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Abstract:  

Shifting energy consumption into times when renewable energy is abundant can increase 

renewable integration and reduce greenhouse gas emissions. As large energy users with flexibility 

in their operations, water and wastewater utilities can participate in this type of energy demand 

management. However, the primary goal of the water sector is to provide clean, safe, and adequate 

drinking water and protect human health and the environment by treating wastewater to 

appropriate standards. Water or wastewater treatment and delivery systems are both complex, 

with their own operational challenges; optimizing energy use must not interfere with the system's 

primary goals. In this dissertation, I present research focused on exploring techniques that allow 

water and wastewater utilities to perform energy demand management while still prioritizing key 

operation performance metrics such as water quality or system reliability. I also leverage data 

analytics, machine learning, and visualization to allow users, including water and wastewater utility 

optimizers, to better characterize and improve optimization problem formulations and methods.  

The first investigation focuses on testing load shifting strategies at a full-scale wastewater 

treatment plant to participate as a demand resource.  During these test events, the facility shifted 

energy load by modifying select operations with little to no impact on water quality. A cost-benefit 

analysis showed that the facility achieved cost savings of up to 4.8% by participating in the proxy 

demand response program, which allows users to bid on the California Wholesale energy market. 

From this case study, we identified two main barriers to wastewater utilities participating as a 

demand resource: the difficulty of correctly timing energy reductions to demand response periods 

and the inability of the standard baseline methodology to measure demand reduction for this 

complex system.   

In the second research effort, we present a new optimization problem formulation for the water 

distribution system pump optimization problem: secondary time-based controls. This proposed 
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pump control uses a hierarchal structure to allow utilities to prioritize maintaining sufficient water 

reserves while responding to time-based energy incentives. The formulation was tested on three 

case studies and compared to two baseline pump control decision variable representations. A 

Monte Carlo sensitivity analysis was also conducted to determine the robustness of the control 

structures to uncertain water demands. Results show that this formulation similarly or further 

reduces energy costs than the two benchmark decision variable formulations without reducing 

average storage or violating operational constraints. In addition, the secondary time-based controls 

more consistently maintain water reserves and prevent constraint violations with uncertain 

demands, allowing water utilities to more comfortably manage energy demand to support 

renewable energy growth.  

In the final study, we developed a visual analytic framework that characterizes the optimization 

fitness landscape to help users improve the optimization problem formulation and search 

efficiency. We also present a corresponding optimization method that guides the optimization using 

similar interpretable machine learning methods. Both the framework and optimization method 

were designed for use in the water distribution pump operation problem, but many of the analytic 

and visualization techniques could be applied to a broad range of complex optimization 

applications. We used the framework to examine the differences in fitness landscape between two 

different decision variable problem formulations on a benchmark water distribution system. We 

then tested the performance of several existing heuristic optimization methods either with or 

without guidance from the visual analytic framework and compared them to the proposed 

optimization method. The existing methods informed by the visual analytic framework and the new 

optimization method showed improvement over standard optimization.   
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1 Chapter 1: Introduction  

With growing concerns over global warming and climate change, renewable energy generation 

is projected to increase significantly (International Energy Agency, 2019). However, rises in solar 

and wind generation have caused new institutional (Verzijlbergh et al., 2017) and technical (Liang, 

2017) challenges for energy systems because these sources are intermittent, variable, and non-

dispatchable. Integrating solar is especially challenging because its generation capacity decreases at 

the end of the day when energy demands increase (Badakhshan et al., 2019).  As a compounding 

factor, large-scale energy storage is presently infeasible, so energy typically must be consumed 

shortly after its produced (Aneke and Wang, 2016).  

One strategy that energy utilities can employ to mitigate these operational issues and increase 

the use of renewable energy is to incentivize customers to change the timing of their energy 

consumption using time-based pricing mechanisms (Palensky and Dietrich, 2011). Response to 

time-of-use (TOU) rates, demand response programs, or dynamic energy markets can smoothen the 

net load provided by dispatchable energy sources, alleviating stress on existing systems (Siano, 

2014). Additionally, by shifting energy consumption into the times of day when renewable sources 

are abundant, renewable integration can increase, and greenhouse gas emissions can decrease 

(Paterakis et al., 2017).  

As large energy users, the water sector has a significant opportunity to participate as energy 

demand resources through energy management. Water utilities’ energy consumption accounts for 

approximately 4 % of global energy use (Kenway et al., 2019). Additionally, energy can account for 

33 - 82 % of water and wastewater utilities' non-labor operating costs (Limaye and Jaywant, 2019). 

Participating in time-based pricing market mechanisms can both reduce costs for the facility and 

increase renewable integration for the energy sector. Water and wastewater systems also have 

several sources of operational flexibility that can be used to shift energy use, including water and 
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wastewater storage facilities (Lekov et al., 2009; Santhosh et al., 2014), excess system capacity 

(Oslen et al., 2012), and potential energy generation sources such as in-line turbines in water 

distribution systems (Williams, 1996) or cogeneration facilities at wastewater treatment plants 

(Schäfer et al., 2015). 

At the same time, data is becoming increasingly available in both the water (Eggimann et al., 

2017) and energy sectors (Zhou et al., 2016) with developments in sensors, increased 

instrumentation, and the expansion of the internet of things. Parallel advances in computing have 

increased opportunities to leverage this data to optimize water (Garrido-Baserba et al., 2020) and 

energy (Zhou et al., 2016) systems from both individual and interconnected water-energy nexus 

perspectives (Hamiche et al., 2016). Advances in visualization and interactive optimization can also 

aid in solving optimization problems for these types of complex multifactored systems (David et al., 

2015).  

Despite these opportunities and advancements, optimization and control of water and 

wastewater systems is challenging. These systems are often large and complex, with multifactored 

operational constraints and objectives.  The primary purpose of water utilities is to provide safe 

and reliable drinking water, and wastewater treatment facilities must protect human health and the 

environment by ensuring their effluent meets the appropriate standards. Optimizing energy use 

cannot be at the expense of the principal goals of these systems.   

In this dissertation, I present translational research focused on enabling water and wastewater 

utilities to perform energy demand management while still prioritizing key operation performance 

metrics such as water quality or system reliability. I also employ data analytics, machine learning, 

and visualization techniques to better characterize and improve optimization problem formulations 

and methods, specifically focused on optimizing water systems for energy demand management. 
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1.1 Dissertation Content and Structure  

The remainder of this document is organized into the following chapters:  

• Chapter 2 investigates the use of several operational strategies to participate as a demand 

resource at a full-scale wastewater treatment plant through test demand response events, 

analyzing the impacts on water quality, and performing a cost-benefit analysis.   

• Chapter 3 presents a novel optimization problem formulation for the water distribution 

system pump optimization problem, secondary time-based controls, which allows utilities 

to maintain water reserves and operational system performance while responding to time-

based energy incentives.  

• Chapter 4 expands on the work presented in Chapter 3 by developing a visual analytic 

framework designed to improve optimization problem formulation and search efficiency by 

characterizing the optimization fitness landscape, specifically focusing on the water 

distribution pump operation optimization problem. A corresponding optimization method 

that incorporates fitness landscape characterization techniques and machine learning into 

the search algorithm, the decision-tree guided genetic algorithm, is also presented.   

• Chapter 5 discusses the major contributions and conclusions of the research presented in 

this dissertation and provides suggestions for additional research to promote energy 

demand management in the water sector.   

This introduction discusses the broader context which informs, motivates, and connects the 

individual research projects. Chapters 2-4 also contain their own abstract and introduction with 

additional context and background specific to each investigation. 
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2 Chapter 2: Load shifting at wastewater treatment plants: a case study for 
participating as an energy demand resource 

2.1 Abstract  

Energy load shifting can allow for increased renewable energy integration and reduced 

greenhouse gas intensity of the electricity grid. Recent research has demonstrated that wastewater 

treatment plants have considerable potential to shift energy loads and act as energy demand 

resources due to their energetic flexibility and energy production capacity. This paper investigates 

a wastewater treatment plant in Santa Rosa, California, participating as a demand resource on the 

wholesale energy market through the proxy demand resource program. Test demand response 

events showed that the facility was able to shift its energy load by modifying select operations 

without impacting wastewater effluent quality. A cost-benefit analysis based on projected program 

participation and the results from the test events, estimates that the Santa Rosa wastewater 

treatment plant could achieve up to 4.8% energy cost savings through the proxy demand resource 

program. Two main issues were identified from the test events: (1) the difficulty of correctly timing 

demand reduction periods and (2) the inaccuracy of using standard baseline methods to measure 

the energy load reduction. As a supplement to the case study, this paper also presents a roadmap 

outlining the technology necessary for wastewater treatment plants to participate in demand 

resource programs through energy load shifting. The roadmap identifies key instrumentation and 

automation infrastructure, and assets that can be utilized to provide energetic flexibility; it also 

recommends additional infrastructure that can stabilize energy loads and enhance controlled 

energy load shifting.  
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2.2 Introduction  

Rising concerns over global warming and climate change have resulted in aggressive 

commitments to renewable energy integration in order to reduce the energy sector’s greenhouse 

gas intensity. California has committed to 60 % renewable energy integration by 2030 and 100 % 

clean energy by 2045 (De León, 2018). Europe has similarly committed to 45 % renewable 

integration by 2030 (European Commission, 2014) and carbon neutrality by 2050 (European 

Commission, 2011).  

However, renewable energy integration has caused new operational challenges for energy 

systems, particularly when integrating wind and solar due to their intermittent, variable, and non-

dispatchable nature (Liang, 2017). These challenges are compounded by the fact that large scale 

energy storage is currently limited; most energy produced must be consumed immediately (Aneke 

and Wang, 2016). Renewable energy generation leaves increasingly substantial temporal gaps; in 

order to meet customer demand, energy providers must fill these gaps with dispatchable energy 

sources such as hydropower, geothermal, natural gas, and coal (Verzijlbergh et al., 2017). 

Energy utilities help mitigate these operational issues by incentivizing customers to manage 

their energy use at particular time periods (Palensky and Dietrich, 2011). Customers can act as 

demand resources by reducing energy during the times of day when demand for dispatchable 

resources is the greatest or when the grid is most unbalanced (Siano, 2014). Furthermore, if energy 

users can shift energy loads into the times of day when renewable generation is readily available, 

they can increase renewable integration and reduce greenhouse gas emissions (Paterakis et al., 

2017). Customers who are energetically flexible (i.e., can more significantly shift their energy load) 

are well suited to act as demand resources (Lund et al., 2015).  

Energy utilities use several different time-based pricing mechanisms to promote demand-side 

management (Zhang and Li, 2012). Static time-of-use (TOU) rate structures based on historical 
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energy load patterns encourage customers to avoid using energy during historical peak usage 

hours. Demand response programs motivate customers by sending day-ahead requests to reduce 

load during either times of peak energy use or times that will improve the reliability of the grid. 

Some energy users can also access dynamic energy markets, either through energy utility programs 

or directly, which charge customers real-time energy prices based on the locational needs of the 

grid. 

As large energy users, wastewater treatment plants (WWTPs) have a significant opportunity to 

participate as energy demand resources through energy management. In China, the United States, 

and Germany, WWTPs account for 0.3 %, 0.6 %, and 0.7 % of total energy consumption, 

respectively (Wang et al., 2016).  In California, WWTPs make up nearly 0.8 % (GEI 

Consultants/Navigant Consulting Inc., 2010). Additionally, WWTPs have the potential to increase 

their energetic flexibility by cogenerating energy as a byproduct of their treatment processes 

(Schäfer et al., 2017). Depending on the size of the WWTP, energy accounts for approximately 25–

40 % of operating costs (Panepinto et al., 2016). Participating in time-based pricing market 

mechanisms may help reduce these costs for the facility and increase renewable integration for the 

energy sector.  

Wastewater treatment plants are complex systems that utilize physical, chemical, and biological 

treatment processes. Effluent water quality standards are met through primary, secondary, and 

optional advanced treatment. The energy requirements for primary treatment, which are largely 

driven by pumping, are low compared to secondary treatment, which must maintain microbial 

health often using energy-intensive aeration (Plappally and Lienhard, 2012).  Advanced treatment 

processes, used for sensitive receiving waters, generally have a higher energy intensity than 

primary and secondary treatment processes (Wakeel et al., 2016). Energy consumption at 

wastewater plants is positively correlated pollutant loading (Gu et al., 2017). Both energy and 

loading vary seasonally and diurnally, with typically higher loads in the summer and daily peaks in 
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the late morning and early evening (Thompson et al., 2008). Previous research has explored 

modeling wastewater systems to predict effluent quality (Gernaey et al., 2004) and energy 

consumption (Mannina et al., 2019) based on influent parameters.   

Energy research at WWTPs has typically focused on increasing energy efficiency  or optimizing 

energy production (Maktabifard et al., 2018). However, recent investigations have begun evaluating 

operations based on time-based energy tariffs (Aymerich et al., 2015), as well as analyzing WWTPs’ 

potential as energy demand resources (Seier and Schebek, 2017) and predicting the impacts of load 

shifting on treatment performance (Giberti et al., 2019). Several studies have identified the primary 

wastewater treatment processes that can provide energetic flexibility; Table 1 summarizes these 

processes and their related requirements and concerns.  

Anaerobic digester operations are of particular interest for load shifting because of their 

potential for energy generation (Kirchem et al., 2018). The digester gas, supplemented with natural 

gas, can be used to generate electricity using combined heat and power engines (CHPs). WWTPs 

can shift CHP operations to generate energy during different periods, offsetting energy usage from 

the grid (Schäfer et al., 2015). Operators can also adjust the schedule of the heat pumps that 

maintain digester temperature. When heat pumps are off for less than 24 hours, insulated digester 

tanks lose no more than 1° C,  with minimal impacts on final effluent quality (Schäfer et al., 2017). 

For sites where landfill leachate is being co-treated, there is the potential for additional energy 

generation using anaerobic digestion (Zairi et al., 2014) or microbial fuel cells (Greenman et al., 

2009).  

Aeration blower operations have also been targeted for load shifting due to their high energy 

use; however, operational shifts may degrade final water quality (Thompson et al., 2010). Facilities 

may be able to mitigate the effects of intermittent aeration on water quality with strict control 

parameters and monitoring oxygenation levels (Schäfer, 2019) or by over oxygenating wastewater 
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(Thompson et al., 2008). Sludge dewatering also consumes a large amount of energy. During 

dewatering centrifuge operation can be modified to perform load shifting;  however, this may be 

restricted by site-specific requirements to operate in non-interruptible operation mode (Schäfer et 

al., 2017). 

Table 1: Previous Research on Wastewater Treatment Process Energetic Flexibility 

Treatment Process Studies Requirements Concerns 

Combined heat and 
power generation 
(CHP) 

(Schäfer, 2019; Schäfer et 
al., 2017, 2015; Seier and 
Schebek, 2017) 

Digester (anaerobic 
preferred to aerobic), 
gas storage, and CHP 
units.  

- 

Digester heat pump 
operations 

 (Schäfer, 2019; Schäfer et 
al., 2017) 

Digester (anaerobic 
preferred to aerobic).  

- 

Transport Pump 
operations 

(Aghajanzadeh et al., 2015; 
Oslen et al., 2012; Schäfer, 
2019; Thompson et al., 
2010)  

Storage facilities to 
hold wastewater 
while pumps are not 
operating.  

Further research is needed 
on the effects on effluent 
quality. 

Aeration blower 
operations 

(Aghajanzadeh et al., 2015; 
Giberti et al., 2019; Oslen 
et al., 2012; Schäfer, 2019; 
Thompson et al., 2010)  

Blower equipment 
must allow for 
intermittent 
operations. Not all 
blowers operate non-
constantly. 

Intermittent blower 
operations can affect 
effluent quality. Researched 
and what controls or 
techniques might mitigate 
these effects. 

Excess capacity  (Oslen et al., 2012)  Requires oversized 
facilities. 

Further research is needed 
on the effects on effluent 
quality. 

Centrifuge – sludge 
dewatering 

(Oslen et al., 2012; Schäfer, 
2019; Schäfer et al., 2017; 
Thompson et al., 2010) 

Restricted by site-
specific conditions.   

- 

Landfill leachate co-
treatment 

(Greenman et al., 2009; 
Zairi et al., 2014) 

Digester, gas storage 
and CHP units or 
microbial fuel cell 
infrastructure 

Research into generating 
energy using landfill 
leachate for microbial fuel 
cells is in its early stage.  

 

If WWTPs have sufficient storage to retain wastewater temporarily, they can also use 

wastewater transport pumps for energy load shifting (Lekov et al., 2009). However, additional 

research is needed to understand the effects of intermittent pump operations on treatment efficacy 

(Kirchem et al., 2018). Excess facility capacity, in general, has been identified as an area that can 
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increase energetic flexibility. If additional capacity exists in either the facility or the sewer system 

before the wastewater enters the facility, operators can delay wastewater treatment operations and 

shift energy loads (Oslen et al., 2012). However, depending on the level of additional capacity and 

projected facility requirements, operators may hesitate to use excess capacity for this purpose 

(Aghajanzadeh et al., 2015).  

A WWTP’s level of automation can also significantly impact how effectively the facility can load 

shift operations (Lekov et al., 2009). Load shifting at manually operated facilities may require 

process control adjustments staff cannot adequately or easily provide.  

Despite WWTPs’ potential as demand resources, there are concerns that shifting operations 

could affect effluent quality (Burton and Stern, 1993). The primary goal of WWTPs is to treat 

wastewater to safe levels based on effluent use or discharge location; optimizing energy use must 

not interfere with the efficacy of treatment processes. Many of the biological treatment processes 

work best under steady conditions (LaGrega and Keenan, 1974). Therefore, definitive research is 

required for WWTPs to be willing to implement load shifting strategies that involve treatment 

processes. Research on full-scale WWTPs has been limited, with the majority of investigations 

analyzing flexibility by exploring existing operational data, focusing on the intermittent operation 

of pumps, blowers, and CHP units.  Although several studies mention the potential to use excess 

capacity for load shifting, to the author’s knowledge, no study has tested its implementation or 

impacts on wastewater quality. Furthermore, previous research has focused on the WWTP’s ability 

to reduce energy and has not directly investigated participation in energy demand response 

programs. Additional research in this area can identify general technology and infrastructure 

requirements and determine any systematic barriers that current demand response programs may 

present to WWTP participation.  
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This study seeks to fill these gaps by testing three load shifting strategies with limited impact to 

wastewater treatment operations on a full-scale wastewater treatment system: (1) shifting the 

timing of CHPs for energy generation, (2) diverting flow equalization basins to reduce system-wide 

energy use, and (3) discharging an onsite battery. The primary objectives of this study are to use 

trial demand response events to examine how effectively the WWTP can participate in the demand 

response program, analyze the effects of flow diversion on wastewater operations and effluent 

quality, and use the trial event results to build a participation model and perform a cost-benefit 

analysis according to an existing demand response program. A supplementary goal of the study is 

to provide a roadmap for other WWTPs interested in participating as an energy demand resource.  

