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ABSTRACT OF THE DISSERTATION
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The main goal of this work is to prove a symplectic non-squeezing result for the Korteweg–de

Vries (KdV) equation on the line R. This is achieved via a finite-dimensional approximation

argument. Our choice of finite-dimensional Hamiltonian system that effectively approximates

the KdV flow is inspired by the recent breakthrough in the well-posedness theory of KdV in

low regularity spaces [KV19], relying on its completely integrable structure. The employment

of our methods also provides us with a new concise proof of symplectic non-squeezing for

the same equation on the circle T, recovering the result of [CKS05].
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CHAPTER 1

Introduction

We consider the real-valued Korteweg–de Vries equation on the line:

d

dt
q = −q′′′ + 6qq′. (KdV)

This equation was introduced over a hundred years ago in [KV95] to describe the evolution

of long waves in shallow channels of water. In particular, it sought to mathematically

explain the observation of solitary waves. Its physical significance, along with its unique

mathematical features, have captured the interest of researchers ever since. Firstly, the KdV

equation is a Hamiltonian evolution. It is also one of the most prominent examples of a

completely integrable system.

The setting in which (KdV) can be viewed to be Hamiltonian is that of a symplectic

Hilbert space. Consider a Hilbert space H and ω a symplectic form on H, that is, a nonde-

generate, antisymmetric form ω : H × H → C. A Hamiltonian function H : H → R gives

rise to dynamics of the form

q̇ = XH(q).

Here XH is the vector field given by

ω(v,XH(q)) =
d

dε
|ε=0H(q + εv).

Indeed, the KdV equation is, formally at least, the Hamiltonian evolution in the sym-

plectic space

Ḣ−
1
2 (R) :=

{
q :

ˆ
R
q(x)dx = 0,

ˆ
R

|q̂(ξ)|2

|ξ|
dξ <∞

}
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associated to the Hamiltonian

HKdV (q) =

ˆ
R

1

2
(q′)2 + q3dx.

Considering the symplectic form

ω− 1
2
(u, v) =

ˆ
R
u∂−1x vdx

in the Hilbert space Ḣ−
1
2 (R), simple calculations show that

d

dε
|ε=0HKdV (u+ εv) =

ˆ
R
u′v′ + 3u2vdx =

ˆ
R
(−u′′ + 3u2)vdx

=

ˆ
R
∂−1x (−u′′′ + 6uu′)vdx

= ω− 1
2
(v,−u′′′ + 6uu′).

In the context of Hamiltonian mechanics, Liouville’s theorem asserts that Hamiltonian

flows preserve phase-space volume. This implies that in order for a Hamiltonian evolution to

flow one region of space to another, the volume of the latter must exceed that of the former.

The natural question that emerges is whether preservation of volume is the only obstruction

for the existence of a symplectomorphism between two regions. Although this is the case in

one (complex) dimension, the situation is much different in higher dimensions.

Theorem 1.1 (Gromov, [Gro85]). Fix z ∈ Cn, l ∈ Cn with unit length, α ∈ C, and

0 < r < R < ∞. Let B(z,R) denote the ball of radius R centered at z and suppose

φ : B(z,R)→ Cn is a smooth symplectomorphism (with respect to the standard structure).

Then there exists ζ ∈ B(z,R) so that

|〈l, φ(ζ)〉 − α| > r.

In other words, a smooth symplectomorphism cannot map a ball wholly inside a cylinder

of smaller radius, despite the fact that the volume of the ball is finite and the volume of

the cylinder is infinite. In particular, this indicates that, although symplectomorphisms

preserve volume, it is far more restrictive to be a symplectic transformation than to be

volume-preserving. Symplectic non-squeezing can also be viewed as a classical analogue of
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the uncertainty principle; if a collection of particles initially spread out all over a ball, then

one cannot squeeze the collection into a statistical state in which the momentum and position

in some direction spread out less than initially.

The main goal of this work is to show that the analogue of Gromov’s theorem holds for

the infinite-dimensional dynamics associated to KdV on the line.

Theorem 1.2. Let z ∈ Ḣ− 1
2 (R), l ∈ H 1

2 (R) with ‖l‖
Ḣ

1
2 (R)

= 1, α ∈ C, 0 < r < R <∞, and

T > 0. Then there exists q0 ∈ {q ∈ Ḣ−
1
2 (R) : ‖q − z‖

Ḣ−
1
2 (R)

< R} such that the solution q

to (KdV) with initial data q(0) = q0 satisfies

|〈l, q(T )〉 − α| > r.

As an offshoot of our methods, we also obtain a much simpler proof for the known

corresponding result on the circle, first established in [CKS05].

Theorem 1.3. Let z ∈ Ḣ− 1
2 (T), l ∈ H 1

2 (T) with ‖l‖
Ḣ

1
2 (T)

= 1, α ∈ C, 0 < r < R <∞, and

T > 0. Then there exists q0 ∈ {q ∈ Ḣ−
1
2 (T) : ‖q − z‖

Ḣ−
1
2 (T)

< R} such that the solution q

to (KdV) with initial data q(0) = q0 satisfies

|〈l, q(T )〉 − α| > r.

While it is tempting to believe that any property that holds for any finite-dimensional

Hamiltonian system must carry over to infinite-dimensional systems, no such universal result

is known. Although for infinite-dimensional PDE finite-time blow-up can occur despite exact

conservation of norm, there is no analogue of this phenomenon in finite dimensions; blow-up

for ODEs occurs only via norm blow-up. Another key distinction is that in Cn the weak

and norm topologies coincide. This is not true in infinite-dimensional Hilbert spaces. This

is one of the intriguing aspects of non-squeezing in this setting, as it commingles these two

topologies: the initial data is measured in norm, but the solution at time T is examined from

the standpoint of the weak topology.

Although no universal analogue of Theorem 1.1 is known in infinite dimensions, symplec-

tic non-squeezing has been proved for several Hamiltonian PDE. The proof of these results
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always depends heavily on the model in question. The study of symplectic non-squeezing

for Hamiltonian PDE was initiated by Kuksin. In [Kuk95] he proved an analogue of Gro-

mov’s theorem for flows that consist of a linear operator and a compact smooth operator

and provided several examples that fall into this framework. This is made possible by using

finite-dimensional approximation to extend the Hofer-Zehnder capacity to infinite dimen-

sional Hilbert spaces and thus obtain an infinite-dimensional symplectic invariant. Subse-

quently, Kuksin’s result was used to prove symplectic non-squeezing for several other models

( [Bou95], [Rou10]).

Bourgain later proved symplectic non-squeezing for a flow that is not amenable to

Kuksin’s treatment, namely the defocusing cubic NLS on the one-dimensional torus ( [Bou94]).

Finite-dimensional approximation is once again at the core of his method; he introduces

a (sharp) Fourier cutoff on the nonlinearity to approximate the full equation by a finite-

dimensional system and applies Gromov’s result to this approximate flow.

Similar methods were employed in [CKS05] to obtain symplectic non-squeezing for the

KdV flow on the circle. One of the main difficulties of this problem is that, although the

KdV equation is subcritical in Ḣ−
1
2 (T), it does represent the end-point regularity for strong

notions of well-posedness on the torus. The authors show that projecting the equation

crudely as in the argument of Bourgain does not provide a good approximation and they

adopt a smooth frequency truncation instead. Their method utilizes the Miura transform to

pass to mKdV and take advantage of its better smoothing properties.

A simpler proof for the symplectic non-squeezing result for KdV was discovered by Hong

and Kwon ( [HK]). Instead of the Miura map, they use a normal form transformation to

obtain the result for the KdV as well as for the coupled KdV flow on the torus.

Higher-order KdV-type equations were treated in [HK16]. The authors use an argument

based on Bourgain’s sharp projection approximation, exploiting the better modulation effect

from the non-resonant interaction that these equations enjoy compared to the KdV flow in

order to avoid the use of the Miura map or the need for a smooth frequency truncation.

Bourgain’s method was also followed in [Kwa18] to prove that the forth-order cubic NLS on
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the one-dimensional torus has the symplectic non-squeezing property.

In [Men17] Mendelson obtained symplectic non-squeezing results for the cubic nonlinear

Klein–Gordon equation on the three-torus. This is a critical result in the sense that the

regularity needed to define the symplectic form coincides with the scaling critical regular-

ity of the equation. The proof relies again on a finite-dimensional approximation, using a

combination of deterministic and probabilistic techniques.

More recently, non-squeezing was considered in infinite volume. This significant advance

was made in the work of Killip, Visan, and Zhang ( [KVZ19], [KVZ]) where they proved

symplectic non-squeezing for the cubic NLS on R and R2. Note that the latter is also the

first unconditional critical result. Their method relies on approximating the full flow by

higher and higher frequency-truncated versions of the equation posed on larger and larger

tori. For instance, the finite-dimensional systems used to approximate the cubic NLS on the

line were

i∂u+ ∆u = P≤Nn
(
|P≤Nnu|2P≤Nnu

)
on R/LnZ

with Nn, Ln →∞ as n→∞.

This novel strategy for proving symplectic non-squeezing results in the infinite volume

setting has already proved to be extremely effective in several Hamiltonian PDE. For in-

stance, in [Mia17] these techniques were implemented for certain mass subcritical forth-order

Schrödinger equations on R, while in [Yan17] Yang adapted this method to address all mass

subcritical Hartree equations on Rd for d ≥ 2.

While the innovative techniques in [CKS05,HK] were successful in proving non-squeezing

on the torus, the challenging question of establishing a similar result on the line was left open.

The torus assumption is essential in both arguments, suggesting the need for new ideas in

the infinite volume setting. In our treatment these new ideas stem from the completely

integrable structure of the KdV equation.

The modern theory of complete integrability has its roots in the discovery by Gardner,

Greene, Kruskal, and Miura in [GGK67] of a method for solving the initial-value problem

of the KdV equation with rapidly decaying initial data. This was achieved by drawing the
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connection between this problem and the spectral and scattering theory of the Schrödinger

operator

L(t) = −∂2x + q(x, t).

A more elegant expression of this connection and the integrable structure of KdV was pro-

vided soon afterwards by Lax in the form of the Lax pair

L(t) = −∂2x + q(t),

P (t) = −4∂3x + 3∂xq(t) + 3q(t)∂x;

one can easily verify that q is a solution to (KdV) if and only if

d

dt
L(t) = [P (t), L(t)].

Since P (t) is anti-self-adjoint, at every time t the unitary operator U(t) given by

d

dt
U(t) = P (t)U(t), U(0) = Id

satisfies

L(t) = U(t)L(0)U(t)∗.

This suggests that (KdV) preserves the spectral properties of L. We therefore recover an

infinite sequence of conservation laws for the KdV, which can be expessed in the form of

polynomials of q and its derivatives, first discovered in [MGK68] by Gardner, Kruskal, and

Miura. For example, the first three of these conserved quantities are

M(q) =

ˆ
q(x)dx, P (q) =

ˆ
1

2
q(x)2dx, HKdV (q) =

ˆ
1

2
q′(x)2 + q(x)3dx

and describe the conservation of mass, momentum, and energy, respectively. A powerful con-

sequence of these conservation laws is that, for every non-negative integer m, the Hm norm

of smooth solutions to (KdV) is bounded uniformly in time in terms of the corresponding

norm of their initial data.

Even more significant for our work are the new low regularity conservation laws recently

discovered independently both by Koch and Tataru [KT18], as well as by Killip, Visan,
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and Zhang [KVZ18]. Following the exposition of the latter, the authors observed that the

perturbation determinant

det

(
−∂2x + q(t) + κ2

−∂2x + κ2

)
= det

(
1 +

√
R0(κ)q

√
R0(κ)

)
, R0(κ) = (−∂2x + κ2)−1

can be used to encapsulate the preservation of the spectral properties of the Lax operator L

by (KdV). After further renormalizations, the authors proposed the quantities

α(κ; q) := − log det
(

1 +
√
R0(κ)q

√
R0(κ)

)
+

1

2κ
M(q)

and proved that they are indeed conserved under the KdV flow for all large enough κ ≥ 1.

One of the main reasons behind this renormalization is that it allows us to express the

conserved quantities in the series expansion

α(κ; q) =
∞∑
l=2

(−1)l

l
tr
{

(
√
R0q

√
R0)

l
}
.

As it turns out, α(κ; q) captures the H−1 norm of the part of q that lives at frequencies

|ξ| & κ.

Furthermore, this new discovery was the catalyst for progress in the well-posedness theory

of (KdV) in low regularity spaces. Building upon their work in [KVZ18], Killip and Visan

established in [KV19] well-posedness in the optimal regularity space H−1 both on the line

and the circle, in the sense that the solution map extends uniquely from Schwartz space to

a jointly continuous map Φ : R × H−1 → H−1 (see Theorem 8.4). In the case of the torus

this result had already been obtained by Kappeler and Topalov [KT06]. It is worth noting

that it is sharp, as it has been shown in [Mol11,Mol12] that continuous dependence on the

initial data cannot hold in Hs for s < −1 in both geometries, thus precluding well-posedness

below H−1.

Their method relies on considering the evolutions induced by the Hamiltonians

Hκ(q) := −16κ5α(κ; q) + 4κ2P (q).

Observing that α(κ; q)− 1
2κ
M(q) acts as a generating function for the polynomial conserved

quantities, the asymptotic expansion

α(κ; q) =
1

4κ3
P (q)− 1

16κ5
HKdV +O(κ−7)

7



suggests that the Hamiltonian Hκ can serve as a good approximation to HKdV . They prove

that the family of Poisson commuting flows associated with the Hamiltonians Hκ are globally

well-posed in H−1, commute with the KdV flow, and the flow induced by the difference

HKdV −Hκ is close to the identity in the H−1 metric for κ large on bounded time intervals,

thus making it possible to obtain well-posedness for KdV by a limiting process.

Inspired by the innovations introduced in [KV19] that we described above, we consider

a new approach to the study of the symplectic behavior of (KdV). In order to investigate

whether the KdV flow can be accurately approximated by finite-dimensional models, we

employ the approximation of (KdV) by the commuting flows induced by the Hamiltonians

Hκ. This can be seen as a truncation in the Hamiltonian. Furthermore, the proof of Theorem

1.2 utilizes a finite-dimensional approximation by truncation in frequency as well as in space,

similar to the one in [KVZ19, KVZ]. The approximation result we get allows us to transfer

results for finite-dimensional systems, such as non-squeezing, to the PDE setting.

Firstly, we focus our efforts on proving a symplectic non-squeezing result for the Hκ flows

via approximation by finite-dimensional systems. This is a much easier task than proving

this property for (KdV); it turns out that these equations have a Lipschitz nonlinearity and

enjoy finite speed of propagation. More specifically, for every fixed sufficiently large κ we

consider the frequency-truncated Hamiltonians

Hn
κ (q) = −16κ5α(κ;PLn

mn<···≤Mn
q) + 4κ2P (q)

and the induced Hamiltonian flows on the torus R/LnZ for appropriate parameters mn → 0,

Mn → ∞, and Ln → ∞ as n → ∞. As finite-dimensional systems, they demonstrate

symplectic non-squeezing. If un are the witnesses to non-squeezing for the Hn
κ flows given

by Gromov’s theorem, we wish to extract a ‘limit’ and show that it is, indeed, a witness

to non-squeezing for the Hκ flow. Unlike what was done in [KVZ] and [KVZ19], the re-

moval of the frequency truncation and the extension from the large circle to the line happen

simultaneously.

Of course, this limiting process is very delicate. We are working with a sequence un(0) of

periodic initial data with different periods, so there is no appropriate space that contains all

8



the elements, making it impossible to talk about a limit. Our remedy is to find compactly

supported initial data qn(0) ∈ Ḣ− 1
2 (R), with potentially larger and larger support containing

the origin, that are ‘close’ to a copy of one period of un(0). This is achieved by viewing un(0)

as a function on the circle of circumference Ln, locating a small subinterval where un(0) is

‘not too large’, and ‘cutting’ there in a smooth fashion to ‘unwrap’ on the line and obtain a

new sequence, qn(0).

Despite sounding deceivingly simple, this process is one of the most vexing parts of the

proof. First of all, the cut must be done in a way that establishes not only that qn(0) is

‘close’ to un(0), but also that the evolution of qn(0) remains a good approximation to un(t)

on the time interval [0, T ]. To that end, one needs to avoid cutting in a location where

there is a bubble of concentration for un(0). It is also crucial to cut along a sufficiently

large subinterval in order to ensure that the periodic solution will not have a chance to wrap

around the torus and reinforce itself. On a technical level, the main difficulties stem from

the fact that we have to work in the fractional Sobolev space Ḣ−
1
2 which is non-local. For

instance, even for a smooth cutoff χ ∈ C∞c (R) it is possible that χun(0) is not in Ḣ−
1
2 (R).

