 and from 2000-2015, which has been adjusted 

to the mean ARANN anomaly for 1985-2015. 
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disagreement is most pronounced for the earliest time periods. After adjusting the OHC 

anomalies of the objective mapping estimates to the mean ARANN 0-2000 m OHC value 

over 2005-2019, the ARANN OHC in 1955 is 71±58 ZJ greater than that estimated by the 

IAP (Cheng et al., 2017) product, 51±58 ZJ greater than the NOAA (Levitus et al., 2012) 

product, and 114±58 ZJ greater than the JMA (Ishii et al., 2017) product (Fig. II.1b-c). The 

large spread among OHC products prior to 1980 is primarily due to increased data sparsity 

Supplementary Fig. II.14 Global ocean heat content (OHC) reconstructions using two 

different climatologies to form the temperature anomalies before interpolation with the 

ARANN method. The first climatology uses only data from 2005-2017 (red curve), and 

the second climatology only uses data from 1955-1964 (blue curve). Thick lines are the 

ensemble mean, and shading represents two standard deviations across 40 ARANN 

members using the four bathythermograph corrections shown in Supplementary Fig. 

II.13. Four more decadal climatologies are combined with the ones shown here to 

produce the OHC estimates and uncertainties in the main text.
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in this period, but the choice of reference climatology also plays a role in enhancing 

uncertainties in the ARANN during this time period. For years prior to 1970, mean ARANN 

OHC over the 0-2000 m depth interval can vary by as much as 67 ZJ when using different 

reference climatologies (Supplementary Fig. II.14), which is a source of uncertainty that has 

generally been neglected in the other mapping products. Despite these uncertainties, all 

mapping methods show an acceleration in OHC uptake over time in the 0-2000 m interval. 

For the mapping products, the underlying subsurface temperature data creates strong 

constraints that reduce the variance across methods over the last several decades of OHC 

estimates (Fig. II.1b-c), in contrast to the passive transport products where differences in 

methodology have large impacts on the inferred OHC trends (Fig. II.1a). 

The ARANN yields a global interpolation of deep subsurface ocean temperature data 

and shows a cooling trend from 1950 to 1990, representing a reduction of OHC by 26±16 ZJ  

(Fig. II.1d), mainly canceling out the small heat gain in the upper 700 m and contributing to 

the negligible warming of the global ocean estimated by the ARANN during this time period  

(Fig. II.1a). The passive transport methods both predict almost negligible changes in deep 

ocean heat content during this period, with the GF method showing slight warming and 

OPT-0015 showing slight cooling (Fig. II.1d). The ARANN predicts that the deep ocean has 

warmed significantly since 1990, gaining 48±19 ZJ, at a rate that closely matches the 

estimates from repeat hydrographic surveys (Desbruyeres et al., 2016) (RHS). Over the past 

30 years the deep ocean has gained back all of the heat lost since 1950, arriving at possibly 

its warmest level over the entire 75-year record (Fig. II.1d). This rapid warming of the deep 

ocean is contrary to the slow rise in OHC implied by the passive transport models that use 

steady ocean circulation (Gebbie and Huybers, 2019; Zanna et al., 2019), suggesting that 
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transient features of the deep ocean circulation are important for contributing to the warming 

over the recent three decades (Purkey and Johnson, 2010; Masuda et al., 2010). 

Clear regional differences in ocean warming rates emerge on ocean basin scales (Fig.  

II.2). In the upper 700 m, the Atlantic Ocean has warmed the most of all the major ocean 

Fig. II.2 Basin-scale ocean heat content (OHC) anomalies for the Atlantic Ocean at depth 

intervals (a) 0-700 m, (b) 700-2000 m, (c) 2000-5500 m; for the Southern Ocean at depth 

intervals (d) 0-700 m, (e) 700-2000 m, (f) 2000-5500 m; for the Pacific Ocean at depth 

intervals (g) 0-700 m, (h) 700-2000 m, (i) 2000-5500 m; and for the Indian Ocean at depth 

intervals (j) 0-700 m, (k) 700-2000 m, (l) 2000-5500 m. Ocean basins are defined using the 

World Ocean Atlas mask, with the Southern Ocean considered everything south of 50o S. OHC 

anomalies and uncertainties are computed as in Fig. II.1 and compared with previous 

reconstructions as in Fig. II.1. The Green's Function (GF) method does not provide basin-scale 

estimates of OHC and is omitted in the comparison here. 
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basins, showing sustained warming since the 1950s and accounting for more than one third 

of the total warming in the upper 700 m. Objective mapping methods and the ARANN agree 

for the period after 1980 in the shallow Atlantic, however the ARANN produces 7-10 ZJ 

less warming than the objective mappings prior to 1985 (Fig. II.2a). The sustained warming 

of the Atlantic Ocean has penetrated into the intermediate layers (700-2000 m), but methods 

disagree on the amount of warming prior to 2005, with the JMA and IAP estimates putting 

as much as 10 ZJ more warming into the intermediate Atlantic than the ARANN and NOAA 

methods for much of the record (Fig. II.2b). The ARANN reconstruction of deep Atlantic 

OHC (below 2000 m) shows a slight cooling trend until ~2005 then subsequent warming. 

This reversal from cooling to warming trends is also captured by the repeat hydrography 

data (Fig. II.2c). However, the passive transport method OPT-0015 shows an accelerated 

warming of the deep Atlantic over the entire time period (Fig. II.2c), which may result from 

biases in its estimated ventilation rates. Passive transport of recent surface warming into the 

internal Atlantic via a steady-state ocean circulation overlooks natural variability in rates of 

overturning and deep water formation (Zhang et al., 2019; Polyakov et al., 2005; Kim et al., 

2018), possibly explaining an overestimate of the warming trend in the OPT-0015 versus 

those of subsurface observations such as ARANN and RHS. 

Fingerprints of ocean circulation changes are also apparent in the spatial distribution of 

warming rates (Fig. II.3). Prior to 1990, the upper 700 m of the subpolar and polar North 

Atlantic was cooling, while the Gulf Stream extension region was warming (Fig. II.3a), 

consistent with trends that have previously been identified as fingerprints of reduced deep 

convection in high-latitude deep water formation regions (Robson et al., 2016; Caesar et al., 

2018). Since 1990 there has been coherent strong warming throughout most of the Atlantic 
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basin, except for a small patch of cooling in the center of the North Atlantic subpolar gyre 

(Fig. II.3d). Warming of the North Atlantic from 1990-2005 has previously been linked to a  

surge in the Atlantic Meridional Overturning Circulation (AMOC) after 1990 (Robson et al., 

2012), although this has been followed by a decline in the AMOC after 2005 and cooling of 

the subpolar gyre (Robson et al., 2016) potentially contributing to the cooling trend 

identified over this longer period in the central subpolar gyre (Fig. II.3d). After 1990 there is 

also pronounced warming at mid depths (700-2000 m) throughout most of the Atlantic,  

concentrated more strongly in the subpolar north and south Atlantic (Fig. II.3e). This is 

consistent with the mean overturning circulation transporting surface warming to 

intermediate waters, since these regions are close to the formation regions for North Atlantic 

Fig. II.3 Spatial maps of linear warming rates for the period 1946-1990 at depths (a) 0-700 

m, (b) 700-2000 m, and (c) 2000-5500m, and for the period 1990-2019 at depths (d) 0-700 

m, (e) 700-2000 m, and (f) 2000-5500 m. Warming rates were estimated by averaging 

temperature anomalies over each depth interval, then applying a linear least-squares fit to the 

temporal trend of temperature at each 1o grid cell for the specified time periods. Areas 

without significant trends (95% confidence interval) are cross-hatched. Uncertainties were 

estimated by calculating the sum of the error of the linear fit and the cross-ensemble 

uncertainty of the warming rates at each grid cell for the various ARANN ensemble 

members. 
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Deep Water in the North Atlantic (Zhang, 2008) and Antarctic Intermediate Waters in the 

South Atlantic (Sloyan and Rintoul, 2001).  