2.3 Methods and Approach  

This case study examines the ability of the Laguna Wastewater Treatment Plant, located in 

Santa Rosa, California, to shift energy loads based on price incentives from a demand response 

program.  

2.3.1 The California Energy Landscape 

The California Independent System Operator (CAISO) manages the statewide energy grid using 

a wholesale energy market, which promotes the purchase and sale of energy through locational 

marginal prices (LMPs); energy is bought and sold at real-time energy prices based on the 

locational value of energy. The three largest investor-owned utilities (IOUs) that participate in the 

CAISO market are Pacific Gas and Electric (PG&E), San Diego Gas and Electric, and Southern 

California Edison. Combined, these IOUs provide energy to nearly three-quarters of California 

customers. These IOUs, as well as the CAISO itself, have developed various time-based energy 

programs to promote energy demand response (Table 2). Each of these programs is designed to 

leverage specific customers and mitigate different operational issues of the grid. The programs 
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reduce energy through two methods: either the energy provider uses devices to automatically turn 

off energy or reduce its use or the users change their energy use to meet promised reductions.  

Table 2: Demand Response Programs offered by the California Independent System Operator and the 
associated Investor Owned Utilities 
Energy Provider Demand Response Programs Control Type 
California Independent System 
Operator  

Proxy Demand Resource User-controlled 
Proxy Demand Resource - Load Shifting 

 
User-controlled 

Reliability Demand Response Resource User-controlled 
Pacific Gas & Electric Peak day Pricing User-controlled 

Base Interruptible Program User-controlled 
Capacity Bidding Program User-controlled 
Optional Binding Mandatory Curtailment1 User-controlled 
Scheduled Load Reduction Program1 User-controlled 

Southern California Edison Agricultural and Pumping Interruptible 
 

Automatic 
Automated Demand Response Automatic 
Capacity Bidding Program User-controlled 
Critical Peak Pricing User-controlled 
Optional Binding Mandatory Curtailment User-controlled 
Agricultural and Pumping Real-time Pricing User-controlled 
Real-time Pricing User-controlled 
Scheduled Load Reduction Program User-controlled 
Summer Discount Plan for Businesses Automatic 
Time-of-Use Base Interruptible Program2 User-controlled 

San Diego Gas & Electricity  AC Saver (Summer Saver) Automatic 
Base interruptible Program User-Controlled 
Capacity Bidding Program User-Controlled 
Smart Thermostats  Automatic  

1 The program is full and currently unavailable for enrollment  
2 The program only allows annual enrollment in April.  
 

 

 

 

This study explores the Proxy Demand Resource (PDR) program managed by CAISO, a program 

that allows participants to bid into California’s day-ahead and real-time wholesale energy markets, 

providing energy “supply” by curtailing their load by a promised amount. The PDR program 

requires a minimum bid of 0.1 megawatts (MW) to participate; smaller loads can be aggregated. 

Once all bids are placed, CAISO determines which bids to accept and notifies the participants. For 

each participation day, a moving average is calculated from the most recent non-participation days 
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to use as a baseline load. Once the PDR event has concluded, the user’s metered data is compared to 

the calculated baseline to determine the amount of energy the user curtailed during the event. The 

final settlement amount is determined by multiplying the curtailed load by the LMPs for each 5-

minute interval of CAISO’s real-time wholesale energy market during the PDR event. Many other 

demand response programs evaluate energy reduction on a 15-minute or hourly interval. Note 

LMPs are used to determine revenue only when PDR participants supply energy; participants 

continue to pay their selected energy rate for consuming energy.   

The Laguna Wastewater treatment plant previously participated in another demand response 

program: PG&E’s Base Interruptible Program (BIP). This program requires participants to reduce 

their load below a pre-defined level when CAISO issues a day-of curtailment notice. PG&E provides 

a minimum of 30 minutes advance notice to participant and there are limits on the length and 

number of events that can be issued.  

2.3.2 Case Study Site Description  

The Laguna WWTP serves nearly 230,000 customers and treats an average daily flow of 66.2 

megaliters (ML) or 17.5 million gallons (MG) for recycled water reuse. Its wastewater undergoes 

primary, secondary, and tertiary treatment (see Figure 1). These treatment processes all consume 

energy and are within the scope of this study. Primary treatment includes screens, grit removal, and 

primary clarification. Secondary treatment includes aeration and secondary clarification. The 

sludge collected in the primary and secondary clarifiers is then sent to anaerobic digesters.  

Methane is captured from the anaerobic digesters and used for energy cogeneration by the four 

CHP engines. After anaerobic digestion, the sludge is dewatered and composted for agricultural use. 

Tertiary treatment includes coal filtering and ultraviolet disinfection. The treated water, now 

classified as recycled, is either used to irrigate agricultural lands and urban landscaping or 

recharges the steamfield feeding the Geysers geothermal energy production facility. Water not 
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reused for these purposes is discharged to surface waters during the allowable discharge period: 

October 1 through May 14. All discharges are regulated by the National Pollutant Discharge 

Elimination System (NDPES) permit through the State Water Resources Control Board.  

 

Figure 1. Laguna wastewater treatment plant treatment process diagram.  

When the Laguna WWTP is not shifting energy loads, its energy consumption typically oscillates 

between 3 - 5 megawatt hours (MWh) throughout the day, based on the energy needs of the system. 

Each CHP engine cogenerates approximately 1 MWh of energy, reducing the WWTP’s total energy 

requirements. PG&E provides the remaining energy to the Laguna WWTP from the California 

statewide grid.  

The Laguna WWTP used both existing infrastructure and upgraded facilities to increase its load 

shifting capability and perform demand response (see Table 3).  To reduce system-wide energy, the 

facility can divert wastewater flow, within certain operational limits, into two pre-existing 48.45 

ML (12.8 MG) flow equalization basins (FEBs). Additionally, in 2018, the Laguna WWTP retrofitted 

two pre-existing CHPs with selective catalytic reduction (SCR) emissions control units, allowing up 

to four units to operate simultaneously. At previous emissions levels, state air regulations only 

allowed one unit to run at a time, mixing digester gas with natural gas. Now the two CHPs with SCRs 

operate using natural gas, and the remaining two CHPs are fueled by pure digester gas.  
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Table 3: Assets at Laguna Wastewater Treatment Plant That Facilitate Energy Load Shifting 
Asset  Quantity Make and Model Size/Capacity 
Additional Infrastructure 
Selective Catalytic Reduction 
Emissions Control Unit  

2 Miratech1 NA 

Battery  1 Tesla 2 MW 
Outdoor Power Conversion 
System (Inverter) 

1 Parker 890GTB-2206 2200 kVA (480 AC); 60 Hz 

Existing Infrastructure 
Flow Equalization Basin 2 NA 48.45 ML (12.8 MG) 
Combined Heat and Power 
Engines 

2(of 4)2 Cummins QSK60G Maximum power output: 1100 kW; 
Power Factor: 0.89 

1 Custom-built Selective Catalytic Reduction Unit by Miratech.  
2 Only the two engines fitted with SCR emissions control units are utilized for load shifting. 

 

To further smoothen and control its energy load, the Laguna WWTP also installed several 

energy infrastructure assets onsite. It installed a 2-MW battery at its energy grid substation, 

allowing the WWTP to stabilize the energy load required by the electricity grid, and it installed an 

inverter to connect the battery and the grid, controlling the timing and rate at which the battery 

stores or releases energy. These assets facilitate rapid energy load reduction, easing the demand on 

the grid while maintaining the minimum energy required to sustain operations and adequate water 

quality.  

2.3.3 Demand Response Test Events  

From March to June 2019, the Laguna WWTP performed eighteen test events to determine how 

well it could participate as a demand resource in the PDR market. The facility conducted six trial 

runs for the following three operational modifications: 

• Scenario 1: run one of the CHPs fitted with an SCR emissions control to generate energy 

from natural gas, reducing energy by an estimated 1 MWh.  

• Scenario 2: divert flow to FEB to reduce system-wide energy use by an estimated 500 kWh.  

• Scenario 3: discharge a 2-MW battery to offset energy use by approximately 200 kWh.  
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For scenario 2, additional energy is required to pump the diverted flow in and out of the FEB; 

however, this pumping energy use is minimal compared to the system-wide reduction provided by 

flow diversion. Wastewater treatment operators determined the extent and timing of flow 

diversion that would minimally impact effluent quality based on previous experience with the FEBs. 

Since CHP operation has no impact on wastewater treatment processes, there were no constraints. 

These two assets were the only operations that Laguna WWTP was comfortable altering for energy 

load shifting.  

Supervisory control and data acquisition (SCADA) sensors and energy meters throughout the 

Laguna WWTP were used to collect time-series energy and flow data for the study duration.  Water 

quality parameters were recorded, and water quality tests were performed to measure the 

constituents of concern (COCs) regulated by the NDPES Permit. Measurements were then compared 

to maximum contaminant levels (MCLs) to ensure that operational modifications were not 

impacting water quality.  

Additionally, Laguna WWTP operators and program implementers were interviewed to identify 

opportunities and barriers to participation as a demand resource in the PDR program. A series of 

semi-structured telephonic and personal interviews were conducted during the planning and 

implementation phases and prior to the test events. The lessons learned from interviews and 

analysis of this case study were used to create a roadmap for other WWTPs to participate in similar 

demand resource programs.  

2.3.3.1 Baseline Energy Calculations   

To measure the energy load reduction for the demand response events, the energy load is 

compared to a calculated energy baseline. The PDR program uses the 10-in-10 baseline calculation 

methodology (CAISO, 2009). In this method, the calculated baseline, CBL, is determined for each 
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hour h, of the participation day d from the average energy consumption of the last n non-

participation days in a 45-day window: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑,ℎ =  
1
𝑛𝑛

 �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑−𝑛𝑛,ℎ       
𝑛𝑛

1

              (1) 

If there are fewer than ten non-participation days, a minimum of five days may be used; if there 

are fewer than five days, the participation days with the highest load during a demand response 

event may be used. Separate baselines are calculated for weekdays and weekends/holidays 

Additionally, on the day of participation, the raw CBL can be adjusted ±20 % using a same day 

adjustment multiplier:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑒𝑒𝑒𝑒 =
 ∑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑,ℎ

∑𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑,ℎ
    (2) 

 

The adjustment multiplier is calculated on the event day over the adjustment window: the four 

hours prior to the event, excluding the hour directly before demand response (CAISO, 2009).   

Figure 2 provides an example of the adjusted baseline calculation for a single day. The figure 

includes the raw baseline, actual energy load, final adjusted baseline, adjusted baseline limitations, 

and time period that the adjusted baseline multiplier was calculated within.  
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Figure 2. Example adjusted baseline calculation for a single day using the 10-in-10 baseline 
methodology.  

 

2.3.4 Projected Cost-Benefit Analysis  

A supplementary cost-benefit analysis was performed to estimate the potential revenue from 

participating in the PDR program. This analysis used historical five-minute interval energy load 

data from Laguna WWTP from May 2018 to October 2018 and corresponding CAISO real-time 

Locational Marginal Prices (CAISO, 2018a).  

Wastewater treatment operators projected that they would be most likely to participate in the 

PDR program during the dry season from May to October. Based on staffing restrictions, they 

anticipated bidding into the market once a day, Tuesday through Friday. They did not plan on 

participating during the wet season because of system constraints: the WWTP experiences higher 

and more variable flows that limit plant energetic flexibility and require additional staff oversight.  

For the analysis it was assumed the battery could fill any gap between the projected energy 

loads and actual energy produced during the PDR event. It was also assumed that PDR bid 

placement would be chosen to optimize revenue, and all bids placed would be accepted.  
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To determine the bid placement for each bid block size B, a rolling average of the day-ahead 

LMPs were taken for the bid period, and the bid placement with the maximum average price was 

selected as the bid start time. The cost was determined for 2-hour, 4-hour, and 6-hour bidding 

blocks:  

𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�
1
𝐵𝐵
�  𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑,ℎ+𝑗𝑗

𝐵𝐵−1

𝑗𝑗=0

�             (3) 

Once the bid placement was determined, projected PDR revenue was calculated by multiplying 

the curtailed load by real-time LMPs during the event bid period for each 5-minute interval I of the 

bid:   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑,𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑,𝑖𝑖          (4)
12𝐵𝐵

 𝑖𝑖−1

 

Finally, differences between the adjusted baseline and the actual energy load were calculated by 

transforming hourly adjusted baseline data into 5-minute interval data and comparing it to 

measured 5-minute interval data during the PDR event. For the Laguna system, this difference 

reflects the amount of supplemental energy the battery must provide:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑,𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑,𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑,𝑖𝑖         (5) 

Additionally, because participants in the PDR program still purchase electricity from their 

supplier at static TOU rates, changes in electricity costs due to participation in the PDR program 

were also included in the cost-benefit analysis.  

2.4 Results and Discussion  

2.4.1 Demand Response Test Events 

The daily time-series measurements for Scenarios 1, 2, and 3 are plotted in Figures 3, 4, and 5, 

respectively. For all three scenarios, energy and asset measurements show issues with correctly 
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timing the operational changes in order to participate in the PDR event. Additionally, each asset 

takes time to ramp up to the full energy offset capacity of the scenario. This delay affects the 

WWTP's ability to effectively meet its target energy load reductions. Issues with delays and 

ramping could be mitigated by iteratively analyzing SCADA data or employing WWTP models to 

improve the timing of operational modifications during future demand response events. 

There is also an observable variation between the actual energy load and the baseline energy 

load. The energy load profile is noisy, with large fluctuations occurring over short intervals. In 

contrast, the baseline methodology averages energy, significantly reducing noise in the energy 

baseline and making it difficult to measure how effectively the operational changes shift energy.  

 

Figure 3. Daily time-series energy consumption and generation profiles for Scenario 1 PDR test 
events.  

Despite the noise within the energy load, Scenario 1 test events demonstrate that turning on the 

CHP during the event period impacts the energy load profile (Figure 3).  
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Figure 4. Daily time-series energy consumption, flow, and power profiles for Scenario 2 PDR test 
events.  

In Figure 4, positive flows indicate the FEB is filling, and negative flows indicate it is draining. 

The first four trials show the operator ramping up the flow into the FEB slightly before the bid 

window and ramping down directly after the bid window. The timing of the flow diversion appears 

to be slightly offset from the timing of the energy load reduction. This is expected as energy 

consumption is reduced in treatment processes downstream from the FEB. Delays and ramping 

may be compounded by the energy requirements of pumping the diverted flow. For the final two 
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trials of Scenario 2, the flow diversion started significantly before the bid event, reducing energy 

before the bid window and therefore failing to meet the target energy reduction. 

 

Figure 5. Daily time-series energy consumption and power profiles for Scenario 3 PDR test events. 

Because of the fluctuations in the energy load profile, discharging the battery did not reliably 

allow the WWTP to meet the target energy load (Figure 5). The WWTP should, therefore, view 

battery discharge not as a stand-alone option but as a supplemental method for reducing the 

impacts of ramps and load fluctuations while implementing the other two load shifting scenarios.  

Figure 6 depicts the hourly difference between the actual energy load and the target energy 

load for each trial. The bar plots to the right show how many of the total trials were successful or 

partially successful for each scenario. Scenario 3 had the most fully successful days, however, 

because the noise in the energy load profile has a similar magnitude to the energy reduction 
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supplied by the battery, the success rate in this scenario is likely influenced by random noise. 

Scenario 1 had the most partially successful days, with only the final trial showing no success over 

the entire bid window. Scenario 2 showed a lower success rate, although it had higher success in 

late April when the flow diversion was more closely aligned to the bid window. Additionally, when 

hourly targets were not met in Scenario 2, the difference between the target and actual energy load 

was generally lower than in the other scenarios.  

 
Figure 6. Difference between target energy load and actual measured energy load for all scenarios.  

2.4.1.1 Water Quality Results  

Table 4 compares the maximum measured concentrations for COCs regulated at Laguna WWTP 

during the demand response testing period to the MCLs outlined in Laguna WWTP’s discharge 

permit (North Coast Regional Water Quality Control Board, 2013). The COCs that are regulated at 
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Laguna WWTP are biological oxygen demand (BOD), suspended solids, total coliform organisms 

and turbidity. Each COC’s concentrations are regulated over a given combination of three possible 

time frames: monthly averages, weekly averages or daily maximum levels. As shown in Table 4, all 

of the water quality parameters measured during the study were below the required MCLs for each 

regulated time interval. This result was anticipated because the study’s operational changes are 

within the WWTP’s standard operating procedures: CHP generation and battery operation are not 

linked to water quality, and while flow diversion can influence the water treatment process, it was 

implemented within limits that reduce its impacts.  