The difficulty of locating an appropriate cutting interval informs our choice of finite-

dimensional approximating systems, which differs from the preceding works we discussed.

The removal of low frequencies is not an arbitrary decision, but the decisive and indispensable

technical step that allows the process described above to run smoothly (see the proof of

Lemma 5.1). One may worry that this choice could affect the well-posedness of the induced

flows or obstruct the convergence to the full equation, especially since we are working in

negative regularity spaces. Nevertheless, these concerns turn out to be unwarranted, thanks

to the presence of a derivative in the nonlinearity of (Hκ). Moreover, after carrying out the

delicate ‘cutting’ and ‘unwrapping’ process carefully, we ensure not only that qn(0) is ‘close’

to un(0), but also that the flow on the line with initial data qn(0) stays ‘close’ to un.

The new sequence of initial data qn(0) is bounded in Ḣ−
1
2 (R), permitting us to get a

weak limit. This indicates that we need to understand the behavior of the Hκ flow in the

weak topology. In particular, we prove that for a sequence of initial data that is bounded

in Ḣ−
1
2 (R), passing to a subsequence the corrresponding solutions to the Hκ flow converge
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weakly in H−1(R) to a solution to the same equation uniformly on any compact time interval

containing 0. The weak limit extracted through this process is expected to be the desired

witness to non-squeezing for the Hκ flow on the line.

Establishing the non-squeezing property for the Hκ flows constitutes an essential step

towards proving our main theorem. As we discussed earlier, these flows provide a good

approximation for KdV. For a bounded in Ḣ−
1
2 (R) sequence of initial data, the difference of

the corresponding solutions to the KdV and the Hκ flow converges to 0 in H−1 uniformly on a

compact time interval [0, T ] and for all elements of the sequence as κ→∞ (see Lemma 8.2).

Consequently, we can rely on this approximation to prove that KdV inherits this property.

The key ingredient to do so is prove a weak well-posendess result for (KdV) in H−1.

Indeed, we show that, if qn(t) is a bounded in Ḣ−
1
2 (R) sequence of Schwartz solutions to

(KdV) and qn(0) converges weakly in H−1 to q(0), then qn(T ) converges weakly in H−1 to

the solution to (KdV) with initial data q(0) for all T > 0.

Understanding the behavior of (KdV) in the weak topology is an interesting question on

its own, and one that has already received attention. In particular, in [CK10] Cui and Kenig

proved a weak continuity result in the Sobolev space H−
3
4 (R), but the problem in lower regu-

larity spaces remained unanswered. These authors were motivated by potential applications

of this property to finite time blow-up and asymptotic stability of solitary waves. It also

becomes apparent that studying the behavior of weak limits under the flow is fundamental

for symplectic non-squeezing. We would add that the weak topology better represents what

one may achieve in actual experiments: One cannot wholly suppress high-frequncy noise,

nor employ an infinite domain. One can only make finitely many measurements.

There are a few simplifications that are possible in the torus setting. First of all, our

finite-dimensional approximation for the Hκ flow can comprise of only a frequency truncation

of the full equation, as we are working on finite volume to begin with. Moreover, the witnesses

to non-squeezing we obtain by Gromov’s result for these finite-dimensional models all lie in

the same space. Finally, the finite volume setting allows us to avoid working in the weak

topology.
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Besides providing a simpler proof for the result of [CKS05] and allowing us to deal with

the infinite volume setting, our methods can take us even further. As we mentioned earlier,

one of the most crucial results in our work is that the KdV flow respects weak H−1 limits

on Ḣ−
1
2 bounded subsets. We can however get this result for a larger class of subsets of

H−1. By proving this for all bounded equicontinuous subsets of H−1, we gain access to the

following stronger results, where the center of the ball is merely in H−1.

Theorem 1.4. Let z ∈ H−1(R), l ∈ H1(R) with ‖l‖
Ḣ

1
2 (R)

= 1, α ∈ C, 0 < r < R <∞, and

T > 0. Then there exists q0 ∈ {q ∈ H−1(R) : ‖q − z‖
Ḣ−

1
2 (R)

< R} such that the solution q

to (KdV) with initial data q(0) = q0 satisfies

|〈l, q(T )〉 − α| > r.

Theorem 1.5. Let z ∈ H−1(T), l ∈ H1(T) with ‖l‖
Ḣ

1
2 (T)

= 1, α ∈ C, 0 < r < R <∞, and

T > 0. Then there exists q0 ∈ {q ∈ H−1(T) : ‖q− z‖
Ḣ−

1
2 (T)

< R} such that the solution q to

(KdV) with initial data q(0) = q0 satisfies

|〈l, q(T )〉 − α| > r.

Note that, even in the compact setting, this is a new result.

Looking back at Gromov’s Theorem, it asserts that a smooth symplectomorphism cannot

map a ball of radius R into a cylinder with cross-section r < R. The next natural question

is to ask what happens if we consider r = R. Moreover, one cannot help but wonder if it is

necessary to restrict our interest to cylinders with a circular cross-section. As it turns out,

the following statements are equivalent to Gromov’s Theorem (Remark 1.4, [KVZ]):

1. A symplectomorphism cannot map a closed ball into an open cylinder of the same

radius.

2. A symplectomorphism cannot map a ball of radius R into a cylinder whose cross-section

has area less than πR2.

The robustness of our methods can also be manifested by allowing us to obtain analogous

alternate formulations of symplectic non-squeezing for (KdV), both on the circle and the

line.
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CHAPTER 2

Preliminaries

We adopt the following convention for the Fourier transform and the inverse Fourier trans-

form:

f̂(ξ) =

ˆ
R
e−2πiξxf(x)dx, ξ ∈ R

f(x) =

ˆ
R
e2πiξxf̂(ξ)dξ

for functions on the line and

f̂(k) =
1

`

ˆ `

0

e−2πikxf(x)dx, k ∈ 1

`
Z

f(x) =
∑
k∈ 1

`
Z

e2πikxf̂(k)

for functions on the circle T` = R/(`Z). Plancherel’s theorem asserts that

‖f‖2L2(R) :=

ˆ
R
|f(x)|2dx =

ˆ
R
|f̂(ξ)|2dξ,

‖f‖2L2(T`) :=

ˆ `

0

|f(x)|2dx = `
∑
k∈ 1

`
Z

|f̂(k)|2.

The above give rise to the definition of the Hs and Ḣs Sobolev norms for s ∈ R \ {0}

‖f‖2Hs(R) =

ˆ
R
|f̂(ξ)|2(1 + |ξ|2)sdξ, ‖f‖2

Ḣs(R) =

ˆ
R
|f̂(ξ)|2|ξ|2sdξ

and

‖f‖2Hs(T`) = `
∑
k∈ 1

`
Z

|f̂(k)|2(1 + |k|2)s, ‖f‖2
Ḣs(T`)

= `
∑

k∈ 1
`
Z\{0}

|f̂(k)|2|k|2s.

In light of these definitions, the Sobolev spaces are given by

Hs(R) := {f : ‖f‖Hs(R) <∞}, Hs(T`) := {f : ‖f‖Hs(T`) <∞}
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for all s ∈ R \ {0},

Ḣs(R) := {f : ‖f‖Ḣs(R) <∞}, Ḣs(T`) := {f : ‖f‖Ḣs(T`) <∞}

for s > 0,

Ḣs(R) := {f : ‖f‖Ḣs(R) <∞}, Ḣs(T`) := {f : f̂(0) = 0, ‖f‖Ḣs(T`) <∞}

for s < 0.

We use the standard Littlewood-Paley operators P≤N , P>N , PN<···≤M for functions on

the line given by

P̂≤Nf(ξ) := m(
ξ

N
)f̂(ξ),

P̂>Nf(ξ) :=
(
1−m(

ξ

N
)
)
f̂(ξ),

PN<···≤Mf := P≤Mf − P≤Nf

and P `
≤N , P `

>N , P `
N<···≤M for functions on the circle T` = R/(`Z) given by

P̂ `
≤Nf(k) := m(

k

N
)f̂(k),

P̂ `
>Nf(k) :=

(
1−m(

k

N
)
)
f̂(k),

P `
N<···≤Mf := P `

≤Mf − P `
≤Nf

for N,M ∈ 2Z, where m ∈ C∞c (R) is a radial bump function supported in [−2, 2] and equal

to 1 on [−1, 1]. Like all Fourier multipliers, the Littlewood-Paley operators commute with

differential operators as well as with other Fourier multipliers. They also obey the following

estimates.

Lemma 2.1 (Bernstein estimates). For s ∈ R, σ > 0, N ∈ 2Z

‖P≤Nf‖Hs(R) + ‖P>Nf‖Hs(R) . ‖f‖Hs(R),

‖P≤Nf‖Ḣs(R) + ‖P>Nf‖Ḣs(R) . ‖f‖Ḣs(R),

‖|P≤Nf‖Ḣs(R) . Nσ‖P≤Nf‖Ḣs−σ(R),

‖P>Nf‖Ḣs(R) . N−σ‖P>Nf‖Ḣs+σ(R).

The analogous estimates also hold on the circle.
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2.1 Diagonal Green’s function

In this section we summarize some properties of the Green’s function associated with the

Schrödinger operator

L = −∂2x + q

both on the line and on the circle. We follow the exposition of [KV19], where proofs of the

statements in this section can be found.

We begin with the line setting. For δ > 0 small, we denote

Bδ := {q ∈ H−1(R) : ‖q‖H−1(R) ≤ δ}.

Proposition 2.2. Given q ∈ H−1(R), there exists a unique self-adjoint operator L associated

to the quadratic form

ψ 7→
ˆ
|ψ′(x)|2 + q(x)|ψ(x)|2dx

with domain H1(R). It is semi-bounded. Moreover, for δ ≤ 1
2

and q ∈ Bδ, the resolvent is

given by the norm-convergent series

R(κ) := (L+ κ2)−1 =
∞∑
l=0

(−1)l
√
R0(
√
R0q

√
R0)

l
√
R0

for all κ ≥ 1, where R0 denotes the resolvent in the case q = 0

R0(κ) = (−∂2x + κ2)−1.

It is worth noting that in the heart of the proof of the above Proposition is the crucial

estimate

‖
√
R0q

√
R0‖2op ≤ ‖

√
R0q

√
R0‖2I2 =

1

κ

ˆ
|q̂(ξ)|2

ξ2 + 4κ2
dξ. (2.1)

Proposition 2.3 (Diffeomorphism property). There exists δ > 0 so that the following are

true for all κ ≥ 1: For each q ∈ Bδ, the resolvent R admits a continuous integral kernel

G(x, y;κ; q); thus, we may unambiguously define the diagonal Green’s function

g(x;κ; q) := G(x, x;κ; q),
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which is given by the uniformly convergent series

g(x;κ; q) =
1

2κ
+
∞∑
l=1

(−1)l
〈√

R0δx, (
√
R0q

√
R0)

l
√
R0δx

〉
(2.2)

where inner products are taken in L2(R). Moreover, the mapping

q 7→ g − 1

2κ

is a (real analytic) diffeomorphism of Bδ into H1(R). In particular, for all q, q̃ ∈ Bδ

‖g(q)− g(q̃)‖H1(R) . ‖q − q̃‖H−1(R), (2.3)∥∥∥∥g(q)− 1

2κ

∥∥∥∥
H1(R)

. ‖q‖H−1(R). (2.4)

The implicit constants do not depend on κ.

On the circle T` = R/(`Z), following the exposition of [KV19], we choose to consider the

Lax operator L = −∂2x + q acting on L2(R) with periodic coefficients rather than on L2(T`).

Here we impose working with potentials in the small ball

B`
δ,κ := {q ∈ H−1(T`) : κ−

1
2‖q‖H−1(T`) ≤ δ}

for δ > 0 small.

Proposition 2.4. Given q ∈ H−1(T`), there is a unique self-adjoint operator L acting on

L2(R) associated to the semi-bounded quadratic form

ψ 7→
ˆ
|ψ′(x)|2 + q(x)|ψ(x)|2dx.

There exists δ > 0, so that for all κ ≥ 1 the following are true: For each q ∈ B`
δ,κ the

resolvent R := (L + κ2)−1 admits a continuous integral kernel G(x, y;κ; q) given by the

uniformly convergent series

G(x, y;κ; q) =
1

2κ
e−κ|x−y| +

∞∑
l=1

(−1)l
〈√

R0δx, (
√
R0q

√
R0)

l
√
R0δy

〉
.

Thus, we may unambiguously define the diagonal Green’s function

g(x;κ; q) := G(x, x;κ; q).
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Moreover, the mapping

q 7→ g − 1

2κ

is a (real analytic) diffeomorphism of B`
δ,κ into H1(T`). In particular, for all q, q̃ ∈ B`

δ,κ

‖g(q)− g(q̃)‖H1(T`) . ‖q − q̃‖H−1(T`), (2.5)

‖g(q)‖H1(T`) . ‖q‖H−1(T`). (2.6)

The implicit constants do not depend on κ.

Comparing the series expansions of α(κ; q) and g(κ; q) one can observe that

δα

δq
=

1

2κ
− g(q).

This allows us to write down the Hamiltonian evolutions arising from the Hamiltonians Hκ

and Hn
κ as

d

dt
q = 4κ2q′ + 16κ5g′(q), (Hκ)

d

dt
q = 4κ2q′ + 16κ5PLn

mn<···≤Mn
g′(PLn

mn<···≤Mn
q) (Hn

κ )

respectively.

2.2 Equicontinuity

Definition 2.5. A subset Q of H−1(R) is equicontinuous if q(x + h) → q(x) in H−1 as

h→ 0, uniformly for all q ∈ Q.

Lemma 2.6. A bounded subset Q ⊆ H−1(R) is equicontinuous in H−1(R) if and only if

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ → 0 as λ→∞, uniformly for q ∈ Q. (2.7)

Corollary 2.7. 1. A bounded subset Q ⊆ Ḣ−
1
2 (R) is equicontinuous in H−1(R).

2. Let qn ∈ H−1(R), n ∈ N, q ∈ H−1(R) such that qn → q in H−1(R) as n → ∞. Then

Q = {qn : n ∈ N} is equicontinuous in H−1(R).
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3. If Q1, Q2 are equicontinuous in H−1(R) and Q ⊆ Q1 +Q2, then Q is also equicontinuous

in H−1(R).

4. A subset Q ⊆ {q ∈ H−1(R) : ‖q − z‖
Ḣ−

1
2 (R)
≤ A} for some z ∈ H−1(R), A > 0 is

equicontinuous in H−1(R).

Proof. 1. Suppose Q ⊆ {q ∈ H−1(R) : ‖q‖
Ḣ−

1
2 (R)
≤ A}. An easy computation shows that

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ ≤ 1

λ
‖q‖2

Ḣ−
1
2 (R)
≤ 1

λ
A2,

hence (2.7) holds.

2. We have that qn → q in H−1(R) as n → ∞. Let ε > 0. We can find λn > 0, n ∈ N,

and λ0 > 0 so that

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂n(ξ)|2dξ < ε for all λ ≥ λn,

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ < ε for all λ ≥ λ0.

Moreover, there exists n0 ∈ N such that ‖qn − q‖2H−1(R) < ε for all n ≥ n0. Hence for all

n ≥ n0 we get that

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂n(ξ)|2dξ .

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ +

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂n − q(ξ)|2dξ

.
ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ + ε

. ε

for λ > λ0. We conclude that for λ > max{λ0, λ1, . . . , λn0}
ˆ
|ξ|≥λ

1

1 + ξ2
|q̂n(ξ)|2dξ . ε.

3. Let ε > 0. There exist λ1, λ2 > 0 so that

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ < ε for all q ∈ Q1, λ ≥ λ1,

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ < ε for all q ∈ Q2, λ ≥ λ2.
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Then for every q = q1 + q2 for some q1 ∈ Q1, q2 ∈ Q2 we have that

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂(ξ)|2dξ .

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂1(ξ)|2dξ +

ˆ
|ξ|≥λ

1

1 + ξ2
|q̂2(ξ)|2dξ . ε

for all λ > max{λ1, λ2}.

4. We observe that Q ⊆ {f ∈ H−1(R) : ‖f‖
Ḣ−

1
2 (R)
≤ A} + z. Parts (2) and (3) assert

that Q is equicontinuous in H−1(R).
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CHAPTER 3

Well-posedness of the approximating equations

As we laid out earlier, our strategy for proving Theorem 1.2 is to show that certain truncated

systems have this property and use limiting arguments to transfer it to (KdV). The first

step is truncation in the Hamiltonian, which gives us the family of equations (Hκ). Next,

we perform a truncation in frequency and space, yielding equations (Hn
κ ).

