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Compaction Behavior and Mechanical Properties of Uniaxially
Pressed Bi-W Composites

L. PETER MARTIN, ANDREA M. HODGE, and GEOFFREY H. CAMPBELL

Powder metallurgy is a useful route to forming particulate composite materials; however, the
densification of hard and soft powder mixtures is usually inhibited by the more refractory phase.
The Bi-W powder compacts were uniaxially pressed at room temperature and the compaction
behavior and mechanical properties were evaluated. Pressing was performed in incremental
steps from ~1 to 540 MPa. After each step, the pressure was relieved and the thickness and
sound-wave transit time were measured in situ (in the die), in order to determine the density and
sound-wave velocity in the compact. The data show that the unreinforced Bi powder compacts
to ~98 pct density at 540 MPa. The W reinforcement inhibits the densification process, resulting
in increased levels of residual porosity. The compaction behavior was evaluated using a mod-
ified Heckel equation, while the porosity dependence of the ultrasonically determined elastic
modulus was described by a site percolation approach. Postcompaction sound-wave velocity
and Vicker’s hardness measurements show<5 pct anisotropy between the axial (pressing) and
radial directions. The mechanical characterization illustrates the competing effects of the W
reinforcement and the associated residual porosity.

DOI: 10.1007/s11661-009-9935-9
� The Author(s) 2009. This article is published with open access at Springerlink.com

I. INTRODUCTION

POWDER metallurgy is a useful route to the near-
net-shape fabrication of engineering components for a
variety of applications. It allows consolidation without a
melt-processing step, which can be advantageous for
high-melting-point materials such as the refractory
metals or ceramics. It is also useful for forming
particulate composites from materials with greatly dif-
fering properties, such as oxide-dispersion-strengthened
steels[1] or, as in the present case, Bi-W materials
for environmentally friendly ammunition. Room-
temperature powder compaction is an important part
of this method, whether as a primary consolidation
process or as a precursor to sintering. Models describing
the behavior of powders during compaction are a useful
tool for comparing different materials or preparation
procedures (additives, milling, particle sizes, etc.) and
for estimating porosity based on the compaction con-
ditions. The various empirical models are probably the
most widely applied method for the evaluation of
compaction behavior;[2–5] however, it can be difficult to

directly correlate the fitting parameters with the actual
physical characteristics of the materials. In addition,
there exist relatively few studies comparing fitting
parameters with the measured physical properties,[5,6]

particularly for composite mixtures. Similar comments
can be made with respect to the analysis of the
dependence of the mechanical properties on porosity,
for which the most widely applied models are also
largely empirical.[7] In particular, the elastic properties
are highly dependent upon the microstructure, which
can be difficult to quantify in a way that is useful as
input to theoretical models. Empirical modeling of both
the compaction and mechanical properties can provide
useful quantitative measures of the compaction behavior
and the poroelastic response and can provide valuable
insight into the processes involved.
In the present study, the compaction of composite

mixtures of Bi and W powders is evaluated within the
context of the modified Heckel equation.[5] As expected,
the powder mixtures behave similarly to the matrix (Bi)
powder, but require higher applied pressure to reach
comparable density due to a stress shielding effect of the
reinforcing phase.[8–13] An experimental configuration is
used in which compaction is performed incrementally,
and the data are acquired in situ (without removing the
compact from the die) but at zero applied pressure.
Longitudinal sound-wave velocity measurements were
also performed in situ, allowing calculation of the
stiffness of the compacts in the pressing direction. The
pore-free stiffness is estimated from the compaction data
using a percolation model, and the compositional
dependence compares favorably with the theoretical
bounds proposed by Hashin and Shtrikman.[14]

Postcompaction density and sound-wave velocity
measurements were also made ex situ (outside the die).
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The ex-situ measurements were used to evaluate the
isotropy of the powder compacts and to calculate the
bulk, shear, and Young’s moduli. These moduli are
modeled using the Mori–Tanaka (MT) effective field
theory[15] to evaluate the effect of the W and porosity
phases in the Bi matrix. Finally, Vicker’s hardness
measurements were performed to estimate the variation
in strength with composition. The composition depen-
dence of the measured hardness is shown to be quali-
tatively similar to that of the yield stress predicted by the
Heckel analysis of the compaction data.

II. EXPERIMENTAL

The Bi-W powder metal composites were fabricated
by cold compacting mixtures of commercial Bi and W
powders (Alfa Aesar 10111 and 10400, respectively, Alfa
Aesar, Ward Hill, MA). Typical bulk properties for Bi
and W are given in Table I for reference. The powders
were stored and handled under N2, with an O2 level
<200 ppm. Figures 1(a) and (b) show scanning electron
microscopy (SEM) micrographs of the loose powders. In
Figure 1(a), the Bi powder can be seen to exhibit particle
sizes ranging from<1 to>30 lm, with a random shape
characteristic of milling. In Figure 1(b), the W is
comparatively finer, with a more uniform particle size.
Figure 1(c) shows particle size analyses for the two
powders.[16] The particle size analyses indicate that the
Bi powder has a D50 = 10 lm, while the W powder has
a D50 = 5.8 lm. The analysis also shows the W to be
somewhat bimodal, with a secondary peak at approx-
imately 1.5 lm. An X-ray diffraction analysis was
performed on the powders to evaluate the phase purity.
The major Bi2O3 peak was barely resolved and no other
oxides were detectable. This indicates that the oxide
content is less than ~5 pct. The powders were mixed
for 3600 seconds (1 hour) in a Nalgene jar (Thermo
Scientific, Rochester, NY) using a Turbula mixer
(Will A. Bachofen, Basel, Switzerland). Nylon spheres
12.5 mm in size were used as media to assist the process
and could be separated using a coarse sieve. The mixed
powders were then poured into a double-ended stainless
steel cylindrical die (inner diameter 15.88 mm) and
leveled using a straight edge aligned with the top of the
die. The loaded die was removed from the glovebox for
compaction of the powders.