Table 4: Water Quality Results for PDR Facility during the PDR Test Event Study Period 

Constituent Unit 
Monthly Averageb Weekly Averagec Daily Maximum 

MCLa Max 
Measured 

MCLa Max 
Measured 

MCLa Max 
Measured 

BOD (20C, 5-day) mg/L 10 2 15 2 -- -- 

Suspended Solids 
 

mg/L 10 1.4 15 1.6 -- -- 

Total Coliform 
Organisms 

MPNe /100 mL -- -- 2.2f 2 23 g 7 

Turbidity NTU 2 0.84 -- -- 5h 1.48 

a Taken from NDPES Permit No. CA0022764  (State Water Resource Control Board, 2000) 

b The mean of all effluent samples collected in a calendar month. 
c The mean of all effluent samples collected in a calendar week, Sunday to Saturday. 
d The daily discharge (kg/day) is obtained from the following calculation of any calendar day:   2.2

𝑁𝑁
∑ 𝑄𝑄𝑖𝑖𝐶𝐶𝑖𝑖𝑁𝑁
𝑖𝑖  

Where N is the number of samples analyzed in any calendar day. Qi and Ci are the flow rate (ML/day) and the constituent 
concentration (mg/L), respectively, which are associated with each of the N grab samples which may be taken in any 
calendar day. If a composite sample is taken, Ci is the concentration measured in the composite sample; and Qi is the 
average flow rate occurring during the period over which samples are composited. 
e Most Probable Number 
f 7-day Median. The Median of all effluent samples collected in a 7-day period.  
g May not occur in more than one daily result, where the result is the geometric mean of the online channels.  
h Five NTU maximum not to be exceeded more than 5 percent of the time during any 24-hour period. 

 

2.4.1.2 Operator Interview Results   

Energy load shifting is not a typical part of wastewater operations. Laguna WWTP operators 

identified both barriers to implementation and opportunities for smoother integration of load 

shifting.  
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One of the main difficulties this facility encountered was navigating the design, permitting, and 

construction processes under the time constraints of grant funding. In particular, there were delays 

permitting the SCR units through the California Air Resources Board and processing the 

interconnection agreement with the energy utility. Delays for this project were compounded by the 

2017 wildfires in this region, which put unanticipated strains on regulatory agencies reacting to 

emergency conditions. Future implementations might proceed more smoothly within the 

framework of municipal capital infrastructure development programs. These programs provide 

time for both the WWTP’s administrative procedures and its established design and construction 

processes.  

Prior to implementation, WWTP operators voiced concerns over their fragmented 

understanding of the PDR program. Specifically, they were not clear on how baselines would be 

calculated and settlements would be determined. This uncertainty may have been heightened by 

the fact that the PDR program was recently updated, and procedures and requirements had 

changed (CAISO, 2018b). Operators wanted to either develop in-house expertise or contract private 

consultants to interpret the energy data and market information they need to make informed 

operational decisions. Additional IOU or ISO outreach to educate facilities about demand resource 

programs might increase WWTP participation.  

During the test events, operators identified several other difficulties. Although flow patterns are 

generally predictable, they are not predictable or controllable on an hourly basis. This variability 

made it difficult to forecast and adjust energy loads. The problem was compounded by issues with 

the same-day adjustment of the baseline. Flows in the morning are generally lower and, depending 

on the time of the bid, can affect the same-day baseline adjustment, limiting effective participation 

to later in the afternoon. Similarly, energy was reduced during the ramping periods for each 

scenario, and as a result of the same-day adjustment, the baseline was also reduced. In addition, 

operators found it difficult to achieve the smaller reduction targets (0.2-0.5 MW). Based on their 
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experiences with these test events, they believe it will be necessary to be conservative in their 

future energy load reduction bids.  

2.4.2 Cost-Benefit Analysis Based on PDR Participation Model 

Based on the results from the test events, it is estimated that Laguna WWTP could successfully 

participate in the PDR program if it were able to both improve the timing of the response to the bid 

and reduce the effects of ramping by discharging the battery at the appropriate time. The facility 

could reduce bid amounts to limit the risk of not meeting the promised reduction. The original bid 

amounts were used in this analysis to represent ideal participation levels.  

Table 5 summarizes the results of the cost-benefit analysis. Based on projected participation, it 

is estimated that the facility could save between $8,015 to $45,563 annually through the PDR 

program, depending on the length of the facility’s bid and which assets are used to load shift. It 

should be noted that these two strategies are independent of each other and can be combined for 

total savings up to $68,344. These savings include revenue from PDR participation and projected 

savings from shifting out of both peak and partial peak TOU pricing time periods. Given that the 

WWTP’s total cost of electricity for 2017 was approximately $1,400,000, these savings represent a 

reduction in energy costs ranging up to 4.8 %. If the WWTP could increase participation year-

round, it has the potential to achieve even larger cost reductions.  

Table 5: Yearly Cost-Benefit Analysis Based on Projected PDR Participation 
Event 

Length 
Operational Changes for 

Load Shifting Event 
Energy Load 

Shifted 
PDR 

Revenue 
TOU 

Savings1 Total Revenue 

2 hours Flow Diversion with FEB2 0.5 MWh $5,175.574 $2,839.6 $8,015.17 
 Run One CHP3 with SCR4 1. 0 MWh $10,351.15 $5,679.2 $16,030.35 

4 hours Flow Diversion with FEB2 0.5 MWh $11,270.31 $3,405.28 $14,675.59 
 Run One CHP3 with SCR4 1. 0 MWh $22,540.61 $6,810.56 $29,351.17 

6 hours Flow Diversion with FEB2 0.5 MWh $16,393.95 $6,387.68 $22,781.63 
 Run One CHP3 with SCR4 1. 0 MWh $32,787.9 $12,775.36 $45,563.26 

1Energy cost taken from PG&E Tariff E-20T 
2Flow Equalization Basin 
3Combined Heat and Power Engine 
4Selective Catalytic Reduction 
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Figure 7 presents the distribution of differences between the calculated adjusted baseline and 

the actual energy load at the 5-minute interval level that are used to determine financial 

settlements in the PDR program. If there is no difference, the adjusted baseline matches the actual 

energy load, meaning that the baseline correctly predicts the actual load and can be used to 

accurately determine curtailment. For most of the intervals, the adjusted baseline predicts the 

actual load reasonably well. However, there are several outlying data points that were as high as 

1.25 MWh above or as low as 1.09 MWh below the calculated adjusted baseline, revealing that the 

adjusted baseline can sometimes greatly mispredict the energy load of this WWTP. It is not clear to 

what extent the battery will be able to provide sufficient energy load or load curtailment during 

these outlying events. Personnel should continue testing the battery to determine its operational 

limits. If the battery cannot provide the necessary energy, the WWTP can reduce energy bids to 

ensure it can meet the promised load curtailment; however, this reduction would decrease the 

profitability of participating in the PDR program. 

 
Figure 7. The difference between the adjusted baseline and actual energy load at the 5-minute 
settlement level. These violin plots show the full distribution points. The widths of each plot are relative 
based on the number of points. The horizontal lines represent the 0.05, 0.25, 0 0.75 and 0.95 quantiles.  

Prior to the Laguna WWTP’s participation in the PDR program, the facility participated in  

PG&E’s BIP demand response program. From 2016 to 2018, the Laguna WWTP received an annual 
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average of $69,280 for its participation in BIP, or nearly 5 % of its annual electricity cost. Outside of 

regular audit events, the facility was only required to respond twice in those three years. The PDR 

program requires much more staff time and planned operational adjustments to achieve similar 

cost savings, suggesting the PDR program may not provide the financial incentives for complex 

industrial facilities such as Laguna WWTP to participate compared to the incentives of more 

traditional demand response programs. 

2.4.3 Roadmap for Wastewater Treatment Plants to Participate as Demand Resource 

As a part of this study, a roadmap was developed to guide WWTPs interested in participating as 

demand resources through energy load shifting (see Table 6). Three main requirements were 

identified for WWTPs to load shift to the standards needed to participate in typical demand 

resource programs: (1) instrumentation and automation infrastructure, (2) assets providing 

energetic flexibility, and (3) energy load stabilizing infrastructure.  

Table 6: Roadmap for WWTPs Performing Energy Load Shifting 
Requirements Recommended Assets  
Instrumentation/automation infrastructure Time series energy metering1 

SCADA control system 
SCADA measurement instrumentation 
Water quality measurement instrumentation  

Assets that can provide energetic flexibility Combined heat and power engines 
Digester heat pumps 
Flow Diversion using equalization basins  
Flow Pumps  
Aeration Blowers2 

Energy load stabilizing infrastructure Battery  
Power conditioning system 
Microgrid controller (interfaced with SCADA systems) 

1The PDR program requires 5-minute interval energy metering.  
2Additional research is needed regarding the intermittent operation of aeration blowers to determine its effects on 
effluent quality.  

 

At a minimum, demand resource programs require time-series energy metering to calculate 

baseline energy use and determine the amount of energy actually load shifted (CAISO, 2018b). 

Additional instrumentation, particularly automated control systems, can reduce user effort by 
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allowing remote optimization of operations. Without a certain level of automation, load shifting 

tasks may require excessive staff time (Schäfer et al., 2015). Additionally, water quality 

measurement instrumentation can confirm that load shifting operations are not affecting effluent 

quality (Aghajanzadeh et al., 2015).  

Similarly, to perform energy load shifting assets must be selected whose operations can be 

modified without deteriorating effluent quality. Most demand response programs require a 

minimum energy load shift for a minimum time period. Based on their site-specific requirements, 

WWTPs may choose to shift energy loads using one or a combination of several assets to meet the 

minimum requirements of a particular demand response program. 

 Adding infrastructure that can stabilize energy load also allows WWTPs to more accurately 

project bids, reducing the possibility of failure to meet their energy reduction commitments. 

WWTPs have variable energy load profiles that primarily depend on inflow and BOD loading. 

Building in the ability to use residually stored energy to more precisely alter their loads is an 

important component for WWTPs to participate in energy load shifting.  

Table 7 summarizes the requirements for participation in CAISO’s PDR program. This table 

serves only as an introduction to the program and should not be considered a comprehensive set of 

all processes. Full and current details are available directly from CAISO.  
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Table 7: Requirements for Participation in the Proxy Demand Resource Program 
Category Requirement 
Infrastructure requirements 
 

Energy metering – 5-minute interval data 
Telemetry with a rated capacity greater than or equal to 10 MW 

Minimum bidding requirements 100 kW minimum curtailment sustained for the duration of the bid 
(smaller loads may be aggregated to achieve the minimum) 

CAISO PDR process 
requirements1 
 
 
 
 
 

Execute a Demand Response Agreement  
Submit a new Demand Response Provider ID request  
Receive a Demand Response Provider ID  
Assign a certified Scheduling Coordinator 2 
Receive Demand Response Registration System access 
Submit contacts to the Demand Response Registration System 
Obtain a user guide for Demand Response Registration System 
training  
Submit performance evaluation forms  

1 Additional details provided in the CAISO Demand Response User Guide (CAISO, 2018b).  
2 A list of certified Scheduling Coordinators is maintained on the CAISO website (CAISO, 2018b). 

 

2.4.4 Study Limitations  

The results of the cost-benefit analysis are subject to several limitations. Assumptions were 

made regarding when and how Laguna WWTP could participate in the PDR program; if altered, 

these assumptions could either increase or decrease the fiscal impact of participation. It was also 

assumed that all bids placed into the PDR program would be accepted, but because PDR is a 

competitive market, some bids might not be accepted, which would reduce earnings. Additionally, 

the study does not consider increases in energy required to divert flow into FEBs and increases in 

natural gas required to run additional CHP units. The study also did not consider changes in energy 

use based on changes in various system parameters and impact energy use including flow or 

pollutant loading through the treatment plant. An analysis of prolonged participation in the PDR 

program would provide further insight into both the economic potential and how load shifting 

might increase energy and natural gas use.  

This case study used the PDR program’s predominant baseline calculation methodology to 

analyze the test events and create the cost-benefit model. It was observed in both analyses that, in 

some cases, the adjusted baseline and actual energy load differed significantly. Such discrepancies 
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lead to inaccurate calculations of the amount of load curtailed. For Laguna WWTP the impacts of 

these discrepancies may be mitigated by the onsite battery installed to stabilize energy load.  

2.4.5 Future Research 

In general, additional research should be performed to determine a baseline calculation method 

that accurately predicts energy load and improves curtailment evaluation. A more accurate baseline 

will allow WWTPs to more confidently determine the financial impacts of energy load shifting. The 

PDR program has recently added two new methodologies for calculating baselines for non-

residential customers: the weather matching baseline and the day matching baseline (CAISO, 

2018b). Additionally, research on alternative baseline calculation methods utilizing more advanced 

models such as exponential weighting (Wi et al., 2009), regression (Mohajeryami et al., 2017) or 

supervised (Chen et al., 2017) or unsupervised (Park et al., 2015) machine learning methods have 

shown improvements in predicting residential and commercial energy loads. These methods should 

be explored to determine whether they can accurately predict energy load at WWTPs or whether 

the calculation requires an entirely new method for WWTPs specifically. 

Future research should also address concerns regarding the capability of the WWTP to load 

shift itself. Researchers should continue exploring the impacts of load shifting on wastewater 

effluent quality, particularly for more sensitive energy-intensive components in biological 

treatment, such as aerators. Additionally, researchers should continue to explore how modeling and 

dynamic data can aid WWTPs in correctly timing and predicting the effects of the operational 

changes required for reducing energy.  

2.5 Conclusion  

WWTPs are energetically flexible facilities that energy grids can leverage as demand resources. 

This case study further illustrates that WWTPs are physically capable of shifting energy load with 

minimal or no impact on effluent quality and therefore, can reduce energy costs through 
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participation in demand resource programs. In this analysis, the BIP, a more traditional demand 

response program, was more cost-effective than PDR. However, the operational modifications that 

were explored can be used for any time-based incentive program, and the roadmap for WWTPs 

shifting energy loads and the summary of PDR requirements presented in this study are valuable 

resources for WWTPs interested in energy demand programs with time-based incentives.  

This study also identified several barriers that make demand resource programs less attractive 

to WWTPs. First, it is difficult for WWTPs to correctly time and account for the ramping associated 

with operational modifications to meet the target energy load. WWTPs can improve the timing of 

operational modifications by analyzing SCADA data or utilizing WWTP models. Second, the current 

baseline calculation method averages energy, making it difficult to measure the impacts of 

operational modifications on the energy load accurately. Research should explore applying 

alternative baseline methodologies to wastewater treatment facilities. Finally, the financial 

incentives may not be strong enough to warrant the staff time and interruptions to the treatment 

processes to make participating in certain programs worthwhile. If the energy sector would like to 

incentivize WWTP participation in energy load shifting, they should design programs that are more 

easily accessible for WWTPs and that provide appropriate financial incentives. 

Although further research will better enable WWTPs to shift energy loads and act as demand 

resources, there are already several assets operators can use with little or no concern for the 

negative effects on wastewater treatment processes. As renewable energy integration increases, the 

value of energetic flexibility in the energy market will likewise increase. As such, WWTPs should 

take advantage of opportunities they currently have to participate as demand resources and seek to 

expand those opportunities.  
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3 Chapter 3: Optimizing secondary time-based control structures to support 
renewable energy integration for water distribution systems 

Abstract:  

Shifting energy consumption to times when renewable energy is prevalent can allow for increased 

renewable energy integration and reduce greenhouse gas emissions from the electricity grid. As 

large energy users, water distribution utilities can participate in this type of energy demand 

management. Additionally, shifting rather than reducing pumping can help water utilities to 

decrease both costs and greenhouse gas emissions from energy consumption without sacrificing 

water reserves. Our study presents a new problem formulation for water distribution pump 

optimization: secondary time-based controls. This hierarchal pump control policy prioritizes 

maintaining water reserves but allows for energy load shifting to reduce costs under time-based 

energy incentives. We show this new control policy on three case studies of varying complexity and 

compare it to two benchmark pump control decision variable representations. In addition, a 

sensitivity analysis of the optimal policies using Monte Carlo simulation tests the robustness of the 

controls with uncertain water demands. Results show the proposed formulation reduces energy 

costs at similar or better levels than the two benchmark decision variable representations without 

reducing average water storage over the simulation period or violating system performance 

constraints. Additionally, the secondary time-based control policy better maintains water reserves 

and avoids violating system constraints with uncertain water demands. By shifting energy usage 

without depleting water reserves, water utilities can more comfortably manage energy demand and 

support the integration of renewable energy sources into the grid.  
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3.1 Introduction 

Renewable energy generation is projected to increase significantly with the expansion of solar 

and wind power (International Energy Agency, 2019). However, these generation sources vary with 

weather, season, and time of day, causing operational and physical challenges for integration 

(Verzijlbergh et al., 2017). Integrating solar is especially difficult because its capacity falls at the end 

of the day when energy demand peaks (Badakhshan et al., 2019). Energy suppliers can increase 

solar integration by promoting energy demand management, incentivizing customers to change 

their timing of energy consumption through time-based pricing such as time-of-use (TOU) rates, 

demand response programs, or dynamic energy markets (Palensky and Dietrich, 2011). As energy 

utilities strive to expand renewable integration, incentives have moved from focusing on energy 

efficiency to energy demand management.   

Water distribution systems (WDSs) have opportunities and incentives to optimize pumping 

operations to reduce energy costs. Water utilities consume about 4 % of global energy, with 

regional variations from  0.6 – 6.2 % (Kenway et al., 2019). Additionally, energy can account for 33 - 

82% of water utilities’ non-labor operating costs (Limaye and Jaywant, 2019), with pumping 

operations contributing to 85 % of energy costs (Sousa et al., 2016). Although energy drives costs at 

WDSs, there is generally a trade-off between energy reduction and two key reliability indicators: 

water storage levels and system pressure. WDSs must maintain sufficient water storage and 

minimum pressures to consistently meet customer and fire flow needs; reduced pumping generally 

decreases storage and system pressure. By shifting the timing of pump usage rather than reducing 

it, WDSs may more readily optimize costs to align with renewable energy generation with fewer 

impacts on system storage and pressure.   

However, optimizing pump operations is challenging. WDS optimization is a mixed-integer 

nonlinear problem, and its complexity is NP-hard (D’Ambrosio et al., 2015). Real-world systems can 

be large and intricate, and they must balance optimization goals against consistently meeting 
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customer demands. Extensive research exists on optimizing WDS pump operations (Mala-

Jetmarova et al., 2017). Several of these studies examine optimizing operations for different energy 

incentives that promote energy demand management, including TOU tariffs (Van Staden et al., 

2011), demand response programs (Liu et al., 2020; Menke et al., 2016), and dynamic energy prices 

(Kernan et al., 2017). Others have looked at optimizing to minimize GHG emissions directly (Menke 

et al., 2017; Stokes et al., 2015). While these studies explored how WDSs could respond to different 

pricing structures or GHG emission factors, additional opportunities exist to restructure 

optimization strategies so storage levels and pressures can be maintained while managing energy 

demands.  