Naturally, before asking whether these systems obey symplectic non-squeezing, we need

to consider whether they are even well-posed in the spaces we are interested in. Note that

in both cases the nonlinearity only makes sense for small in H−1 solutions. As it turns out,

this is the major enemy as far as global well-posedness is concerned. In the case of (Hκ) we

can circumvent this difficulty, but for (Hn
κ ) we compromise with existence of solutions up to

times Tn with Tn →∞ as n→∞ instead of global solutions.

Theorem 3.1 (Global well-posedness of Hκ). Let L > 0 and κ ≥ 1 be fixed.

The equation Hκ is globally well-posed for initial data in Bδ0 ⊆ H−1(R) and BL
δ0,κ
⊆ H−1(TL)

for δ0 > 0 small enough, independent of κ and L. For each such initial data u0 ∈ H−1 the

solution u obeys

‖u(t)‖H−1 . ‖u0‖H−1 for all t ≥ 0. (3.1)

Moreover, if in addition u0 ∈ Ḣ−
1
2 then u(t) ∈ Ḣ− 1

2 and

‖u(t)‖
Ḣ−

1
2
. ‖u0‖Ḣ− 1

2
ect for all t ≥ 0. (3.2)

Proof. For both statements, the proof is the same for the line and for the circle.

Local well-posedness of (Hκ) in H−1 and Ḣ−
1
2 follows easily by rewriting the equation

in integral form and observing that the nonlinearity is Lipschitz. By the diffeomorphism
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property of g,

‖g′(u)− g′(v)‖H−1 . ‖g(u)− g(v)‖H1 . ‖u− v‖H−1 (3.3)

and

‖g′(u)− g′(v)‖
Ḣ−

1
2
≤ ‖g(u)− g(v)‖H1 . ‖u− v‖H−1 . ‖u− v‖

Ḣ−
1
2
, (3.4)

so a Picard iteration argument establishes the local well-posedness in both spaces. Then

global well-posedness in H−1 follows by (3.1) which is consequence of the conservation of

α(κ) for all κ ≥ 1. For more details, see Proposition 3.2 in [KV19].

Next, using the Duhamel formula we get that

‖u(t)‖
Ḣ−

1
2
. ‖u0‖Ḣ− 1

2
+

ˆ t

0

‖g′(u(s))‖
Ḣ−

1
2
ds

. ‖u0‖Ḣ− 1
2

+

ˆ t

0

‖g(u(s))‖H1ds

. ‖u0‖Ḣ− 1
2

+

ˆ t

0

‖u(s)‖H−1ds

. ‖u0‖Ḣ− 1
2

+

ˆ t

0

‖u(s)‖
Ḣ−

1
2
ds

for all t ≥ 0. An application of Grönwall’s inequality yields (3.2).

As far as uniqueness is concerned, we will only show this in H−1. For any two solutions

u, v ∈ H−1 to (Hκ), by Duhamel’s formula and estimate (3.3) we get

‖u(t)− v(t)‖H−1 . ‖u(0)− v(0)‖H−1 +

ˆ t

0

‖u(s)− v(s)‖H−1ds

so

‖u(t)− v(t)‖H−1 . ‖u(0)− v(0)‖H−1ect or all t ≥ 0.

In particular, we conclude that for each small enough initial data u0 ∈ H−1 there exists

unique global solution u ∈ H−1 to (Hκ).

Remark 3.2. It is evident that in the case of the homogeneous Sobolev space our proof

heavily relies on the presence of the derivative on the nonlinearity, as indicated in (3.4). The

same argument can be used to prove a global well-posedness result and the corresponding

estimates for Hκ in H−s and Ḣ−s on the line and on the circle for any 0 ≤ s ≤ 1.
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Now we turn our attention to the well-posedness of (Hn
κ ). As far as the frequency

truncations are concerned, at this moment our sequences of frequency cut-offs mn,Mn ∈ 2Z

only need to satisfy

lim
n→∞

mn = 0, lim
n→∞

Mn =∞.

We also consider a sequence Ln > 0, indicating the lengths of the tori we are working on.

We denote these tori by Tn := R/(LnZ). We do not impose any hypotheses on Ln for now.

It makes sense to focus on initial data in the space

Hn := {f ∈ H−1(Tn) : PLn
≤mn

2
f = PLn

>2Mn
f = 0}.

Solutions to (Hn
κ ) with initial data in Hn stay in Hn.

Theorem 3.3 (Well-posedness for Hn
κ ). Fix κ ≥ 1. There exists δ0 > 0 small enough

(independent of n and κ) and a sequence Tn > 0 satisfying limn→∞ Tn = ∞ so that the

following are true for every n ∈ N: For every un,0 ∈ Hn ∩ {f ∈ Ḣ−
1
2 (Tn) : κ−

1
2‖f‖

Ḣ−
1
2 (Tn)

≤

δ0} ⊆ BLn
δ0,κ

there exists a unique solution un ∈ C([0, Tn])H−1(Tn) to the the equation (Hn
κ ).

For each such initial data un,0 the solution un(t) ∈ Hn obeys

‖un(t)‖H−1(Tn) . ‖un,0‖Ḣ− 1
2 (Tn)

(3.5)

and

‖un(t)‖
Ḣ−

1
2 (Tn)

. ‖un,0‖Ḣ− 1
2 (Tn)

ect (3.6)

for all t ∈ [0, Tn]. The implicit constants here do not depend on n.

Proof. An argument similar to the one in the proof of Theorem 3.1 readily shows that (Hn
κ )

is locally well-posed in H−1(Tn). In order to upgrade the existence of solution to larger

times it suffices to prove the estimate (3.5). This will ensure both that the nonlinearity

makes sense and that we can extend our solution up to time Tn.

Let vn be the unique global solution to (Hκ) with small enough initial data vn(0) =
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un(0) = un,0 ∈ Hn which is guaranteed to exist by Theorem 3.1. By Duhamel,

‖un(t)−vn(t)‖
Ḣ−

1
2 (Tn)

.
ˆ t

0

∥∥PLn
mn<···≤Mn

g′(PLn
mn<...≤Mn

un(s))− g′(vn(s))
∥∥
Ḣ−

1
2 (Tn)

ds

and for each s triangle inequality and the diffeomorphism property of g allow us to estimate

‖PLn
mn<···≤Mn

g′(PLn
mn<...≤Mn

un(s))− g′(vn(s))‖
Ḣ−

1
2 (Tn)

. ‖PLn
≤mnvn(s)‖H−1(Tn) + ‖PLn

>Mn
vn(s)‖H−1(Tn)

+ ‖PLn
≤mng

′(vn(s))‖
Ḣ−

1
2 (Tn)

+ ‖PLn
>Mn

g′(vn(s))‖
Ḣ−

1
2 (Tn)

+ ‖un(s)− vn(s)‖
Ḣ−

1
2 (Tn)

.

Bernstein inequalities, the diffeomorphism property, (3.2), and finally Grönwall’s inequality

yield

‖un(t)− vn(t)‖
Ḣ−

1
2 (Tn)

. (m
1
2
n +M

− 1
2

n )ect‖un,0‖Ḣ− 1
2 (Tn)

.

Choosing times Tn > 0 so that (m
1
2
n + M

− 1
2

n )ecTn � 1 and Tn → ∞ as n → ∞, and using

(3.1), we obtain (3.5) and (3.6). Starting with δ0 > 0 sufficiently small will ensure that the

nonlinearity will make sense up to time Tn.

Uniqueness can be shown as in the proof of Theorem 3.1; the presence of the frequency

truncation does not affect the argument.

From now on, we will refer by δ0 to a constant smaller than the minimum of the two small

positive constants obtained in Theorems 3.1 and 3.3. Consequently, δ0 > 0 will be a small

enough parameter to ensure well-posedness up to time Tn for (Hn
κ ), global well-posedness for

(Hκ) and that the H−1 norm of the solutions given by both Theorems 3.1 and 3.3 remains

bounded by 1 and δ (as in Propositions 2.3 and 2.4) in the time interval of existence.

The next question we need to address is whether the frequency truncated models (Hn
κ )

provide a good approximation for the (Hκ) flow on the torus Tn.
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Theorem 3.4. Fix κ ≥ 1. Let un ∈ C([0, Tn])H−1(Tn) be the solution to Hn
κ with initial

data un(0) = un,0 ∈ Hn, ‖un,0‖Ḣ− 1
2 (Tn)

≤ κ
1
2 δ0, and vn ∈ C([0, Tn])H−1(Tn) be a solution to

d

dt
vn = 4κ2v′n + 16κ5g′(vn) + en (3.7)

with initial data vn(0) = vn,0 ∈ H−1(Tn). If ‖en(t)‖H−1(Tn) < ε for all t ∈ [0, Tn], then

‖un(t)− vn(t)‖H−1(Tn) .
(
‖un,0 − vn,0‖H−1(Tn) + (m

1
2
n +M

− 1
2

n )‖un,0‖Ḣ− 1
2 (Tn)

+ ε
)
ect

for all t ∈ [0, Tn].

Proof. By Duhamel’s formula, for all t ∈ [0, Tn]

‖un(t)− vn(t)‖H−1(Tn) . ‖un,0 − vn,0‖H−1(Tn) +

ˆ t

0

‖en(s)‖H−1(Tn)ds

+

ˆ t

0

‖PLn
mn<···≤Mn

g′(PLn
mn<···≤Mn

un(s))− g′(vn(s))‖H−1(Tn)ds.

We only need to work on the last term. For the sake of conciseness, here we denote PLn
mn<···≤Mn

by P .

Working similarly as in the proof of Theorem 3.3,

‖Pg′(Pun(s))−g′(vn(s))‖H−1(Tn) . ‖un(s)− vn(s)‖H−1(Tn)

+ ‖PLn
≤mng

′(Pun(s))‖H−1(Tn) + ‖PLn
>Mn

g′(Pun(s))‖H−1(Tn)

+ ‖PLn
≤mnun(s)‖H−1(Tn) + ‖PLn

>Mn
un(s)‖H−1(Tn).

By Bernstein inequalities, the diffeomorphism property, and (3.6), we get that

‖un(t)− vn(t)‖H−1(Tn) .‖un,0 − vn,0‖H−1(Tn)

+
(
ε+

(
m

1
2
n +M

− 1
2

n

)
‖un,0‖Ḣ− 1

2 (Tn)

)
ect

+

ˆ t

0

‖un(s)− vn(s)‖H−1(Tn)ds,

so an application of Grönwall’s inequality finishes the proof.
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CHAPTER 4

From the Line to the Circle

Having settled on the finite-dimensional systems that we will use to approximate the Hκ

flow, the next step is to determine the suitable parameters (that is, the appropriate ball and

cylinder) for which we should apply Theorem 1.1. In this section we develop the tools that

will enable us to pass our fixed parameters from the line setting to the circle and ultimately

allow us to take advantage of Gromov’s result.

Definition 4.1. Let f be a compactly supported function on R. For L > 0 large so that

the support of f is contained in an interval of length L, we define the L-periodization of f

f̊L(x) :=
∑
j∈Z

f(x+ jL).

This is an L-periodic function that agrees with f on its support. One readily sees that

f̊L inherits the smoothness of f . However, it is non-trivial to show that it belongs to the

corresponding fractional homogeneous Sobolev spaces.

Lemma 4.2. Let f ∈ C∞c (R), L0 > 0 so that the support of f is contained in an interval of

length L0.

1. For all L > L0 and for all integers k ≥ 0, f̊L ∈ Ḣk(TL) and

‖f̊L‖Ḣk(TL) = ‖f‖Ḣk(R).

2. For all L > L0 and for all integers k < 0, if f ∈ Ḣk(R) then f̊L ∈ Ḣk(TL) and

‖f̊L‖Ḣk(TL) = ‖f‖Ḣk(R).

3. If f ∈ Ḣs(R) for some s ∈ R, then f̊L ∈ Ḣs(TL) for L sufficiently large and

lim
L→∞

‖f̊L‖Ḣs(TL) = ‖f‖Ḣs(R).
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Proof. The first statement is straightforward for k = 0, due to the locality of the L2-norm.

For k ∈ N,

(f̊L)(k)(x) =
∑
j∈Z

f (k)(x+ jL) = ˚(f (k))L(x),

hence ‖(f̊L)(k)‖L2(TL) = ‖ ˚(f (k))L‖L2(TL) = ‖f (k)‖L2(R).

For integers k < 0 we proceed inductively. First of all, we already argued about k = 0.

Suppose that the statement is true for some k ≤ 0. Then for f ∈ Ḣk−1(R)∩C∞c (R) supported

on [a, a+ L0] we consider

F (x) :=

ˆ x

a

f(y)dy.

By the definition of the negative order homogeneous Sobolev spaces,
´
f = 0, therefore F

is also supported on [a, a + L0]. We can also see that F ∈ Ḣk(R) ∩ C∞c (R), F ′ = f . The

inductive hypothesis ensures that F̊L ∈ Ḣk(TL) so arguing as before

f̊L = ˚(F ′)L = (F̊L)′ ∈ Ḣk−1(TL)

and

‖f̊L‖Ḣk−1(TL) = ‖(F̊L)′‖Ḣk−1(TL) = 4π2‖F̊L‖Ḣk(TL) = 4π2‖F‖Ḣk(R) = ‖f‖Ḣk−1(R).

For the last statement, we observe that

‖f̊L‖2Ḣs(R) = L
∑

k∈L−1Z

|k|2s
∣∣∣∣̂̊fL(k)

∣∣∣∣2
= L

∑
k∈L−1Z

|k|2s
∣∣∣∣ 1Lf̂(k)

∣∣∣∣2
=

1

L

∑
k∈L−1Z

|k|2s
∣∣∣f̂(k)

∣∣∣2
which converges to

´
|ξ|2s|f̂(ξ)|2dξ = ‖f‖2

Ḣs(R) as L→∞, given that f ∈ Ḣs(R)∩C∞c (R).

Lemma 4.3. Let f ∈ C∞c (R) supported on an interval of length L0. For given sequences

mn,Mn ∈ 2Z and Ln > L0 such that limn→∞mn = 0, limn→∞Mn =∞, and limn→∞ Ln =∞,

consider

zn = f̊Ln , ζn = PLn
mn<···≤Mn

zn, λn =
1

‖ζn‖Ḣ 1
2 (Tn)

ζn.
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1. If f ∈ Ḣ− 1
2 (R), then for n sufficiently large zn, ζn, λn ∈ Ḣ−

1
2 (Tn) and

lim
n→∞

‖ζn − zn‖L2(Tn) = 0.

2. If ‖f‖
Ḣ

1
2 (R)

= 1, then for n sufficiently large zn, ζn, λn ∈ Ḣ
1
2 (Tn) ∩ Ḣ1(Tn) and

lim
n→∞

‖λn − zn‖Ḣ 1
2 (Tn)

= 0.

Proof. By Lemma 4.2, zn, ζn, λn are in the appropriate homogeneous Sobolev spaces for large

n. Moreover, if f ∈ Ḣ− 1
2 (R), for n sufficiently large

‖ζn − zn‖L2(Tn) ≤
∥∥PLn
≤mnzn

∥∥
L2(Tn)

+
∥∥PLn

>Mn
zn
∥∥
L2(Tn)

. m
1
2
n‖zn‖Ḣ− 1

2 (Tn)
+M

− 1
2

n ‖zn‖Ḣ 1
2 (Tn)

. m
1
2
n‖f‖

Ḣ−
1
2 (R)

+M
− 1

2
n ‖f‖

Ḣ
1
2 (R)

.

A similar argument gives

‖ζn − zn‖Ḣ 1
2 (Tn)

. m
1
2
n‖f‖L2(R) +M

− 1
2

n ‖f‖Ḣ1(R),

‖ζn − zn‖Ḣ1(Tn) . mn‖f‖L2(R) +M−1
n ‖f‖Ḣ2(R)

for n large, without the additional assumptions of (1) or (2) on f . Therefore

lim
n→∞

‖ζn − zn‖L2(Tn) = lim
n→∞

‖ζn − zn‖Ḣ 1
2 (Tn)

= lim
n→∞

‖ζn − zn‖Ḣ1(Tn) = 0.

In particular, if we also have that ‖f‖
Ḣ

1
2 (R)

= 1,

lim
n→∞

‖ζn‖Ḣ 1
2 (Tn)

= lim
n→∞

‖zn‖Ḣ 1
2 (Tn)

= ‖f‖
Ḣ

1
2 (R)

= 1.

Under this assumption we also get that

‖λn − zn‖Ḣ 1
2 (Tn)

≤
∣∣∣1− ‖ζn‖−1

Ḣ
1
2 (Tn)

∣∣∣ ‖ζn‖Ḣ 1
2 (Tn)

+ ‖ζn − zn‖Ḣ 1
2 (Tn)

converges to 0 as n→∞.
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CHAPTER 5

Finite Dimensional Approximation: From the Circle to

the Line

The previous chapter dealt with the problem of determining the appropriate parameters for

which we wish to apply Gromov’s theorem to the finite dimensional Hamiltonian systems

(Hn
κ ). Now we need to prescribe a way to extract a ‘limit’ of the witnesses we obtained. A first

step towards this direction is, given a sequence of periodic initial data (whose periods go to

infinity) that satisfy the same Ḣ−
1
2 bound, to construct a sequence of compactly supported

initial data (with ever larger supports) whose Hκ evolution approximates the one of the

original sequence under the Hn
κ flow. This is achieved via the ‘cutting’ and ‘unwrapping’

process we advertised earlier.