Like the Atlantic, the Southern Ocean (defined here as south of 50o S) has been 

warming consistently since 1960 in the upper 700 m, a trend seen across multiple 

reconstruction methods (Fig. II.2d). In the intermediate layers (700-2000 m), large 

differences in sub-decadal variability across these methods reveal the impact of sparse 

temperature sampling in the region, but the consensus across methods is that warming of 

Southern Ocean intermediate waters started in the 1980s, with little warming before that 

(Fig. II.2e). The ARANN reconstruction shows a cooling trend in the deep Southern Ocean 

(> 2000 m) until ~1985, followed by rapid warming thereafter (Fig. II.2f). The post-1985 

warming trends in the deep Southern Ocean in the ARANN generally agree with the trends 

derived from repeat hydrography, whereas the OPT-0015 passive transport method shows a 

very small warming trend over the entire 1946-2019 period (Fig. II.2f). The spatial 

distribution of warming in the deep Southern Ocean shows that the rapid warming over the 

past three decades is concentrated along the Antarctic margin, where Antarctic Bottom 

Waters form in the Weddell Sea, Ross Sea, and other marginal seas along the Antarctic shelf 

(Orsi et al., 1999; Jacobs, 2004) (Fig. II.3f). 

The Southern Ocean is a key global heat sink over the past three decades. Most regions 

of the Southern Ocean have been warming consistently since 1990 (Fig. II.3d-f), and the 0-

700 m, 700-2000 m, and 2000-5500 m depth intervals have all experienced roughly the 

same amount of OHC change during this period (Fig. II.2d-f). Currently, the entire Southern 

Ocean from surface to seafloor sits at its warmest levels since at least the 1950s. This rapid 

warming of the Southern Ocean has been accompanied by a general asymmetrical warming 
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over the past decade that has favored heating of the Southern Hemisphere. For the period 

2005-2019, the ARANN estimates that the Southern Hemisphere accounted for 68% of 

global OHC change in the top 700 m, 54% for 700-2000 m, and 81% below 2000 m. This 

asymmetrical warming is consistent with previous analyses that linked the redistribution of 

heat to internal climate variability (Rathore et al., 2020). This appears to be a recent change 

in the pattern of ocean heat uptake, however, as Northern Hemisphere waters have 

consistently warmed over the entire 75-year record of the ARANN while Southern 

Hemisphere waters cooled on average prior to 1990 (Fig. II.3). 

Warming of the Atlantic and Southern Oceans above 2000 m prior to 1990 was 

counterbalanced by slower rates of warming or by cooling of the Indian and Pacific Oceans 

over this time period (Fig. II.2g-h,j-k). The Indian and Pacific Oceans show little trend in 

heat content in the upper 700 m from 1950-1990 for the ARANN, while other mapping 

products show very slight warming over this period. Instead, this period is mostly marked by 

decadal-scale oscillations in OHC in the ARANN reconstruction, which also appear to some 

extent in the objective mapping products (Fig. II.2g,j). Identifying the mechanisms 

responsible for these oscillations is beyond the scope of this study, but these could be related 

to changes in upper-ocean overturning circulation associated with the Interdecadal Pacific 

Oscillation (IPO) (Meehl et al., 2013), which has recently been ascribed to changes in the 

strength of Pacific trade winds that affect eastern equatorial upwelling (England et al., 

2014), as well as modifications to the winds in the tropical North Pacific (Lee et al., 2015). 

These factors also appear to modulate heat transport into the Indian Ocean via the 

Indonesian Throughflow (Lee et al., 2015; Liu et al., 2016).  Below 700 m, the OHC 

estimates of the various mapping products greatly diverge prior to 1990. ARANN indicates 
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that the mid-depth Pacific and Indian Oceans were cooling up until 1990, whereas the IAP 

and NOAA products show little trend over this period and the JMA method produces 

unabated warming throughout the record, leading to large disagreements across methods 

totaling ~45 ZJ of difference in the warming summed over these two basins (Fig. II.2h,k).  

The ARANN reconstruction also shows that the deep and abyssal layers of the Pacific 

and Indian Ocean were cooling up until ~2000 (Fig. II.2i,l). This cooling trend agrees well 

with the OPT-0015 multi-millennial passive ocean heat uptake reconstruction, which 

produces a 20th-century cooling trend in the deep Pacific and Indian Oceans in response to 

cold surface temperatures during the Little Ice Age that occurred from the 14th-19th centuries 

(Gebbie and Huybers, 2019). This cooling trend has been preserved into the 20th century 

due to the deep ocean’s long overturning timescales (Gebbie and Huybers, 2019). 

In the past two decades, the Pacific and Indian Oceans have warmed substantially 

throughout the water column, contributing ~52% of the global OHC change since the year 

2000. This warming has been concentrated in the upper 700 m, in agreement with objective 

mapping reconstructions (Fig. II.2g,j). While this recent warming is coherent across most of 

the Indian Ocean, the warming is more concentrated in the central and western Pacific 

Ocean, with a slight cooling trend in the eastern Pacific (Fig. II.3d). This Pacific pattern is 

consistent with findings of enhanced meridional temperature gradients in the tropical Pacific 

Ocean (Karnauskas et al., 2009) which could help explain a shift toward strong basin-wide 

El Nino events during recent decades (Wang et al., 2019). The ARANN reconstruction also 

shows substantial warming since 2000 of the mid-depth ocean (700-2000 m) as well as the 

deep ocean (below 2000 m), in general agreement with objective mapping approaches in the 

mid-depth layers and with trends derived from repeat hydrographic surveys in the deep 
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ocean (Fig. II.2 h-i,k-l). However, the recent warming of the deep Pacific and Indian Oceans 

found by the ARANN is contrary to the continued slow cooling implied by passive heat 

uptake in the OPT-0015, suggesting that the deep ocean warming since 2000 is related to 

changes in the transport of deep and bottom waters (Masuda et al., 2010; Kouketsu et al., 

2011).  