When optimizing water systems, the problem formulation is key to method effectiveness and 

applicability (Maier et al., 2014).  Comparing different control structures or objective formulations 

can show the benefits and drawbacks of different problem framings (Quinn et al., 2017). Several 

different pump operating control strategies exist for WDS operation optimization and many 

variations on how these control strategies can be represented as decision variables. A summary of 

previous decision variable representations for pump operation optimization appears in Table 8. 

The formulations presented focus on controlling fixed pumps, but many can be amended to work 

on variable speed pumps.  

WDS operation optimization is typically formulated as a pump scheduling problem, where 

pumps are controlled explicitly by the time of day (Mala-Jetmarova et al., 2017). The most common 

decision variable representation is the status of each pump (on/off) for each time interval of the 

simulation (Mackle et al., 1995). Decision variables can be reformulated as pump start and end 

times (Bagirov et al., 2013), pump switching times (López-Ibáñez et al., 2008), or minimal 

equivalent pumps (Cimorelli et al., 2020) to reduce the size of the optimization search space. While 

explicit pump schedules can respond to time-based pricing structures directly, these control 

schemes depend highly on assumptions such as water demands and initial tank levels and need 
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frequent updating to be used in practice (Marchi et al., 2016). As a result, implementation of such 

optimized pump schedule policies has been minimal.  

In practice, water utilities base pump controls on system state measurements. A few studies 

have explored optimizing these system-based controls, including controlling pumps based on 

pressures, flows (Cembrano et al., 2000), or water storage levels (Paschke et al., 2001). Researchers 

also have explored optimizing several different pump operating schemes that adjust tank level 

controls as a function of time (Alvisi and Franchini, 2017; Marchi et al., 2016; Quintiliani and 

Creaco, 2019). These time-dependent tank trigger controls help maintain storage levels and 

pressure with uncertain water demands while allowing pumps to respond to time-based pricing 

structures. However, because these control structures decrease the distance between the tank on 

and off triggers during some time periods, they can significantly increase the number of pump 

switches, accelerating pump deterioration (Quintiliani and Creaco, 2019). Additionally, several of 

the more intricate control structures may require complex programmable logic controller (PLC) 

programs to be implemented.  

If operational requirements are not integrated into the optimization using system-based 

controls, they are often implemented as constraints. Storage reliability metrics can even be framed 

as a constraint (Kurek and Ostfeld, 2012). Although these constraints filter out broad performance 

issues, reducing energy costs is often prioritized over maintaining water supply. Another 

alternative is to use multiobjective optimization and include a reliability metric as an objective; this 

can help appropriately assess the trade-off between reliability and energy cost savings (Odan et al., 

2015). However, many WDS performance measures do not fit within a traditional minimization or 

maximization framework, including water storage and pressure (Ostfeld et al., 2002). For example, 

increasing water storage and pressures may cause water quality issues or increased leakage (Van 

Zyl and Clayton, 2007). Optimal controls should maintain similar water storage levels and 

pressures to the current controls designed by engineers or system operators.  
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Table 8: Water Distribution System Pump Operation Optimization Decision Variable Formulations for Fixed 
Pumps 

Decision Variables Formulation 
Type 

Variable 
Type 

Number of Decision 
Variables 

Reference 

Pump status (on/off) 
during each time period Pump schedule Binary 𝑛𝑛𝑃𝑃 ∙ 𝑛𝑛𝑡𝑡  

(Mackle et al., 
1995) 

Pump runtime during 
each time period Pump schedule 

Continuous/ 
discrete 

𝑛𝑛𝑃𝑃 ∙ 𝑛𝑛𝑡𝑡  
(Goldman and 
Mays, 1999) 

Pump on/off durations Pump schedule 
Continuous/ 

discrete 
𝑛𝑛𝑃𝑃 ∙ 𝑛𝑛𝑆𝑆𝑆𝑆 (López-Ibáñez et 

al., 2008) 

Pump on/off times Pump schedule 
Continuous/ 

discrete 
𝑛𝑛𝑃𝑃 ∙ 𝑛𝑛𝑆𝑆𝑆𝑆 (Bagirov et al., 

2013) 

Minimal equivalent pump 
status during each time 
period 

Pump schedule Binary 𝑛𝑛𝑡𝑡�log2�𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 − 1� + 1� (Cimorelli et al., 
2020) 

Tank level to trigger 
pump on/off Tank trigger 

Continuous/ 
discrete 

2 ∙ 𝑛𝑛𝑃𝑃  
(Paschke et al., 

2001; Van Zyl et 
al., 2004) 

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 , 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻  Tank trigger 
Continuous/ 

discrete 
2 ∙ 𝑛𝑛𝑃𝑃  (Marchi et al., 

2016) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜  during the 𝐿𝐿𝐿𝐿, 
𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜  during the 𝐻𝐻𝐻𝐻.  Tank trigger 

Continuous/ 
discrete 

2 ∙ 𝑛𝑛𝑃𝑃  

(Alvisi and 
Franchini, 2017; 

Housh and 
Salomons, 2018) 

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 , 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻 , distance 
from the 𝐻𝐻𝐻𝐻 start, 
distance from the 𝐻𝐻𝐻𝐻 end.  

Tank trigger 
Continuous/ 

discrete 
4 ∙ 𝑛𝑛𝑃𝑃  (Quintiliani and 

Creaco, 2019) 

Definitions: 
𝑛𝑛𝑡𝑡 = number of time periods within the simulation (time 

period is typically 1 hour)  
𝑛𝑛𝑃𝑃 = number of pumps to be optimized  
𝑛𝑛𝑆𝑆𝑆𝑆 = number of pump switches in a 24-hour cycle  
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  = Number of minimal equivalent pumps  

𝐿𝐿𝐿𝐿 = Low tariff time period  
𝐻𝐻𝐻𝐻 = High tariff time period  

 
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 = Tank level to trigger pump on for low tariff period 

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻  = Tank level to trigger pump off for high tariff period 

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜 = The endpoint for the variable tank level that 
triggers a pump on 

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = The endpoint for the variable tank level that 
triggers a pump off 

 

 

This work proposes a novel optimization formulation that adds and optimizes secondary time-

based controls to pre-established system-based controls. The hierarchal control structure can 

optimize energy costs while maintaining water levels and pressures and requires a minimal 

number of decision variables in a structure that can easily be implemented through PLC logic. This 

decision variable representation is supported by an amended set of network performance 
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constraints that allow WDSs to maintain system storage and pressures. The optimization 

formulation is tested on several WDS systems of varying size and complexity to analyze its 

performance in minimizing energy cost using a metaheuristic optimization method. We compared 

this formulation to two more common decision variable representations, versions of the pump 

schedule and tank trigger controls, testing all formulations with and without a novel tank 

constraint. As our final performance metric, we examined each formulation’s sensitivity to varying 

water demands to assess how uncertainty in demand forecasting affects the performance of these 

control structures. Water utilities can use this optimization formulation to shift energy usage 

without depleting storage reserves, supporting the integration of renewable energy sources in the 

grid through energy demand management. 

3.2 Methods 

3.2.1 Problem Formulation 

The proposed secondary time-based (STB) control structure formulation was developed to 

mimic the typical operating procedures of water distribution systems responding to TOU prices. 

This control structure retains the original fixed tank level controls formulated by water system 

operators to maintain proper system pressures and ensure water reserves. The control structure 

then adds secondary time-based controls (Figure 8) that can be optimized based on time-

dependent energy tariffs. The decision variables in this formulation are the times of day that the 

pump is triggered on or off in the second priority time-based rule. For each pump, 𝑝𝑝, for the given 

set of pumps to be optimized, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 , the pump control decision variables are:  

�𝑥𝑥𝑝𝑝,   𝑜𝑜𝑜𝑜,𝑥𝑥𝑝𝑝,   𝑜𝑜𝑜𝑜𝑜𝑜 �,    𝑥𝑥 ∈ [0,23] (1) 

Where 𝑥𝑥𝑝𝑝,𝑜𝑜𝑜𝑜 is the time of day to turn pump 𝑝𝑝 on, and 𝑥𝑥𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜 is the time of day to turn pump 𝑝𝑝 off.  

We compared the hierarchal STB control structure to two established optimization 

formulations: the status-time pump schedule (STPS) formulation, a reduced variable variation of 

the original pump schedule representation (Bagirov et al., 2013), and the tank trigger (TT) 
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representation (Van Zyl et al., 2004) (Figure 8). These decision variable formulations represent the 

two extremes of pump control structures: controls only dependent on time or dependent on system 

parameters. These formulations have fewer decision variables than many other control structure 

variations (see Table 8), with an optimization search space size comparable to the STB formulation.  

 
Figure 8. Pump Control Decision Variable Formulations. Illustrative depictions of (A) the 
proposed secondary time-based control structure, (B) the tank trigger control structure, and (C) the 
status-time pump schedule.  

 

For this study, slight alterations were made to the STPS formulation proposed in Bagirov et al. 

(2013). The optimization formulation initially specified the same number of pump switches for all 

pumps. We amended the formulation so that number of pump switches can be unique for each 

pump, allowing tanks to maintain different cycling rates. Additionally, the initial operating status 

was not treated as a decision variable, utilizing the initial pump status from the original EPANET 

model.  

3.2.1.1 Objective Value  

By responding to time varying energy prices designed to promote energy demand management, 

utilities can reduce costs and support renewable integration. For time varying energy prices, energy 
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costs are determined from the energy tariff and the energy consumption for each time interval over 

a specified duration. The amount of energy used by a pump depends on the pump head, flow, and 

efficiency. Time series hydraulic measurements, including pump flow and head, are determined for 

each pump schedule using the EPANET hydraulic simulator (Rossman et al., 2020), assuming 

specified water demand patterns and initial conditions. The Python package WNTR (Katherine A 

Klise et al., 2017; Katherine A. Klise et al., 2017) was used to integrate EPANET simulations into a 

simulation-optimization framework. For this study, we omitted water source or pump maintenance 

costs from the objective function. Such additional features can be added to the objective function if 

applicable. The objective function is the total pumping energy cost over the simulation period:  

minimize  𝐶𝐶𝐸𝐸 = �𝑅𝑅𝑡𝑡�𝒫𝒫𝑝𝑝,𝑡𝑡Δ𝑡𝑡
𝑛𝑛𝑡𝑡

𝑡𝑡=1

𝑛𝑛𝑝𝑝

𝑝𝑝=1

 =  �𝑅𝑅𝑡𝑡�
𝛾𝛾𝑄𝑄𝑝𝑝, 𝑡𝑡𝐻𝐻𝑝𝑝, 𝑡𝑡

𝜂𝜂𝑝𝑝
Δ𝑡𝑡

𝑛𝑛𝑡𝑡

𝑡𝑡=1

𝑛𝑛𝑝𝑝

𝑝𝑝=1

 (2) 

where 𝐶𝐶𝐸𝐸 is the total cost of energy for pumping, 𝑝𝑝 is the pump index, 𝑛𝑛𝑝𝑝 is the total number of 

pumps, 𝑡𝑡 is the time interval index, 𝑛𝑛𝑡𝑡 is the total number of time intervals, 𝑅𝑅𝑡𝑡 is the energy rate at 

time 𝑡𝑡, 𝒫𝒫𝑝𝑝,𝑡𝑡 is the power for pump 𝑝𝑝 at time interval 𝑡𝑡, γ is the specific weight of water, Qp,t is the 

flow in pump 𝑝𝑝 at time interval 𝑡𝑡, Hp,t is the head in pump 𝑝𝑝 at time interval 𝑡𝑡, 𝜂𝜂𝑝𝑝 is the efficiency of 

pump 𝑝𝑝, and Δ𝑡𝑡 is the time interval duration (typically 1 hour). When the pump is off, no flow is 

supplied by the pump and the energy consumption and energy cost for that time frame are zero.  

The STB control structure is formulated to respond to any time-based energy incentive. It is 

particularly suitable for areas with high variable renewable generation (IEA, 2020). For this study, 

we used historical prices from the California Independent System Operator’s day-ahead wholesale 

electricity market as the energy tariff to calculate energy costs. Specifically, the tariff used was the 

average hourly prices from 2020 for all nodes, presented in Figure 9 (CAISO, 2020). This energy 

market has a high infiltration of solar energy and so typically incentivizes energy consumption in 

the middle of the day and disincentivizes energy use in the evening.  
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Figure 9. Average Hourly Energy Prices over a 24-Hour Period. Average hourly prices from the 
California Independent System Operator day-ahead electricity market (CAISO 2020).   

3.2.1.2 Constraints  

This optimization is subject to several constraints which ensure that pump operating policies 

are feasible and maintain hydraulic reliability and network performance. These include hydraulic 

constraints enforced by the simulation model, such as conservation of mass and energy, and 

operational constraints handled as part of the optimization formulation by penalizing the objective 

function. To maintain similar reliability to the original system controls, we propose to base the 

operational constraints on the simulation results of the original system. These constraints require 

that the proposed controls provide at least the same minimum pressure, maximum velocity, and 

minimum/maximum tank levels as the initial control set within a given tolerance.   

Pressure and velocity are commonly constrained as adequate pressure is needed to deliver 

demands, and high velocities may erode pipes. The pressure and velocity constraints are defined as:  

𝑚𝑚𝑚𝑚𝑚𝑚� 𝑃𝑃𝑛𝑛,𝑡𝑡�  ≥ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃0𝑛𝑛,𝑡𝑡� −  𝜀𝜀𝑃𝑃     ∀ 𝑛𝑛, 𝑡𝑡  (3) 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉𝑙𝑙,𝑡𝑡� ≤ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉0𝑛𝑛,𝑡𝑡� +  𝜀𝜀𝑉𝑉      ∀ 𝑙𝑙, 𝑡𝑡  (4) 

where 𝑃𝑃𝑛𝑛,𝑡𝑡 is the pressure at junction n for time t,  𝑃𝑃0𝑛𝑛,𝑡𝑡 is the pressure at junction n for time t for 

the original control set, 𝜀𝜀P is the allowable pressure difference, 𝑉𝑉𝑙𝑙,𝑡𝑡 is the velocity at pipe l for time 
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t, 𝑉𝑉0𝑙𝑙,𝑡𝑡 the velocity at pipe l for time t for the original control set, and  𝜀𝜀V is the allowable velocity 

difference.  

As part of the optimization, it is also important to constrain minimum and maximum tank 

levels. The minimum and maximum levels specified in the hydraulic models will serve as the tank 

level constraints within a given tolerance. However, if the simulated tank levels for the original 

controls are above the maximum or below the minimum, the simulated tank level serves as the 

constraint within a given tolerance. The minimum and maximum tank level constraints are 

formulated as: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿𝑠𝑠,  𝑡𝑡� < 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿0𝑠𝑠,  𝑡𝑡 −   εSM�,  𝑆𝑆min 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +  εSM�         ∀ 𝑠𝑠 ∈ 𝑆𝑆 (5) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿𝑠𝑠,  𝑡𝑡� < 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿0𝑠𝑠,  𝑡𝑡 −    εSM�,  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −  εSM�         ∀  𝑠𝑠 ∈ 𝑆𝑆 (6) 

where  𝐿𝐿𝑠𝑠,  𝑡𝑡  is the level at tank s for time t, 𝐿𝐿0𝑠𝑠,  𝑡𝑡  is the level at tank s for time t for the original 

control set,  𝑆𝑆min 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the minimum water storage level for tank  𝑠𝑠,  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the maximum 

water storage level for tank  𝑠𝑠, and  εSM is the allowable maximum and minimum tank storage level 

difference. 

Finally, it is critical to maintain storage levels to ensure the system is resilient to uncertain 

demands and operational issues. This is typically achieved by adding a constraint that refills each 

storage facility to a similar level by the end of the simulation. However, using this differencing 

storage constraint, storage levels can remain low much of the time. Adding a constraint that 

controls the average tank level over the simulation period better maintains system storage 

resilience, a key performance parameter for emergency and fire supplies. To test the impact of 

adding this average storage constraint, we optimized each case study twice, once using a variation 

of the common differencing storage constraint (equation 7) and once with the proposed average 

storage constraint (equation 8):  
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�𝐿𝐿𝑠𝑠,  1 − 𝐿𝐿𝑠𝑠,  𝑛𝑛𝑡𝑡�
𝑆𝑆max𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

 >  
�𝐿𝐿0𝑠𝑠,   1  − 𝐿𝐿0𝑠𝑠,   𝑛𝑛𝑡𝑡�

 𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  
+ εSD (7) 

∑ �𝐿𝐿𝑠𝑠,  𝑡𝑡�
𝑛𝑛𝑡𝑡
𝑡𝑡= 1

𝑇𝑇 ∙  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  
 >  

∑ �𝐿𝐿0𝑠𝑠,  𝑡𝑡�
𝑛𝑛𝑡𝑡
𝑡𝑡= 1

𝑇𝑇 ∙  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  
− εSA (8) 

where 𝑇𝑇 is the total simulation period, εSD is the allowable percent difference for the differencing 

storage constraint, and εSA is the allowable percent difference for the average storage constraint.  

3.2.2 Optimization Method 

To optimize the formulation presented above, we used particle swarm optimization (PSO), a 

search-based metaheuristic approach (Kennedy and Eberhart, 1995). The PSO algorithm was 

implemented using DEAP, a computational framework that allows users to build evolutionary 

algorithms in Python (Fortin et al., 2012). Since heuristic or metaheuristic methods are search-

based, global optimization is not guaranteed (Blum and Roli, 2003). However, metaheuristic 

methods can be applied to the pump optimization problem without simplifying the hydraulic 

relationships, allowing a more confident interpretation of the impacts of operational changes on the 

system (López-Ibáñez et al., 2008). Along with genetic algorithms, PSO has frequently been applied 

to the WDS design problem (Mala-Jetmarova et al., 2018), as well as the pump operations problem 

(Wegley et al., 2004). While several variations of this algorithm increase its efficiency for different 

applications, we employ the original PSO strategy outlined in Poli et al. (2007). 