Uniaxial compaction was performed in air using a
standard laboratory hydraulic press. The applied force
was monitored using an Interface 1220-AF load cell

(Interface, Scottsdale, AZ) and 9840 gage. The compac-
tion was performed in incremental steps from ~1 to
540 MPa. After each step, the pressure was relieved
from the mold and the thickness of the powder compact
was determined in situ (without removing from the

Table I. Bulk Properties of Bi and W

Property W Bi

Density (g/cm3) 19.3 9.8
L-wave velocity (mm/ls) 5.18 2.18
C33 (GPa) 518 50
S-wave velocity (mm/ls) 2.87 1.10
Bulk modulus (GPa) 310 35
Shear modulus (GPa) 156 12
Poisson’s ratio 0.29 0.35

Fig. 1—(a) SEM micrograph of Bi powder (top), (b) SEM micro-
graph of W powder (bottom), and (c) particle size analysis of Bi and
W powders.
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mold). This was done by measuring the distance
between the opposing ends of the upper and lower
punches and comparing that distance with the same
dimension measured on the empty mold. The 5-MHz
longitudinal sound-wave velocity in the powder compact
was also determined in situ at zero pressure. This was
done by measuring the time of flight required for the
sound waves to transit between the end faces of the two
punches and comparing the measured time with the
corresponding value for the empty mold. The velocity
was calculated as the ratio of the thickness of the
compact and the time required for the sound waves to
travel through the compact. Given the known diameter
of the mold and the mass of the compact measured at
the end of the process, the apparent density q after each
compaction step could be calculated without removing
the sample from the mold until the final compaction step
was completed.

The apparent density q was also determined ex situ
(postcompaction) from the mass, diameter, and thick-
ness of the compacted pellets measured outside the mold
after the final compaction step. The thickness was
determined by averaging multiple measurements made
with a micrometer at the center and around the
perimeter of each sample. The full (pore-free) density
of the powder mixtures qo was calculated using a rule of
mixtures:

qo ¼
X

n¼1;2
fnqn ½1�

where fn and qn are the volume fraction and density,
respectively, of phase n. The apparent density q is ex-
pressed as a fraction of the full density qo via the frac-
tional density qf:

qf ¼
q
qo

½2�

and the volume fraction of porosity fp is given by

fp ¼ 1� qf ¼ 1� q
qo

½3�

The initial pore fraction fpi was determined from the
density of the compact after the initial application of a
slight pressure, ~1 MPa.

Contact ultrasonic measurements were performed
ex situ using 5-MHz longitudinal and shear-wave contact
transducers made by the Panametrics (Olympus NDT,
Waltham, MA) and recorded on an oscilloscope. The ex-
situ measurements were made with a gel couplant
between the transducer and the part. The time of flight
required for the sound waves to pass through the sample
was determined by the pulse-echo overlap method, and
the sound-wave velocity V was determined from

V ¼ 2l

tpe
½4�

where l is the thickness and tpe is the pulse-echo time of
flight. The factor of 2 appears because, in this config-
uration, the measured time of flight is the time required
for the sound waves to travel though the sample twice,
i.e., from the transducer to the opposite surface and

back. Vicker’s hardness testing using a 100-g load was
performed on polished surfaces normal to both the axial
(plan view) and radial (cross-sectional view), per the
directions in ASTM E 385-06.

III. RESULTS AND DISCUSSION

A. Compaction Behavior

The open symbols in Figure 2 show the fractional
density qf vs the compaction pressure for the different
volume fractions of W, fW = 0.0, 0.073, 0.23, and 0.39.
The compaction was performed incrementally, as
described earlier, with measurements performed at zero
pressure between compaction increments. Thus, each
series of points represents a single sample that was
characterized in situ after each additional increment in
pressure. Two sets of data are shown for each fW. The
data for fW = 0 represent the unreinforced Bi powder,
which compacts to an apparent density of qf ~ 0.98 at
540 MPa. At all compaction pressures, a higher fW
results in a lower qf, indicating that the W inclusions
inhibit the densification process. Furthermore, at low
compaction pressures, the effect of the W inclusions is
more pronounced than at high pressures. For example,
after compaction at 90 MPa, the fractional densities at
fW = 0.0 and 0.39 are qf ~ 0.86 and 0.70, respectively.
After compaction to 540 MPa, qf ~ 0.98 and 0.89,
respectively, which is a significantly smaller differential.
This behavior is consistent with published reports of the
compaction of composite mixtures of Bi and Ta
powders, Pb and steel spheres, Pb and alumina powders,
and plasticene spheres and glass beads.[9,11,17] In con-
trast, materials such as graphite-reinforced Fe; SiC-,

Fig. 2—Fractional density vs compaction pressures for fW = 0.00
(s,d), 0.073 (D), 0.23 (h,j), and 0.39 (e). Open symbols represent
data from the incremental press-and-measure-technique described in
the text. Filled symbols represent data from samples pressed directly
to the indicated compaction pressures and characterized ex situ after
pressing. Lines represent the best fit of Eq. [8] to the incremental
compaction data.
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steel-, and zirconia-reinforced Al; and W-reinforced
Cu exhibit an opposite effect in which inhibited densi-
fication becomes more pronounced at higher compac-
tion pressures.[2–5,8,10,12,13,18] The difference in behavior
for these systems may relate to the ductility of the matrix
material (Pb, Bi, or plasticene vs Al, Fe, or Cu).