Let κ ≤ 1 be fixed. We are given T > 0, 0 < A < δ0
4

and consider mn,Mn, Nn, Ln be

sequences such that mn → 0 and Mn, Nn, Ln →∞ as n→∞,

m−2n Mn � Nn, N5
n � Ln.

We are working on the torus Tn = R/LnZ with a sequence un,0 ∈ Ḣ−
1
2 (Tn) such that

un,0 ∈ Hn and ‖un,0‖Ḣ− 1
2 (Tn)

≤ A.

5.1 ‘Cutting’ on the circle

For every n large enough, essentially we want to divide the interval [−Ln
2
, Ln

2
] into Nn subin-

tervals of length Ln
Nn

and look for one such subinterval where the Ḣ−
1
2 norm of un,0 is com-

paratively small. To avoid some of the problems caused by the non-local nature of the Ḣ−
1
2

norm, we work with a partition of unity instead.
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Let φn be a radial smooth cutoff such that φn = 1 on [− Ln
4Nn

, Ln
4Nn

], φn = 0 outside

[− 3Ln
4Nn

, 3Ln
4Nn

], and 0 ≤ φn(x) ≤ 1 for Ln
4Nn
≤ x ≤ 3Ln

4Nn
with φn(x) + φn(x − Ln

Nn
) = 1. We

consider the smooth cutoffs

φkn(x) := φn

(
x+

Ln
2
− 3Ln

4Nn

− k Ln
Nn

)
, 0 ≤ k ≤ Nn − 1

and their Ln-periodizations

φ̊kn(x) :=
∑
j∈Z

φkn(x+ jLn), 0 ≤ k ≤ Nn − 1.

Note that by the definition of φn

Nn−1∑
k=0

φ̊kn = 1. (5.1)

Lemma 5.1. There exists constant C > 0 (independent of n) such that the following are

true for every n:

1. At least 9
10
Nn elements k in {0, . . . , Nn − 1} satisfy

‖φ̊knun,0‖Ḣ− 1
2 (Tn)

< C‖un,0‖Ḣ− 1
2 (Tn)

M
1
2
nm

− 1
2

n N
− 1

2
n .

2. At least 9
10
Nn elements k in {0, . . . , Nn − 1} satisfy

‖φ̊knun,0‖Ḣ−1(Tn) < C‖un,0‖Ḣ− 1
2 (Tn)

M
1
2
nm

−1
n N

− 1
2

n .

Proof. Firstly, we note that by the definition of φ̊kn

Nn−1∑
k=0

∥∥∥φ̊knun,0∥∥∥2
L2(Tn)

=

ˆ
Tn

Nn−1∑
k=0

(
φ̊kn(x)

)2
|un,0(x)|2 dx ≤ ‖un,0‖2L2(Tn). (5.2)

Splitting φ̊knun,0 in frequencies we get

φ̊knun,0 = PLn
>mn

8

(
φ̊knun,0

)
+ PLn

≤mn
8

[(
PLn
≤mn

8
φ̊kn

)
un,0

]
+ PLn

≤mn
8

[(
PLn
>8Mn

φ̊kn

)
un,0

]
+ PLn

≤mn
8

[(
PLn
mn
8
<···≤8Mn

φ̊kn

)
un,0

]
.
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Since un,0 is supported on {ξ : mn
2
≤ |ξ| ≤ 4Mn} and PLn

≤mn
8
φ̊kn, PLn

>8Mn
φ̊kn are supported

on {ξ : |ξ| ≤ mn
4
} and {ξ : |ξ| > 8Mn} respectively, we have that

(
PLn
≤mn

8
φ̊kn

)
un,0 and(

PLn
>8Mn

φ̊kn

)
un,0 must be supported on {ξ : |ξ| ≥ mn

4
}, hence

PLn
≤mn

8

[(
PLn
≤mn

8
φ̊kn

)
un,0

]
= PLn

≤mn
8

[(
PLn
>8Mn

φ̊kn

)
un,0

]
= 0.

Then

Nn−1∑
k=0

∥∥∥φ̊knun,0∥∥∥2
Ḣ−

1
2 (Tn)

≤2
Nn−1∑
k=0

∥∥∥PLn
>mn

8

(
φ̊knun,0

)∥∥∥2
Ḣ−

1
2 (Tn)

+ 2
Nn−1∑
k=0

∥∥∥PLn
≤mn

8

[(
PLn
mn
8
<···≤8Mn

φ̊kn

)
un,0

]∥∥∥2
Ḣ−

1
2 (Tn)

(5.3)

and

Nn−1∑
k=0

∥∥∥φ̊knun,0∥∥∥2
Ḣ−1(Tn)

≤2
Nn−1∑
k=0

∥∥∥PLn
>mn

8

(
φ̊knun,0

)∥∥∥2
Ḣ−1(Tn)

+ 2
Nn−1∑
k=0

∥∥∥PLn
≤mn

8

[(
PLn
mn
8
<···≤8Mn

φ̊kn

)
un,0

]∥∥∥2
Ḣ−1(Tn)

. (5.4)

For the first term in the right-hand side of both inequalities we observe that by Bernstein

and (5.2)

Nn−1∑
k=0

∥∥∥PLn
>mn

8

(
φ̊knun,0

)∥∥∥2
Ḣ−

1
2 (Tn)

. m−1n

Nn−1∑
k=0

∥∥∥φ̊knun,0∥∥∥2
L2(Tn)

≤ m−1n ‖un,0‖
2
L2(Tn) = m−1n

∥∥PLn
≤2Mn

un,0
∥∥2
L2(Tn)

. m−1n Mn ‖un,0‖2
Ḣ−

1
2 (Tn)

(5.5)

and similarly

Nn−1∑
k=0

∥∥∥PLn
>mn

8

(
φ̊knun,0

)∥∥∥2
Ḣ−1(Tn)

. m−2n Mn ‖un,0‖2
Ḣ−

1
2 (Tn)

. (5.6)

For the second term, taking advantage of the fact that φ̊kn is a translation of φ̊0
n for every
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k and by Cauchy-Schwarz inequality,

Nn−1∑
k=0

∥∥∥PLn
≤mn

8

[(
PLn
mn
8
<···≤8Mn

φ̊kn

)
un,0

]∥∥∥2
Ḣ−

1
2 (Tn)

≤
Nn−1∑
k=0

Ln
∑

l∈ 1
Ln

Z,0<|l|≤mn
4

|l|−1

∣∣∣∣∣∣∣
∑

m∈ 1
Ln

Z

̂(
PLn
mn
8
<···≤8Mn

φ̊kn

)
(m)ûn,0(l −m)

∣∣∣∣∣∣∣
2

≤ LnNn

∑
l∈A1

n

|l|−1
∑

m,j∈A2
n,j−m∈

Nn
Ln

Z

| ˆ̊φ0
n(m)|| ˆ̊φ0

n(j)||ûn,0(l −m)||ûn,0(l − j)|

≤
∑
s∈Bn

LnNn

∑
l∈A1

n

|l|−1
∑

m,m+s∈A2
n

| ˆ̊φ0
n(m)|| ˆ̊φ0

n(m+ s)||ûn,0(l −m)||ûn,0(l −m− s)|

≤
∑
s∈Bn

LnNn

∑
l∈A1

n

|l|−1
∑
m∈A2

n

| ˆ̊φ0
n(m)|2|ûn,0(l −m)|2

.MnL
2
n

∑
l∈A1

n

|l|−1
∑
m∈A2

n

| ˆ̊φ0
n(m)|2|ûn,0(l −m)|2

= MnL
2
n

∑
(k,m)∈Cn

|k +m|−1| ˆ̊φ0
n(m)|2|ûn,0(k)|2

and

Nn−1∑
k=0

∥∥∥PLn
≤mn

8

[(
PLn
mn
8
<···≤8Mn

φ̊kn

)
un,0

]∥∥∥2
Ḣ−1(Tn)

.MnL
2
n

∑
l∈A1

n

|l|−2
∑
m∈A2

n

| ˆ̊φ0
n(m)|2|ûn,0(l −m)|2

= MnL
2
n

∑
(k,m)∈Cn

|k +m|−2| ˆ̊φ0
n(m)|2|ûn,0(k)|2

where A1
n := {l ∈ 1

Ln
Z : 0 < |l| ≤ mn

4
}, A2

n := {m ∈ 1
Ln

Z : mn
8
≤ |m| ≤ 16Mn},

Bn := {s ∈ Nn
Ln

Z : |s| ≤ 32Mn}, Cn := {(k,m) ∈ 1
Ln

Z2 : mn
2
≤ |k| ≤ 4Mn,

mn
8
≤ |m| ≤

16Mn, 0 < |k + m| ≤ mn
4
}. Taking advantage of the bounds that all (k,m) ∈ Cn must

satisfy as well as the fact that un,0 ∈ Ḣ−
1
2 (Tn), φ̊0

n ∈ Ḣ2(Tn) and φ̊0
n ∈ Ḣ3(Tn) with
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‖φ̊0
n‖Ḣ2(Tn) .

(
Nn
Ln

) 3
2
, ‖φ̊0

n‖Ḣ3(Tn) .
(
Nn
Ln

) 5
2
,

Nn−1∑
k=0

∥∥∥PLn
≤mn

8

[(
PLn
mn
8
<···≤8Mn

φ̊kn

)
un,0

]∥∥∥2
Ḣ−

1
2 (Tn)

.MnL
2
n

∑
k∈ 1

Ln
Z

∑
m∈ 1

Ln
Z

Ln(Mn|k|−1)(m−4n |m|4)|
ˆ̊
φ0
n(m)|2|ûn,0(k)|2

= M2
nm
−4
n Ln

Ln ∑
k∈ 1

Ln
Z

|k|−1|ûn,0(k)|2


Ln ∑

m∈ 1
Ln

Z

|m|4| ˆ̊φ0
n(m)|2


= M2

nm
−4
n Ln‖un,0‖2

Ḣ−
1
2 (Tn)
‖φ̊0

n‖2Ḣ2(Tn)

.M2
nm
−4
n N3

nL
−2
n ‖un,0‖2Ḣ− 1

2 (Tn)
(5.7)

and similarly

Nn−1∑
k=0

∥∥∥PLn
≤mn

8

[(
PLn
mn
8
<···≤8Mn

φ̊kn

)
un,0

]∥∥∥2
Ḣ−1(Tn)

.M2
nm
−6
n N5

nL
−3
n ‖un,0‖2Ḣ− 1

2 (Tn)
(5.8)

Combining estimates (5.5) and (5.7) with (5.3) and estimates (5.6) and (5.8) with (5.4), and

assuming that n is sufficiently large so that Ln � m−2n MnN
2
n,

Nn−1∑
k=0

∥∥∥φ̊knun,0∥∥∥2
Ḣ−

1
2 (Tn)

≤ Cm−1n Mn‖un,0‖2
Ḣ−

1
2 (Tn)

and

Nn−1∑
k=0

∥∥∥φ̊knun,0∥∥∥2
Ḣ−1(Tn)

≤ Cm−2n Mn‖un,0‖2
Ḣ−

1
2 (Tn)

where the constant C does not depend on n. This implies that for at least 9
10
Nn of the

integers k ∈ {0, . . . , Nn − 1}∥∥∥φ̊knun,0∥∥∥
Ḣ−

1
2 (Tn)

≤
√

10Cm
− 1

2
n M

1
2
nN

− 1
2

n ‖un,0‖Ḣ− 1
2 (Tn)

and similarly for at least 9
10
Nn of the integers k ∈ {0, . . . , Nn − 1}∥∥∥φ̊knun,0∥∥∥
Ḣ−1(Tn)

≤
√

10Cm−1n M
1
2
nN

− 1
2

n ‖un,0‖Ḣ− 1
2 (Tn)

.
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Now we consider

S1 :=

{
0 ≤ k ≤ Nn − 1 :

∥∥∥φ̊knun,0∥∥∥
Ḣ−

1
2 (Tn)

< Cm
− 1

2
n M

1
2
nN

− 1
2

n ‖un,0‖Ḣ− 1
2 (Tn)

}
,

S2 :=

{
0 ≤ k ≤ Nn − 1 :

∥∥∥φ̊knun,0∥∥∥
Ḣ−1(Tn)

< Cm−1n M
1
2
nN

− 1
2

n ‖un,0‖Ḣ− 1
2 (Tn)

}
,

S3 := {k ∈ S1 ∩ S2 : dist(0, supp(φkn)) > 10Ln
Nn
},

S4 := {k ∈ S3 : k + 1 ∈ S3},

where the constant C in the definition of S1 and S2 is inherited from the Lemma above.

In the light of Lemma 5.1, S1 and S2 consist of at least 9
10
Nn elements, therefore S1 ∩ S2

consists of at least 8
10
Nn elements. By restricting ourselves to bumps φkn that are supported

at least 10Ln
Nn

away from 0, we have to remove at most 30 elements, so we conclude that S3

has at least 7
10
Nn elements (assuming n is large enough). However, we cannot conclude that

φ̊knun,0 ∈ Ḣ−
1
2 (Tn) for k ∈ S3; we also need

´
φ̊knun,0 = 0, which is not necessarily true.

To remedy that we work as follows: If there exists one k0 ∈ S3 so that
´
φ̊k0n un,0 = 0, we

choose

ϕn = φk0n . (5.9)

If not, we look at S4. Since S3 contains at least 7
10

of the integers between 0 and Nn − 1,

it must contain at least two consecutive integers, in other words there exists k1 ∈ S4. If

0 < |
´
φ̊k1n un,0| ≤ |

´
φ̊k1+1
n un,0|, we chose

ϕn := φk1n −
´
φ̊k1n un,0´
φ̊k1+1
n un,0

φk1+1
n , (5.10)

otherwise we choose

ϕn := φk1+1
n −

´
φ̊k1+1
n un,0´
φ̊k1n un,0

φk1n . (5.11)

In the following we will denote the Ln-periodization of ϕn by ϕ̊n. One can see that
´
ϕ̊nun,0 =

0,

‖ϕ̊nun,0‖Ḣ− 1
2 (Tn)

≤
∥∥∥φ̊k1n un,0∥∥∥

Ḣ−
1
2 (Tn)

+
∥∥∥φ̊k1+1

n un,0

∥∥∥
Ḣ−

1
2 (Tn)

. m
− 1

2
n M

1
2
nN

− 1
2

n ‖un,0‖Ḣ− 1
2 (Tn)

(5.12)
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and

‖ϕ̊nun,0‖Ḣ−1(Tn) . m−1n M
1
2
nN

− 1
2

n ‖un,0‖Ḣ− 1
2 (Tn)

. (5.13)

5.2 ‘Unwrapping’ on the line

Now we consider the following smooth compactly supported functions. We start by defining

χ1
n(x) :=

Nn−1∑
k=0

φkn(x).

Then we take χ2
n to be a translation of χ1

n, defined by

χ2
n(x) :=


χ1
n(x− k0 LnNn ) if ϕn is given by (5.9),

χ1
n(x− k1 LnNn ) if ϕn is given by (5.10),

χ1
n(x− (k1 + 2)Ln

Nn
) if ϕn is given by (5.11),

and

χ0
n(x) :=


(χ2

n − ϕn)(x) if 0 is on the right of the support of ϕn,

(χ2
n − ϕn)(x+ Ln) if 0 is on the left of the support of ϕn.

Observe that by construction the support of χ0
n is connected and contains 0. By (5.1), their

Ln-periodizations satisfy χ̊0
n + ϕ̊n = 1. We take the initial data

qn,0 := χ0
nun,0 ∈ C∞c (R),

which is supported inside an interval of length Ln, and its Ln-periodization

q̊n,0 = χ̊0
nun,0.

Then
ˆ
R
qn,0 =

ˆ
Tn
χ̊0
nun,0 =

ˆ
Tn
un,0 −

ˆ
Tn
ϕ̊nun,0 = 0.