In the PSO algorithm, a population (swarm) of 𝑁𝑁𝑁𝑁 candidate solutions (particles) evolve over 𝑔𝑔 

generations. The particles are moved around the search space based on each particle’s best-known 

position and the best-known position overall. The population of candidate solutions is initialized 

with random positions and velocities within a given range. This population is evaluated using the 

objective value and constraints specified in the previous section. Each particle’s position and 

velocity are updated and reevaluated until the population converges within some tolerance or until 

the maximum number of generations, 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚.  
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The cognitive coefficient, 𝜑𝜑𝑝𝑝, affects how much the optimization searches locally, while the 

social coefficient, 𝜑𝜑𝑔𝑔, determines the influence of the global best solution. The performance of the 

PSO algorithm can vary with the parameter values chosen for 𝑁𝑁𝑁𝑁, 𝜑𝜑𝑝𝑝 , and 𝜑𝜑𝑔𝑔. The parameter 

values used in this study appear in Table 9. Since this investigation uses a heuristic optimization 

method, each optimization was replicated with a different random seed and reported as the 

average of three replications. To assist the optimization in finding solutions within operational 

constraints, the initial population was seeded with a single feasible solution (Savic et al., 1997). 

Additional details on the optimization formulation and method and full optimization results are 

included in the supplemental information.  

Table 9: Particle Swarm Optimization Parameter Values 

Optimization parameters Variable Value 

Cognitive coefficient 𝜑𝜑𝑝𝑝 2 

Social coefficient 𝜑𝜑𝑔𝑔 2 

Population size 𝑁𝑁𝑁𝑁 100𝑎𝑎  /125𝑏𝑏  

Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  80𝑎𝑎  /100𝑏𝑏  

a For the Net 3 case study.  
b For the Richmond Skeleton and the Moulton Niguel Water District case studies. 

 

3.2.3 Case Studies 

Three hydraulic simulation models of varying sizes and complexity were analyzed to assess the 

performance of different pump control and decision variable formulations. The first two models, 

the Net 3 and skeletonized Richmond (RMSK) systems, are frequently used for benchmarking 

optimization methods (Rossman et al., 2020; Van Zyl et al., 2004). These networks are fairly simple, 

and the models are publicly available. The final model is of a larger and more complex network, the 

Moulton Niguel Water District (MNWD) reclaimed water system, presented for the first time in this 

paper. This system serves over 1,300 irrigation customers in Southern California. These WDSs are 

summarized in Table 10.   
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Some minor adjustments were made to the models for this study. One of the original controls in 

the Net 3 model was modified so that all initial controls for these three systems follow the TT 

control scheme, where pumps are turned on and off based on specified tank levels. The Net 3 and 

RMSK models have demand patterns for a single day. However, we simulated operations over seven 

days, with the demand pattern repeating every 24 hours, allowing us to examine how well the 

controls maintain storage levels over a longer time. Additionally, the number of optimized pumps in 

the MNWD system was limited to reduce the number of decision variables and computation effort. 

The nine pumps whose operations depend on tank levels with the largest energy use were selected 

for optimization; the remaining pumps operate using the original TT controls.  

Table 10: Case Study Properties 

 Net 3a RMSKb MNWDc 

Total number of pumps 2 7 31 
Number of pumps to be 
optimized 2 6d 8 

Number of tanks 3 6 13 
Total storage volume (m3) 25,863 2,598 51,284 
Number of pipes / junctions 117 / 91 44 / 41 4343 / 4277 
Number of decision 
variables 

4 12d/16e 16 

Number of constraints 12 21 42 
a For the Net 3 case study.  
b For the Richmond Skeleton case study. 
c Moulton Niguel Water District case study. 
d Number of decision variables for the secondary time-based control structure and tank trigger cases 
e Number of decision variables for the explicit pump schedule case 
 

Six cases were examined for each pump control formulation: two optimizations for each system, 

either using the average or differencing storage constraint. Several metrics were analyzed to 

understand the performance of each control formulation and the impacts of the different tank 

storage constraints: the objective value of the best-found control policy, average percent storage, 

and the number of pump switches. The objective value indicates how well the optimization control 

structure allows the system to reduce energy costs without violating operating constraints. The 
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average percent storage indicates how well storage reserves were maintained, and the number of 

pump switches signifies potentially greater pump maintenance costs.   

3.2.4 Demand Sensitivity Analysis  

Using Monte Carlo (MC) simulation, a sensitivity analysis was performed to examine how the 

objective value, system storage, and pump switches vary with uncertain water demands for the 

different optimized pump control schemes. We also explored how water demand variation can 

affect constraint violations for each case study. The sensitivity analysis was applied only to the 

optimized control structures identified using the average storage constraint. The objective value 

also was calculated using the average storage constraint; the differencing value constraint was not 

applied.  

All three models simulate average demands over a week. For this study, demands vary from the 

average following a truncated normal distribution, allowing only positive water demands, with a 

standard deviation of ten percent of the mean (Babayan et al. 2005). The demands were randomly 

sampled each timestep, assuming randomness is temporally independent. For each optimized 

control set for all replicates of every optimization run, we ran 2,000 simulations for the Net 3 cases, 

7,000 simulations for the skeletonized Richmond cases, and 10,000 for the larger MNWD cases. To 

verify that this sample size was sufficient, an additional 100 random samples were drawn to 

confirm that there were minor impacts on overall distributions.  

The objective value, average storage, and the number of pump switches were found for each 

simulation. The distribution of these values was then analyzed and compared across the three 

control structures.  If the optimized control structure is stable, the objective value will have a lower 

unpenalized value (< 1e7).  Lower variation in these three metrics indicates that the control 

structure is robust for uncertain water demands.    
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3.3 Results 

3.3.1 Optimization Results 

For each of the six optimized cases, we evaluated the objective value (energy cost over the 

simulation period plus any constraint violation penalties) of the best-found control policy, along 

with operational performance metrics of average percent storage and the number of pump 

switches (shown in Figure 10).  

 

 

Figure 10. Best-Found Policy Results from Optimization. Simulated results from the three 
optimized control structures for the Net3, skeletonized Richmond (RMSK), and Moulton Niguel 
Water District (MNWD) case studies using either the average storage or the differencing storage 
constraint.  

Results of the Net 3 optimizations show energy cost was reduced significantly for all three 

control structures. Energy cost was most reduced by the STB formulation, followed closely by the 

TT structure for both storage constraints. The STPS optimization found a lower energy cost solution 
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using the differencing constraint, but the TT and STB formulations still allowed greater reductions 

for the given computational budget.  All three optimized policies perform similarly well in 

maintaining storage over the simulation period. The STPS runs had more pump switches, followed 

by STB, with TT performing the best, indicating a slight reduction in pump maintenance.   

For the RMSK system, the STB control structure more clearly outperforms the other two control 

formulations. The STB optimization results were similar regardless of which storage constraint was 

applied. The different effects of these storage constraints are observable in the TT control 

optimization. The TT optimization found a slightly lower objective value when using the 

differencing storage constraint; however, the storage reserves also were reduced during 

optimization, decreasing system resiliency. Water utilities typically prioritize maintaining 

appropriate water storage levels. Therefore, including an average constraint for these formulations 

should lead to solutions more aligned with water utility priorities despite potentially higher energy 

and maintenance costs.  

For the MNWD system, the optimizations of the STB and the TT control structures led to similar 

energy cost reductions. The STB performed slightly better with the average constraint, and the TT 

formulation performed better with the differencing constraint. As observed in the RMSK case, the 

TT formulation could further reduce costs with the differencing constraint at the expense of storage 

reserves. Again, the STB formulation converged on similar solutions regardless of whether the 

averaging or differencing storage constraint was applied. There are slight increases in the number 

of pump switches for the STB formulation, but this is less prioritized than maintaining water 

reserves.  

Across all three case studies, the STB control structure most successfully reduced energy costs 

while maintaining storage levels without significantly increasing the number of pump switches 

from baseline operations. In the one case where the TT formulation outperformed the STB 
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structure, the energy cost reductions were at the expense of lower average water storage levels. For 

the larger systems, the STPS formulation could only marginally reduce energy costs from the 

baseline operations. Since the STPS formulation most directly responds to energy cost, this limited 

reduction is likely from the difficulty of this formulation in meeting the operating constraints.  

Applying the average tank constraint when using the TT or STPS formulations ensures that the 

optimized control policies maintain storage reserves. However, the STB formulation did not need 

the average tank constraint to maintain system storage. These results indicate that the hierarchal 

STB control structure can enable water utilities to take advantage of time-based energy tariffs, 

allowing systems to reduce costs without sacrificing water storage redundancy or significantly 

increasing pump maintenance.  

Comparing the time series simulation results for the baseline and optimized scenarios for one 

of the case studies shows the differences between these control formulations. Figure 11 shows 

average tank levels and energy consumption for the RMSK system over the first 48 hours. The 

CAISO energy tariff is plotted on the secondary axis to illustrate how the optimized formulations 

respond to the price incentive.  

For the first control structure formulation, STPS, optimized operations vary minimally from 

baseline conditions. Increasing the number of pump switches per day may allow this formulation 

more flexibility to respond to the price tariff while maintaining operational constraints. However, 

increases in pump switches exponentially increase the search space, making optimization 

intractable for larger systems. Operations under the optimized TT control and averaging storage 

constraint are similar to baseline operations; this is likely because only a few tank trigger settings 

maintain the same level of water reserves. Under the differencing constraint, we see more flexibility 

in operations, but there are corresponding reductions in water storage levels over the simulation. 

While there is more observable energy load management, the pumping increases do not target the 

lowest tariff timeframes, and energy reductions are not within the highest tariff periods. The STB 



59 
 

formulation shows observable changes in the timing of energy consumption without reductions in 

water reserves. The plot also shows that the STB formulation has the flexibility to reduce energy 

during the highest tariff periods and increase energy in the lowest cost timeframes. These results 

again indicate the suitability of the STB formulation to facilitate energy demand management.  

 

Figure 11. Energy Consumption and Average Tank Level for Richmond Skeletonized Case. 
The simulated results from baseline operations and the three optimized control structures for the 
first 48 hours are plotted on the primary axis; the energy tariff is plotted on the secondary axis.   
 

3.3.2 Control Structure Impacts on Optimization Search Space 

The results in Figure 10 were simulated using the best policies from the search-based 

optimization. Many other control policies were sampled during the optimization, providing insights 

into how the objective values change with decision variable settings. The “black box” nature of 

these types of heuristic optimization routines can mask underlying issues with the optimization 

formulation. By analyzing all policies evaluated during the optimization routine, we can better 
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understand the stability of the different control structures. If a large proportion of the tested 

policies violate the given constraints, the control structure is very sensitive to the setting of the 

decision variable. A high constraint violation rate indicates that the stability of the solution may be 

low and that it may be difficult to optimize the control structure because of the high rate of 

constraint penalties over the optimization search space. This may also suggest that small changes in 

the system may affect the validity of optimized controls, which is more explicitly explored in the 

sensitivity analysis. In this section, we analyzed the solutions tested over the six optimizations to 

see what percent of the operations were feasible (violating no constraints) and which constraints 

were violated for the infeasible solutions (see Figure 12).  

 

 

Figure 12. Feasible Solutions and Constraint Violations during Energy Cost Optimization. The 
percentage of the feasible policies tested and violated constraints for the optimizations of each of 
the three tested control structures. These results are presented for the Net3, skeletonized 
Richmond (RMSK), and the Moulton Niguel Water District (MNWD) case studies testing either the 
average storage or differencing storage constraint.   
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Figure 12 shows that the optimizations using the STB control structure generally have a high 

percentage of feasible solutions over the search space, particularly under the averaging storage 

constraint (96 - 99 %).  

For the Net 3 optimizations, the highest number of constraint violations for the STB control 

policy was for the average or differencing storage constraints. When optimizing the TT formulation, 

the tank filling constraints again have the highest number of violations, but a much larger 

proportion of the evaluated policies violate this constraint. For the Net 3 STPS optimization, a much 

larger proportion of solutions tested were infeasible; 61% under the averaging storage constraint 

and 85 % for the differencing storage constraint. Here we see a much higher rate of minimum 

pressure and minimum tank level constraint violations and a large percent of storage filling 

constraint violations.  

 For the larger, more complex RMSK and MNWD systems, the TT and STPS formulations show 

even more constraint violations across additional constraint categories, including minimum 

pressure, minimum and maximum tank level, and the average storage constraints. Only 1 % of 

solutions were feasible for the RMSK cases using the STPS and TT formulations for either tank 

filling constraint over the given number of generations. The TT formulation performed slightly 

better with the MNWD system under the differencing constraint but still found only 3 % of tested 

solutions were feasible under the average storage constraint. Especially considering that these 

optimizations were all seeded with initial feasible solutions, this indicates that these control 

structures are difficult to optimize in larger systems, and the feasibility of solutions is very sensitive 

to decision variable settings.  

By investigating what proportion of the sampled search space was infeasible, we can gain 

significant insights into how stable the solution is and how difficult a formulation may be to 

optimize. Understanding the impacts of decision variable formulations is particularly important for 
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critical applications such as optimizing water distribution operations since constraint violations 

may indicate significant operational performance issues.  

3.3.3 Sensitivity Analysis Results 

An MC sensitivity analysis assessed the impacts of water demand variation on energy cost, 

average storage levels, and the number of pump switches for each control structure. Three case 

studies were tested, the Net3, RMSK, and MNWD systems using the control structures optimized 

under the average storage constraint (see Figure 13).  

 

Figure 13. Water Demand Sensitivity Analysis Results. Simulated results from performing a 
Monte Carlo sensitivity analysis using the optimized control structures for the Net3, skeletonized 
Richmond (RMSK), and Moulton Niguel Water District (MNWD) case studies using the average 
storage constraint. 
 

For the Net 3 system, energy cost varies for both optimized STB and TT control policies, but 

very few solutions become infeasible due to the variation. However, the STPS structure has many 

more constraint violations under the same variation; this is expected as the STPS control structure 
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does not respond to system measurements. Similar trends occur for the RMSK and the MNWD 

systems. The MNWD system appears more sensitive to changes in TT settings because many more 

constraint violations occur with the optimized control than in the other systems. This result 

reaffirms conclusions from the optimization search space analysis. The optimized TT controls may 

be unstable if the system is sensitive to changes in tank levels because adjusting the tank level 

control can impact key system parameters, such as pressure.  

Across all three systems, variation in the average percent storage for both the STB and the TT 

optimized control policies was minimal; this is intuitive as the controls are activated as a function of 

storage level and dynamically respond to changes in water demand. The STPS optimized control 

policies generally have higher variation in storage level as demands change. Conversely, there are 

larger variations in the number of pump switches for the optimized tank-based control structures 

compared to the STPS control since variation in demand can change the number of times the tank-

based control triggers a pump.  

In addition to analyzing the variation of key system parameters as a function of changes in 

water demand, we also tracked if and which constraints were violated for each MC simulation (see 

Figure 14).   

Figure 14 shows that there were fewer constraint violations when using the STB control and 

less variation in what constraints are violated compared to TT and STPS policies. The strength of 

the STB control structure is because tank levels can directly affect pressure levels and velocity in 

pipes. System operators developed the original tank controls to maintain reliable system 

operations. As a result, if the original tank controls are well suited for the expected variation of the 

system, the optimized STB control will perform similarly well. This gives the STB formulation an 

advantage even over the TT formulation, which could potentially find tank trigger levels that may 

work under current conditions but not be resilient to changes in demands. 



64 
 

 

 

Figure 14. Feasible Solutions and Constraint Violations during the Water Demand Sensitivity 
Analysis. The percentage of the feasible policies tested and the number of violated constraints for 
the Monte Carlo simulations using the optimized control structures for the Net3, skeletonized 
Richmond (RMSK), and Moulton Niguel Water District (MNWD) case studies using the average 
storage constraint. 

 

3.4 Conclusions  

A new optimization formulation for distribution system operations considering water reliability 

and energy use, the STB control structure, was presented and compared to two standard 

formulations, the TT and STPS control structures. This hierarchal control structure allows water 

utilities to maintain water reserves while allowing pumps to respond to time-based energy 

incentives to support renewable energy integration. The formulations were tested on three case 

studies of various sizes, investigating their performance with a novel averaging tank constraint or a 

common differencing tank constraint. By using the STB formulation, water utilities can reduce 
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energy costs without reducing water storage reserves, with little or no increases in the number of 

pump switches. Compared to traditional operation structures, the STB formulation better 

maintained water reserves even without the average tank level constraint, with similar or better 

reductions in energy cost.  

In addition to the optimization results, we analyzed simulation data collected during the 

optimization routine to better understand the effects of model formulation on the fitness function. 

Throughout the optimization routine for the STB control structure, a high percentage of the tested 

policies were feasible (had no constraint violations) compared to the STPS and TT formulations. 

This indicates that the STB control structure is more stable since different control settings can stay 

within the constrained performance bounds. It also may be easier to optimize since there are fewer 

areas penalized by constraint violations, leading to a noisy objective function. Finally, a Monte Carlo 

sensitivity analysis showed how changes in water demand affect optimized control policy 

performance. The STB performed consistently well across all three case studies; very few tested 

simulations resulted in constraint violations, and water storage was maintained. As this control 

structure aligns closely with water utility priorities, it may allow water utilities to more easily 

accept and implement optimized solutions, particularly as they move to increase energy demand 

management to navigate the growth of renewable energy sources.  

3.5 Data Availability  

The MNWD hydraulic model used during the study was provided by a third party. Direct 

request for these materials may be made to the provider as indicated in the Acknowledgments. 