Limited compaction data are also shown by the solid
symbols in Figure 2 for two series of samples (fW = 0.0
and 0.23) pressed directly to the indicated compaction
pressures and characterized ex situ after pressing. This
process is distinct from the incremental press-and-
measure process, in that each series of data represents
several powder compacts, each of which was taken
directly to the indicated pressure in a single step. The
data for the two compaction methods compare favor-
ably, confirming that the incremental pressure increase-
release cycle does not yield significantly different
compaction behavior from single-step compaction.

A modified Heckel equation[2,5] was fit to the com-
paction data in Figure 2 in order to quantify the relative
behavior at different fW. The Heckel equation was first
published by Shapiro and later by Konopicky,[19,20] and
relates the compaction process to a reduction in porosity
that behaves as a first-order reaction:

�dfp
dP
¼ Kfp ½5�

where P is the compaction pressure and K is a con-
stant analogous to a reaction rate. Later, Heckel inves-
tigated a number of metal powders and identified an
empirical relationship between K and ro, the yield
stress, in the absence of porosity:[2,4,5,21]

K ¼ 1

3ro
½6�

The term 3ro is known as the yield pressure (some-
times as the Heckel yield pressure). An empirical cor-
relation has been made between 3ro and the measured
hardness and Young’s modulus for a wide range of
materials.[6] The classic Heckel equation is derived by
substituting Eq. [6] into Eq. [5] and integrating. The
resultant relation predicts a linear dependence of ln(1/
fp) on the compaction pressure P and has been widely
applied to a variety of materials. However, it has been
observed that a pronounced curvature often occurs
outside the central portion of the compaction dia-
gram.[2,5] Several approaches have been taken toward
modification of the Heckel equation, to improve the
capability to fit a broader range of experimental data.
One of the more effective approaches has been to
address the pressure dependence of ro.

[5,22] The pres-
sure dependence of ro arises from the increasing con-
straint caused by neighboring particles as the
compaction decreases, fp. This can be done in a variety
of ways, one of which is to replace ro in Eq. [6] by[5]

r ¼ ro þ k1P ½7�

where r is the pressure-dependent yield stress and k1 is
a function of the Poisson’s ratio m. Substituting Eq. [6]
and Eq. [7] into Eq. [5] and integrating yields the mod-
ified Heckel equation:

ln
1

fp

� �
¼ ln

1

fpo

� �
þ 1

3k1
ln 1þ k1P

ro

� �
½8�

where fpo represents some initial-state pore fraction. In
the original derivation, the term fpo was postulated to
represent the pour density of the powder. Later, the
term ln(1/fpo) was redefined to be the sum of a term
relating to the pour density and an offset term relating to
the additional compaction associated with particle
rearrangement.[2] In that case, the pressure-dependent
part of the Heckel relation is only intended to be valid at
pore fractions below which particle rearrangement does
not occur to any significant extent, and where the
compact behaves as a coherent body capable of sup-
porting enough of the applied stress to cause deforma-
tion of the particles.
Particle rearrangement (sliding, restacking, etc.) is

generally accepted to be the primary densification
mechanism during the first stage of compaction, in
which significant densification occurs with negligible
applied pressure.[2,5,19] At the completion of the first
stage of compaction, no further free movement of the
particles is possible and the powder compact now begins
to support (i.e., resist) the applied stress. Additional
compaction occurs with the development of significant
stress in the compact and proceeds via plastic deforma-
tion, or brittle fracture, of the particles.[5,23] It is this
latter process that is described by the Heckel equation,
particularly for the case of plastic, rather than brittle,
materials. The current method of determining fpi from
the density of the compact after application of a light
pressure is consistent with the idea that fpo corresponds
to the pore fraction reached at the minimum pressure
required to form a coherent compact.[21] Thus, in this
investigation, fpo was taken to be equal to the fpi
described earlier. It should be noted that, due to the
effects of particle size and shape distributions, a sharp
transition from particle motion to plastic deformation is
not expected;[23] therefore, the pressure at which fpi was
determined (~1 MPa) is somewhat arbitrary. However,
it provides a repeatable initial value that should be more
relevant to the process than ex-situ measurements such
as the pour or tap density.
Eq. [8] was fit to the incremental compaction data

from Figure 2 using a least squares regression analysis
to determine optimal values for k1 and ro. The input
values for fpi were determined experimentally, as
described earlier. The results are plotted as the solid
lines in Figure 2. Clearly, Eq. [8] accurately describes the
compaction behavior over the full range of pressures
and compositions. The fitting parameters and fpi used to
generate the curves are given in Table II. There, ro is
reported to be ~15.1 MPa for fW = 0, and increases
with increasing fW. A similar effect was reported for
Ta-reinforced Bi,[17] where the compaction was per-
formed over the range 140 to 550 MPa in the single-step
process used to produce the data for the filled symbols in
Figure 2. There does not appear to be any significant
published work evaluating the correlation between the
yield strength determined from mechanical testing and
the yield parameters determined from Eq. [8]. However,
the calculated ro values compare favorably with the
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yield strengths determined from the compression testing
of polycrystalline Bi at different temperatures and strain
rates.[24] In Reference 24, room-temperature yield
occurred between ~13 and 24 MPa, depending on the
strain rate (2 9 10�4 to 2 9 10�2, respectively). Thus,
the calculated ro for Bi appears to be in an appropriate
range to provide a representative estimate of the yield
strength.