C.2 A shift in Earth's energy imbalance 

 The time derivative of the full-depth OHC, dOHC/dt, should very closely track the 

EEI, since all other heat sinks in the climate system are currently an order of magnitude 

Fig. II.4 Time derivative of the global full-depth ocean heat content (dOHC/dt) from 1946-

2019 (blue; mean) with uncertainty (shading; 2 standard deviations) across 240 ARANN 

ensemble members. The dOHC/dt is computed using a centered difference in time of the 

global OHC and applying a 1-2-1 filter to smooth the result. This warming rate is divided by 

the surface area of the Earth so that it can be interpreted as the ocean component of the Earth 

Energy Imbalance (EEI). This is compared to the top of atmosphere (TOA) net radiative flux 

(Allan et al., 2014) (red dashed) for years 1985-2016. The timing of 3 major volcanic 

eruptions is represented by icons with the corresponding volcano’s name. Vertical grey bars 

cover 12 months prior to and 18 months after each eruption to account for the imperfect time 

resolution of the ARANN dOHC/dt (~12 months) and the e-folding time of volcanic aerosols 

in the stratosphere (Lambert et al., 1997). 
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smaller than the ocean (Meyssignac et al., 2019; Trenberth 2014). Periods of positive 

dOHC/dt represent ocean warming and a positive net energy imbalance at the top of the 

atmosphere, while negative dOHC/dt represents ocean cooling and a negative EEI (Fig. 

II.4). The EEI itself reflects a combination of positive anthropogenic forcing due to 

greenhouse gas emissions and negative forcing due to anthropogenic aerosols (Myhre et al., 

2013), as well as natural forcing by volcanic eruptions (Myhre et al., 2013; Trenberth, 2014) 

and natural variability due to internal dynamics of the climate system (Trenberth, 2014, von 

Schuckmann et al., 2016). We find that over the entire 1946-2019 period covered by our 

OHC reconstruction, there are more than a dozen transitions between positive and negative 

values of the dOHC/dt (Fig. II.4). Some of the most negative dOHC/dt values are coincident 

with major volcanic eruptions over the past 50 years, including Agun, El Chichon, and 

Pinatubo (Trenberth, 2014). However, there are more oscillations in the dOHC/dt than can 

be associated with volcanic aerosol forcing, and in the case of El Chichon the timing of the 

eruption occurs at a local minimum in the dOHC/dt instead of just prior, indicating that 

volcanic aerosol forcing may not always dominate over natural variability in the EEI. This 

supports prior studies that point to internal modes of climate variability such as ENSO 

(Meyssignac et al., 2019; Loeb et al., 2012) and the IPO (von Schuckmann et al., 2016; 

Meehl et al., 2013), or natural variability in solar irradiance (Fröhlich, 2006) as factors 

influencing sub-decadal changes in the EEI for this 75-year record. 

Prior to 1990 the dOHC/dt oscillates around zero, averaging -0.04±0.11 W m-2 for the 

period 1946-1990. Without taking into account the deep ocean cooling during this period, 

the average dOHC/dt would be 0.01±0.09 W m-2.  An upward shift in the dOHC/dt is 

noticeable in the mid-1990s (Fig. II.4), after which the average warming rate in the ARANN 
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OHC reconstruction is nearly always positive, averaging 0.67±0.13 W m-2 for the period 

2000-2019. The timing of this shift, the magnitude of the implied EEI, and the temporal 

variability of the EEI agree well with estimates of the top of atmosphere (TOA) net radiative 

flux (Allan et al., 2014) for the period 1985-2016. The only time periods where the TOA net 

radiative flux lies outside 2 standard deviations of the ARANN-estimated EEI are in the 

early 1990s just after the Pinatubo eruption, when the TOA radiative flux is more negative 

than the dOHC/dt, and during the early 2000s when the dOHC/dt shows an upward jump 

that is opposed to a drop in the TOA net radiative flux (Fig. II.4). 

 The magnitude of the ARANN-estimated dOHC/dt from 2000-2019 agrees within 2 

standard deviations with numerous other estimates for this period, including those based on 

dOHC/dt from objective mapping products (Cheng et al., 2017; Johnson et al., 2016), ocean 

reanalysis products (Boisséson et al., 2018), and CMIP5 hindcast models (Smith et al., 

2015), as well as estimates of EEI from satellite altimeter and gravity data (Meyssignac et 

al., 2019) and  top-of-atmosphere radiative fluxes (Allan et al., 2014) (Fig. II.5). Prior to the 

year 2000, warming rates estimated from our full-depth OHC reconstruction mostly agree 

within their respective uncertainties with previous estimates from the IAP mapping product 

(Cheng et al., 2017), passive transport methods (Gebbie and Huybers, 2019; Zanna et al., 

2019), CMIP5 hindcast models (Smith et al., 2015), and an independent estimate of EEI for 

the period 1990-2016 from measurements of atmospheric composition (Resplandy et al., 

2019). For the period 1960-1990, the ARANN approach estimates essentially no warming (-

0.03±0.12 W m-2), implying a roughly balanced Earth energy budget over this time period. 

Objective mapping, passive transport methods, and climate models have generally estimated 

small warming rates over the 1960-1990 period, but mostly overlap with the ARANN 
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estimates within their 

respective  uncertainties 

(Fig. II.5). Almost all 

methods of estimating  EEI 

agree on an acceleration of 

the EEI in recent decades, 

particularly since 1990 

(Fig. II.5). A notable 

exception is the GF 

passive transport method, 

which maintains a steady 

warming rate across the 

entire 1960-2019 period, 

implying an important role 

for ocean circulation 

changes in controlling the 

acceleration of the EEI 

over recent decades. 

Overall, the ARANN 

results support a broad consensus across almost all products of accelerated warming over 

time (Fig. II.5), but they also suggest that previous estimates of ocean warming may have 

been biased too high prior to 1990, in part due to the neglect of deep ocean cooling. 

Including the effects of deep ocean cooling, as determined by the mean estimate of the 

Fig. II.5 Linear ocean warming rates derived from 

this study (vertical grey bars) with 95% confidence 

intervals (bold error bars) computed by taking the 

minimum and maximum warming rates of the 

middle 95% of 240 ARANN ensemble members. 

These are compared to other published estimates 

and uncertainties (symbols and error bars) derived 

from mapping methods (filled circle Cheng et al., 

2017; open circle Johnson et al., 2016), passive 

transport products (filled star Zanna et al., 2019; 

open star Gebbie and Huybers, 2019), dynamical 

reanalyses (Boisséson et al., 2018)  (triangle), 

satellite altimetry (Meyssignac et al., 2019) 

(asterisk), CMIP5 climate models (Smith et al., 

2015) (cross), top of atmosphere (TOA) net 

radiative flux (Allan et al., 2014) (square), and the 

chemical composition of the atmosphere 

(Resplandy et al., 2019) (diamond). Each symbol is 

associated with one of the grey bars and covers 

approximately the same time interval. 
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ARANN, would lower the rates of ocean warming prior to 1990 determined by previous 

objective mapping approaches (Cheng et al., 2017; Levitus et al., 2012, Ishii et al., 2017) by 

18 to 32%. 

D. Discussion 

The ARANN reconstruction of full-depth OHC provides an internally consistent 

framework for monitoring EEI over time, showing that the Earth energy budget was in 

quasi-equilibrium, with substantial decadal variability, for the four decades from 1950-1990. 

The warming rate from the ARANN does not differ from that derived by objective mapping 

methods with statistical significance, and previous studies already support a slower ocean 

warming rate for the 1950-1990 period relative to the 21st century (Fig. 5). However, due to 

the combination of a smaller estimated change in 0-2000 m OHC for 1950-1990 and the 

contribution of deep ocean cooling, the ARANN implies a stronger and later shift toward 

accelerated EEI than previously recognized, and raises the question as to what may have 

caused this climate shift. 