Additional data, models, or code generated or used during the study are available in a repository or 

online in accordance with funder data retention policies 

(https://github.com/emusabandesu/wdpo.git).  
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4 Chapter 4: A visual framework for analyzing fitness functions and a 
correspondent decision tree guided genetic algorithm for water distribution 
system optimization 

4.1 Abstract:  

The water distribution system operation optimization problem has been extensively 

researched. Pump operations can be optimized for a range of objectives to improve the efficiency 

and sustainability. However, optimizing water distribution operations is difficult as a mixed-integer 

nonlinear problem with many decision variables and constraints. Heuristic or metaheuristic 

methods can allow the water distribution operation optimization without simplifying the hydraulic 

relationships. Nonetheless, it can be challenging to assess issues with problem formulation or 

optimization search strategies using these “black box” methods. We present a visual analytic 

framework that allows users to characterize the optimization fitness landscape, which relates 

optimization inputs and the objective function, to aid analysis of the optimization problem 

formulation and search efficiency. Visualizations, decision tree machine learning models, and 

fitness landscape characterization metrics are used to extract actionable information. We also 

present a new optimization method, the decision tree guided genetic algorithm, to help guide the 

optimization using similar machine learning methods and analytics in the characterization 

approach. We observed differences in the fitness landscapes due to problem formulation by 

examining two decision variable representations on a simple case study network. We then tested 

the performance of several existing optimization methods on these two problem formulations, 

using either standard optimization or optimization with guidance from the visual analytic 

framework. We compared this to the proposed optimization method. Both the existing methods 

informed using the visual analytic framework and the new optimization methods showed 

improvement over existing standard methods.   
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4.2 Introduction 

Extensive research has been conducted on optimizing pump operations for water distribution 

systems (WDS) (D’Ambrosio et al., 2015; Mala-Jetmarova et al., 2017). Pump operations may be 

optimized for a range of objectives to improve system efficiency or sustainability. These objectives 

may include energy use, energy cost (Bagirov et al., 2013), greenhouse gases (Blinco et al., 2016; 

Stokes et al., 2015), water quality (Arai et al., 2013; Kurek and Ostfeld, 2013), water losses 

(Giustolisi et al., 2013) and system reliability (Odan et al., 2015). However, optimizing WDS 

operations is computationally demanding; WDS hydraulics are nonlinear, and optimization is a 

mixed-integer nonlinear problem and NP-hard (D’Ambrosio et al., 2015). The complexity of the 

problem is compounded by the many decision variables in real-world networks, limiting the 

effectiveness of many optimization techniques (Rao and Salomons, 2007).  

Early research focused on classical optimization approaches such as linear control theory 

(Fallside and Perry, 1975), linear programming (Jowitt and Germanopoulos, 1992), nonlinear 

programming (Yu et al., 1994), and dynamic programming (Sterling and Coulbeck, 1975). However, 

these classical methods can only be applied to simple networks or by simplifying the mathematical 

representation of WDS hydraulics (D’Ambrosio et al., 2015). In contrast, heuristic or meta-heuristic 

methods can be applied to the pump optimization problem without simplifying the hydraulic 

relationships (López-Ibáñez et al., 2008), although global optimization is not guaranteed (Blum and 

Roli, 2003). Some prominent heuristic methods applied to this problem are genetic algorithms 

(Mackle et al., 1995), hybrid genetic algorithms (Van Zyl et al., 2004), ant colony optimization 

(López-Ibáñez et al., 2008), particle swarm optimization (Wegley et al., 2004), and simulated 

annealing (Goldman and Mays, 1999).   

Although there are benefits to heuristic approaches to complex optimization problems such as 

WDS pump operation, there are several common challenges. It can be difficult to assess issues with 
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optimization problem formulation or the search method because of the black-box nature of 

heuristic simulation-optimization methods (Maier et al., 2014). As a result of this lack of 

transparency and the uncertain effectiveness of the methods, users often mistrust these types of 

automated systems (Lee and See, 2004). One approach to improving optimization results and user 

acceptance is to more formally integrate humans into the optimization process through human-in-

the-loop or human-as-the-loop optimization. Although this is a developing field, research on 

human-integrated optimization systems dates back to as early as the 1970s (Benayoun et al., 1971; 

Wallenius, 1975). Interactive optimization can be used to adjust or enrich the formulation of the 

optimization problem itself (Meignan, 2015), identify preferences for multiobjective solutions 

(Miettinen et al., 2010), or be used to help guide the search method in finding an appropriate 

solution (Klau et al., 2002). Most research in this field focuses on developing interactive systems for 

problems with multiple objectives (Xin et al., 2018). An in-depth review and taxonomy of human 

integrated optimization methods for operations research is provided in David et al. (David et al., 

2015). 

Visualization of optimization results and search spaces can aid in understanding optimization 

performance and facilitate interactive optimization. Research in this area often focuses on 

visualizing multiobjective optimization results. Parallel coordinate systems (Bagajewicz and 

Cabrera, 2003), heatmaps (Pryke et al., 2007), self-organizing maps (Zhang et al., 2018), Sammon 

mapping (Valdés and Barton, 2007), and radial visualization (Hoffman et al., 1997) have been used 

to assess tradeoffs between different optimization goals. Visualizing the fitness landscape, which is 

the relationship between optimization inputs and outputs, has also been explored. Because of the 

high dimensional nature of the optimization inputs in the fitness function, visualizing the 

relationship between optimization inputs and outputs typically requires some sort of dimension 

reduction or mapping. Methods used to visualize the optimization fitness landscape or the 

optimization algorithm's trajectory through the fitness landscape include principal component 
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analysis (Collins and O’Neill, 1999; Mccandlish, 2011), T-SNE (Duan et al., 2017),  or Sammon 

mapping (Kim and Moon, 2003).  

Characterizing the fitness landscape analytically can give additional insights into the complexity 

of the optimization problem and what methods might be effective (Pitzer and Affenzeller, 2012).  

Several metrics exist to measure different characteristics of the fitness function. Key areas of 

measurement include landscape ruggedness (Hordijk and Nm, 1996), the correlation between 

fitness and location (Jones and Forrest, 1995), and how separable feasible areas are from areas 

with constraint violations (Malan et al., 2015). These landscape fitness characterization metrics can 

also be directly incorporated into the optimization method itself (Li et al., 2022; W. Li et al., 2021).  

A selection of interactive optimization, optimization visualization, and characterization 

techniques have also been applied to WDS operation optimization problems or WDS optimization 

design, which strongly parallels WDS operation optimization. Researchers have explored how the 

visualization of multiobjective results (Fu et al., 2012) and the spatial-temporal visualization of 

decision variable changes in coordination with optimization results (Keedwell et al., 2015) can aid 

in optimizing WDS design. Li et al. (2021) investigated visualization of the WDS operation fitness 

function, presenting an interactive visual analytics system that incorporated decision trees as 

interpretable machine learning to analyze input-output relationships. Gibbs et al. (2004) also 

applied fitness landscape measures to the WDS optimization problem.  

This study presents a framework for the visual and analytical characterization of WDS 

operation optimization fitness landscapes to aid in analysis of both optimization problem 

formulation and optimization search efficiency. This approach expands the visual and machine 

learning components from the visual analytic tool presented in Li et al. (2021) by incorporating 

fitness landscape analysis. We apply this framework to characterize the fitness landscape and to 

show how users can employ this type of characterization to analyze both the problem formulation 
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and the behavior of optimization methods through a set of case studies. In addition, we present a 

new optimization method to help guide the optimization using similar interpretable machine 

learning methods and analytics to the characterization approach.  The optimization method uses 

iteratively updated decision trees to guide a genetic algorithm to predicted optimal regions. 

Although both the optimization characterization approach and the decision-tree genetic algorithm 

(DTGA) were designed for the WDS operation optimization problem, these methods can be applied 

to a large range of complex optimization problems. 

4.3 Methods 

An overview of the proposed visual analytic framework is provided in Figure 15.  

First we collect a sample of the fitness landscape to analyze the fitness function. To perform the 

initial characterization, we use Latin hypercube sampling to ensure good coverage of the search 

space. For this study, we analyze two sample sets (10,000 samples and 2,000 samples) to see the 

impact of sample size on our analysis. From the sample, we characterize the fitness landscape using 

the proposed set of visualizations and analytic metrics. Details on this characterization are 

provided below. 

The user can then use the results of this characterization to extract and apply information for 

either the optimization problem itself or to the search method. Problem-oriented interactions focus 

on assessing the impacts of different problem formulations, revealing underlying challenges or 

benefits of optimization model design. Problem attributes such as decision variable construction, 

objectives, or constraints can be modified based on iterative formulation comparisons. Search-

orientated interactions focus more on determining how the attributes of the fitness landscape can 

impact the efficacy of the search methodology; this information can be used to find more optimal 

solutions. Users can apply a selection of the proposed visual tools to observe how different search 

methods traverse or cover the search space. They can also use the visual analytic framework to 
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select parameter settings or algorithm search methods that may improve search behavior based on 

the characteristics of the fitness landscape. The decision tree feasibility models also can be used to 

find regions of more optimal solutions, and users can guide the optimization to these regions.  

 

Figure 15. Proposed visual analytic framework for characterizing water distribution operation 
optimization fitness landscapes.   

4.3.1 Visual Characterization  

We incorporate three visualizations from the visual analytic system presented in Li et al. 

(2021b) to characterize and analyze the fitness landscape. For reference, we show the full visual 

analytic system in Figure 16.  

First, we use the feature distribution view. This visualization displays the distribution of input 

settings for each feature using a stacked histogram.  Each feature is a different decision variable in 

the optimization problem. Colors encode the optimization results, showing a single color for 

infeasible solutions (with constraint violations) and the range of optimal values based on a 

colormap. This color encoding is repeated across all subsequent visualizations.  

Next, we include the simulation overview. This visualization uses T-SNE (van der Maaten and 

Hinton, 2008) to map the high-dimensional data presented in the features distribution view into a 
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2-dimensional plot. The distance between points represents feature values similarity. This view 

allows users to see overall patterns within the data and identify clusters of infeasible or highly 

optimal solutions.  

 

Figure 16. The interface of the visual analytics system for WDS optimization. The system is composed of 
(A) the feature distributions view, (B) simulation overview, (C) summary view, (D) decision tree view, and (E) 
time-series views. 

Finally, we apply the decision tree view. This view uses a decision tree classification model 

(Breiman et al., 2017) trained on the sampling data to identify combinations of input values likely 

to yield feasible solutions and guide further optimization. To ensure the rules are interpretable, we 

apply cost-complexity pruning to reduce the tree size while optimizing prediction accuracy 

(Breiman et al., 2017). Cost complexity pruning, is post-training pruning algorithm that generates a 

series of trees from the original decision tree model, iteratively removing the weakest-link branch, 

with the final tree being the root. For our analysis, we use the smallest tree that provides a 

prediction accuracy greater than the feasibility ratio threshold 𝐹𝐹𝐹𝐹𝑡𝑡ℎ𝑟𝑟 , and the colors of each 

decision tree nodes represent the percent of samples at that node that are feasible.  

In this study, we do not include the summary or time-series views. Although these 

visualizations can aid deeper understanding of the data in the interactive visual analytics system 
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presented in Li et al. (2021b), we focused our analysis on visualizations that provide the most 

actionable information.  

4.3.2 Analytic Characterization  

For the analytic characterization of the search space, we calculate several fitness and data 

analysis metrics on the sample sets of the optimization fitness function.  

The feasibility ratio (FR) estimates the feasible percent of the search space (samples with no 

constraint violations) (Malan et al., 2015). Given a sample of size n, the FR is defined as:  

                                                                𝐹𝐹𝐹𝐹 =  
𝑛𝑛𝑓𝑓
𝑛𝑛

                                                        (1)    

where 𝑛𝑛𝑓𝑓 is the number of samples that are feasible.  

It is important in characterizing the fitness landscape to also assess how intermixed feasible 

and infeasible regions are. To estimate this intermixing, we use the ratio of feasible boundary 

crossings (RBFC) (Malan et al., 2015) 

The RBFC calculates the fraction of points within a random walk of the search space that cross 

from a feasible to an infeasible fitness value:    

                                                                    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1
𝑛𝑛 − 1

                                                                     (2)   

                                                  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖) =  �
0 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖+1)
1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖) ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖+1)                                                    (3) 

where 𝑛𝑛 is the total number of samples, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐( ) is the classification of the sample as feasible or 

infeasible, and 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎsample.  

Finally, the fitness distance correlation (FDC) provides a global measurement of the correlation 

between fitness values and distance to the optimum (Jones and Forrest, 1995):  
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                            𝐹𝐹𝐹𝐹𝐹𝐹 =  
1
𝑛𝑛∑ �𝑓𝑓𝑖𝑖 −  𝑓𝑓̅��𝑑𝑑𝑖𝑖 −  𝑑̅𝑑�𝑛𝑛

𝑖𝑖=1

𝜎𝜎𝐹𝐹𝜎𝜎𝐷𝐷
                           (5)    

where 𝑓𝑓 is the fitness of the point 𝑥𝑥, 𝑑𝑑 is the distance between point 𝑥𝑥 and the best solution, 𝜎𝜎𝐹𝐹 is 

the variance in the fitness values and 𝜎𝜎𝐷𝐷 is the variance of the distance values. We use the best-

found solution in the sample set as the optimum for this application.   

FDC gives a general indication of problem difficulty, with values near to one signifying more 

correlation between location and fitness, allowing for easier optimization and values near to zero 

indicating little correlation and increased difficulty.  

4.3.3 Optimization Test Problem Formulation  

For our optimization problem test cases, we compared two decision variable formulations: the 

secondary time-based (STB) control (Musabandesu et al., 2022) and the status-time pump schedule 

control (STPS) (Bagirov et al., 2013). By contrasting these formulations, we examine how the visual 

and analytical characterization of the fitness landscape can aid in problem-oriented analysis.  

The STB control structure preserves the original fixed tank level controls and then adds 

secondary time-based controls that can be optimized based on time-dependent energy tariffs. This 

allows water systems to maintain storage reserves while responding to price incentives. The STPS 

removes the original controls and replaces them with exclusive time-based controls. The decision 

variables in both formulations are the times of day that the pump is triggered on or off in either the 

exclusive or second priority time-based rule. For each pump, 𝑝𝑝, for the given set of pumps to be 

optimized, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 , the pump control decision variables are:  

�𝑥𝑥𝑝𝑝,   𝑜𝑜𝑜𝑜,𝑥𝑥𝑝𝑝,   𝑜𝑜𝑜𝑜𝑜𝑜 �,    𝑥𝑥 ∈ [0,23] (6) 

where 𝑥𝑥𝑝𝑝,𝑜𝑜𝑜𝑜 is the time of day to turn pump 𝑝𝑝 on, and 𝑥𝑥𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜 is the time of day to turn pump 𝑝𝑝 off.  
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4.3.3.1 Objective Value  

For this study, we optimized energy costs under a time-variant energy rate. In particular, we 

used the average hourly prices from the California day-ahead wholesale electricity market in 2020 

(CAISO 2020). 

We calculated energy consumption from time-series hydraulic measurements using WNTR 

(Katherine A Klise et al., 2017; Katherine A. Klise et al., 2017), a python package that simulates 

water distribution operations utilizing the EPANET hydraulic simulator (Rossman et al., 2020). The 

objective function, or fitness function, is defined as the total pumping energy cost over the 

simulation period:  

minimize  𝐶𝐶𝐸𝐸 = �𝑅𝑅𝑡𝑡�𝒫𝒫𝑝𝑝,𝑡𝑡Δ𝑡𝑡
𝑛𝑛𝑡𝑡

𝑡𝑡=1

𝑛𝑛𝑝𝑝

𝑝𝑝=1

 =  �𝑅𝑅𝑡𝑡�
𝛾𝛾𝑄𝑄𝑝𝑝, 𝑡𝑡𝐻𝐻𝑝𝑝, 𝑡𝑡

𝜂𝜂𝑝𝑝
Δ𝑡𝑡

𝑛𝑛𝑡𝑡

𝑡𝑡=1

𝑛𝑛𝑝𝑝

𝑝𝑝=1

 (7) 

where 𝐶𝐶𝐸𝐸 is the total cost of energy for pumping, 𝑝𝑝 is the pump index, 𝑛𝑛𝑝𝑝 is the total number of 

pumps, 𝑡𝑡 is the time interval index, 𝑛𝑛𝑡𝑡 is the total number of time intervals, 𝑅𝑅𝑡𝑡 is the energy rate at 

time 𝑡𝑡, 𝒫𝒫𝑝𝑝,𝑡𝑡 is the power for pump 𝑝𝑝 at time interval 𝑡𝑡, γ is the specific weight of water, Qp,t is the 

flow in pump 𝑝𝑝 at time interval 𝑡𝑡, Hp,t is the head in pump 𝑝𝑝 at time interval 𝑡𝑡, 𝜂𝜂𝑝𝑝 is the efficiency of 

pump 𝑝𝑝, and Δ𝑡𝑡 is the time interval duration (typically 1 hour). Energy cost is related to the decision 

variables because when the pump is off, no flow is supplied by the pump during that time period.   

4.3.3.2 Constraints  

To maintain the hydraulic reliability of the WDS, the optimization model is subject to several 

constraints. Hydraulic constraints, such as conservation of mass and energy, are enforced by the 

simulation model. Operational constraints are incorporated into the optimization formulation by 

penalizing the objective function. For this study, we require that the proposed controls provide 

similar reliability to the initial controls; they must maintain minimum pressure, maximum velocity, 

and minimum/maximum tank levels within a given tolerance:   
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𝑚𝑚𝑚𝑚𝑚𝑚� 𝑃𝑃𝑛𝑛,𝑡𝑡�  ≥ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃0𝑛𝑛,𝑡𝑡� −  𝜀𝜀𝑃𝑃     ∀ 𝑛𝑛, 𝑡𝑡  (8) 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉𝑙𝑙,𝑡𝑡� ≤ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑉𝑉0𝑛𝑛,𝑡𝑡� +  𝜀𝜀𝑉𝑉      ∀ 𝑙𝑙, 𝑡𝑡  (9) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿𝑠𝑠,  𝑡𝑡� < 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿0𝑠𝑠,  𝑡𝑡 −   εSM�,  𝑆𝑆min 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +  εSM�         ∀ 𝑠𝑠 ∈ 𝑆𝑆 (10) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿𝑠𝑠,  𝑡𝑡� < 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�𝐿𝐿0𝑠𝑠,  𝑡𝑡 −    εSM�,  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −  εSM�         ∀  𝑠𝑠 ∈ 𝑆𝑆 (11) 

where 𝑃𝑃𝑛𝑛,𝑡𝑡 is the pressure at junction n for time t,  𝑃𝑃0𝑛𝑛,𝑡𝑡 is the pressure at junction n for time t for 

the original control set, 𝜀𝜀P is the allowable pressure difference, 𝑉𝑉𝑙𝑙,𝑡𝑡 is the velocity at pipe l for time 

t, 𝑉𝑉0𝑙𝑙,𝑡𝑡 the velocity at pipe l for time t for the original control set, and  𝜀𝜀V is the allowable velocity 

difference.   𝐿𝐿𝑠𝑠,  𝑡𝑡  is the level at tank s for time t, 𝐿𝐿0𝑠𝑠,  𝑡𝑡  is the level at tank s for time t for the original 

control set,  𝑆𝑆min 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the minimum water storage level for tank  𝑠𝑠,  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the maximum 

water storage level for tank  𝑠𝑠, and  εSM is the allowable maximum and minimum tank storage level 

difference. 

