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Abstract— We present a SPICE-compatible neural-network-

based compact model (BSIM-NN) for advanced FETs. The model 

consists of an IV and QV network which have all terminal currents 

and charges and includes geometry dependence. The study of the 

activation functions is conducted to find the most efficient function 

for circuit simulations. The model is then implemented in Verilog-

A with direct multiplication instead of loops to enhance the 

computational speed. We demonstrate and benchmark the neural 

network model performance in large circuit simulations with 

different network structures. It shows about 40 times speed 

improvement compared to the conventional compact model.  

Keywords—Compact model, machine learning, neural network, 

SPICE, Verilog-A 

I. INTRODUCTION 

Fast and accurate compact device models are crucial for IC 
design and technology development. Standard compact models, 
such as the Berkeley Short-channel IGFET Model (BSIM) [1, 2]  
uses physics-based equations or semi-empirical equations to 
model complex device phenomena. Developing accurate and 
computationally efficient formulas has become more and more 
challenging for advanced and emerging devices due to their 
complex physical effects such as quantum effect, and short 
channel effect [3].  

Neural network/machine learning-based compact device 
models have gained much interest due to the potential to model 
complex device physics with high efficiency accurately. Several 
neural network-based compact models have been proposed and 
demonstrated the ability to accurately model the IV and CV 
characteristics, including geometry dependence or variability [4-
11]. However, after implementation in Verilog-A, the NN 
models have often shown inferior simulation speed compared to 
conventional compact models [4-6]. This lack is typically 
attributed to the unavailability of matrix multiplication functions 
in Verilog-A and implementation in C has been suggested as a 
remedy. In this study, we show, by contrast, that a substantial 
speed increase over conventional compact models can be 
achieved with Verilog-A code itself, simply by avoiding loops 
and arrays. Indeed, a speed boost as much as ~40X is 
demonstrated. 

II. MODEL FRAMEWORK 

    BSIM-NN consists of complete IV and QV networks which 
are trained with the measured/generated IV and CV 
characteristics with all terminal currents (ID, IG …) and charges 
(QG, QS, QD). In this work, the training and testing data are 
generated by a calibrated BSIM-CMG model card [4]. The 
geometry dependence (L, W, EOT …) is included in the 
training. The network structures and loss functions are shown 
in Fig. 1. For the IV network, the outputs are the transform of 
ID and IG by (1) and (2) so that the range of the data is easier to 
learn [4]. Second derivatives are included in loss functions (3) 
to improve accuracy [4, 5]. 
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For the QV network, the outputs are the terminal charges (4). 

1,2,3 G,S,D ,y Q=
                                   (4) 

The coefficients a-f are used to adjust the contribution of each 
term. We use an iterative training method to fine-tune the 
coefficients so that the magnitude of each term will be similar. 
During the training, we first set b-f to 0 and only trained with a. 
After that, we use the trained weights and biases to train the 
second time by setting b to be non-zero and so on. For each 
training, the magnitude of the new loss should be tuned to be 
comparable to the previous loss. Furthermore, for the QV loss 
function (5), an offset term (QG,S,D0) is introduced [10] to 
overcome the charge shift problem when training with only the 
capacitance data reported in [6]. QG,S,D0 are the charges at 
VGS=VDS=0V which can be set using physical estimation. 
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    In this study, the number of hidden layers is fixed to 2. In 
addition to the network structure, the form of the activation 
function is also an important contributor to NN performance. 
Three functions are examined in this work: sigmoid, tanh, and 

ISRU (
2/ 1x x+ ). Then, networks with these different 

activation functions are trained with 10 neurons in each hidden 
layer. The trained models are automatically coded into Verilog-
A with a Python code that we developed. The weights, biases, 
and matrix multiplications are coded into direct multiplications 
element-by-element without using any array and loop in 
Verilog-A as shown in Fig. 1. This implementation style 
increases the SPICE simulation speed since the array and loop 
are inefficient in Verilog-A (Table I, Fig. 4-8). Fig. 2 & 3 show 
the fitting results of IV and CV characteristics with randomly 
selected bias, L, W, and EOT. We can achieve high accuracy 
with just 2 hidden layers and 10 neurons/hidden layers. 
Furthermore, the comparison of different activation functions 
using a 17-stage ring oscillator is summarized in Table I. All 
these NN models show a significant speed boost and similar 
iteration numbers compared to Verilog-A BSIM-CMG. Among 
the three activation functions, ISRU performs the best due to its 
simpler form and the lack of using an exponential function. A 
test result using loops for matrix multiplication is also shown 
and is much slower than direct multiplications. The number of 
multiplications and nonlinear functions in a two hidden-layer 
and 10 neurons/hidden-layer network should not be larger than 
the BSIM-CMG. However, the loop implementation result is 
slower than BSIM-CMG, confirming that direct multiplication 
is a more efficient approach in Verilog-A. In the following tests, 
ISRU is the activation function, and more comparisons between 
the implementations and network structures are presented.  