Anthropogenic radiative forcing has remained positive and continued to grow in 

magnitude over the past century (Myhre et al., 2013), so the lack of global ocean warming 

implied by the ARANN results over the period from 1950-1990 may seem counterintuitive 

at first. However, Earth’s climate system is not currently at equilibrium. Due to the 

timescales of overturning in the ocean, propagating the entire forced climate signal from the 

surface to the interior may require decades to centuries to manifest as signals in the deep 

OHC (Purkey and Johnson, 2010; Gebbie and Huybers, 2019), implying that the EEI is 

modulated by changes in external forcing on multi-decadal time-scales. In the deep ocean,  

cooling of the Pacific and Indian over much of the 20th century could result from a past  



 

 93 

climate event such as the Little Ice Age (Gebbie and Huybers, 2019). A cooling trend that 

derives itself from long term modes of climate variability (Jones and Mann, 2004) would not 

Supplementary Fig. II.15 Global ocean heat content (OHC) estimates comparing the 

influence of the 0-2000 m OHC ARANN estimate versus the inclusion of the deep ocean 

below 2000 m. The official IAP OHC estimate (dashed black) is compared to the 0-2000 m 

ARANN estimate that utilized the same IGOT dataset employed by the IAP (red), 

demonstrating differences solely due to methodology employed by the IAP and ARANN 

estimates (a). The 0-2000 m ARANN estimate using the IGOT dataset (red) is also 

compared to the estimate from the main text using the WOD18 dataset and the CH14 

instrumental bias correction (black) (b). Finally, the 0-2000 m ARANN estimate using the 

IGOT dataset (red) is compared to the 0-5500 m ARANN estimate using WOD18 dataset 

and the CH14 instrumental bias correction (blue) (c). The blue curve here is almost identical 

to that shown in Fig. II.1a, expect that only the CH14 bias correction is used. Anomalies for 

the ARANN estimates are set zero for year 1946. The IAP estimate is adjusted to the mean 

anomaly of the ARANN IGOT estimate for 2005-2017. Error bars represent 2 standard 

deviations across 20 ensemble members. 

time interval. 
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be reflected in any of the components of the external radiative forcing budget for the 20th 

century. 

Nonetheless, deep ocean cooling does not entirely account for the near zero warming 

trend in OHC prior to 1990, especially when considering that the 0-2000 m interval shows 

minimal change in the ARANN OHC estimate as well, averaging just 0.03±0.09 W m-2 from 

1960-1990. The difference between the ARANN and the IAP reconstruction (Cheng et al., 

2017) of OHC in the upper 2000 m, is similar in magnitude to the ARANN estimate of deep 

ocean cooling (Supplementary Fig. II.15), and in general the spread across OHC estimates in 

the top 2000 m is larger than the deep ocean cooling trend estimated by the ARANN (Fig. 

II.1b-c). This spread indicates large uncertainties related to methodological differences in 

estimating OHC over the latter half of the 20th century. However, if the ARANN estimate of 

minimal upper ocean warming prior to 1990 is correct, it could indicate that anthropogenic 

or volcanic aerosol effects are larger than currently estimated for this time period (Storelvmo 

et al., 2016) or that the transient climate response to anthropogenic forcing is affected by 

regional feedbacks arising from the pattern of ocean heat uptake (Winton et al., 2010; 

Armour et al., 2013). Changes in the ocean overturning can also affect the EEI by modifying 

the rate of ocean heat uptake (Baggenstos et al., 2019), which could also lead to 

discrepancies between radiative forcing and upper ocean warming. 

The recent accelerated warming since 1990 implied by the ARANN is consistent with 

the dominant effects of anthropogenic greenhouse gas forcing and negligible volcanic 

aerosol forcing (Myhre et al., 2013; Haywood et al., 2013), as well as estimates of increased 

radiative forcing (Kramer et al., 2021) during the past three decades. Due to improved ocean 

temperature sampling over the past several decades, there is high confidence that the top 
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2000 m of the ocean have been gaining heat at an accelerating rate, as indicated by the 

convergence of OHC estimates across methodologies during this time period (Fig. II.1b-c). 

Additionally, the ARANN results suggest that the deep ocean below 2000 m has added 

48±19 ZJ since 1990, or about 10 to 28% of the ocean warming above 2000 m during this 

period, significantly contributing to the accelerating EEI in recent decades. This contribution 

is larger than that from non-ocean components of the Earth energy budget, including the 

land surface, cryosphere, and atmosphere, which together account for ~27±8 ZJ of warming 

since 1990 (von Schuckmann et al., 2020). 

In all, the results presented here show that deep ocean cooling during the latter half of 

the 20th century has given way to deep ocean warming over the past three decades, 

contributing to a delayed response of the EEI to contemporary radiative forcing effects. If 

this recent shift toward warming of the deep ocean continues, it will have implications for 

Earth’s climate for decades to centuries to come due to the long overturning timescales of 

the deep ocean. Continued monitoring of the global ocean heat content, and improved 

resolution of deep ocean temperature changes, will be key for developing accurate forecasts 

of Earth's energy budget and future climate change. 
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III. Global Mean Sea Level Rise Inferred from Ocean Temperature and 

Salinity 

A. Introduction 

Global warming due to anthropogenic greenhouse gas emissions is responsible for an 

increase in global sea level that threatens human life and infrastructure along coastlines. 

Future sea level rise may expose as many as 160 million more people and an additional $8 

trillion in property to episodic flooding by the year 2100 (Kirezci et al., 2020). Global mean 

sea level rise (GMSLR) measures the rate of increase in the average global sea level 

Fig. III.1 Constituents of global mean sea level rise (GMSLR) and freshwater input and 

their resulting impacts on the ocean. Meltwaters from grounded ice (a) such as glaciers and 

the continental ice sheets directly contribute to GMSLR by adding mass to the ocean, known 

as barystatic sea level rise, as freshwater flows from the land to the sea. This meltwater also 

dilutes the ocean, causing salinity to drop. Floating ice (b) displaces an equivalent mass of 

seawater (Gregory et al., 2019), and so the melting of floating ice does not induce a mass 

change in the ocean, but it does produce a drop in salinity when freshwater is added. This 

leads to a very small (generally negligible) GMSLR due to the reduction of seawater density 

and consequent increase in ocean volume (Jenkins and Holland, 2007). Additionally, ocean 

warming (c) causes thermosteric sea level rise due to the thermal expansion of seawater as it 

is heated.  
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(Gregory et al., 2019), and is a fundamental metric of global climate change (Oppenheimer 

et al., 2019). GMSLR is currently monitored by orbiting satellite altimeters, which have 

measured a rate of global sea level rise of 3.4±0.5 mm/yr from 1993-2019 (Beckley et al., 

2017). 