In addition, we include a constraint that controls the average tank level over the simulation 

period so the system maintains water storage for emergency and fire supplies:  

∑ �𝐿𝐿𝑠𝑠,  𝑡𝑡�
𝑛𝑛𝑡𝑡
𝑡𝑡= 1

𝑇𝑇 ∙  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  
 >  

∑ �𝐿𝐿0𝑠𝑠,  𝑡𝑡�
𝑛𝑛𝑡𝑡
𝑡𝑡= 1

𝑇𝑇 ∙  𝑆𝑆max 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  
− εSA (12) 

where 𝑇𝑇 is the total simulation period, εSD is the allowable percent difference for the differencing 

storage constraint, and εSA is the allowable percent difference for the average storage constraint.  

4.3.3.3 Water Distribution System Case Study 

We tested our visual analytic framework on the Net 3 water system, a case study often used for 

benchmarking optimization methods (Rossman et al., 2020). This system is fairly simple, with two 

pumps (P10 and P335), three tanks, 117 junctions, and 91 pipes. For use with the STB optimization, 
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the Net 3 model was modified so all initial controls for all three systems follow a tank trigger 

control scheme, where pumps are turned on and off based on specified tank levels.  

4.3.4 Existing Optimization Methods 

We also used our system to compare the performance of three heuristic search-based 

optimization methods on the two problem formulations: genetic algorithm (GA), particle swarm 

optimization (PSO), and the covariance matrix adaptation evolution strategy (CMA-ES).  GA evolves 

a population of candidate solutions using the biologically inspired mechanisms, selecting 

individuals with good performance and using these to create new candidates (Bäck et al., 2018). 

The PSO algorithm is inspired by the movement of a flock of birds or a school of fish; the position 

and velocity of the candidate solutions, or particles, is updated based on each particle’s best-known 

location and the global best-known location (Clerc and Kennedy, 2002). CMA-ES draws candidates 

from a sequence of multivariate gaussian distributions, where the centroid is the initial mean and 

sigma is the initial standard deviation (Hansen and Ostermeier, 2001). Additional hyperparameters 

control iterative changes to the distribution. Because these algorithms have a range of search 

mechanisms, we can use the visual analytic framework to analyze the effectiveness of different 

search characteristics on the various case studies' fitness functions.  

All three algorithms were implemented using DEAP, a computational framework for 

constructing evolutionary algorithms in Python (Fortin et al. 2012). For GA, we used the simple 

form (Bäck et al., 2018), which includes selection, crossover, and mutation, specifying three-way 

tournament selection, one-point crossover, and uniform random mutation. We used the constricted 

coefficient strategy outlined in Clerc and Kennedy (2002) to implement PSO, using the Type 1" 

constriction particle swarm. For the CMA-ES algorithm, we used the weighted recombination form 

(Hansen and Ostermeier, 2001). Weights help regulate the algorithm's convergence and, in the 

DEAP implementation, follow either an equal, linear, or superlinear decreasing scheme.   
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We compared the performance of each optimization method using typical optimization 

parameter value settings against the method’s performance with guidance and tuning parameters 

informed by the visual and analytic framework. The initial parameter settings appear in Table 11. 

For the CMA-ES parameter values not itemized in Table 11, we used default values specified in 

DEAP documentation (Fortin et al., 2012).  The combinations of population size and maximum 

number of generations were selected so each algorithm performed a similar number of function 

evaluations.  

Table 11: Initial Optimization Parameter Values for Existing Methods  

Algorithm  Parameter Variable Value 
Genetic Algorithm  Crossover rate (ratio) 𝛼𝛼𝑐𝑐𝑐𝑐  0.8 
 Mutation rate (ratio) 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚  0.3 
 Independent probability for each 

attribute to be mutated 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  0.2 

 Population size 𝑁𝑁𝑁𝑁 155 
 Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  100 
Particle Swarm 
Optimization  

Cognitive coefficient 𝜑𝜑𝑝𝑝 2.05 

Social coefficient 𝜑𝜑𝑔𝑔 2.05 

Population size 𝑁𝑁𝑁𝑁 80 
Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  125 

Covariance Matrix 
Adaptation 
Evolution Strategy 

Centroid 𝜇𝜇 A random number drawn from 
the uniform distribution 

Sigma 𝜎𝜎 3.0 
Weight strategy 𝑤𝑤 Superlinear 
Population size 𝑁𝑁𝑁𝑁 100 

Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  100 
 

For the informed optimization run, we used the best 𝑛𝑛𝑤𝑤𝑤𝑤  policies to seed the optimization 

method with warm solutions. Seeding optimizations with warm solutions improves optimization 

performance (Savic et al., 1997). We also drew 𝑛𝑛𝐷𝐷𝐷𝐷 candidates of the initial population from a 

region of the decision search space found by the decision tree to have a high probability of feasible 

and optimal solutions. We trained a decision tree on the smaller characterization sample set (2,000 

samples) to find this target region and then pruned the tree using cost-complexity pruning 
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(Breiman et al., 2017). On the pruned tree, we located 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the node with the minimum 

objective value and a feasibility ratio greater than the feasibility threshold, 𝐹𝐹𝐹𝐹𝑡𝑡ℎ𝑟𝑟. The rules from 

this node were extracted to create the bounds for the target region.  

4.3.5 Proposed Decision Tree Genetic Algorithm   

In addition to testing the application of extracted information from the visual analytic 

framework on a set of existing optimization methods, we propose a new optimization method that 

automatically integrates some of the optimization guidance methods into a heuristic search. The 

algorithm employs a decision tree classifier to identify regions with a high probability of feasible 

and low objective values and use rules extracted from this decision tree to guide the genetic 

algorithm. Similar methods that incorporate machine learning models into heuristic searches have 

been developed, including IBEA-SVM (Li et al., 2019) and the classification-based surrogate-

assisted evolutionary algorithm (Pan et al., 2019).   

The proposed method, named the decision tree guided genetic algorithm (DTG-GA), is 

presented in Algorithm 1. First, a characterization population of NCP candidate solutions is 

initialized using Latin hypercube sampling. The population is classified as infeasible and feasible. A 

decision tree is trained on the classified data and then pruned using cost-complexity pruning.  

On the pruned tree, we locate 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the node with the minimum objective value and a 

feasibility ratio greater than the feasibility threshold, 𝐹𝐹𝐹𝐹𝑡𝑡ℎ𝑟𝑟. The rules are extracted for this node 

and used to create a new set of lower bounds (𝑙𝑙𝐷𝐷𝐷𝐷) and upper bounds (𝑢𝑢𝐷𝐷𝑇𝑇) for the mutation 

operator. At this point, we start the genetic algorithm. We initialize a new population of NP 

candidates and seed this population with 𝑛𝑛𝑤𝑤𝑤𝑤 best candidates from the characterization population.  

 

 



81 
 

Algorithm 1: DTG-GA  
Require: NCP: the size of characterization population; NP: the size of optimization population; 𝛼𝛼𝐷𝐷𝐷𝐷: the 
probability of reliance on the decision tree model; 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚: mutation rate; 𝛼𝛼𝑐𝑐𝑐𝑐: crossover rate; 𝐹𝐹𝐹𝐹𝑡𝑡ℎ𝑟𝑟: 
Feasibility ratio threshold;  
𝑛𝑛𝑤𝑤𝑤𝑤: Number of warm solutions; Termination condition  

Initialize the characterization population 𝑃𝑃𝑐𝑐  using Latin hypercube sampling  
Classify the characterization population as feasible (𝐹𝐹) or infeasible (𝐼𝐼)  
Train a DT classification model using {𝐹𝐹} and {𝐼𝐼} 
Find 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  the decision tree node with minimum objective value and a feasibility ratio greater 
than 𝐹𝐹𝐹𝐹𝑡𝑡ℎ𝑟𝑟 
Use rules for 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  to adjust lower (𝑙𝑙𝐷𝐷𝐷𝐷) and upper (𝑢𝑢𝐷𝐷𝐷𝐷) bounds of mutation to target mutation 
Initialize optimization population  𝑃𝑃 
Seed population with 𝑛𝑛𝑤𝑤𝑤𝑤 best solutions from characterization population  
while the Termination condition is not satisfied, do 

Find Fitness values for 𝑃𝑃 if not calculated already 
Generate a new offspring population 𝑃𝑃𝑜𝑜 using tournament selection  
Apply crossover function 𝑃𝑃𝑜𝑜′ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑐𝑐  ,𝛼𝛼𝑐𝑐𝑐𝑐  )  
Apply mutation function 𝑃𝑃𝑜𝑜′′ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃𝑐𝑐′ ,𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 ,𝛼𝛼𝐷𝐷𝐷𝐷 , 𝑙𝑙𝐷𝐷𝐷𝐷 ,𝑢𝑢𝐷𝐷𝐷𝐷) 
Classify 𝑃𝑃𝑜𝑜′ as feasible (𝐹𝐹) or infeasible (𝐼𝐼)  
Train a DT classification model using the full set of {𝐹𝐹} and {𝐼𝐼} from all sampled points 
Find 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  the decision tree node with the lowest average objective value for feasible 
solutions with a feasibility ratio greater than 𝐹𝐹𝐹𝐹𝑡𝑡ℎ𝑟𝑟 
Use rules for 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  to adjust lower (𝑙𝑙𝐷𝐷𝐷𝐷) and upper (𝑢𝑢𝐷𝐷𝐷𝐷) bounds of mutation 
P = 𝑃𝑃𝑐𝑐′′ 

end while 
 

In the main loop, a new offspring population is generated using tournament selection, and then 

the crossover operator is applied to the offspring population at a crossover rate 𝛼𝛼𝑐𝑐𝑐𝑐.  Next, the 

mutation operator is applied at the mutation rate 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚. At this point, information from the decision 

tree is incorporated to guide the evolution of the population. Within the mutation operator at a 

probability of 𝛼𝛼𝐷𝐷𝐷𝐷 the bounds 𝑙𝑙𝐷𝐷𝐷𝐷 and 𝑢𝑢𝐷𝐷𝐷𝐷 are used in place of the original bounds. The mutation 

occurs within the full decision variable limits for all other instances. A new decision tree is trained 

on the full set of data sampled up to this point, and new 𝑙𝑙𝐷𝐷𝐷𝐷 and 𝑢𝑢𝐷𝐷𝐷𝐷 are generated. Finally, the 

offspring population becomes the population. This loop is continued until the termination condition 

is met.  

Optimization parameter settings for the DTG-GA are provided in Table 12. For this study, we 

used the maximum number of generations as the termination condition.  
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Table 12: Optimization Parameter Values for Decision Tree Guided Genetic Algorithm  
Parameter Variable Value 

Crossover rate (ratio) 𝛼𝛼𝑐𝑐𝑐𝑐  0.8 
Mutation rate (ratio) 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚  0.3 

Probability of reliance on DT model 𝛼𝛼𝐷𝐷𝐷𝐷 0.25 
Independent probability for each attribute to be mutated 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  0.2 

Feasibility ratio threshold  𝐹𝐹𝐹𝐹𝑡𝑡ℎ𝑟𝑟 0.5a/0.9b 

Number of warm solutions 𝑛𝑛𝑤𝑤𝑤𝑤 5 
Population size 𝑁𝑁𝑁𝑁 155 

Characterization population size 𝑁𝑁𝑁𝑁𝑁𝑁 3 ∙ 𝑁𝑁𝑁𝑁 
Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  100 

a For status-time pump schedule formulation; b For secondary time-based formulation 
 

4.4 Results 

4.4.1 Latin Hypercube Sampling Results 

Figure 17 presents the visual characterization of the large sampling set for both the STB and 

STPS formulations. From the simulation overview, the STPS has a much larger rate of infeasible 

solutions than the STB formulation, with small clusters of feasible and optimal solutions. The STPS 

feature distributions view shows a large proportion of the optimal solutions require that P10 turn 

on in the earliest hours. We can also see from the decision tree view that the model predicts a high 

percentage of infeasible solutions when P10 is turned on at or after 15.4 hours or 3:24 PM. The STB 

formulation is much more stable with a lower percentage of infeasible regions. From the feature 

distributions view, it appears that P10 off has the largest influence on when samples are feasible, 

with a large clustering of infeasible solutions between 2 - 6 AM. The decision tree also shows there 

is a high prediction of feasibility when P10 is turned off at or after 7.9 hours or 7:54 AM.  
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Figure 17. Latin Hypercube Sampling of the Fitness Landscape for Large Sample Set. Visual 
characterization of secondary time-based control problem formulations for the Net 3 water system using 
10,000 samples.  

Figure 18 shows the fitness landscapes for the smaller sampling set (2,000 samples). In this 

figure, we see similar patterns to the large sampling set. Again, the STPS formulation has a much 

higher rate of infeasibility, and the feasible solutions are mostly clustered with P10 turning on 

before 2 AM. There are slight differences between the splitting thresholds on the decision tree, but 

generally, the models are similar. The STB formulation shows equal similarities, with the same 

patterns as the large sampling set emerging for P10 within the feature distribution view. The 

decision tree again has a similar structure to the one trained on the larger sampling set with slight 

changes to the splitting thresholds. These consistent findings indicate that patterns begin to emerge 

even with a more limited characterization sample; users can use these patterns to inform 

subsequent optimizations.  
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Figure 18. Latin Hypercube Sampling of the Fitness Landscape for Limited Sample Set. Visual 
characterization of secondary time-based control problem formulations for the Net 3 water system using 
2,000 samples. 

Table 13 presents the analytic characterization of the STB and STPS fitness landscapes using 

both larger and smaller sampling sets. The feasibility ratio is much higher for the STB formulation 

than the STPS formulation, as seen in Figures 17 and 18. This indicates that the STB control 

structure is more stable across many settings and may provide more consistent system control.  

The RFBC has similar values for both control structures. This metric indicates the level of 

separability or intermixing between feasible and infeasible solutions.  Both fitness landscapes have 

a fairly large ratio of crossings, with nearly 20% of random steps crossing from one feasibility state 

to another. This intermixing is also observable within the visualizations of the characterization 

sampling sets, particularly in the simulation overview plots.  

Finally, the FDC is slightly smaller for the STB formulation than the STPS, signifying its fitness is 

more correlated with position. We can see in the simulation overview that the STPS landscape has 

many fewer optimal solutions, and they tend to cluster together. Conversely, the STB fitness 

landscape contains many low objective value solutions that range over many different decision 

variable values. From this, we may infer that because we do not have a large number of decision 
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variables for the test WDS, it may be easier to find the best solution for the STPS. However, given 

the low rate of feasible options, the small clusters of optimal solutions may be difficult to locate for 

a system with more decision variables.  

Table 13: Analytic Characterization of Fitness Landscapes 

Metric  Case Study 
Control Type 

Sample 
Size Value 

Feasibility 
Ratio  

Secondary Time 
Based 

10,000 0.90 
2,000 0.90 

Status Time 
Pump Schedule 

10,000 0.11 
2,000 0.12 

Ratio of 
Feasible 
Boundary 
Crossings  

Secondary Time 
Based 

10,000 0.18 
2,000 0.18 

Status Time 
Pump Schedule 

10,000 0.20 
2,000 0.21 

Fitness 
Distance 
Correlation 

Secondary Time 
Based 

10,000 0.11 
2,000 0.11 

Status Time 
Pump Schedule 

10,000 0.18 
2,000 0.08 

 

For all metrics except the FDC for the STPS case studies, there is minimal difference between 

the metric values calculated from the small and large sample sets. This consistency again indicates 

that we can gather information about an optimization problem’s fitness landscape from even a 

limited dataset.  

4.4.2 Informed Optimization Parameterization  

Using information from the visual and analytic characterization of the search space sampling 

sets, we can infer what parameter settings might be more appropriate based on the behavior of 

each algorithm. Our decision to guide the optimizations by seeding the population with good initial 

solutions also influences our parameter settings because we know some portion of the population 

already has better objective values. Table 14 provides parameters values for the informed 

optimization runs selected based on details extracted from the fitness landscape characterization.  
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Table 14: Informed Optimization Parameter Values  
Algorithm  Parameter Variable Value 
Genetic Algorithm  Crossover rate (ratio) 𝛼𝛼𝑐𝑐𝑐𝑐  0.8 
 Mutation rate (ratio) 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚  0.6 
 Independent probability for each 

attribute to be mutated 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  0.2 

 Population size 𝑁𝑁𝑁𝑁 155 
 Number of warm seeds  𝑛𝑛𝑤𝑤𝑤𝑤 5 
 Number of individuals drawn from the 

best region in the decision tree 𝑛𝑛𝐷𝐷𝐷𝐷 0.2 ∙ 𝑁𝑁𝑁𝑁 

 Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  100 
Particle Swarm 
Optimization  

Cognitive coefficient 𝜑𝜑𝑝𝑝 0.5 

Social coefficient 𝜑𝜑𝑔𝑔 3.6 
Population size 𝑁𝑁𝑁𝑁 80 

Number of warm seeds 𝑛𝑛𝑤𝑤𝑤𝑤 5 
Number of individuals drawn from the 

best region in the decision tree 𝑛𝑛𝐷𝐷𝐷𝐷 0.2 ∙ 𝑁𝑁𝑁𝑁 

Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  125 
Covariance Matrix 
Adaptation 
Evolution Strategy 

Centroid 𝜇𝜇 
The best performing 
individual from the 

characterization 
Sigma 𝜎𝜎 3.0 

Weight strategy 𝑤𝑤 Superlinear 
Population size 𝑁𝑁𝑁𝑁 100 

Maximum number of generations 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  100 
 

For the genetic algorithm, because the initial population has been seeded with warm solutions, 

a high probability of mutation and crossover allows these methods to explore how different 

settings might improve the initial population. The PSO algorithm uses the social and cognitive 

coefficients to pull particles towards global or local best solutions (Clerc and Kennedy, 2002). 