In Reference 17, Eq. [8] was fit to the limited single-
step compaction data (filled symbols) for fW = 0 (pure
Bi) shown in Figure 2. In that case, however, the fpi used
in the current study was not experimentally accessible,
and a value based on the pour density of the powder was
used, f pour

pi ¼ 0:66; which was considerably higher than

the fpi ~ 0.46 measured by the current technique. The
result of that analysis, as well as a second analysis of
the current data using fpi ¼ f pour

pi ¼ 0:66; are shown at

the bottom of Table II. For the current data, shifting fpi
from ~0.46 to 0.66 reduces the calculated ro from ~15.1
to ~9.2 MPa, which is comparable to that from the
earlier work, 8.66 MPa. Conversely, applying the cur-
rent experimentally determined fpi ~ 0.46 to the data
from Reference 17 yields ro = 12.8 MPa. Thus, most of
the discrepancy between the ro values calculated here
and those in Reference 17 results from the selection of
the value for fpi. In addition, there is probably some
refinement of the calculation gained by the broader
range of pressures used for the current investigation, in
particular, the pressures<100 MPa in which qf changes
rapidly with pressure, which provides a more complete
‘‘view’’ of the compaction process. This analysis high-
lights the importance of properly identifying the initial
state of the powder compact before applying this type of
model to the compaction process.

It has been proposed that the values for k1 listed in
Table II can be correlated with the Poisson’s ratio (m)
via[5]

k1 ¼
2m2

ð1� mÞ ½9�

The values for m calculated using Eq. [9] are listed in
Table II for the different fW. The range of values (0.279
to 0.380) is reasonable for metallic materials and is
qualitatively consistent with the behavior observed in
Reference 17. However, the observed trend of increasing
m with increasing fW is not consistent with the accepted
values of m for Bi and W reported in Table I: 0.346 and
0.285, respectively. The behavior appears to indicate
that Eq. [9] is not valid for these materials, probably
because it neglects the effects of elastic strain in the die,
the pressure dependence of m, and any potential anisot-
ropy in the powder compact.
Figure 3(a) shows the longitudinal wave velocity,

designated as V3, measured in situ along the compaction
direction vs the volume fraction of porosity fp deter-
mined via Eq. [3]. The data show a monotonic increase
in V3 with decreasing fp for all compositions. Further, at
constant fp, the data show increasing V3 with increasing
fW. This behavior results from the competing effects of
the increased stiffness associated with the W reinforce-
ment, and from the reduced stiffness caused by the
resultant residual porosity. Ultrasonic sound-wave
velocity has been widely applied to the characterization
of porous powder compacts,[25–28] because it is intrinsi-
cally related to the elastic moduli (stiffness) and density
by the well-known relation

C ¼ V2q ½10�

where C is the elastic stiffness and V is the velocity of
sound. The particular modulus described by Eq. [10]
depends on the mode and, for anisotropic materials,
the direction of the propagation of the sound waves. If
we designate a coordinate system for our cylindrical
samples in which the x3 axis is in the axial (pressing)
direction and the two orthogonal directions, x1 and x2,
are in the radial (transverse) plane, then Eq. [10]
becomes

C33 ¼ V2
3q ½11�

In Eq. [11], C33 represents the principal axial compo-
nent of the elastic stiffness tensor Cij, which relates
stress and strain through Hooke’s law:

r11

r22

r33

s23
s31
s12

2

6666664

3

7777775
¼

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

2

6666664

3

7777775

e11
e22
e33
c23
c31
c12

2

6666664

3

7777775

½12�

where C66 = 1/2 (C11 � C12) and r, s, e, and c repre-
sent the normal and shear stresses and the normal
and shear strains, respectively. The Cij matrix in
Eq. [12] is expressed for the case of transverse iso-
tropy in order to reflect the symmetry of the uniaxial

Table II. Fitting Parameters k1 and ro Used to Fit

Equation [8] to Compaction Data from Figure 2; Also Shown

Are Experimentally Determined fpi and Poisson’s Ratio (m)
Predicted by Equation [9]

fW fpi* k1 ro m

0.00 0.459 0.211 15.3 0.276
0.00 0.462 0.207 14.9 0.274
0.073 0.481 0.211 18.2 0.291
0.073 0.481 0.242 16.7 0.293
0.23 0.518 0.360 21.9 0.378
0.23 0.509 0.329 23.3 0.363
0.39 0.544 0.450 31.9 0.375
0.39 0.531 0.469 32.8 0.381
0.00a 0.660 0.233 8.66 0.288
0.00b 0.460 0.218 12.8 0.280
0.00c 0.660 0.246 9.22 0.294
0.00c 0.660 0.240 9.24 0.292

*Experimentally determined.
aFrom Ref. 16, using experimentally determined fpi.
bFrom Ref. 16, using fpi = pour density.
cCurrent data, using fpi = pour density.
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pressing configuration. For complete isotropy, Eq. [12]
simplifies significantly due to the following relations:

C11 ¼ C33

C44 ¼ C66

C12 ¼ C13 ¼ ðC11 � 2C44Þ
½13�

In either case, Eq. [11] takes into account the isotropy of
the material, and the velocity data in Figure 3(a) can be
used to calculate C33 via Eq. [11] and the apparent
density shown in Figure 3(b).