By Lemma 4.2, the definition of qn,0, and (5.12), it is clear that for n sufficiently large and

assuming that Nn � m−1n Mn

‖qn,0‖H−1(R) = ‖q̊n,0‖H−1(Tn) ≤ ‖un,0‖H−1(Tn) + ‖ϕ̊nun,0‖H−1(Tn) ≤ 2A < δ0. (5.14)
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Moreover, using (5.13) and the fact that 0 ≤ ϕn ≤ 1 we get that

‖qn,0‖Ḣ−1(R) ≤ ‖un,0‖Ḣ−1(Tn) + ‖ϕ̊nun,0‖Ḣ−1(Tn)

. m
− 1

2
n ‖un,0‖Ḣ− 1

2 (Tn)
+m−1n M

1
2
nN

− 1
2

n ‖un,0‖Ḣ− 1
2 (Tn)

. m
− 1

2
n ‖un,0‖Ḣ− 1

2 (Tn)
(5.15)

and

‖qn,0‖L2(R) ≤ ‖un,0‖L2(Tn) + ‖ϕ̊nun,0‖L2(Tn) ≤ 2‖un,0‖L2(Tn)

.M
1
2
n ‖un,0‖Ḣ− 1

2 (Tn)
. (5.16)

Estimates (5.15) and (5.16) imply

‖qn,0‖2
Ḣ−

1
2 (R)
≤ ‖qn,0‖Ḣ−1(R)‖qn,0‖L2(R) . m

− 1
2

n M
1
2
n A

2

so, indeed, qn,0 ∈ Ḣ−
1
2 (R). Our next goal is to obtain a uniform bound.

Lemma 5.2. For n sufficiently large qn,0 ∈ Ḣ−
1
2 (R) and

‖qn,0‖Ḣ− 1
2 (R)

. A,

where the implicit constant does not depend on n.

Proof. We split qn,0 = P≤mn
2
qn,0 + Pmn

2
<···≤2Mnqn,0 + P>2Mnqn,0.

For the low frequency part, Bernstein estimates and (5.15) give us

‖P≤mn
2
qn,0‖Ḣ− 1

2 (R)
. m

1
2
n‖qn,0‖Ḣ−1(R) . A

for n sufficiently large.

Bernstein estimates and (5.16) also allow us to control the high frequency part:

‖P>2Mnqn,0‖Ḣ− 1
2 (R)

.M
− 1

2
n ‖qn,0‖L2(R) . A.

Now we turn our attention to the middle frequency part. To this end, we will compare∥∥∥Pmn
2
<···≤2Mnqn,0

∥∥∥
Ḣ−

1
2 (R)

and
∥∥∥PLn

mn
2
<···≤2Mn

q̊n,0

∥∥∥
Ḣ−

1
2 (Tn)

. We observe that∥∥∥Pmn
2
<···≤2Mnqn,0

∥∥∥2
Ḣ−

1
2 (R)

=

ˆ
R

ˆ
R
Kn(x− y)qn,0(x)qn,0(y)dxdy,∥∥∥PLn

mn
2
<···≤2Mn

q̊n,0

∥∥∥2
Ḣ−

1
2 (Tn)

=

ˆ
R

ˆ
R

1

Ln
KLn
n (x− y)qn,0(x)qn,0(y)dxdy,
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where Kn and KLn
n are the inverse Fourier transform (in R and Tn respectively) of Kn,

Kn(ξ) := |ξ|−1µ2
n(ξ) = |ξ|−1

(
m( ξ

2Mn
)−m( 2ξ

mn
)
)2
.

Note that µn, and consequently Kn, are supported on {ξ ∈ R : mn
2
≤ |ξ| ≤ 4Mn}. Thus

Kn ∈ C∞c (R) with

‖Kn‖L∞(R) . m−1n , ‖K(α)
n ‖L∞(R) .α m

−(α+1)
n for all α ∈ N.

We conclude that Kn satisfies

|Kn(x)| .Mnm
−1
n , |Kn(x)| .Mnm

−4
n |x|−3 for all x ∈ R.

By Cauchy-Schwarz and Minkowski inequalities in combination with the above estimate and

(5.16), we get that∣∣∣∣¨
{dist(x−y,LnZ)>An}

Kn(x− y)qn,0(x)qn,0(y)dxdy

∣∣∣∣ . ‖Kn‖L1({|x|>An})‖qn,0‖2L2(R)

.Mnm
−4
n A−2n ‖qn,0‖2L2(R)

.M2
nm
−4
n A−2n A2. (5.17)

On the other hand, a similar argument allows us to estimate the inverse Fourier transform

of (Kn(k))k∈ 1
Ln

Z:

KLn
n (x) =

∑
k∈ 1

Ln
Z

Kn(k)e2πixk

=
∑
k∈ 1

Ln
Z

Kn(k)
e2πix(k+

3
Ln

) − 3e2πix(k+
2
Ln

) + 3e2πix(k+
1
Ln

) − e2πixk

(e2πix
1
Ln − 1)3

=
∑
k∈ 1

Ln
Z

Kn(k − 3
Ln

)− 3Kn(k − 2
Ln

) + 3Kn(k − 1
Ln

)−Kn(k)

(e2πix
1
Ln − 1)3

e2πixk.

Since ∣∣∣e2πix 1
Ln − 1

∣∣∣ & |x|
Ln

for |x| < Ln
2

and ∣∣∣Kn(k − 3
Ln

)− 3Kn(k − 2
Ln

) + 3Kn(k − 1
Ln

)−Kn(k)
∣∣∣ . ‖K(3)

n ‖L∞
L3
n

.
m−4n
L3
n

,
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∣∣KLn
n (x)

∣∣ . LnMnm
−4
n |x|−3 for |x| < Ln

2
.

We also have that ∣∣KLn
n (x)

∣∣ . LnMn‖Kn‖L∞ . LnMnm
−1
n for all x.

Working similarly as in (5.17), the estimates for KLn
n we just obtained allow us to get∣∣∣∣¨

{dist(x−y,LnZ)>An}

1

Ln
KLn
n (x− y)qn,0(x)qn,0(y)dxdy

∣∣∣∣ .M2
nm
−4
n A−2n A2. (5.18)

In the region {dist(x− y, LnZ) ≤ An} the kernels are not small; however, we will show that

they are close to each other, as expected. Indeed, for x such that dist(x, LnZ) ≤ An∣∣∣∣Kn(x)− 1

Ln
KLn
n (x)

∣∣∣∣ =

∣∣∣∣∣∣∣
ˆ
R
Kn(ξ)e2πixξdξ − 1

Ln

∑
k∈ 1

Ln
Z

Kn(k)e2πixk

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
k∈ 1

Ln
Z

[ˆ
Ik(

1
Ln

)

Kn(ξ)e2πixξdξ − 1

Ln
Kn(k)e2πixk

]∣∣∣∣∣∣∣
.
∑
k∈ 1

Ln
Z

L−2n ‖
(
Kn(ξ)e2πixξ

)′′ ‖
L∞(Ik(

1
Ln

))

. L−1n Mnm
−1
n A2

n

where Ik(
1
Ln

) =
[
k − 1

2Ln
, k + 1

2Ln

)
. Then the same argument as before yields∣∣∣∣¨

{dist(x−y,LnZ)≤An}

[
Kn(x− y)− 1

Ln
KLn
n (x− y)

]
qn,0(x)qn,0(y)dxdy

∣∣∣∣ .
. L−1n M2

nm
−1
n A3

nA
2. (5.19)

By (5.17), (5.18) and (5.19),∥∥∥Pmn
2
<···≤2Mnqn,0

∥∥∥2
Ḣ−

1
2 (R)
−
∥∥∥PLn

mn
2
<···≤2Mn

q̊n,0

∥∥∥2
Ḣ−

1
2 (Tn)

.M2
nm
−4
n (A−2n + L−1n A3

n)A2,

therefore, for n sufficiently large and given that Mnm
−2
n � An � L

1
2
nM−1

n m
1
2
n ,∥∥∥Pmn

2
<···≤2Mnqn,0

∥∥∥
Ḣ−

1
2 (R)

. A.
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5.3 Local behavior

Having established a uniform bound for the sequence qn,0 in Ḣ−
1
2 (R), Theorem 3.1 provides

us with solutions qn to Hκ with initial data qn,0. Furthermore,

‖qn(t)‖
Ḣ−

1
2 (R)

. ‖qn,0‖Ḣ− 1
2 (R)

. A for all t ∈ [0, T ].

By construction the new sequence of initial data qn,0 is close to un,0 in the sense that

‖un,0 − q̊n,0‖Ḣ− 1
2 (Tn)

→ 0 as n→∞.

Next, we will show that qn(t) stays close to the solution un(t) to (Hn
κ ) with initial data un,0

on the time interval [0, T ]. This is understood in the sense that qn(t) locally, around the

support of qn,0, behaves similarly to un(t). Below we formulate a more precise statement and

study this local behavior.

Assuming that χ0
n is supported on the interval [an, bn], we consider a smooth compactly

supported function χ∗n such that

χ∗n(x) =


1, x ∈ [an − Ln

20Nn
, bn + Ln

20Nn
]

0, x /∈ [an − Ln
10Nn

, bn + Ln
10Nn

],

as well as its Ln-periodization

χ̊∗n(x) =
∑
k∈Z

χ∗n(x+ kLn).

We also define

fn(t) := χ∗nqn(t),

f̊n(t, x) =
∑
k∈Z

fn(t, x+ kLn).

Note that by the definition χ0
n(1− χ∗n) = 0, so fn(0) = qn,0, un,0 − f̊n(0) = un,0ϕ̊n.

Lemma 5.3. Let χ be smooth with χ′ ∈ C∞c (R), q ∈ H−1(R) with ‖q‖H−1 < min(δ, 1).

Then

‖χg′(q)‖L2(R) . ‖χq‖H−1(R) + ‖χ′‖L2(R) + ‖χ′‖L∞(R).
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Proof. We will exploit the series expansion of g (2.2). First of all, one can easily verify that

[χ,R0] =
√
R0A(χ)

√
R0 with A(χ) =

√
R0

(
− 2∂xχ

′(x) + χ′′(x)
)√

R0. (5.20)

In the following we denote r(T ) :=
√
R0T
√
R0. Then for any T, S we get

r(Tχ)r(S) =
√
R0TχR0S

√
R0 (5.21)

=
√
R0TR0χS

√
R0 +

√
R0T [χ,R0]S

√
R0 (5.22)

= r(T )r(χS) + r(T )A(χ)r(S). (5.23)

Then for any f ∈ H−1(R) with ‖f‖H−1(R) = 1

ˆ
χ(x)

[
g(q)(x)− 1

2κ

]
f(x)dx =

=
∑
l≥1

(−1)l
[
tr{r(f)r(χq)r(q)l−1}+ tr{r(f)A(χ)r(q)l}

]
,

so by (2.1) ∣∣∣∣ˆ χ(x)

[
g(q)(x)− 1

2κ

]
f(x)dx

∣∣∣∣ . ‖χq‖H−1(R) + ‖χ‖Ḣ1(R).

This implies that

∥∥χ [g(q)− (2κ)−1
]∥∥

H1(R) . ‖χq‖H−1(R) + ‖χ′‖L2(R),

thus

‖χg′(q)‖L2(R) .
∥∥χ [g(q)− (2κ)−1

]∥∥
Ḣ1(R) +

∥∥χ′ [g(q)− (2κ)−1
]∥∥

L2(R)

. ‖χq‖H−1(R) + ‖χ′‖L2(R) + ‖χ′‖L∞(R).

Theorem 5.4. Let χ be smooth with χ′ ∈ C∞c (R), q(t) solution to Hκ with initial data

q(0) ∈ H−1(R), ‖q(0)‖H−1 < δ0. Then for all t ∈ [0, T ]

‖χq(t)‖H−1(R) . ‖χ(x− 4κ2t)q(0, x)‖H−1(R) + ‖χ‖Ḣ1(R) + ‖χ′‖L∞(R).
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In particular, if q(0) is compactly supported with supp(q(0)) ⊆ [a, b] and χ = 0 on [a −

10κ2T, b+ 10κ2T ], then for all t ∈ [0, T ]

‖χq(t)‖H−1(R) . ‖χ‖Ḣ1(R) + ‖χ′‖L∞(R).

The implicit constants do not depend on t.

Proof. Let t ∈ [0, T ]. We consider

F (s) := ‖χe4(t−s)κ2∂xq(s)‖H−1(R).

By the Duhamel formula,

‖χq(t)‖H−1(R) . ‖χe4tκ
2∂xq(0)‖H−1(R) +

ˆ t

0

‖χe4(t−s)κ2∂xg′(q(s))‖H−1(R)ds,

or equivalently

F (t) . F (0) +

ˆ t

0

‖χe4(t−s)κ2∂xg′(q(s))‖H−1(R)ds.

We observe that for any f(
e−4(t−s)κ

2∂xf
)

(x) = f
(
x− 4(t− s)κ2

)
. (5.24)

In particular, we have that for any f1, f2∣∣∣f1 (e4(t−s)κ2∂xf2)∣∣∣ =
∣∣∣(e−4(t−s)κ2∂xf1) f2∣∣∣ .

Therefore by Lemma 5.3∥∥∥χ(e4(t−s)κ2∂xg′(q(s)))∥∥∥
H−1

=
∥∥∥(e−4(t−s)κ2∂xχ) g′(q(s))∥∥∥

H−1

.
∥∥∥(e−4(t−s)κ2∂xχ) q(s)∥∥∥

H−1
+ ‖χ′‖L2 + ‖χ′‖L∞

=
∥∥∥χ(e4(t−s)κ2∂xq(s))∥∥∥

H−1
+ ‖χ′‖L2 + ‖χ′‖L∞

= F (s) + ‖χ′‖L2 + ‖χ′‖L∞ .

All in all,

F (t) . F (0) + ‖χ′‖L2 + ‖χ′‖L∞ +

ˆ t

0

F (s)ds
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so Grönwall’s inequality ensures that F (t) . F (0) + ‖χ′‖L2 + ‖χ′‖L∞ or, equivalently,

‖χq(t)‖H−1(R) .
∥∥∥(e−4tκ2∂xχ) q(0)

∥∥∥
H−1(R)

+ ‖χ′‖L2 + ‖χ′‖L∞ .

Note that the implicit constants are allowed to depend on T but not t.

If q(0) is compactly supported with supp(q(0)) ⊆ [a, b] and χ(x) = 0 for all x ∈ [a −

10κ2T, b + 10κ2T ], then
(
e−4tκ

2∂xχ
)

(x) = χ (x− 4tκ2) = 0 for all x ∈ [a − 4κ2T, b + 4κ2T ]

and we get that for all t ∈ [0, T ]

‖χq(t)‖H−1(R) . ‖χ‖Ḣ1(R) + ‖χ′‖L∞(R).

In our setting, Theorem 5.4 implies that for n sufficiently large so that κ2T � Ln
Nn

‖(1− χ∗n)qn(t)‖H−1(R) . N
1
2
n L
− 1

2
n for all t ∈ [0, T ]. (5.25)

Since Nn
Ln
→ 0 as n → ∞, fn(t) − qn(t) converges to 0 weakly in H−1(R) uniformly for all

t ∈ [0, T ].

Note that f̊n solves 
d
dt
f̊n = 4κ2f̊ ′n + 16κ5g′(f̊n) + e̊n

f̊n(0) = χ̊0
nun,0

with

en = 16κ5
(
g′(qn)− g′(χ∗nqn)− (1− χ∗n)g′(qn)

)
− 4κ2(χ∗n)′qn.

Using the diffeomorphism property of g, Lemma 5.3, and (5.25), we get that for all t ∈ [0, T ]

the error term ‖̊en(t)‖H−1(Tn) is bounded (up to a constant) by

‖(1− χ∗n)g′(qn)‖H−1(R) + ‖g′(qn)− g′(χ∗nqn)‖H−1(R) + ‖(χ∗n)′qn‖H−1(R)

. N
1
2
n L
− 1

2
n + ‖(1− χ∗n)qn‖H−1(R) + ‖(χ∗n)′‖H1(R)‖qn‖H−1(R)

. N
1
2
n L
− 1

2
n (1 + A).
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Now let’s consider un the solution (up to time Tn > T ) to (Hn
κ ) with initial data un,0. By

Theorem 3.4, for all t ∈ [0, T ]

‖un(t)− f̊n(t)‖H−1(Tn) . ‖ϕ̊nun,0‖H−1(Tn) + (m
1
2
n +M

− 1
2

n )A+N
1
2
n L
− 1

2
n (1 + A)

.
(
m

1
2
n +M

− 1
2

n +N
1
2
n L
− 1

2
n +m

− 1
2

n M
1
2
nN

− 1
2

n

)
(1 + A)

which approaches 0 as n→∞.

The following theorem records the results of this chapter:

Theorem 5.5 (Finite Dimensional PDE Approximation). Fix κ ≥ 1, T > 0, 0 < A < δ0
4

and

let mn → 0, Mn, Nn, Ln → ∞ as above. Assume un,0 ∈ Ḣ−
1
2 (Tn) with ‖un,0‖Ḣ− 1

2 (Tn)
≤ A

and PLn
≤mnun,0 = 0 = PLn

>Mn
un,0. Let un be the solution to (Hn

κ ) with initial data un(0) = un,0.