Because the particles are distributed throughout the search space, and changes between particle 

iterations are incremental, we set the social coefficient higher to give it more influence to pull 

solutions into the optimal region. To guide the CMA-ES, we set the centroid as the minimum value 

found in characterization. The CMA-ES algorithm can quickly converge if it finds a set of solutions 

that appear to be a minimum; to force it to explore more, we increase sigma (Hansen and 

Ostermeier, 2001).  
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4.4.3 Optimization Results  

Table 15 summarizes the final optimization results for the existing optimization algorithms and 

the new optimization method DTG-GA.  

For the existing algorithms, the genetic algorithm performed well across all cases, especially 

when informed using the warm solutions and samples drawn from the predicted optimal region. 

The crossover and mutation strategies allowed good solutions to evolve more efficiently. This 

consistent performance is the main reason we chose GA as the base for our proposed method DTG-

GA. Although PSO covered a larger range of the search space, in general, the GA found better 

solutions. The guidance improved the algorithm’s performance in the STPS search space, but it did 

not benefit the optimization of the STB controls.  

The CMA-ES performed similarly to GA for the STPS formulation. Again, the informed version 

had no performance increase. Since many of the optimization runs for STPS converged on this 

solution, this may be the global minimum.  Conversely, CMA-ES performance was the poorest of the 

three algorithms with the STB formulation. This poor performance is likely because CMA-ES tends 

to converge on a minimum quickly, getting stuck in local optima, and the STB fitness landscape is 

multimodal with many different clusters of low objective value solutions. Employing a restarting 

strategy can help the CMA-ES find solutions when there are many local minimums; but, this 

strategy requires a larger computational budget (Auger and Hansen, 2005).  

Our proposed method, the DTG-GA, performed nearly as well as the informed GA for the STB 

formulation, with a much smaller computational budget for the initial characterization population. 

DTG-GA also performed as well as GA and CMA-ES on the STPS problem. From these results, we 

infer that incorporating an initial characterization and incorporating decision tree models to either 

inform the initial population or as an integral part of the optimization routine can improve 

optimization performance.  
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Table 15. Optimization Results 
Algorithm  Control Formulation Version Objective Value 
Genetic Algorithm  Secondary Time Based Standard 260.94 
  Informed 224.72 
 Status Time Pump Schedule Standard 260.19 
  Informed 260.19 
Particle Swarm 
Optimization  

Secondary Time Based Standard 260.93 
 Informed 260.93 

Status Time Pump Schedule Standard 285.07 
 Informed 260.20 

Covariance Matrix Adaption 
Evolution Strategy 

Secondary Time Based Standard 290.28 
 Informed 263.40 

Status Time Pump Schedule Standard 260.19 
 Informed 260.19 

Decision Tree Guided Secondary Time Based Standard 225.94 
Status Time Pump Schedule Standard 260.19 

 

4.4.4 Visual Analysis of Optimization Coverage 

We can use a subset of the visualizations to analyze each algorithm’s coverage of the 

optimization search space to understand how the behavioral characteristics of each algorithm 

interact with the fitness landscape for each problem formulation and influence optimization 

performance. In particular, we used the feature distribution view and the simulation overview to 

visualize the search range of each optimization method. This visual analysis provides insights into 

the challenges or benefits of different approaches and shows the multifaceted use of these visual 

analyses.  

Figure 19 presents a visual analysis of the GA trajectory or coverage of each fitness landscape. 

Generally, GA spends most of simulations testing combinations within a narrow range of values. 

Although the vast majority of samples tested across both the STB and STPS formulations are 

feasible, there is clear intermixing between the feasible and infeasible solutions within the range of 

values sampled. The informed version spends more time testing a larger range of values, 

particularly for the STB formulation. When comparing method performance, the informed GA 
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performed best, which indicates that evolving good solutions using the mutation and crossover 

strategies to diversify the population was effective for the two fitness landscapes presented.  

 

 

Figure 19. Visual Analysis of the Genetic Algorithm Search Coverage Comparing Standard 
Optimization and Informed Optimization.  Applied to both the secondary time-based control and the 
status-time pump schedule case studies.  

From the visual analysis, the PSO algorithm spends many more simulations across a larger 

range of values (Figure 20). For the STPS formulation, a very high proportion of the sampled 

instances are infeasible. The informed version for the STPS formulation more clearly targets a 

region of optimal samples than the standard version. This trend is also visible in the STB 

formulation; the feature distributions show higher proportions of the samples targeted within 

tighter ranges.  Although this algorithm showed good coverage of the fitness landscape, this did not 

translate into an increase in optimization performance. Once good solutions were located, PSO did 

not test enough variations of these solutions to escape the local minimum. PSO might perform 

better for these landscapes if combined with a local search method.   
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Figure 20. Visual Analysis of the Particle Swarm Optimization Search Space Comparing Standard 
Optimization and Informed Optimization.  Applied to both the secondary time-based control and the 
status-time pump schedule case studies. 

 

Like GA, the CMA-ES focuses its search on a small range of values (Figure 21). In the CMA-ES 

coverage, for both formulations, many simulations have low objective values, with a minimal 

number of infeasible and high objective solutions. For the informed optimization of the STB case, 

the algorithm focused on a different and narrower range of solutions than the standard algorithm. 

Although the information improved the performance of CMA-ES on the STB landscape, both 

versions settled on local minima and were not able to perform as well as GA. For the STPS 

formulation, there is more overlap in the coverage between the standard and informed versions. 

This similarity in coverage indicates that the guidance did not seem to influence the CMA-ES 

trajectory in the STPS fitness landscape. This again supports the conclusion that CMA-ES performs 

well when the function has a more distinct global minimum.  
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Figure 21. Visual Analysis of the Covariance Matrix Evolutionary Strategy Search Space Comparing 
Standard Optimization and Informed Optimization.  Applied to both the secondary time-based control 
and the status-time pump schedule case studies. 

Figure 22 visualizes the DTG-GA coverage of the STB and STPS fitness landscapes. DTG-GA 

leverages fitness function characterization to guide the optimization using similar search 

mechanisms to GA. For the STB formulation, we can observe that the DTG-GA optimization 

generally targeted a small range of values, as seen with the GA. If we compare the search range 

more closely, the algorithm was drawn into similar regions as the informed GA optimization, which 

allowed it to perform comparably well even with a smaller characteristic population. One difference 

is that this algorithm more clearly focused on solutions that turned P10 off earlier in the day. The 

similarities between the GA and DTG-GA search are also apparent in the STPS case.  Both algorithms 

could quickly find the minimum value and focus on feasible options in a highly infeasible search 

space.  
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Figure 22. Visual Analysis of the Decision Tree Guided Genetic Algorithm Search Coverage. Applied to 
both the secondary time-based control and the status-time pump schedule case studies. 

4.5 Conclusions  

This study presents a visual analytic framework to characterize WDS operation optimization 

fitness landscapes. The framework allows the user to examine the impacts of problem formulation 

and search method on optimization effectiveness and extract information to improve the problem 

formulation and the optimization search.  

We demonstrated this framework on a simple WDS network, examining the fitness landscapes 

of two different pump control structures. The framework was effective in analyzing and visualizing 

the differences between problem formulations. The STB formulation yielded a very different fitness 

landscape than the STPS formulation, with a much higher percentage of feasible and low objective 

value solutions. Because of this higher rate of feasibility, the STB control structure is more stable 

across many settings and may provide more consistent control of the system. 

We also demonstrated the use of this framework to extract actionable information to select, 

guide, or create new optimization methods to improve optimization search performance. We tested 
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three existing methods, GA, PSO, and CMA-ES, examining their performance with and without 

guidance from the initial characterization.  

To inform the existing methods, we seeded the initial optimization population with warm 

solutions extracted from the characterization and samples drawn from predicted feasible and low 

objective value regions identified by decision tree models. We also used landscape fitness 

characteristics to select tuning parameters for each algorithm.  The efficiency of optimization 

methods generally improved when informed using these strategies, particularly in the STB fitness 

landscape, which has many local optima. Overall, the genetic algorithm performed the best across 

the two fitness landscapes.  

Additionally, we presented a novel optimization method, DTG-GA, that incorporates fitness 

landscape characterization and decision tree machine learning to guide a genetic algorithm to 

regions with high feasibility and optimal solutions. This optimization method performed similarly 

well to the informed genetic algorithm with a much smaller characterization population. By 

integrating machine learning into the search algorithm, the decision tree model could iteratively 

guide the optimization into high-performing areas.  

Although we designed this framework and the corresponding optimization method for use in 

the WDS operation optimization problem, many of the techniques presented can be extended to 

other complex optimization problems, particularly problems solved using heuristic or 

metaheuristic search techniques.  

4.6 Data Availability  

All data, models, or code generated or used during the study are available in a repository or 

online in accordance with funder data retention policies.  
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5 Chapter 5: Conclusions 

The research presented in this dissertation focused on enabling the water sector to respond to 

time-based energy incentives to support renewable integration. From these investigations, we can 

summarize several main contributions and overarching conclusions.  

First, we identified opportunities within the water sector that allow utilities to shift energy use 

with little or no impact on water quality or water service performance goals. For wastewater 

facilities, we showed that flow equalization basins or combined heat and power engines could be 

used to shift energy with minimal impact on wastewater quality. We also provided a wastewater 

treatment plant roadmap outlining the instrumentation, automation, and infrastructure necessary 

to participate in demand resource programs. For water distribution utilities, we developed a new 
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optimization formulation that allows these systems to optimize pump operations based on time-

dependent energy incentives while maintaining storage reserves and minimizing the violation of 

system constraints under uncertain demands.  

Although the research we presented can support water utilities performing energy demand 

management, the design of the energy incentive itself can be a barrier to water sector participation. 

Incentives need to be accessible and provide adequate compensation to encourage response. In 

particular, we identified significant challenges for water utilities participating in demand response 

programs that use averaging baseline methodologies to measure demand reductions and award 

compensation. Averaging baseline methodologies do not accurately estimate energy patterns for 

wastewater facilities, making it difficult to measure the impacts of operational modifications on the 

energy load.  

Through our research, we also developed procedures to analyze optimization problem 

formulations and the performance of optimization methods based on fitness function 

characteristics. In Chapter 3, we analyzed the simulations tested during the optimization search, 

determining what percent of the simulations resulted in feasible solutions and which constraints 

were violated for infeasible solutions. This analysis gave us insights into how model formulation 

can affect the fitness function characteristics, which constraints were more sensitive to changes in 

formulations, and how stable formulations are across various settings. In Chapter 4, we presented a 

more formal set of procedures as part of a visual analytic framework designed to characterize 

optimization fitness functions. This characterization can be used to examine the impacts of 

objective model design, modifying problem attributes, including objective values, constraints, or 

decision variable formulations. The visual analytic framework can also be used to improve the 

search efficiency of optimization methods, using characterization to guide, tune, or create new 

methods.  
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There are several areas of research that could expand the work presented in this dissertation. 

Future work should investigate additional load-shifting strategies for WWTPs that have minimal 

impacts on water quality, particularly focusing on developing techniques for load-shifting processes 

that are more sensitive to operational changes. Similar approaches could be explored for other 

types of water treatment plants. Researchers could also examine how modeling and dynamic data 

could be leveraged to correctly time and predict the effects of operational changes.  

Our research into performing energy demand management at water distribution facilities could 

also be expanded. Researchers could explore the iterative optimization of hierarchal rules, first 

optimizing tank-based rules to maximize reliable system performance under uncertain demands 

and then optimizing secondary time-based controls to reduce energy costs. It would also be 

valuable to analyze how different system characteristics can impact a utility’s ability to shift energy, 

including water storage redundancy, system elevation distributions, and pumping capacity. Studies 

implemented at full-scale facilities could identify additional barriers to energy demand 

management as well.  

There are also many opportunities to improve optimization formulations and methods using 

insights from our visual analytic framework. This research is not limited to the optimization of 

water systems but can be applied to a broad range of complex optimization problems. This 

framework should serve as a starting point for the visual and analytical characterization of 

optimization search spaces. Researchers may continue to develop new visualizations and landscape 

fitness metrics to improve our understanding of optimization problems and optimization method 

efficiency.  
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Appendix A: Supplemental Information for Chapter 3  

Additional information is provided in this document to supplement the manuscript, including 

adjustments to the original NET 3 case study EPANET file, optimization details, and the 

optimization results.  

Case Study Amendments  

A set of controls for one of the pumps in the Net 3 model (Rossman et al., 2020) was modified to 

follow a tank trigger control scheme rather than a time-of-day trigger. The new controls were 

constructed to result in similar operations to the original control. Both the original and modified 

controls are provided below:  

 

Optimization Details  

Further optimization details are provided in the following sections, including parameter values 

for the operational constraints and the control setting values used to seed the initial population of 

the particle swarm optimization (PSO) for each control structure type.  

Operational Constraint Parameter Values 

The full constraint formulations are provided in the manuscript. Table 16 provides the 

allowable difference parameter values that were used in this study for each constraint.  

 

 

Original Controls:  

Link 10 OPEN AT TIME 1 

Link 10 CLOSED AT TIME 15 

Modified Controls:  

Link 10 OPEN IF NODE 2 BELOW 21.5 

Link 10 CLOSED IF NODE 2 ABOVE 29 
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Table 16. Operational Constraint Parameter Values 
Parameter Description Value 

𝜀𝜀𝑃𝑃 Allowable pressure difference 5 m  
𝜀𝜀𝑉𝑉 Allowable velocity difference 2 m/s 
εSM Allowable maximum/minimum tank storage level difference. 0.05 
εSD Allowable percent difference for the differencing storage constraint 0.1 
εSA Allowable percent difference for the average storage constraint 0.05 m  

 

Initial Seeding Particles  

To assist the optimization in finding solutions that do not violate operational constraints, the 

initial population for each optimization was seeded with a single feasible solution (Savic et al., 

1997). All other particles in the initial population were selected randomly.  

Each control structure has a different initial seed for each case study. The tank trigger settings 

from the original controls were used as seeds for the tank trigger control structures. Table 17 

provides the settings of the initial seeds for the secondary time-based and explicit pump schedule 

controls.  
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Table 17. Initial Feasible Population Seed for Secondary Time-Based and Explicit Pump Schedule Controls  

Network Pump Name 
Explicit Pump Schedule Secondary Time-Based Control 

On Time Off Time On Time Off Time 

Net 3 RU 
10 2 16 11 16 

335 22.5 5 11 16 

Richmond 
Skeletonizeda 

1A 0 0 11 16 
2A 7.1 3.7 11 16 
3A 8.3 1.25 11 16 

5CSW1 15 4 11 16 
5CSW2 18.2 6 -- -- 
6DSW1 8.7 3.33 11 16 
6DSW2 5.8 23.5 -- -- 

7F 19 21.1 11 16 

MNWD 

1 21.5 14 17 21 
2 0.4 13.5 17 21 
3 1 11 17 21 
4 21.2 8.7 17 21 
5 1 3 17 21 
6 0.6 5.4 17 21 
7 13.5 13.5 17 21 
8 21.5 11.2 17 21 

aPumps 5C and 6D require two sets of pump switches to cycle tanks at a similar rate to the original system. 
All other pumps only require a single set of pump switches.  

 

Optimization Results  

Three replications were performed for each optimization case study utilizing different random 

seeds. The manuscript reports the average values for each parameter of interest; Table 3 provides 

full results for each replication.  
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Table 18.  Full Optimization Results for Optimization Run Replications 

Network Evaluation Type 
Tank 

Constraint 
Type 

Random 
Seed 

Objective 
Value ($) 

Number of 
Pump 

Switches 

Average 
Storage 

(%) 

Net 3 

Secondary Time 
Based 

Averaging 
0 1086.27 18 71.1 
1 1086.27 18 71.1 
2 1086.29 18 71.1 

Differencing 
0 1086.26 18 71.2 
1 1086.31 18 71.1 
2 1086.30 18 71.1 

Explicit Pump 
Schedule 

Averaging 
0 1312.98 26 73.8 
1 1242.81 14 73.1 
2 1247.02 27 76.8 

Differencing 
0 1183.02 28 73.5 
1 1183.47 28 72.6 
2 1183.12 28 73.2 

Tank Trigger 

Averaging 
0 1093.10 14 71.9 
1 1098.11 15 71.6 
2 1088.12 17 71.0 

Differencing 
0 1092.79 15 70.4 
1 1093.64 14 70.6 
2 1093.66 14 70.6 

Richmond 
Skeletonized 

Secondary Time 
Based 

Averaging 
0 397.49 251 86.2 
1 407.59 239 85.8 
2 399.24 240 86.2 

Differencing 
0 400.10 234 86.1 
1 407.59 239 85.8 
2 401.86 249 85.8 

Explicit Pump 
Schedule 

Averaging 
0 425.38 204 84.4 
1 425.38 204 84.4 
2 425.38 204 84.4 

Differencing 
0 425.38 204 84.4 
1 425.38 204 84.4 
2 425.38 204 84.4 

Tank Trigger 

Averaging 
0 434.83 239 85.2 
1 434.83 239 85.2 
2 434.83 239 85.2 

Differencing 
0 430.99 244 79.8 
1 429.62 278 80.3 
2 427.15 281 86.2 
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Network Evaluation Type 
Tank 

Constraint 
Type 

Random 
Seed 

Objective 
Value ($) 

Number of 
Pump 

Switches 

Average 
Storage 

(%) 

MNWD 

Secondary Time 
Based 

Averaging 
0 24177.68 320 70.0 
1 24050.71 324 69.3 
2 24149.51 324 69.8 

Differencing 
0 24148.92 304 69.4 
1 24017.36 336 69.4 
2 24149.51 324 69.8 

Explicit Pump 
Schedule 

Averaging 
0 25083.76 261 70.8 
1 25083.76 261 70.8 
2 25083.76 261 70.8 

Differencing 
0 25101.00 261 70.8 
1 25101.00 261 70.8 
2 25101.00 261 70.8 

Tank Trigger 

Averaging 
0 24450.96 270 69.2 
1 24426.95 298 69.4 
2 24177.68 304 69.1 

Differencing 
0 23800.96 272 61.3 
1 23558.97 270 62.8 
2 23481.26 258 61.2 
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