The data in Figure 3(b) correspond to the qf data
shown in Figure 2, but the apparent densities are
expressed in grams per cubic centimeter. It is not
surprising that a comparison of Figures 2 and 3(b) show
that, while qf decreases with increasing fW due to the

associated increase in fp, the actual apparent density q
increases due to the significantly higher density of W
relative to Bi (Table I). Figure 4 shows the calculated
C33 vs fp for the different fW values. The trends in the C33

data are qualitatively similar to those observed in the
velocity data shown in Figure 3(a), except that the
relative contribution of the apparent density q causes
the effect of fW to be more apparent. That is, the data at
different fW are somewhat more ‘‘spread out’’ in
Figure 4 than in Figure 3(b). Physical modeling of the
elastic behavior requires detailed knowledge of the
microstructure (Bi, W, and porosity), which is difficult
to obtain and apply quantitatively. However, numerous
empirical and semiempirical models exist that have been
proposed to account for the effects of a second phase
(generally porosity) on the elastic moduli.[29–32] These
models often apply assumptions that may not be
realistic; they can result in fitting parameters that are
difficult to relate to the actual material properties.
Nevertheless, when properly applied, they can provide
quantitative comparisons between different materials or
processes, and can yield valuable insight into the
observed behavior.
One approach to modeling the elastic behavior has

been to apply the percolation theory to predict the effect
of porosity.[23,33] The percolation theory has been
applied to a broad range of physical phenomena,
including the gelation of polymers, the spreading of
fluid in porous systems, the design of pharmaceutical
tablets, and the compositional dependence of the hard-
ness and elastic moduli in binary and ternary powder
compacts.[23,34] Random percolation theory is a statis-
tical approach in which the system is described by an
underlying lattice, each point of which is randomly
occupied by one of the system components. A cluster is
defined as a group of neighboring sites occupied by the
same component (i.e., ‘‘A’’ in a binary system composed

Fig. 3—(a) Longitudinal sound-wave velocity measured along the
axial (pressing) direction (V3) and (b) apparent density (q), both
measured in situ at zero pressure. Data are shown for fW = 0.00
(s), 0.073 (D), 0.23 (h), and 0.39 (e).

Fig. 4—The C33, calculated from Eq. [11] using data in Figs. 3(a)
and (b), vs fraction of porosity fp. The C33 are shown for fW = 0.00
(s,d), 0.073 (D,m), 0.23 (h,j), and 0.39 (e,¤). Dotted lines indi-
cate the best fit of Eq. [16] to each data set (two sets at each fW).

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 40A, SEPTEMBER 2009—2129



of phases A and B). The point at which a cluster just
percolates a system is known as the percolation thresh-
old. The theory relates the apparent value of a property
X to the site occupation (or bond) probability F by

X ¼ XoU
b ½14�

where Xo is the value of the property for the matrix
phase alone and b is the critical exponent describing the
change of X with F.[33] Theoretically, the value of b is
dependent solely on the fractal dimension of the process,
with a three-dimensional structure of round spheres
yielding b ~ 2.1.[32,33,35] However, it has been reported
that there can be significant experimental deviations
from this predicted value, thus giving a ‘‘characteristic’’
rather than a ‘‘critical’’ exponent.[35–37] These deviations
may result from any of the following: the finite size of
the system (the theory treats an infinitely large sys-
tem[38]), application of an inappropriate lattice model
(discrete lattice, continuum, etc.), application of an
inappropriate percolation type (random site, random
bond, etc.), anisomorphous particle shape, or anisot-
ropy in the powder compact.[35]

The compaction of powders, and the concurrent
reduction in porosity, can be treated as a site percolation
phenomenon.[23] The probability that a site is occupied
can then be related to the fractional density by

U ¼
qf � qcr

1� qcr

½15�

where qcr is the percolation threshold. This has been
associated with the tap density for a variety of pow-
ders,[23,39] but is most appropriately described as the
fractional density at which (during compaction) parti-
cle rearrangement ceases and further densification oc-
curs by the buildup of a significant compressional
force.[23,38] Treating the powder compact as a binary
system consisting of porosity and an apparent matrix
of the Bi and W powder and, recalling Eq. [3],
Eq. [14], and Eq. [15], then yield the following relation:

X ¼ Xo
fp;cr � fp

fp;cr

� �b

½16�

where fp,cr is taken to be the experimentally determined
fpi discussed previously. Van Veen et al. followed a
similar approach to estimate the pore-free elastic moduli
in pressed compacts of NaCl and starch.[35] Taking X
and Xo to be C33 and C33,o, respectively, Eq. [16] was fit
to the data shown in Figure 4, in which the dotted lines
show the best fit for each fW. The fitting parameters used
in Eq. [16], C33,o and b, are shown in Table III for each
of the compositions. The calculated values for b fall
close to the theoretically predicted value of 2.1 and
appear to exhibit a decreasing trend with increasing fW.
The origin of this trend is not clear at present, but may
be due to the asphericity of the initial powders. In
contrast, the predicted C33,o values show an increase
with fW, which is an expected consequence of the
increased stiffness associated with the W reinforcement.