Then there exist qn,0 ∈ Ḣ−
1
2 (R) compactly supported on an interval of length Ln containing

0, satisfying ‖qn,0‖Ḣ− 1
2 (R)

. A, so that

lim
n→∞

‖un,0 − q̊n,0‖Ḣ− 1
2 (Tn)

= lim
n→∞

‖un,0 − q̊n,0‖Ḣ−1(Tn) = 0.

Moreover, there exist bump functions χ∗n ∈ C∞c (R) satisfying χ∗n = 1 on the support of qn,0,

for which the following is true for the solutions qn to (Hκ) with initial data qn(0) = qn,0:

lim
n→∞

∥∥∥un(t)− ˚[χ∗nqn(t)]Ln

∥∥∥
H−1(Tn)

= 0 for all t ∈ [0, T ].
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CHAPTER 6

Weak well-posedness for the Hκ flow

The process carried out in the previous chapter leaves us with a sequence of initial data that

now lives in the same space: Ḣ−
1
2 (R). Moreover, as we saw it is uniformly bounded in this

space. Unfortunately, the only conclusion we can draw from this is the existence of a weak

limit. Naturally, the following question arises: If we have weak convergence of the initial

data, what does this imply for the behavior of the solutions to (Hκ) at later times in the

weak topology? The key to answering this question is equicontinuity in time.

Lemma 6.1. The Hκ flow is equicontinuous in time in H−1(R), i.e., for every T > 0, Q ⊆ Bδ0

equicontinuous in H−1 and ε > 0 there exists δ > 0 such that for all q that solve (Hκ) with

initial data q(0) in Q, we have

‖q(t)− q(s)‖H−1(R) < ε

for all t, s ∈ [0, T ] with |t− s| < δ.

Proof. We fix T > 0, Q ⊆ Bδ0 equicontinuous in H−1(R), and ε > 0. In the following we

will allow the implicit constants to depend on T and Q. Let t, s ∈ [0, T ]. Without loss of

generality we may assume that s < t. First of all, by the Duhamel formula

‖q(t)− q(s)‖H−1(R) .
∥∥∥e4tκ2∂xq(0)− e4sκ2∂xq(0)

∥∥∥
H−1(R)

+

ˆ s

0

∥∥∥e4(t−τ)κ2∂xg′(q(τ))− e4(s−τ)κ2∂xg′(q(τ))
∥∥∥
H−1(R)

dτ

+

ˆ t

s

‖g′(q(τ))‖H−1(R) dτ. (6.1)

Starting from the last term, the diffeomorphism property and the estimates of Theorem 3.1
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give

ˆ t

s

‖g′(q(τ))‖H−1(R)dτ .
ˆ t

s

‖q(τ)‖H−1(R)dτ .
ˆ t

s

‖q(0)‖H−1(R)e
cτdτ . |t− s|.

Next, we observe that for any bounded equicontinuous subset F ⊆ H−1(R), (5.24) implies

that ∥∥∥e4tκ2∂xf − e4sκ2∂xf∥∥∥
H−1(R)

=
∥∥f(x+ 4tκ2)− f(x+ 4sκ2)

∥∥
H−1(R)

=
∥∥f(x+ 4(t− s)κ2)− f(x)

∥∥
H−1(R) → 0 (6.2)

as |t− s| → 0, uniformly for all f ∈ F , by the definition of equicontinuity.

We can now apply this estimate for the first term of (6.1) to get δQ > 0 so that for all

q(0) ∈ Q and all t, s ∈ [0, T ] with |t− s| < δQ∥∥∥e4tκ2∂xq(0)− e4sκ2∂xq(0)
∥∥∥
H−1(R)

<
ε

3
.

Moreover, the set

Q′ = {g′(q(t)) : t ∈ [0, T ], q solution to (Hκ) with initial data q(0) ∈ Q}

is bounded in Ḣ−
1
2 (R), so it is equicontinuous as well, with its equicontinuity properties

depending on Q. Then (6.2) yields for the second term of (6.1) that there exists δQ′ = δ′Q > 0

so that

ˆ s

0

∥∥∥e4(t−τ)κ2∂xg′(q(τ))− e4(s−τ)κ2∂xg′(q(τ))
∥∥∥
H−1(R)

dτ <
ε

3

for all q(0) ∈ Q and t, s ∈ [0, T ] with |t− s| < δ′Q.

Combining all the above, we conclude that we can find δ > 0 depending only on ε, T and

Q so that for all q(0) ∈ Q and t, s ∈ [0, T ] with |t− s| < δ

‖q(t)− q(s)‖H−1(R) < ε.
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Theorem 6.2. Fix T > 0 and Q ⊆ Bδ0 equicontinuous in H−1. Let {qn(0)} be a sequence

in Q and qn the solution to (Hκ) with initial data qn(0). Then:

1. Passing to a subsequence, qn(t) converges weakly in H−1(R) to some q(t) ∈ H−1(R)

uniformly for all t ∈ [0, T ].

2. For the same subsequence, g(qn(t)) − 1
2κ

converges weakly in H1(R) to g(q(t)) − 1
2κ

uniformly for all t ∈ [0, T ].

3. q is a solution to (Hκ) on [0, T ].

Proof. In the following, we allow the implicit constants to depend on T and Q.

1. Since ‖qn(0)‖H−1(R) ≤ δ0 for all n, by (3.1)

‖qn(t)‖H−1(R) . δ0 for all t ∈ [0, T ], n ∈ N.

We consider [0, T ] ∩ Q = {tj : j ∈ N}. Then, for each j ∈ N, ‖qn(tj)‖H−1(R) is bounded so

we can find a subsequence that converges weakly in H−1(R) to some q(tj) ∈ H−1(R). By

a diagonal argument, we obtain a subsequence {qnk} such that qnk(tj) converges weakly in

H−1(R) to q(tj) for all j ∈ N. For the sake of convenience, we relabel the subsequence qn.

We now define for every t ∈ [0, T ] q(t) to be the H−1 weak limit of q(τm) for {τm} ⊆

[0, T ] ∩ Q such that τm → t. First of all, we need to establish that this is well-defined.

For every such sequence {τm} there exists a subsequence {τmk} for which q(τmk) converges

weakly in H−1, since

‖q(τ)‖H−1(R) . R for all τ ∈ [0, T ] ∩Q.

Moreover, for any two sequences {τm}, {τ ′m} in [0, T ] ∩ Q such that τm → t, τ ′m → t and

{q(τm)}, {q(τ ′m)} converge weakly in H−1(R), we get that for any φ ∈ H1(R) with ‖φ‖H1(R) =

1

|〈q(τm)− q(τ ′m), φ〉| ≤ |〈q(τm)− qn(τm), φ〉|+|〈qn(τm)− qn(τ ′m), φ〉|

+ |〈qn(τ ′m)− q(τ ′m), φ〉| (6.3)

for all m,n ∈ N. Let ε > 0. For all n ∈ N, by Lemma 6.1

|〈qn(τm)− qn(τ ′m), φ〉| ≤ ‖qn(τm)− qn(τ ′m)‖H−1(R) < ε
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for m large (independently of n) so that |τm − τ ′m| is sufficiently small. Then, for fixed m,

the first and last terms of (6.3) are small for n sufficiently large by the definition of q at

rational times. Therefore, for m sufficiently large we get that

|〈q(τm)− q(τ ′m), φ〉| < 3ε,

so the H−1 weak limits of q(τm) and q(τ ′m) are the same. The above two points ensure that

for every t ∈ [0, T ], for any sequence {τm} in [0, T ]∩Q such that τm → t, the sequence q(τm)

converges weakly in H−1(R) and the limit does not depend on the choice of {τm}.

Next, we will show that qn(t) converges weakly in H−1(R) to q(t) uniformly for all

t ∈ [0, T ]. Let ε > 0 and fix φ ∈ H1(R) with ‖φ‖H1(R) = 1. By definition q is uniformly

continuous in time on [0, T ] (with respect to the weak H−1 topology) and by Lemma 6.1

{qn} is equicontinuous in time on the same interval, so there exists δ > 0 such that for all

t, s ∈ [0, T ] satisfying |t− s| < δ

|〈q(t)− q(s), φ〉| < ε (6.4)

and

|〈qn(t)− qn(s), φ〉| < ε for all n ∈ N. (6.5)

The interval [0, T ] is compact, so we can find τ1, . . . , τM ∈ [0, T ] ∩ Q so that [0, T ] ⊆⋃M
m=1(τm − δ, τm + δ). We can also find N ∈ N large enough so that for all 1 ≤ m ≤M

|〈qn(τm)− q(τm), φ〉| < ε for all n > N. (6.6)

Let t ∈ [0, T ] and τm0 ∈ {τ1, . . . , τM} such that |t− τm| < δ. Then by (6.4), (6.5), and (6.6),

for all n > N

|〈qn(t)− q(t), φ〉| ≤ |〈qn(t)− qn(τm0), φ〉|+ |〈qn(τm0)− q(τm0), φ〉|

+ |〈q(τm0)− q(t), φ〉|

< 3ε.

Hence qn(t) converges weakly in H−1(R) to q(t) uniformly for all t ∈ [0, T ].
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2. Fix φ ∈ C∞c (R)∩H−1(R) with ‖φ‖H−1(R) = 1, M > 0 so that supp(φ) ⊆ {x : |x| ≤M},

and let ε > 0. We want to show that for n sufficiently large∣∣∣∣ˆ φ(x)[g(qn(t))− g(q(t))]dx

∣∣∣∣ < ε for all t ∈ [0, T ].

Let ψ ∈ C∞c (R) be a smooth cutoff such that ψ = 1 on {|x| ≤ M} and ψ = 0 on {|x| >

M + ε−2} in order to ensure that ‖ψ′‖L2 + ‖ψ′′‖L2 . ε.

From the definition of g (2.2), using the notation r(T ) =
√
R0T
√
R0 as in chapter 5, and

by applying repeatedly the identity (5.21) we have

ˆ
φ(x)[g(qn(t))− g(q(t))]dx =

ˆ
φ(x)ψ(x)[g(qn(t))− g(q(t))]dx

=
∑
l≥1

(−1)ltr
{√

R0φψ
√
R0(
√
R0qn

√
R0)

l
}

−
∑
l≥1

(−1)ltr
{√

R0φψ
√
R0(
√
R0q

√
R0)

l
}

=
∑
l≥1

(−1)l
[
tr
{
r(φψ)r(qn)l

}
− tr

{
r(φψ)r(q)l

}]
=
∑
l≥1

(−1)l
[
tr
{
r(φ)r(ψqn)r(qn)l−1

}
− tr

{
r(φ)r(ψq)r(q)l−1

}]
+
∑
l≥1

(−1)l
[
tr
{
r(φ)A(ψ)r(qn)l

}
− tr

{
r(φ)A(ψ)r(q)l

}]
=
∑
k≥0

∑
m≥0

(−1)k+m+1tr
{
r(φ)r(q)kr(ψ(qn − q))r(qn)m

}
+
∑
l≥0

∑
k≥0

∑
m≥0

(−1)l+k+m+1tr
{
r(φ)r(q)lA(ψ)r(q)kr(qn − q)r(qn)m

}
.

Then (2.1) allows us to estimate∣∣∣∣ˆ φ(x)[g(qn(t))− g(q(t))]dx

∣∣∣∣
.
∑
k≥0

∑
m≥0

‖φ‖H−1‖q‖kH−1‖ψ(qn − q)‖H−1‖qn‖mH−1

+
∑
l≥0

∑
k≥0

∑
m≥0

‖φ‖H−1‖q‖lH−1ε(‖q‖H−1)k‖qn − q‖H−1‖qn‖mH−1

. ε

for n sufficiently large so that ‖ψ(qn(t)− q(t))‖H−1 < ε for all t ∈ [0, T ].
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3. We start with the equation given by the Duhamel formula for qn:

qn(t) = e4tκ
2∂xqn(0) +

ˆ t

0

16κ5e4(t−s)κ
2∂xg′(qn(s))ds. (6.7)

Fix φ ∈ C∞c (R) with ‖φ‖H1(R) = 1, M > 0 so that supp(φ) ⊆ {x : |x| ≤ M}. By (5.24)

for every t ∈ [−T, T ]

supp(e4tκ
2∂xφ) ⊆ {x : |x| ≤M + 4κ2T}.

We consider a smooth cutoff ψ ∈ C∞c supported on {x : |x| ≤ M + 5κ2T} and equal to 1

inside {x : |x| ≤M + 4κ2T}. Then, for any sequence {fn} in H−1(R) that converges weakly

in H−1(R) to f ∈ H−1(R), we get that

〈e4tκ2∂x(fn − f), φ〉 = 〈fn − f, e−4tκ
2∂xφ〉

= 〈(fn − f)ψ, e−4tκ
2∂xφ〉

which converges to 0 uniformly for all t ∈ [0, T ]. This ensures that

e4tκ
2∂xqn(0) ⇀ e4tκ

2∂xq(0) weakly in H−1. (6.8)

For the second term of (6.7) we observe that, since

qn(s) ⇀ q(s) weakly in H−1 uniformly for all s ∈ [0, T ],

by part (2)

g(qn(s))− 1

2κ
⇀ g(q(s))− 1

2κ
weakly in H1 uniformly for all s ∈ [0, T ],

so

g′(qn(s)) ⇀ g′(q(s)) weakly in H−1 uniformly for all s ∈ [0, T ].

Now, taking advantage of (6.8) again,

e4tκ
2∂xg′(qn(s)) ⇀ e4tκ

2∂xg′(q(s)) weakly in H−1 uniformly for all s, t ∈ [0, T ].

This means that for Gn(t; s) := e4(t−s)κ
2∂x [g′(qn(s))− g′(q(s))], for any given ε > 0

|〈Gn(t; s), φ〉| < ε for all s, t ∈ [0, T ]
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for n sufficiently large (independently of s, t), hence∣∣∣∣〈ˆ t

0

Gn(t; s)ds, φ〉
∣∣∣∣ ≤ ˆ t

0

|〈Gn(t; s), φ〉| ds < εT for all t ∈ [0, T ].

We conclude that

ˆ t

0

e4(t−s)κ
2∂xg′(qn(s))ds ⇀

ˆ t

0

e4(t−s)κ
2∂xg′(q(s))ds weakly in H−1 (6.9)

uniformly for all t ∈ [0, T ].

Returning to (6.7), we already know that the left hand side converges weakly in H−1 to

q(t) for all t ∈ [0, T ], and by (6.8) and (6.9) the right hand side converges weakly in H−1 to

e4tκ
2∂xq(0) +

´ t
0

16κ5e4(t−s)κ
2∂xg′(q(s))ds for all t ∈ [0, T ], so

q(t) = e4tκ
2∂xq(0) +

ˆ t

0

16κ5e4(t−s)κ
2∂xg′(q(s))ds for all t ∈ [0, T ],

proving that q is a solution to Hκ, as desired.
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CHAPTER 7

Symplectic non-squeezing for the Hκ flow on the line

We are finally in a position to state and prove a symplectic non-squeezing theorem for (Hκ).

Note that it can only encompass small initial data; after all, the nonlinearity only makes

sense for sufficiently small solutions.

Theorem 7.1. Fix κ ≥ 1. Let z ∈ Ḣ− 1
2 (R) with ‖z‖

Ḣ−
1
2 (R)
≤ δ0

10
, l ∈ Ḣ 1

2 (R) with ‖l‖
Ḣ

1
2 (R)

=

1, α ∈ C, 0 < r < R < δ0
10

, and T > 0. Then there exists qκ,0 ∈ {q ∈ Ḣ−
1
2 (R) : ‖q −

z‖
Ḣ−

1
2 (R)

< R} such that the solution qκ to Hκ with initial data qκ(0) = qκ,0 satisfies

|〈l, qκ(T )〉 − α| > r.

Proof. We fix 0 < δ < R−r
100

< δ0
1000

. Let A := ‖z‖
Ḣ−

1
2 (R)

+ R < δ0
5

. Let mn,Mn, Nn, Ln be

sequences such that mn → 0 and Mn, Nn, Ln → ∞ as n → ∞, as in chapter 5. First of all,

we can find z̃ ∈ Ḣ− 1
2 ∩ C∞c (R) and l̃ ∈ C∞c (R) such that

‖z − z̃‖
Ḣ−

1
2 (R)

< δ, ‖l − l̃‖
Ḣ

1
2 (R)

< δ̃ and ‖l̃‖
Ḣ

1
2 (R)

= 1,

where δ̃ > 0 is a small parameter to be chosen later.

We will only consider n sufficiently large so that supp(z̃), supp(l̃) ⊆ In := [−Ln
2
, Ln

2
]. We

define

zn(x) := ˚̃zLn(x) =
∑
j∈Z

z̃(x+ jLn),

ln(x) := ˚̃lLn(x) =
∑
j∈Z

l̃(x+ jLn).