GMSLR is driven by ocean warming and thermal expansion (thermosteric sea level rise), 

and by freshwater runoff into the ocean from melting of grounded ice including glaciers and 

ice sheets (barystatic sea level rise; Fig. III.1) (Gregory et al., 2019). The thermosteric 

component of GMSLR can be derived from historical measurements of seawater 

temperature which have indicated about 1.2±0.2 mm/yr of sea level rise (SLR) since 1991 

(Cheng et al., 2017; Levitus et al., 2012; Ishii et al., 2017). The barystatic component can in 

principle be derived from measurements of seawater salinity, since barystatic SLR is driven 

Supplementary Fig. III.1 Mean difference in the uncorrected versus corrected ARGO 

salinity measurements as a function of depth and year for a. 0-700 m depth and c. 800-2000 

m depth and as a function of depth and climatological sea surface salinity from the World 

Ocean Atlas (Garcia, et al., 2019) for b. 0-700 m depth and d. 800-2000 m. 
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by the input of freshwater into the ocean that reduces ocean salinity (Munk, 2003) (Fig. 

III.1). However, previous attempts to quantify barystatic SLR using ocean freshening trends 

have been hampered by the small signal of ocean freshening relative to the large natural 

variability of regional ocean salinity (Llovel et al., 2019; Wang et al., 2017), by insufficient 

sampling coverage (Llovel et al., 2019; Wang et al., 2017), and by instrumental biases 

(Wang et al., 2017). Because of these issues, global ocean mass budgets constructed from 

ocean salinity measurements show unrealistically large interannual to decadal variability and 

uncertain long-term trends (Munk, 2003; Llovel et al., 2019; Wang et al., 2017). Therefore, 

barystatic SLR has been inferred from the difference between the observed SLR and the 

thermosteric SLR (Llovel et al., 2019), by remote sensing of changes in ocean mass by 

satellite gravity measurements (Watkins et al., 2015), or by remote sensing of mass losses 

from glaciers and ice sheets (Bamber et al., 2018). 

Here, we develop a new method that produces accurate and precise estimates of 

barystatic SLR from 2001-2019 using ocean salinity measurements. Our approach first 

corrects known instrumental biases in ocean salinity measurements from Argo autonomous 

profiling floats since 2015 (see Methods and Supplementary Fig. III.1). We then combine 

this corrected dataset with other salinity data from the World Ocean Database (Boyer et al., 

2018) and use an ensemble autoregressive artificial neural network (ARANN) to fill gaps in 

the observational record (Bagnell and DeVries, 2021), providing a salinity reconstruction 

with global coverage of the ocean from 0-5500 m depth (see Methods). These salinity 

reconstructions are compared with previous salinity reconstructions that covered the upper 

2000 m of the ocean in Supplementary Fig. III.2. The ARANN method is also validated 

against output from climate model salinity simulations in Supplementary Figs. III.3-6, 
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demonstrating the ability to accurately reconstruct the modeled salinity from the sparse 

distribution of salinity measurements at the global and basin scale. 

B. Methods 

Our salinity mapping approach utilizes historical observations from 2001-2019 

consisting of individual salinity casts from the World Ocean Database (WOD) 2018 (Boyer 

et al., 2018), including ocean station data (OSD), conductivity-temperature-depth (CTD) 

profiles, autonomous profiling floats (PFL, primarily Argo floats), and autonomous pinniped 

bathythermographs (APB). We quality controlled these data using the flags from the World 

Ocean Database, excluding any data with a flag other than 0, as well as casts that contained 

less than 5 samples. Individual casts were then linearly interpolated to 5 m standard depths. 

Even after this quality control, there remains an existing documented bias in Argo 

salinity measurements due to instrumental drift for floats deployed after 2014 (Wang et al., 

2017). Using high quality in-situ salinity measurements from other instruments as a 

baseline, we find that the salinity bias in Argo floats after 2014 varies with salinity, depth, 

and time (Supplementary Fig. III.1). The magnitude of the bias has increased over time, 

leading to a large rise in global salinity since 2015 in products that use this data without any 

bias correction (Fig. III.2a). To correct this bias, a high-quality reference dataset of 

CTD/OSD salinity samples was collocated to the PFL casts to within the same 1 degree of 

latitude and longitude and 30 calendar days of sampling. The bias was then calculated by 

taking the difference between the measured PFL salinity and the average of the collocated 

OSD/CTD salinity. These biases were then binned to a three-dimensional grid with six-

month time resolution for sampling dates from Jan 2015-Dec 2019, 5-meter depth resolution 
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up to a depth of 2000 m, and 0.5 PSU bins for salinity, as calculated from the WOA 2005-

2017 climatology (Garcia et al., 2019). No correction was applied to Argo data below 2000 

m due to data sparsity. This yields a 3-dimensional lookup table for the PFL salinity bias 

(Supplementary Fig. III.1), which we subtract from the corresponding Argo salinity 

measurements for years 2015 and later. 

Supplementary Fig. III.2 Volume averaged salinities for the ARANN reconstruction (blue) 

of salinity observations derived from the World Ocean Database (Boyer et al., 2018) as well 

as the IAP (Wang et al., 2017) (red) and EN4 (Good et al., 2013) (yellow) salinity 

reconstructions in the Atlantic, Pacific, Indian, Southern and Arctic Oceans are plotted over 

the depth intervals 0-700 m, 700-2000m, and 2000-5500 m. Error bars represent 2σ cross-

ensemble uncertainty for the ARANN. 
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This corrected PFL dataset, along with the salinities from the OSD, CTD, and APB 

datasets were binned, taking the median value, to a regular grid with 100 km horizontal 

resolution and 132 depth levels (10 m resolution in the top 700 m, 50 m resolution from 

700-2000 m, and 100 m resolution from 2000-5500 m) at monthly time intervals. Salinity 

anomalies were then calculated by subtracting the WOA 2005-2017 monthly climatology 

from the gridded salinities. Finally, we smoothed the resulting monthly anomaly maps using 

a 12-month moving average, and then binned the smoothed monthly anomaly maps to 6-

month time intervals that spanned Oct-Mar and Apr-Sep.  

An ensemble of 60 autoregressive neural networks (ARANN) interpolated the salinity 

anomalies producing global anomaly fields from 0-5500 m for years 2001-2019. The 

ARANN method used here follows the approach previously used to interpolate temperature 

anomalies for 1946-2019 (Bagnell and DeVries, 2021). First, an Artificial Neural Network 

(ANN) is used to interpolate salinity anomalies for the time-step covering Apr-Sep 2019, 

using sinusoidal basis functions in an iterative process that sweeps from the surface to 5500 

m covering 12-24 depth layers at a time as in Bagnell and DeVries (2021). Then, another 

ANN is trained to interpolate salinity anomalies for the previous time-step (Oct 2018-Mar 

2019), using the interpolated anomalies from the prior time step as an additional input to the 

ANN (this is the autoregressive step). The process is repeated, continuing backwards to the 

year 2001 and using up to the last 5 time steps (i.e. 2.5 years) as additional inputs. After this 

"backwards" run, a forward run is initiated starting from Oct-Mar of 2000-2001 and iterating 

forward at 1/2-year intervals to the year 2019, this time using up to 2 prior and 2 subsequent 

time steps, as well as the current time step from the backwards run, as additional inputs to 

the ANN. This forward run yields the final salinity maps used in this study. This is repeated 
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60 times, varying the training data used and number of depth layers used at each time step, 

as in Bagnell and DeVries (2021).  