The values of C33,o are shown vs fW in Figure 5. Also
shown are the theoretical bounds for a two-phase

medium proposed by Hashin and Shtrikman.[14] The
upper (HS-U) and lower (HS-L) Hashin–Shtrikman
bounds are calculated from

BL ¼ BBi þ
fW

1
BW�BBi

þ 3fBi
3BBiþ4GBi

½17�

BU ¼ BW þ
fBi

1
BBi�BW

þ 3fW
3BWþ4GW

½18�

GL ¼ GBi þ
fW

1
GW�GBi

þ 6fBiðBBiþ2GBiÞ
5GBið3BBiþ4GBiÞ

½19�

GU ¼ G2 þ
fBi

1
GBi�GW

þ 6fWðBWþ2GWÞ
5GWð3BWþ4GWÞ

½20�

where B and G are the bulk and shear moduli, respec-
tively, and the subscripts U and L refer to the upper

Table III. Fitting Parameters C33,o and b Used to Fit

Equation [16] to C33 Data from Fig. 4; Also Shown Are

Experimentally Determined fpi

fW fpi* C33,o b

0.00 0.459 54.1 2.41
0.00 0.462 53.7 2.45
0.073 0.481 56.9 2.26
0.073 0.481 59.6 2.35
0.23 0.518 77.4 2.16
0.23 0.509 74.3 2.07
0.39 0.544 91.6 2.27
0.39 0.531 89.9 2.09

*Experimentally determined.

Fig. 5—Predicted pore-free modulus, C33,o (j), determined from fit-
ting Eq. [16] to the data in Fig. 4, vs fW. Dotted lines represent the
upper (HS-U) and lower (HS-L) Hashin–Shtrikman bounds calcu-
lated from Eqs. [17] through [21]. Also shown are the experimentally
determined C33 measured in situ (X) and ex situ (s).
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and lower bound, respectively. The B and G for the Bi
and W were taken from Table I. The upper- and
lower-bound bulk and shear moduli are, in turn,
related to C33 by

C33 ¼
4

3
Gþ B ½21�

The predicted C33,o values fall very close to the lower
(HS-L) bound. As a point of interest, it has been shown
that for B, the lower HS bound is an exact solution for
the case of hard spherical particles in a soft matrix.[40]

The analysis implies that the predicted values of C33,o

fall within an appropriate range to provide an estimate
of the pore-free modulus for Bi-W composites prepared
by the present methodology. It should be noted that
calculation of the bounds assumes the homogeneous
mixing of the inclusion phase, as well as overall isotropy
in the composite. These issues will be discussed in more
detail later in this article.

B. Postcompaction Characterization

The density and axial sound-wave velocity V3 were
also measured ex situ after compaction to the maximum
pressure of 540 MPa. The ex-situ values of V3 generally
agree with the in-situ measurements to £0.5 pct. The
ex-situ V3 and q were used to calculate C33 via Eq. [11]
and the results are plotted vs fW in Figure 5 as C33,ex.
The ex-situ values compare favorably with those mea-
sured in situ, as shown in the figure, agreeing in most
cases to £1.0 pct. As expected, as fW increases, the
measured C33 falls increasingly below the predicted
value of C33,o due to the increase in fp (Figure 2). Optical
microscopy, measurements of the sound-wave velocity
vs direction, and Vicker’s hardness testing were per-
formed in order to facilitate further discussion of the
mechanical properties and to quantify the anisotropy in
the compacts.

Figure 6 shows optical micrographs for fW = 0,
0.073, 0.23, and 0.39 after compaction to 540 MPa.
Two sets of images are shown, corresponding to two
different directions within the microstructure. The
‘‘axial view’’ looks along the x3 direction, and thus
the pressing direction is into the plane of the image.
The ‘‘radial view’’ looks along the x1-x2 plane, and
thus the pressing direction is top to bottom in the
image. At fW = 0, the images show a dense micro-
structure with a broad particle size distribution consis-
tent with the particle size analysis from Figure 1. There
is some visible heterogeneity in the microstructure, in
that the average grain size in the axial image appears
larger than in the radial image. Thus, when the
microstructure is viewed along the pressing direction
away from the die walls, the grains appear larger than
when viewed normal to the pressing direction. The
implication is that the microstructure is compressed
more in the axial direction than in the radial direction,
with the caveat that angularity and possible asymmetry
of the Bi particles could influence particle settling and
arrangement. This trend persists throughout the range
of fW and may lead to some anisotropy in the

mechanical properties. At fW = 0.073, the microstruc-
ture still appears dense, with the W reinforcement
clearly visible as the slightly darker phase residing on
the Bi particle boundaries. There is some evidence of
small, isolated pores, particularly in areas where the W
has agglomerated. At fW = 0.23, the residual porosity
is clearly evident (it appears black in the image), and
the network of W particles on the Bi particle bound-
aries has become more developed. It appears that the
‘‘width’’ of the W phase between the Bi particles has
increased relative to that at fW = 0.073, and the W
phase appears to be near percolation. At fW = 0.39,
the size of the W regions has increased dramatically,
leading to significantly more entrained porosity. In
addition, the W is clearly percolated, particularly in the
radial image. As this W network develops, it becomes
capable of supporting more of the applied stress and,
therefore, less of the stress is transferred to the Bi
matrix.
That the microstructure appears slightly different