 

 

 

Table. I. Comparison of BSIM-CMG and NN models with different activation 
functions using a 17-stage ring oscillator for 50 ns. 

 

Fig. 2. The fitting results of IV characteristics of BSIM-NN. The symbols are 
the testing data and the lines are the model. 

 

 
Fig. 1. The schematic diagram of the NN FET model, the loss function, and the Verilog-A implementation. The compact model has both IV and QV networks. 

The loss function includes up to second derivatives of outputs (y) and it can be adjusted by tuning the weights (a-f) of each term. Our implementation uses 

direct multiplication instead of loops. 



 

Fig. 3. The fitting results of CV characteristics of BSIM-NN. The symbols are 
the testing data and the lines are the model. 

 

 

Fig. 4. Simulation of a 1001-stage NAND oscillator using BSIM-CMG and 
BSIM-NN. 

 

III. CIRCUIT SIMULATION AND BENCHMARK 

To demonstrate the model's robustness, several different circuits 
are tested. Fig. 4 shows the simulation result for a 1001-stage 
NAND oscillator compared to Verilog-A BSIM-CMG. The 
model is accurate with no convergence issues in larger circuits. 
Other circuits such as 16-bit full adder (Fig. 5) are also tested 
where results match BSIM-CMG well. In the above circuit, the 
BSIM-NN shows up to 30 times speed boost with our 
implementation. The loop implementations are slower in all of 
these cases. 

 

 

Fig. 5. Simulation of the 2nd bit in a 16-bit full adder using BSIM-CMG and 
BSIM-NN. 

 

Fig. 6. The total simulation time of NAND oscillators from 25K+1 to 100K+1 
stages. We test BSIM-CMG and NN models with different neuron numbers in 
the hidden layers. 

 

Fig. 7. The simulation time per iteration of NAND oscillators from 25K+1 to 
100K+1 stages. We test BSIM-CMG and NN models with different neuron 
numbers in the hidden layers.  



 

Fig. 8. The speed comparison of  NN models with ISRU and tanh activation 
functions using NAND oscillators. 10, 100, and 150 are the neurons/hidden 
layers.  

 

To examine the impact of the structure of NN models, we 
trained 7 different NN models with different numbers of 
neurons/hidden layers. They have 10, 20, 30, 40, 50, 100, and 
150 neurons/hidden-layer in each network. An additional 
network with 10 neurons/hidden layers implemented with loop 
implementation is also tested (hollow symbol). These models 
and BSIM-CMG are used to simulate NAND oscillators from 
25K+1 stages to 100K+1 stages. The testing result of total 
simulation time and time per iteration is shown in Fig. 6 & 7. All 
networks are faster than BSIM-CMG, and the smallest network 
is about 40 times faster in these large circuit simulations with 
comparable accuracy. Although in some cases, loop 
implementation can be faster than BSIM-CMG, it is still much 
slower than direct multiplications. Therefore, the Verilog-A NN 
models should be implemented with the direct multiplication 
approach. The test results suggest the potential of scaling NN 
models when more inputs come in. Importantly, for larger 
circuits, even the loop implementation is faster than BSIM-
CMG, indicating that NN models’ speed advantage increases in 
the more important case which is larger circuits (Fig. 4-7). Our 
tests also show that there is still some speed improvement for 
the networks with neurons greater than 100. This indicates the 
possibility of using a larger number of neurons to include more 
device parameters, biases, and temperature in the inputs and 
improve accuracy. Unlike standard models, all parameters are 
hard-coded, the NN models have the flexibility to choose a faster 
speed or more input parameters. 

Finally, a test between models using ISRU and tanh with 10, 
100, and 150 neurons/hidden layers is shown in Fig. 8. For all 
circuits, large and small, ISRU performs better than tanh. 

 

IV. CONCLUSION 

The number of transistors in integrated circuits is increasing 
rapidly, starting to exceed well beyond 100 billion. The time of 

simulation for such gigantic systems is poised to become a 
significant bottleneck. This work shows a pathway towards 
increasing simulation speed by as much as 40X by using neural 
networks while maintaining the ease and familiarity of Verilog-
A implementation. 
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