The major modification in this study to the algorithm initially used for assessing ocean 

heat content (Bagnell and DeVries, 2021) involves the implementation of a constraint that 

Supplementary Fig. III.3 Volume averaged salinities for the ARANN reconstruction (blue) 

of a single run of the GISS CMIP6 climate model and the original modeled salinity (red) in 

the Atlantic, Pacific, Indian, Southern and Arctic Oceans are plotted over the depth intervals 

0-700 m, 700-2000m, and 2000-4800 m. Error bars represent 2σ cross-ensemble uncertainty 

for the ARANN. R2 values showing the performance of the ARANN versus the original 

modeled salinity are given for each basin and depth interval. 
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prevents excessive variability in the globally averaged salinity from one time-step to 

another. This constraint helps to avoid unrealistic interannual variability in globally 

averaged salinity, which is tightly constrained by the mass of ice that undergoes 

melting/freezing on an annual basis. This constraint is integrated within the cost function of 

the ARANN model, which is  

cost(t, z) =  ∑(S(t, z)intp
i − S(t, z)obs

i )
2
/M

M

i=1

+ C(t)           (1) 

where the cost function calculates the mean squared error of the interpolated anomalies 

(Sintp) versus the observed anomalies (Sobs) over an index (i) with (M) entries 

corresponding to cells in our regular grid where observations exist for the current time step 

(t) and depth interval (z).  The second term in the cost function is the temporal smoothness 

constraint, which is  

C(t) = |∑S(t)intp
j

dVj
N

j=1

−∑S(t − 1)intp
j

N

j=1

dVj| /∑dVj
N

j=1

               (2) 

where the volume weighted sum of interpolated anomalies (Sintp) for the current time step 

(t) are compared to the interpolated anomalies from the time step prior (t − 1) over an index 

(j) with (N) entries corresponding to all of the ocean grid cells shallower than the deepest 

layer of the current depth interval for the backwards run or the full depth of the ocean for the 

forward run. This imposes a global smoothness constraint that can be directly optimized 

within the cost function. To prevent the smoothing constraint from imposing too strong of a 

penalty, thus artificially reducing inter-annual variability in the anomalies below observed 

levels of natural variability, we relax the criteria such that 
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C =

{
 

 C, andC >∑
ΔS̅obs
n

+ 2σ[ΔS̅obs]

0, andC ≤∑
ΔS̅obs
n

+ 2σ[ΔS̅obs]

                  (3) 

which prevents the smoothing criteria from being less than 2 standard deviations above the 

average of the time-differenced global mean anomalies (ΔS̅obs), where 

Supplementary Fig. III.4 Volume averaged salinities for the ARANN reconstruction (blue) 

of a single run of the Met Office Hadley Center (MOHC) CMIP6 climate model and the 

original modeled salinity (red) in the Atlantic, Pacific, Indian, Southern and Arctic Oceans 

are plotted over the depth intervals 0-700 m, 700-2000m, and 2000-4800 m. Error bars 

represent 2σ cross-ensemble uncertainty for the ARANN. R2 values showing the 

performance of the ARANN versus the original modeled salinity are given for each basin 

and depth interval. 
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ΔS̅obs = S̅obs
t − S̅obs

t−0.5 for t = 2005, 2005.5…  2019.5,                 (4) 

n is 30, the number of time steps between the years 2005 and 2019.5, and S̅obs
t  is taken by 

volume averaging the gridded salinity anomalies where observations exist at each time-step 

(t). 

We produce an ensemble consisting of 60 ARANNs, which randomly vary the salinity 

data used for training and validation, as well as the size of the depth interval for each time-

step. This leads to 60 sets of salinity fields for the years 2001-2019, over which we can 

quantify uncertainty. Additionally, 240 temperature ensemble members from Bagnell and 

DeVries (2021) are utilized. 

The salinity (temperature) anomalies are converted to densities by adding back the WOA 

climatology and entering these values into a seawater equation of state calculation 

(McDougall and Barker, 2011), with climatological values of temperature (salinity) from the 

WOA used for the halosteric (thermosteric) density calculation. 

The mass of freshwater input (FW) can be estimated from the halosteric density change 

as 

FW = −fMunk ∫∆ρhaldV ≈ −fMunk c S̅VOL          (5) 

where the Munk factor (fMunk) arises from conservation of mass (Munk, 2003) in the ocean 

and is expressed via a density relationship between the density of freshwater (ρf) at 1,000 

kg/m3 and the average density of seawater (ρ∗) at 1,028 kg/m3 

fMunk = 
ρ∗

ρ∗ − ρf
= 36.7.               (6) 
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This freshwater input can also be approximated by a linearization that includes the Munk 

factor, the global volume averaged salinity (S̅VOL) and a conversion factor (c) of roughly 

1100 Tt/psu. 

Supplementary Fig. III.5 Volume averaged salinities for the ARANN reconstruction (blue) 

of a single run of the GFDL CMIP6 climate model and the original modeled salinity (red) in 

the Atlantic, Pacific, Indian, Southern and Arctic Oceans are plotted over the depth intervals 

0-700 m, 700-2000m, and 2000-4800 m. Error bars represent 2σ cross-ensemble uncertainty 

for the ARANN. R2 values showing the performance of the ARANN versus the original 

modeled salinity are given for each basin and depth interval. 
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In our study, we compare this estimate of freshwater input derived from the salinity 

budget to one derived from an ice budget approach. This includes freshwater input from 

floating ice (FWfloat), whose weight is supported by buoyancy following Archimedes 

principle and thus does not increase barystatic sea level when melted (Gregory et al., 2019; 

Llovel et al., 2019; Jenkens and Holland, 2007; Slater et al., 2021). Changes to the mass of 

the ocean are then  

∆Mocean = FW− FWfloat           (7) 

We use the estimate of the freshwater input from floating ice derived from an ice budget 

approach for 2001-2017 (Slater et al., 2021) and combined estimates of Arctic sea ice 

(Schweiger et al., 2011) and Antarctic shelf ice for 2018-2019 (Adusumilli et al., 2020), as 

these separate estimates contain more up to date values. We assume no Antarctic ice shelf 

melting for year 2019 due to lack of data. This change in ocean mass can be compared to 

that estimated from the GRACE missions (Watkins et al., 2015). 

Barystatic sea level rise is the change in height associated with this mass change if the 

surface area of the ocean (A) is considered fixed at 510 million km2 

∆hbary =
∆Mocean

Aρf
           (8) 

Thermosteric sea level rise can be similarly estimated from the thermosteric density 

changes as 

∆htherm = −
∫∆ρthermdV

Aρ∗
           (9) 
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Global mean sea level rise is closely approximated by summing the barystatic and 

thermosteric components (Gregory et al., 2019), which can be compared to the estimate 

given by satellite altimetry (Beckley et al., 2017).  

The halosteric sea level rise is generally considered negligible for the global ocean 

(Gregory et al., 2019; Munk, 2003). Freshwater input dilutes the concentration of salt in 

Supplementary Fig. III.6 Full depth estimates of the ocean mass change for a. a single run 

of the GISS CMIP6 climate model (Miller et al., 2021), b. a single run of the MOHC model 

(Martin et al., 2020), and c. a single run of the GFDL model (Dunne et al., 2020). Estimates 

derived from the ARANN reconstruction of salinity driven density change (blue) or from the 

models’ original salinity fields (red) where the Munk factor (Munk, 2003) is applied are 

compared to the mass change estimate produced as an output of the model itself (yellow). 