when viewed from the axial and radial directions raises
the possibility that the mechanical properties in the
compacts may be anisotropic. It is well known that
uniaxial pressing can lead to significant stress gradients
during compaction. It is also known, however, that, as
the compaction pressure becomes much greater than the
yield stress of the powder, the radial pressure
approaches the axial pressure.[5] In order to quantify
the state of isotropy in the compacts, the longitudinal
and shear sound-wave velocities were measured as a
function of the direction. Recalling the coordinate
system in which the x3 axis is in the axial (pressing)
direction and the two orthogonal directions, x1 and x2,
are in the radial (transverse) plane, there are five
principal (i.e., on-axis) sound-wave velocities that can
be measured: longitudinal wave propagating in the axial
and radial directions (V3 and V1), shear wave propa-
gating in the axial direction (V31), shear wave propa-
gating in the radial direction and polarized in the x1-x2
plane (V12), and shear wave propagating in the radial
direction and polarized in the x3 direction (V13). The
first subscript indicates the propagation direction and
the second subscript indicates the polarization direction
(where applicable) for the shear waves. In a transversely
isotropic solid, all of the nonzero stiffness components
except C13 can be determined from four of the velocities
by[41,42]

C11 ¼ qV2
1; C33 ¼ qV2

3 ½22�

Caxial
44 ¼ qV2

31

C66 ¼
1

2
C11 � C12ð Þ ¼ qV2

12

The determination of C13 requires off-axis measure-
ments and is not relevant to the current discussion.
From Eq. [13] and Eq. [22], it is also apparent that, in
the case of isotropy, all components of the Cij matrix can
be determined from just two sound-wave velocities,
longitudinal (V3) and shear (V31).
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Fig. 6—Optical images of composite microstructures looking along both axial and radial directions. For axial view (a) through (d), the pressing
direction is into the page. For radial view (e) through (h), the pressing direction is top to bottom. Images are for (a) and (e) fW = 0.00, (b) and
(f) 0.073, (c) and (g) 0.23, and (d) and (h) 0.39. Scale bar shown in the first image is valid for all images.
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A comparison of Eq. [12], Eq. [13], and Eq. [22]
implies certain relations that may be used to quantify
the isotropy of the material,[41] namely:

C33

C11

¼ V3

V1

� �2

½23�

2C44

C11 � C12
¼ V31

V12

� �2

½24�

Eq. [23] and Eq. [24] provide a measure of the
longitudinal (compressive) and shear anisotropy, with
C33 = C11 and 2C44 = (C11 � C12) indicating isotropy.
These parameters are plotted vs fW in Figure 7, in which
values of ‘‘1.00’’ correspond to complete isotropy. The
deviation from isotropy is <5 pct for both parameters.
The implication is that, for this material system, the
assumption of isotropy will introduce an error of £5 pct
when relating the sound speeds to the elastic moduli.
This assumption of isotropy is convenient for further
analysis of the engineering elastic moduli within the
context of the MT effective field model.

The so-called engineering elastic moduli can be
related to the longitudinal and shear-wave velocity in
isotropic materials by the following well-known rela-
tions:

G ¼ qV2
S ½25�

E ¼ qV2
S

3V2
L � 4V2

S

V2
L � V2

S

½26�

B ¼ q V2
L �

4

3
V2

S

� �
½27�

where E is the Young’s modulus and VL and VS are
the longitudinal (V1 = V2 = V3) and shear-wave

(i.e., V12 = V13 = V31 = V23 = …) velocities,
respectively. Figures 8(a) and (b) show these ultrason-
ically determined moduli, along with C33, plotted
vs fW. The fp is given for each composition by the
labels next to the symbols for the shear modulus G.
Again, the overall behavior of the elastic moduli
shows the competing effects of stiffening associated
with increased fW and softening associated with fp.
The elastic moduli shown in Figures 8(a) and (b)
were evaluated within the context of the MT effective
field model.[15,43,44] The MT model has been applied
to the estimation of the elastic properties of various
two-phase composites.[43,45,46] The approach approxi-
mates the effective elastic properties by assuming that
an inclusion is subject to a uniform effective stress
field. The model can be used to treat the case of
porosity in a solid matrix by taking the moduli of
the inclusion to be zero. For randomly oriented,
spheroidal voids, the MT model yields the following
relations for the bulk and shear moduli:[43,44]

B ¼ Bo

1þ pðSijklÞfW
½28�

G ¼ Go

1þ qðSijklÞfW
½29�

where Bo and Go are the bulk and shear moduli of the
matrix, respectively, in the absence of any inclusion
phase. The terms p(Sijkl) and q(Sijkl) are functions of
the components of the Eshelby stress tensor, Sijkl.

[47,48]

The Eshelby stress tensor was introduced as part of a
closed-form solution to the strain field within an elastic
ellipsoidal inclusion in an elastic matrix subject to
a uniform strain at infinity. The terms of Sijkl are,
in turn, dependent upon the aspect ratio a of the
inclusion via the secondary function g(a). For oblate
spheroids:

gðaÞ ¼ a
cos�1ðaÞ � að1� a2Þ1=2
h i

ð1� a2Þ3=2
½30�

Treatment of the present three-phase composites (Bi, W,
and porosity) was performed as follows. The pore-free
moduli (B and G) were calculated at each fW using Eqs.
[28] through [30], and the moduli for Bi and W from
Table I, by assuming a = 1 for the W inclusions. This
aspect ratio corresponds to spherical inclusions, which is
qualitatively consistent with the morphology of the W
particles seen during microscopy. Then, in a second step,
each fW was treated as an effective matrix with elastic
moduli equal to the calculated pore-free moduli, and the
porosity was treated as a second phase with moduli
equal to zero. The aspect ratio of the porosity was then
the only adjustable parameter available to fit the model
to the data. After a few iterations by trial and error,
a = 0.1 was found to give a suitable fit over most of the
composition range. The results are shown as the dotted
lines in Figures 8(a) and (b). The deviation of the data
from the model predictions at fW = 0.39 is probably
related to the percolation of the W powder. Note that