By Lemma 4.2, for all n we have that zn, ln ∈ Ḣk(Tn) for all integers k ≥ 0 with

‖zn‖Ḣk(Tn) = ‖z̃‖Ḣk(R), ‖ln‖Ḣk(Tn) = ‖l̃‖Ḣk(R). (7.1)
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In addition, for n sufficiently large, zn ∈ Ḣ−
1
2 (Tn) and ln ∈ Ḣ

1
2 (Tn) with

lim
n→∞

‖zn‖Ḣ− 1
2 (Tn)

= ‖z̃‖
Ḣ−

1
2 (R)

, lim
n→∞

‖ln‖Ḣ 1
2 (Tn)

= ‖l̃‖
Ḣ

1
2 (R)

= 1. (7.2)

From now on, we also require n to be sufficiently large so that zn ∈ Ḣ−
1
2 (Tn), ln ∈ Ḣ

1
2 (Tn)

and

‖zn‖Ḣ− 1
2 (Tn)

≤ ‖z‖
Ḣ−

1
2 (R)

+ δ,

‖ln‖Ḣ 1
2 (Tn)

≤ 2.

We also define

ζn := PLn
mn<···≤Mn

zn,

λn :=
1

‖PLn
mn<···≤Mn

ln‖Ḣ 1
2 (Tn)

PLn
mn<···≤Mn

ln.

By Lemma 4.3, ζn ∈ Ḣ−
1
2 (Tn), λn ∈ Ḣ

1
2 (Tn) with ‖λn‖Ḣ 1

2 (Tn)
= 1, and

lim
n→∞

‖ζn − zn‖L2(Tn) = 0, (7.3)

lim
n→∞

‖λn − ln‖Ḣ 1
2 (Tn)

= 0. (7.4)

In addition,

‖ζn‖Ḣ− 1
2 (Tn)

≤ ‖zn‖Ḣ− 1
2 (Tn)

≤ ‖z‖
Ḣ−

1
2 (R)

+ δ ≤ δ0
5
.

For every n sufficiently large, we consider the equation (Hn
κ ) on Tn with initial data inHn.

Theorem 3.3 guarantees the existence of a unique solution up to time Tn for any initial data

in Hn∩{f ∈ Ḣ−
1
2 (Tn) : κ−

1
2‖f‖

Ḣ−
1
2 (Tn)

≤ δ0}. We can apply Gromov’s result for these finite

dimensional Hamiltonian systems for n large enough so that T < Tn with the new parameters

ζn and λn; we get witnesses un that solve (Hn
κ ) with initial data un(0) = un,0 ∈ Hn and satisfy

‖un,0 − ζn‖Ḣ− 1
2 (Tn)

< R− 10δ, |〈λn, un(T )〉 − α| > r + 10δ. (7.5)

It is clear that

‖un,0‖Ḣ− 1
2 (Tn)

≤ A.
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Moreover, by Theorem 3.3, we know that for all n, un(t) ∈ Ḣ− 1
2 (Tn) and

‖un(t)‖
Ḣ−

1
2 (Tn)

. ‖un,0‖Ḣ− 1
2 (Tn)

for all t ∈ [0, T ],

hence

‖un(t)‖
Ḣ−

1
2 (Tn)

. A for all t ∈ [0, T ]. (7.6)

In addition, for every t ∈ [0, T ], the Fourier transform of un(t) is supported in {ξ : 1
2
mn ≤

|ξ| ≤ 4Mn}.

Next, we consider qn,0 := χ0
nun,0, provided by Theorem 5.5 and constructed as described in

chapter 5. We have already seen in Lemma 5.2 that ‖qn,0‖Ḣ− 1
2 (R)

. A uniformly for all large

n. Thus, passing to a subsequence, qn,0 converges weakly in Ḣ−
1
2 (R) to some q0 ∈ Ḣ−

1
2 (R).

Also qn,0 converges weakly in H−1(R) to q0 ∈ H−1(R). In fact, we can show that

‖q0 − z̃‖Ḣ− 1
2 (R)

< R− 4δ. (7.7)

Let φ ∈ Ḣ 1
2 ∩C∞c (R) with ‖φ‖

Ḣ
1
2 (R)

= 1. We only consider n large enough so that suppφ ⊆

[−Ln
2
, Ln

2
]. We observe that for any n∣∣∣∣ˆ

R
(q0 − z̃)φ

∣∣∣∣ ≤ ∣∣∣∣ˆ
R
(q0 − qn,0)φ

∣∣∣∣+

∣∣∣∣ˆ
R
(qn,0 − un,0)φ

∣∣∣∣+

∣∣∣∣ˆ
R
(ζn − zn)φ

∣∣∣∣
+

∣∣∣∣ˆ
R
(zn − z̃)φ

∣∣∣∣+

∣∣∣∣ˆ
R
(un,0 − ζn)φ

∣∣∣∣ .
By working on each term separately, we verify that the first four terms are bounded by δ

for n large enough, depending on φ. The last term is bounded by R − 9δ provided n is

sufficiently large, again depending on φ, thus completing the proof of (7.7).

This also implies that ‖q0 − z‖
Ḣ−

1
2 (R)

< R, thus ‖q0‖Ḣ− 1
2 (R)

≤ A. Additionally, by

construction we get (5.14), so ‖qn,0‖H−1(R) <
δ0
2

. Theorem 3.1 then guarantees the existence

of a unique global solution qn to Hκ with initial data qn,0 and q solution to Hκ with initial

data q0. Furthermore,

‖qn(T )‖
Ḣ−

1
2 (R)

. ‖qn,0‖Ḣ− 1
2 (R)

. A.
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Then qn(T ) has a subsequence that converges weakly in Ḣ−
1
2 (R). By Theorem 6.2, passing

to a further subsequence, qn(T ) converges weakly in H−1(R) to q(T ). Uniqueness of limit

asserts that q(T ) ∈ Ḣ−
1
2 (R) and a subsequence of qn(T ) converges weakly in Ḣ−

1
2 (R) to

q(T ). By (5.25) we can also see that, passing to a subsequence, fn(T ) = χ∗nqn(T ) converges

weakly in Ḣ−
1
2 (R) to q(T ).

Furthermore, for n sufficiently large, by (7.5), (7.6), (7.3)

|〈ln, un(T )〉 − α| ≥ |〈λn, un(T )〉 − α| − |〈λn − ln, un(T )〉|

> r + 10δ − ‖λn − ln‖Ḣ 1
2 (Tn)
‖un(T )‖

Ḣ−
1
2 (Tn)

> r + 9δ

and

|〈l̃, q(T )〉 − α| ≥ |〈ln, un(T )〉 − α| − |〈ln, un(T )− f̊n(T )〉| − |〈l̃, fn(T )− q(T )〉|

> r + 9δ − ‖l̃‖H1(R)‖un(T )− f̊n(T )‖H−1(Tn) − δ

> r + 7δ

for n sufficiently large, depending on l̃.

Finally, by (3.2)

|〈l − l̃, q(T )〉| ≤ ‖l − l̃‖
Ḣ

1
2 (R)
‖q(T )‖

Ḣ−
1
2 (R)

. δ̃A.

Making sure we have chosen δ̃ small enough so that |〈l − l̃, q(T )〉| < δ, we conclude that

|〈l, q(T )〉 − α| > r.
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CHAPTER 8

Symplectic non-squeezing for the KdV flow on the line

The goal of this chapter is to prove Theorem 1.2. This is accomplished by exploiting the fact

that the Hκ flows are a good approximation to the KdV flow, an idea introduced in [KV19].

The key property that this approximation result relies on is equicontinuity. We have already

defined what it means for a set to be equicontinuous in H−1(R) and have spotlighted a

certain class of bounded subsets of H−1 that have this property. Let us recall some further

results about equicontinuous subsets and the flows in question from [KV19], including the

precise statement of the crucial approximation of (KdV) by (Hκ).

Lemma 8.1. If Q is a set of Schwartz functions that is equicontinuous in H−1(R), then so

is

Q∗ := {eJ∇(tHKdV +sHκ)q : q ∈ Q, t, s ∈ R, κ ≥ 1}.

Lemma 8.2. If Q∗ is equicontinuous in H−1(R), then

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T
‖etJ∇(HKdV −Hκ)q − q‖H−1(R) = 0. (8.1)

Remark 8.3. In [KV19] the authors show (8.1) for a special set Q, namely where the

elements of Q form a sequence of Schwartz functions that converges in H−1(R), as part of

the proof of Theorem 5.1. However, the only property of Q that is needed in the proof is

the equicontinuity of Q∗ in H−1(R).

Lemma 8.2 was the decisive result in the proof of the following well-posedness theorem

for (KdV) in [KV19].
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Theorem 8.4. The (KdV) equation is globally well-posed in H−1(R) in the following sense:

The solution map extends (uniquely) from Schwartz space to a jointly continuous map

Φ : R×H−1(R)→ H−1(R).

In particular, Φ has the group property: Φ(t + s) = Φ(t) ◦ Φ(s). Moreover, each orbit

{Φ(t, q) : t ∈ R} is bounded and equicontinuous in H−1(R). Concretely,

sup
t
‖q(t)‖H−1(R) . ‖q(0)‖H−1(R) + ‖q(0)‖3H−1(R).

If in addition q(0) ∈ H− 1
2 (R), then

sup
t
‖q(t)‖

H−
1
2 (R)

. ‖q(0)‖
H−

1
2 (R)

+ ‖q(0)‖3
H−

1
2 (R)

.

The results above combined with our work on chapter 6 give us access to the following

theorem on the preservation of weak limits under the KdV flow. As we have explained earlier,

working in the weak topology is one of the essential difficulties in the infinite volume regime.

Apart from being a interesting result on its own, Theorem 8.5 will be the last ingredient for

the proof of Theorem 1.2.

Theorem 8.5. Fix T > 0 and Q a bounded equicontinuous subset of H−1. Let {qn(0)} be

a sequence of Schwartz functions in Q and qn the solution to (KdV) with initial data qn(0).

Suppose that

qn(0) ⇀ q(0) as n→∞ weakly in H−1(R).

Then, if q is the solution to (KdV) with initial data q(0), passing to a subsequence,

qn(T ) ⇀ q(T ) as n→∞ weakly in H−1(R).

Proof. Suppose Q ⊆ {f ∈ H−1(R) : ‖f‖H−1(R) < A}. First, we consider the case when

0 < A < δ0
2

. This additional assumption ensures that the elements of the sequence qn(0)

give rise to unique global solutions under the Hκ flow.

Since ‖qn(0)‖H−1(R) < A for all n, q(0) ∈ H−1(R) and ‖q(0)‖H−1(R) ≤ A. Moreover,

we can find Schwartz functions fn(0) ∈ H−1(R) so that F = {fn(0)} ⊆ {f ∈ H−1(R) :

54



‖f‖H−1(R) < 2A} is equicontinuous in H−1(R) and fn(0) → q(0) in H−1(R). Then the set

Q ∪ F is equicontinuous in H−1(R). Lemma 8.1 and Lemma 8.2 ensure that (8.1) holds.

qn(T )− q(T ) =
[
eTJ∇HKdV qn(0)− eTJ∇Hκqn(0)

]
+
[
eTJ∇Hκqn(0)− eTJ∇Hκq(0)

]
+
[
eTJ∇Hκq(0)− eTJ∇Hκfn(0)

]
+
[
eTJ∇Hκfn(0)− eTJ∇HKdV fn(0)

]
+
[
eTJ∇HKdV fn(0)− eTJ∇HKdV q(0)

]
.

By (8.1), the first and fourth terms converge to 0 in H−1(R) as κ → ∞ for all n. Having

fixed κ sufficiently large, passing to a subsequence the second and third terms converge to 0

weakly in H−1(R) as n → ∞ due to Theorem 6.2. Finally, the last term converges to 0 in

H−1(R) by Theorem 8.4. This completes the proof of this special case.

As far as general bounds A are concerned, it can be reduced to the special case by

rescaling. Indeed, for λ ∈ 2Z we can consider

qλn(t, x) = λ2qn(λ3t, λx), n ∈ N

which also solve (KdV). In particular, one can observe that for N ∈ 2N

∥∥P>Nqλn(0)
∥∥
H−1(R) ∼

∥∥P>Nqλn(0)
∥∥
Ḣ−1(R) = λ

1
2

∥∥∥P>N
λ
qn(0)

∥∥∥
Ḣ−1(R)

∼ λ
1
2

∥∥∥P>N
λ
qn(0)

∥∥∥
H−1(R)

and

∥∥P≤Nqλn(0)
∥∥
H−1(R) ≤

∥∥P≤Nqλn(0)
∥∥
L2(R) = λ

3
2

∥∥∥P≤N
λ
qn(0)

∥∥∥
L2(R)

. λ
1
2N
∥∥∥P≤N

λ
qn(0)

∥∥∥
H−1(R)

.

The implication of these observations is twofold: on the one hand, for N = 1 they ensure

that

‖qλn(0)‖H−1(R) . λ
1
2‖qn(0)‖H−1(R) . λ

1
2A
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hence ‖qλn(0)‖H−1(R) <
δ0
2

if λ is chosen appropriately small; one the other hand, for fixed λ we

have that
∥∥P>Nqλn(0)

∥∥
H−1(R) → 0 as N →∞ uniformly for all n, thanks to the equicontinuity

of Q. We conclude that the rescaled initial data fall under the special case of the Theorem.

Since qλn(0) ⇀ qλ(0) as n → ∞ weakly in H−1(R), the special case of the theorem

implies that qλn(λ−3T ) ⇀ qλ(λ−3T ) as n → ∞ weakly in H−1(R). This in turn shows that

qn(T ) ⇀ q(T ) as n→∞ weakly in H−1(R).

Proof of Theorem 1.2. We are given the fixed parameters z ∈ Ḣ−
1
2 (R), l ∈ H

1
2 (R) with

‖l‖
Ḣ

1
2

= 1, α ∈ C, 0 < r < R <∞, and T > 0.

First, we consider the case when ‖z‖
Ḣ−

1
2 (R)

< δ0
10

and R < δ0
10

.

We fix 0 < δ < R−r
100

and take l̃ ∈ C∞c (R) with ‖l̃‖
Ḣ

1
2 (R)

= 1 such that

‖l − l̃‖
H

1
2 (R)

< δ̃

with δ̃ > 0 a small parameter to be chosen later. By Theorem 7.1, for each κ ≥ 1 we can

find qκ solution to the Hκ flow with initial data qκ,0 ∈ Ḣ−
1
2 (R) satisfying

‖qκ,0 − z‖Ḣ− 1
2 (R)

< R− 10δ,
∣∣∣〈l̃, qκ(T )〉 − α

∣∣∣ > r + 10δ.

For each κ ≥ 1 we can find q̃κ,0 ∈ Ḣ−
1
2 (R) ∩ C∞c (R) so that

‖qκ,0 − q̃κ,0‖Ḣ− 1
2 (R)

< e−κ
10

.

We denote by q̃κ the solution to (Hκ) with initial data q̃κ,0. Since ‖qκ,0‖Ḣ− 1
2 (R)
≤ ‖z‖

Ḣ−
1
2 (R)

+

R− 9δ uniformly in κ, there exists q0 ∈ Ḣ−
1
2 (R) so that, passing to a subsequence, qκ,0 ⇀ q0

weakly in Ḣ−
1
2 and H−1. In particular,

‖q0 − z‖Ḣ− 1
2 (R)

< R,

as for every φ ∈ Ḣ 1
2 ∩ C∞c (R) with ‖φ‖

Ḣ
1
2 (R)

= 1∣∣∣∣ˆ
R
(q0 − z)φ

∣∣∣∣ ≤ ∣∣∣∣ˆ
R
(qκ,0 − z)φ

∣∣∣∣+

∣∣∣∣ˆ
R
(qκ,0 − q0)φ

∣∣∣∣
≤ ‖qκ,0 − z‖Ḣ− 1

2 (R)
+ δ

≤ R− 9δ
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for κ sufficiently large, depending on φ. What is more, q0 is also the weak Ḣ−
1
2 and H−1

limit of (a subsequence of) q̃κ,0 as κ→∞.

We consider the sets

Q = {q̃κ,0 : κ ≥ 1},

Q∗ = {eJ∇(tHKdV +sHκ)q : q ∈ Q, t, s ∈ R, κ ≥ 1}.

By Corollary 2.7, Lemma 8.1 and Lemma 8.2, the boundedness of Q in Ḣ−
1
2 (R) ensures that

(8.1) holds for the solutions we may need it.

Let q be the solution to (KdV) with initial data q0. We observe that

q(T )− q̃κ(T ) =
[
eTJ∇HKdV q0 − eTJ∇HKdV q̃κ,0

]
+
[
eTJ∇HKdV q̃κ,0 − eTJ∇Hκ q̃κ,0

]
.