All estimates are adjusted to have a mean anomaly of zero for the 2005-2017 time period. 

Error bars represent 2σ cross-ensemble uncertainty. R2 values for the salinity-based methods 

versus the model output of ocean mass change are also given. 
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seawater and leads to a small amount of expansion. However, much of the observed salinity 

driven density changes correspond to the barystatic component of sea level rise, as it reflects 

a mass addition of freshwater from grounded ice. This should not be double counted as 

contributing to halosteric sea level rise (Munk, 2003). The remaining signal from floating 

ice approximates the global halosteric sea level rise as 

∆hhal =
FW− ∆Mocean

fMunkAρ∗
          (10) 

This is equivalent to stating that the melting floating ice contributes ~2.7% of its mass to 

sea level rise (Noerdlinger and Brower, 2007). We find that over 2001-2019, the halosteric 

component produced 0.8±0.2 mm of sea level rise.  

To validate the salt budget approach taken here, we tested our procedure for estimating 

ocean mass change using three CMIP6 historical climate model runs, the NASA GISS-E2 

(r1i1p1f1) (Miller et al., 2021), Met Office Hadley Center (MOHC) HadGEM3-GC3 

(r1i1p1f3) (Martin et al., 2020), and NOAA GFDL-CM4 (r1i1p1f1) (Dunne et al., 2020). 

Salinity anomalies from these runs were gridded to our regular 100 km grid and decimated 

to the observational sparsity of the in-situ salinity data for the period 2001-2014. We applied 

the ARANN procedure as outlined above to these modeled anomalies, producing 60 

ensemble members for each CMIP6 run. These reconstructed salinities were converted to 

densities and compared to the density fields derived from the original modeled salinities. We 

also converted these estimates to ocean mass changes using the Munk factor (Munk, 2003) 

so that they could be directly compared to the ocean mass changes reported by the CMIP6 

models themselves (Supplementary Fig. III.6). 
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C. Results 

Fig. III.2 Ocean salinity, freshwater input, mass change, and sea level rise from this study 

and previous estimates. Global volume averaged salinity (a) derived from our study (blue) 

compared with two previous salinity reconstructions, the IAP red) (Wang et al., 2017) and 

EN4 (yellow) (Good et al., 2013). Freshwater input (b) as implied by our salinity approach, 

which is approximately equal to a constant multiplied by the global salinity change, 

comparted to an ice budget approach (Slater et al., 2021) (purple) that converts the mass loss 

of grounded and floating ice to freshwater volume. Ocean mass change (c) as implied by our 

salinity approach resulting from panel (b) with the floating ice mass removed, compared to 

the GRACE estimate (Watkins et al., 2015) (green), which remotely senses changes in mass 

above the Earth’s reference geoid. Changes in global mean sea level (GMSL) (d) as 

calculated using the salinity-based ocean mass change from panel (c) and adding the volume 

from thermally driven density changes (cyan) and dividing by the total area of the ocean, 

compared to remotely sensed GMSL from TOPEX/JASON satellite altimeters (Beckley et 

al., 2017) (maroon). Error envelope for the salinity approach represents the 2σ cross-

ensemble variance. The 2σ uncertainty for other estimates is represented by error bars at 2.5-

year intervals. 
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The globally-averaged salinity since 2001 from the ARANN reconstruction shows a 

clear, monotonic decreasing trend that is consistent with the dilution of salinity due to the 

continued input of freshwater from melting ice (Fig. III.2a). In contrast, previous salinity 

reconstructions (Wang et al., 2017; Good et al., 2013) do not exhibit a decreasing trend in  

globally averaged salinity, particularly after 2015 when the uncorrected bias in Argo salinity 

measurements leads to a rapid increase in salinity that is contrary to the expected freshening 

due to ongoing global ice melt. Even prior to 2015, there is no clear trend in salinity in these 

reconstructions due to their large subdecadal variability. Such a large magnitude of 

variability in global salinity is unrealistic with regard to freshwater fluxes into and out of the 

ocean due to ice melt and changes in land water storage (Slater et al., 2019; Llovel et al., 

2011; Cazenave et al., 2018). In contrast, the ARANN reconstruction displays much smaller 

variability, with globally averaged salinity dropping by roughly 0.0006 practical salinity 

units (psu), or 35+10 micro psu/yr, over the 2001-2019 period. 

The total mass of freshwater responsible for this salinity change can be approximated by 

integrating the salinity-driven density changes over the global ocean volume and multiplying 

by a factor of 36.7, a relationship first expressed by Walter Munk (Munk, 2003) (see 

Methods, equations 5-6). This calculation yields an independent proxy for ocean freshwater 

input that we tested against simulated data from three CMIP6 historical climate runs ((Miller 

et al., 2021; Martin et al., 2020; Dunne et al., 2020).) (Supplementary Fig. III.6), finding 

very good agreement between the freshwater input calculated from salinity-driven density 

anomalies and the freshwater input directly reported by the model (R2 of 0.89 to 0.99, with 

the higher R2 values applicable to models with more realistic trends in freshwater input). 

Applying this calculation to the ARANN reconstructed global salinity, we find that 24±5 Tt 
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of freshwater entered the ocean from 2001-2019, equivalent to a freshwater input of 1.4±0.4 

Tt/yr (Fig. III.2b). Because the majority of the freshwater input to the ocean occurs from 

melting ice (Slater et al., 2019; Llovel et al., 2011; Cazenave et al., 2018), the freshwater 

input inferred from salinity provides a strong independent constraint on the global ice 

budget. The most recent global ice budget (Slater et al., 2019) combines satellite and 

modeling products to quantify individual contributions to ocean freshwater input from ice 

sheets, mountain glaciers, ice shelves, and sea ice, and estimates 1.2 ± 0.3 Tt/yr of 

freshwater input over 2000-2017, in good agreement with the ocean salinity approach (Fig. 

2B). Changes in ocean salinity also record changes in the land water storage, which could 

contribute to the stronger interannual variability of freshwater input inferred from ocean 

salinity changes than appear in the ice budget (Llovel et al., 2011) (Fig. III.2b). However, 

the impact of land water storage changes on global ocean freshwater input over multiple 

decades remains poorly constrained (Cazenave et al., 2018). 

The total freshwater input inferred from ocean salinity change includes a contribution 

from the melting of floating ice, which does not change the mass of the ocean and therefore 

does not contribute to barystatic SLR (Fig. III.1). To remove this component, we combine 

estimates of sea ice and ice shelf mass change from refs. (Slater et al., 2019; Schweiger et 

al., 2011; Adusumilli et al., 2020), which together estimate 11±2 Tt of floating ice melt over 

2001-2019. After this correction, the salinity budget approach estimates that the ocean 

gained a total mass of 13±3 Tt from 2001-2019 (equation 7; Fig. 2C). This estimate provides 

an independent constraint on the ocean mass change derived from the Gravity Recovery and 

Climate Experiment (GRACE) satellites which have remotely monitored ocean mass change 

since mid-2002 (Watkins et al., 2015), with a brief interruption in 2017 during the transition 
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to the next mission (Fig. 2C). GRACE estimates that the ocean gained 0.8±0.1 Tt/yr from 

2003-2016, compared to 0.9 ± 0.2 Tt/yr from the salinity budget approach (after correcting 

for floating ice melt) over the same period. 