Fig. 7—Anisotropy parameters given by Eqs. [23] and [24] are plot-
ted vs fW. Complete isotropy corresponds to a value of 1.00, and is
indicated by the solid line for reference purposes.
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the reported aspect ratio is not meant to be exact, but
rather to show qualitative behavior. That is, the analysis
is not meant to imply that the pores are actually oblate
spheroids with a single, well-defined aspect ratio.
Rather, it is meant to qualitatively describe the behavior
of the entire system of porosity as having an effect on
the elastic moduli, which is equivalent to the isomor-
phous (a = 0.1) spheroids.

Figure 9 shows the Vicker’s hardness HV vs fW mea-
sured in both the axial (pressing) and radial (normal)
directions for one series of samples. The error bars
represent the standard deviation of the 10 measure-
ments performed on each sample/direction. The data
show increasing hardness with fW, despite the concurrent

increase in fp, ranging from ~280 MPa for fW = 0 to
~480 MPa for fW = 0.39. The increased scatter with
increasing fW is related to the increasing heterogeneity
in the microstructure as the fW and fp increase. That is,
at the higher fW, there is an increased probability that
some of the indents will impinge on a pore or a W
particle (or agglomerate), thus perturbing the measure-
ment. Due to the multiphase nature of the composite,
it is difficult to draw a direct correlation between the
yield strength and the measured hardness. It has been
observed that the yield strength is often proportional
to the hardness and that, in the absence of strain
hardening, the constant of proportionality is ~1/3.[49]
Clearly, comparison of the measured HV at fW = 0
with the yield strengths reported for compression
testing of Bi discussed earlier[24] implies that this
relation is not met for the current system. However,
Bi is known to exhibit extensive work hardening,[24]

and the powder compaction process probably leaves
the Bi in a highly cold-worked condition. Thus, the
differences in the specimen fabrication methods may
make direct comparison of the hardness with the prior
compression data questionable.
The calculated ro values determined by fitting Eq. [8]

to the compaction data are plotted against the right-
hand axis in Figure 9. The calculated values exhibit
qualitatively the same trend as the measures of hardness.
This seems to confirm that the application of Eq. [8] to
the compaction data provides at least a reasonable
measure of the relative effect of fW on the strength.
Careful inspection of the data shows that ro actually
increases slightly more rapidly with fW than does HV;
however, this is a reasonable and expected consequence
of the residual porosity present in the samples during
measurement of the hardness. Recall that ro is defined as
the expected yield strength in the fully dense material
(Eq. [6]).

Fig. 8—(a) Engineering elastic moduli (E, G, and B) calculated from
the sound-wave velocities V3 and V31 using Eqs. [25] through [27].
(b) Also shown are ex-situ C33 from Fig. 5. Values are plotted vs fW,
and the related fp are indicated by the labels next to the symbols for
the shear modulus G. Dotted lines indicate moduli predicted by the
MT model, assuming the aspect ratios of the W particles and the
pores are a = 1 and 0.1, respectively.

Fig. 9—Vicker’s hardness measured in axial (x3) and radial
(x1 = x2) directions vs fW. Also shown is the pore-free yield strength
ro calculated by fitting Eq. [8] to the compaction data (Table II).
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IV. CONCLUSIONS

This investigation examines the compaction behavior
of composite mixtures of Bi and W powders via in-situ
measurement of the thickness and sound-wave transit
time during incremental compaction. The compaction
behavior is evaluated using a modified Heckel equation,
and the ultrasonically determined moduli are analyzed
within the context of a site percolation model. Post-
compaction analysis of the microstructure, sound-wave
velocity, and Vicker’s hardness was performed in order
to further understand the mechanical properties and the
effects of different fractions of W reinforcement and
residual porosity (fW and fp). The results of the
investigation can be summarized as follows.

1. The unreinforced Bi powder compacts to ~98 pct
density at 540 MPa. The W powder inhibits the
densification process, and this effect is most promi-
nent at lower compaction pressures.

2. The modified Heckel equation describes the com-
paction behavior accurately. The fitting parameters
(particularly ro) are sensitive to how the initial
porosity is defined. The predicted yield strength ro

for fW = 0 is consistent with reported compression
testing of pure Bi, and increases with fW.

3. A percolation model describes the behavior of the
elastic modulus C33 relative to the pore fraction
from fp > 0.4 to fp < 0.02. The predicted pore-free
C33,o fall within the theoretical bounds predicted by
Hashin and Shtrikman.

4. While the microstructure shows some slight evi-
dence of anisotropy between the axial and radial
directions, a comparison of the ultrasonic velocities
and Vicker’s hardness shows the anisotropy to be
<5 pct.

5. The engineering elastic moduli (G, B, and E) were
calculated from the sound-wave velocities based on
the assumption of complete isotropy. The effects of
fW and fp on these elastic moduli were evaluated
using the MT effective field model.

6. The measured Vicker’s hardness increases with fW.
No direct correlation can be made between the HV

and the yield strength at this time; however, HV

and the ro predicted from the Heckel equation
exhibit qualitatively the same behavior.
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