The ocean mass change inferred from global ocean freshening amounts to 35±14 mm of 

barystatic SLR (equation 8) from 2001-2019, with a linear trend of 2.0±0.5 mm/yr (Fig. 

III.2d). For the same period, 26±2 mm of additional sea level rise occurred due to the 

thermal expansion of seawater according to a recent full-depth reconstruction of ocean 

temperature anomalies (Bagnell and DeVries, 2021), for a linear trend of 1.3±0.1 mm/yr 

(Fig. III.2d). Overall, the combined thermosteric and barystatic SLR components estimated 

from ocean temperature and salinity estimate a total GMSLR of 61±15 mm over 2001-2019, 

indicating that global mean sea level rose at a rate of 3.4±0.6 mm/yr over that period. The 

sea level rise implied by ocean warming and freshening can be compared to altimetry data 

that has been collected for much of the past three decades by a suite of satellite missions 

such as TOPEX/Poseidon and Jason (Beckley et al., 2017). These satellite altimetry 

measurements estimate a rate of GMSLR of 3.6±0.5 mm/yr from 2001-2019 (Fig. III.2d). 

These results show that both the barystatic and thermosteric components contributed 

substantially to GMSLR from 2001-2019. By contrast, the energy absorbed by the ocean 

over this same period was far greater than that absorbed by the Earth's glaciers and ice caps. 

To induce 26 mm of sea level rise via thermal expansion, the ocean accumulated 190±30 ZJ 

of heat from 2001-2019 (Bagnell and DeVries, 2021), whereas the latent heat required to 

melt 13 Tt of ice and induce 35 mm of barystatic sea level rise would require only an 

additional 4.3±1.0 ZJ of heat. This translates to roughly 2% of the excess heat from Earth's 

energy imbalance being responsible for 57% of the GMSLR, which mainly arises because 
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the ocean contains much more mass than land ice and thus requires a large input of heat to 

prompt a meaningful change in volume. 

In addition to providing accurate estimates of the magnitude and trend of GMSLR from 

2001-2019, our salinity- and temperature-based approach can also capture subdecadal 

variability in GMSL given sufficient sampling coverage and data quality. Subdecadal 

variability is driven almost exlusively by the barystatic component of GMSL (Fig. III.2d) 

and so accurate reconstruction of short-term variability in GMSL depends on the availability 

of high-quality salinity data. These conditions were met during the period 2010-2014, when 

improvements to sampling coverage of the ocean coincided with the increased density of the 

Argo array (Roemmich et al., 2019). For example, the salinity approach captures a reduction 

in sea level due to the 2011 La Nina (Boening et al., 2012) and again captures a slight 

reduction in GMSL in that appears in the altimeter data in 2013 (Fig. III.2d). After 2015 the 

trend is reconstructed, but interannual variability becomes more difficult to capture due to 

biases in Argo salinity measurements that may not be completely corrected by our approach. 

Nevertheless, these results suggest that with sufficient data coverage and no instrumental 

biases, ocean salinity measurements will be useful for monitoring not only the magnitude 

and trend of GMSLR, but the interannual to decadal variability as well, providing 

independent constraints on the global ice budget and land water storage that drive short-term 

variations in GMSLR (Slater et al., 2019; Llovel et al., 2011; Cazenave et al., 2018).  

D. Discussion 

These results demonstrate that GMSLR can be accurately measured using ocean-based 

observing systems to monitor seawater salinity and temperature. The uncertainty on the 
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resulting GMSLR trend over the period 2001-2019 is ~0.6 mm/yr (2σ uncertainty level) and 

arises mainly from the barystatic component which is derived from ocean salinity and has an 

uncertainty of ±0.5 mm/yr. This uncertainty is significantly less than the uncertainty on the 

trend of barystatic SLR from 2005-2015 based on a suite of Argo salinity products, which 

reported a 2σ uncertainty level of ±2.4 mm/yr, approximately the same as the total trend 

(Llovel et al., 2019). The lower uncertainty in our study arises from an improved 

autoregressive interpolation method that covers the entire ocean (including the Arctic Ocean 

and depths below 2000 m) and that reduces unrealistic interannual variability in ocean mass 

changes (see Methods). Furthermore, our approach is able to extend the analysis period to 

2019 by correcting for instrumental biases that are present after 2015. 

The great value of this approach is that it provides a completely independent estimate of 

ocean freshwater input, ocean mass changes, and barystatic sea level rise that can be 

compared to current estimates that rely mainly on remote sensing instruments (Beckley et 

al., 2017; Watkins et al., 2015; Bamber et al., 2018; Slater et al., 2019). Having this 

independent estimate is extremely important for validation of our current understanding of 

the global budgets of energy, water, and ice, and for validating estimates of the magnitude 

and mechanisms of global sea level rise. One drawback of the salinity approach for 

estimating barystatic sea level rise is that the ocean salinity records not only freshwater input 

from grounded ice, but from floating ice as well. Therefore, an independent estimate of 

floating ice melt is required in order to derive the barystatic SLR from ocean salinity 

measurements. Nonetheless, the seawater salinity approach also has significant advantages 

compared to satellite altimetry or gravity approaches. The latter approaches require a 

correction for the glacial isostatic adjustment (GIA) of the Earth's surface as it recovers from 
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the last ice age (Tamisea, 2011), as well as an adjustment for the deformation of the ocean 

bottom due to increased ocean mass associated with barystatic SLR (Frederikse et al., 2017). 

These corrections are similar in magnitude to the uncertainty on the salinity-inferred 

barystatic SLR, and the corrections themselves have substantial uncertainty. The sum of the 

thermosteric and barystatic SLR from ocean temperature and salinity therefore provides an 

important validation of the magnitude of the GIA-corrected GMSLR from satellite altimeter 

and gravity data. 

Our results underscore the importance of ocean salinity as a critically important metric 

of global climate change. As the ocean continues to warm, it will likely become less 

efficient at absorbing additional heat (Romanou et al., 2017; Newsom et al., 2020), leaving 

other components of the Earth system such as the cryosphere to take up proportionally more 

heat. Based on our estimates of barystatic and thermosteric SLR, over 2001-2019 the 

cryosphere has absorbed significantly more energy per mass unit than the oceans, while air 

temperature increases in the polar regions have also far outpaced the global average (Cohen 

et al., 2014). It is therefore likely that future sea level rise will be increasingly dominated by 

the barystatic component due to the accelerating loss of grounded ice, highlighting the 

importance of monitoring ocean salinity and freshwater input to the oceans. While the 

ARANN interpolation method significantly reduces uncertainties in global freshwater input 

and barystatic SLR derived from salinity, these uncertainties can be further reduced with 

greater sampling coverage, and by enhancing the accuracy and precision of salinity 

measurements. It is therefore critical to expand the capabilities of the current Argo 

observing system (Roemmich et al., 2019) by increasing sampling coverage below 2000 m 
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and in the polar ice-covered regions, as well as by eliminating systematic instrumental 

biases. 
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