Passing to a subsequence, one readily sees that by (8.1) the second term converges to 0

strongly in H−1(R) as κ → ∞ and Theorem 8.5 affirms that the first term converges to 0

weakly in H−1(R) as κ→∞, therefore

q̃κ(T ) ⇀ q(T ) weakly in H−1(R) as κ→∞.

Since

‖qκ(t)− q̃κ(t)‖H−1(R) . e−κ
10

+ κ5
ˆ t

0

‖qκ(s)− q̃κ(s)‖H−1(R)ds

for all t ≥ 0, Grönwall’s inequality yields that

‖qκ(T )− q̃κ(T )‖H−1(R) . e−κ
10+κ5

so

qκ(T ) ⇀ q(T ) weakly in H−1(R) as κ→∞.

As a consequence, for κ large enough (depending on δ̃)

|〈l, q(T )〉 − α| ≥
∣∣∣〈l̃, qκ(T )〉 − α

∣∣∣− ∣∣∣〈l̃, qκ(T )− q(T )〉
∣∣∣− ∣∣∣〈l − l̃, q(T )〉

∣∣∣
> r + 10δ − δ − C

(
‖q(0)‖

H−
1
2 (R)

)
δ̃

> r
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by making sure we have chosen δ̃ �
[
C
(
‖z‖

Ḣ−
1
2 (R)

+R
)]−1

δ.

The general case follows by scaling. For λ > 0, we consider the new parameters

zλ(x) := λ2z(λx) ∈ Ḣ−
1
2 (R) with ‖zλ‖Ḣ− 1

2 (R)
= λ‖z‖

Ḣ−
1
2 (R)

,

lλ(x) := l(λx) ∈ H
1
2 (R) with ‖lλ‖Ḣ 1

2 (R)
= ‖l‖

Ḣ
1
2 (R)

= 1,

rλ := λr, Rλ := λR, αλ := λα, Tλ := λ−3T.

Assuming that λ is sufficiently small, we can use the special case of Theorem 1.2 that we

proved above and obtain solution to (KdV) qλ satisfying

‖qλ(0)− zλ‖Ḣ− 1
2 (R)

< Rλ and |〈lλ, qλ(Tλ)〉 − αλ| > rλ.

Then, taking q(t, x) := 1
λ2
qλ(

1
λ3
t, 1
λ
x) we get that

‖q(0)− z‖
Ḣ−

1
2 (R)

= 1
λ
‖qλ(0)− zλ‖Ḣ− 1

2 (R)
< 1

λ
Rλ = R,

|〈l, q(T )〉 − α| = 1
λ
|〈lλ, qλ(Tλ)〉 − αλ| > 1

λ
rλ = r.
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CHAPTER 9

Symplectic non-squeezing for the KdV flow on the

circle

The methodology developed in the previous chapters also allows us to obtain a simpler proof

of the already known result that the KdV flow on the circle has the symplectic non-squeezing

property. Once again, the key is to show symplectic non-squeezing for the Hκ flows via finite

dimensional approximation and argue that this property is inherited by the KdV flow.

The finite-volume setting affords us several simplifications in comparison to the line case.

The most obvious manifestation of the more favorable compact setting is that it permits

employing simpler finite-dimensional Hamiltonian systems to approximate the Hκ flow; after

all, truncation in space is no longer necessary. Instead, we are going to use the flows induced

by the Hamiltonians

HN
κ (q) = −16κ5α(κ;P 1

≤Nq) + 4κ2
ˆ
T

1

2
q2dx,

namely 
d
dt
qNκ = 4κ2(qNκ )′ + 16κ5P 1

≤Ng
′(P 1
≤Nq

N
κ )

qNκ (0) ∈ Ḣ− 1
2 (T)

(HN
κ )

for N ∈ 2N.

Furthermore, the compactness of the circle allows for a much shorter argument regarding

the recovery of witnesses to non-squeezing as limits of bounded sequences. More specifically,

in the circle setting we can extract a strong H−1 subsequential limit from a sequence bounded

in Ḣ−
1
2 , thus avoiding working in the weak topology. This is in direct contrast to the line

regime where much of our efforts were focused on understanding the behavior of weak limits
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under the Hκ and KdV flows. Before we start, let us point out that on the circle the

homogeneous and inhomogeneous Sobolev norms Ḣs and Hs for s < 0 are equivalent.

Once again, the first step is the finite-dimensional approximation of the Hκ flows. Of

course, the immediate question that arises is whether the equations induced by the Hamil-

tonians HN
κ are well-posed. One readily sees that they bear a strong resemblance to the

systems employed in the treatment of the line problem, (Hn
κ ). Looking back at Theorem

3.3, we did not impose any conditions on the lengths of the tori Ln, so the theorem can be

applied equally well to systems where the lengths change (like in the infinite-volume regime,

Ln → ∞) and to systems on a fixed circle (for instance Ln = 1). The last difference be-

tween (HN
κ ) and (Hn

κ ) that we need to address is the absence of a low frequency truncation.

Nevertheless, this change can only simplify the argument.

Theorem 9.1 (Well-posedness for HN
κ ). Fix κ ≥ 1. Let HN := {f ∈ H−1(T) : P 1

>2Nf = 0},

N ∈ 2N. There exists δ0 > 0 small enough (independent of N and κ) and a sequence

TN > 0 satisfying limN→∞ TN = ∞ so that the following are true for every N ∈ N: For

every uN,0 ∈ {f ∈ HN : κ−
1
2‖f‖

Ḣ−
1
2 (T)
≤ δ0} ⊆ B1

δ0,κ
there exists a unique solution uN ∈

C([0, TN ])H−1(T) to the equation (HN
κ ). For each such initial data uN,0 the solution uN(t) ∈

HN obeys

‖uN(t)‖H−1(T) . ‖uN,0‖Ḣ− 1
2 (T)

(9.1)

and

‖uN(t)‖
Ḣ−

1
2 (T)

. ‖uN,0‖Ḣ− 1
2 (T)

ect, (9.2)

for all t ∈ [0, TN ]. The implicit constants here do not depend on N .

We begin by proving the following lemma, which will be applied repeatedly in this and

the subsequent chapters.

Lemma 9.2. Let zn ∈ H−1(T), z ∈ H−1(T) and 0 < Rn <∞, 0 < R <∞ such that

lim
n→∞

‖zn − z‖H−1(T) = 0, lim
n→∞

Rn = R.
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Let qn, n ∈ N, be a sequence in H−1(T) such that

‖qn − zn‖Ḣ− 1
2 (T)

< Rn for all n ∈ N.

Then there exists q ∈ H−1(T) such that, passing to a subsequence, qn converges to q

(strongly) in H−1. Moreover,

‖q − z‖
Ḣ−

1
2 (T)
≤ R.

Proof. We look at the sequence

fn := qn − zn ∈ Ḣ−
1
2 (T).

This sequence is restricted in a compact subset of Ḣ−
1
2 (T), since we have that ‖fn‖Ḣ− 1

2 (T)
<

Rn ≤ R + 1 for n sufficiently large. Therefore, there exists some f ∈ Ḣ−
1
2 (T) such that,

passing to a subsequence, fn converges to f strongly in H−1(T) and weakly in Ḣ−
1
2 (T). We

then take

q := f + z ∈ H−1(T).

Observing that

qn − q = fn − f + zn − z,

we conclude that it converges to 0 strongly in H−1. In addition,

‖q − z‖
Ḣ−

1
2 (T)

= ‖f‖
Ḣ−

1
2 (T)
≤ R.

Theorem 9.3. Fix κ ≥ 1. Let z ∈ Ḣ−
1
2 (T) with ‖z‖

Ḣ−
1
2 (T)

< 1
10
κ

1
2 δ0, l ∈ Ḣs(T) with

‖l‖
Ḣ

1
2

= 1, α ∈ C, 0 < r < R < 1
10
κ

1
2 δ0, and T > 0. Then there exists qκ,0 ∈ {q ∈ Ḣ−

1
2 (T) :

‖q − z‖
Ḣ−

1
2
< R} such that the solution qκ to Hκ with initial data qκ(0) = qκ,0 satisfies

|〈l, qκ(T )〉 − α| > r.

Proof. We begin by taking 0 < δ < 1
5
(R − r). Thanks to Theorem 9.1, Gromov’s theorem

can be applied to the flow induced by the Hamiltonian HN
κ for initial data in {q ∈ Ḣ− 1

2 (T) :

q ∈ HN , ‖q‖Ḣ− 1
2
< κ

1
2 δ0}, for appropriately adapted parameters as long as N is sufficiently
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large so that TN > T . As a result, we obtain a sequence of witnesses qNκ (0) ∈ Ḣ−
1
2 (T),

N ∈ 2N, with P>2Nq
N
κ (0) = 0 such that the solution qNκ to the HN

κ flow with initial data

qNκ (0) satisfies

‖qNκ (0)− P≤Nz‖Ḣ− 1
2 (T)

< R− δ,

|〈qNκ (T ), lN〉 − α| > r + 3δ,

where lN = 1
‖P≤N l‖

Ḣ
1
2 (T)

P≤N l. Note that

‖l − lN‖Ḣ 1
2 (T)
≤

∣∣∣∣∣ 1

‖P≤N l‖Ḣ 1
2 (T)

− 1

∣∣∣∣∣ ‖l‖Ḣ 1
2 (T)

+ ‖P>N l‖Ḣ 1
2 (T)

,

so

lim
N→∞

‖l − lN‖Ḣ 1
2 (T)

= 0. (9.3)

We intend to use this sequence of witnesses to construct a witness for the Hκ flow. By

Lemma 9.2, passing to a subsequence, qNκ (0) converges strongly in H−1 to some qκ(0) ∈

Ḣ−
1
2 (T) satisfying

‖qκ(0)− z‖
Ḣ−

1
2 (T)

< R.

For every N sufficiently large we consider the solution qNκ ∈ C([0, T ])Ḣ−
1
2 (T) to (HN

κ ) with

initial data qNκ (0) and the solution qκ ∈ C([0, T ])Ḣ−
1
2 (T) to (Hκ) with initial data qκ(0).

Using Duhamel’s formula we get for all t ∈ [0, T ]

‖qNκ (t)− qκ(t)‖H−1(T) .‖qNκ (0)− qκ(0)‖H−1(T)

+ 16κ5
ˆ t

0

‖P≤Ng′(P≤NqNκ (τ))− g′(qκ(τ))‖H−1(T)dτ.

By Bernstein estimates, the diffeomorphism property of g, and estimate (3.2), for all s ∈ [0, t]

‖P≤Ng′(P≤NqNκ (τ))− g′(qκ(τ))‖H−1(T)

. N−
1
2‖qκ(0)‖

Ḣ−
1
2 (T)

+ ‖qNκ (τ)− qκ(τ)‖H−1(T),

so by Grönwall we get that for all t ∈ [0, T ]

‖qNκ (t)− qκ(t)‖H−1(T) . ‖qNκ (0)− qκ(0)‖H−1(T) +N−
1
2‖qκ(0)‖

Ḣ−
1
2 (T)

.
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In particular, this implies that qNκ (T ) → qκ(T ) in H−1(T) as N → ∞. Moreover, due to

(9.2) we have that

‖qNκ (T )‖
Ḣ−

1
2 (T)

. ‖qNκ (0)‖
Ḣ−

1
2 (T)

. ‖z‖
Ḣ−

1
2 (T)

+R, (9.4)

therefore, passing to a subsequence, uniqueness of limits asserts that

qNκ (T ) ⇀ qκ(T ) weakly in Ḣ−
1
2 (T). (9.5)

Then for N sufficiently large

|〈qκ(T ), l〉 − α| ≥ |〈qNκ (T ), lN〉 − α| − |〈qNκ (T ), l − lN〉| − |〈qκ(T )− qNκ (T ), l〉|

≥ r + 3δ − 2δ > r

by (9.4), (9.3), and (9.5). This concludes the proof of Theorem 9.3.

We are now ready to use the result of Theorem 9.3 to prove Theorem 1.3.

Proof of Theorem 1.3. Once again, we take 0 < δ < 1
5
(R− r). Let l̃ ∈ H 1

2 (T)∩C∞c (T) such

that ‖l̃‖
Ḣ

1
2 (T)

= 1 and ‖l − l̃‖
H

1
2 (T)

< δ̃ for some small parameter δ̃ > 0 to be chosen later.

We only consider κ ≥ 1 sufficiently large so that ‖z‖
Ḣ−

1
2 (T)

< 1
10
κ

1
2 δ0 and R < 1

10
κ

1
2 δ0. For

all such κ, let qκ denote the witness to symplectic non-squeezing for the flow induced by Hκ

that we obtain from Theorem 9.3 for the radii 0 < r + 2δ < R− δ <∞ and the parameters

z, l̃, α, T . Since

‖qκ(0)− z‖
Ḣ−

1
2 (T)

< R− δ for all κ,

Lemma 9.2 guarantees that there exists q(0) ∈ Ḣ− 1
2 (T) with

‖q(0)− z‖
Ḣ−

1
2 (T)

< R

such that, passing to a subsequence, qκ(0) converges to q(0) strongly in H−1(T) and weakly

in Ḣ−
1
2 (T) as κ→∞.

The next step will be to replace the sequence qκ(0) by a sequence of Schwartz initial data

that converges to the same limit. For each κ we can find a Schwartz function q̃κ(0) ∈ Ḣ− 1
2 (T)

such that

‖qκ(0)− q̃κ(0)‖
Ḣ−

1
2 (T)

< e−κ
10

.

63



Note that ‖q̃κ(0)‖
Ḣ−

1
2 (T)

< ‖z‖
Ḣ−

1
2 (T)

+R for κ large. Then clearly passing to a subsequence

q̃κ(0) converges to q(0) strongly in H−1(T) and weakly in Ḣ−
1
2 (T) as κ→∞.

Working similarly as in the proof of Theorem 1.2, we observe that the difference of the

solutions q̃κ to (Hκ) with initial data q̃κ(0) and q to (KdV) with initial data q(0) can be

written as

q(T )− q̃κ(T ) =
(
etJ∇HKdV q(0)− etJ∇HKdV q̃κ(0)

)
+
(
etJ∇HKdV q̃κ(0)− etJ∇Hκ q̃κ(0)

)
.

Up to a subsequence, as κ→∞ the first term converges to 0 in H−1 by Theorem 8.4 and the

second term converges to 0 in H−1 by an application of (8.1) (which holds for the solutions

in question due to the boundedness of q̃κ(0) in Ḣ−
1
2 (T)), so q̃κ(T ) → q(T ) in H−1(T) as

κ → ∞. Moreover, by Duhamel’s formula the difference between the solutions to the Hκ

flow with initial data qκ(0) and q̃κ(0) at time t ≥ 0 satisfies

‖q̃κ(t)− qκ(t)‖H−1 ≤ ‖q̃κ(0)− qκ(0)‖H−1 + 16κ5
ˆ t

0

‖g′(q̃κ(s))− g′(qκ(s))‖H−1ds

. e−κ
10

+ 16κ5
ˆ t

0

‖q̃κ(s)− qκ(s)‖H−1ds

with the implicit constant independent of κ. By Grönwall’s inequality we obtain that

‖qκ(T )− qκ(T )‖H−1(T) < eCTκ
5−κ10 ,

which suggests that qκ(T ) → q(T ) in H−1(T) as κ → ∞. Consequently, for κ sufficiently

large

|〈q(T ), l〉 − α| ≥ |〈qκ(T ), l̃〉 − α| − |〈qκ(T )− q(T ), l̃〉| − |〈q(T ), l̃ − l〉|

> r + 2δ − ‖qκ(T )− q(T )‖H−1‖l̃‖H1 − ‖q(T )‖
Ḣ−

1
2
‖l − l̃‖Ḣs

> r + 2δ − ‖qκ(T )− q(T )‖H−1‖l̃‖H1 − C(‖z‖
Ḣ−

1
2

+R)δ̃

> r

provided that δ̃ has been chosen appropriately small, thus completing the proof that q is,

indeed, a witness to symplectic non-squeezing for (KdV).
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CHAPTER 10

Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.5. We are given z ∈ H−1(T), l ∈ H1(T) with ‖l‖
Ḣ

1
2 (T)

= 1, α ∈ C,

0 < r < R < ∞, and T > 0. Let us take a small parameter 0 < δ < R−r
5

and consider a

sequence zn ∈ H−1(T)∩Ḣ− 1
2 (T) such that ‖z−zn‖H−1(T) → 0 as n→∞. Then, by Theorem

1.3, we get solutions qn to (KdV) with initial data qn(0) ∈ Ḣ− 1
2 (T) satisfying

‖qn(0)− zn‖Ḣ− 1
2 (T)

< R− δ, |〈l, qn(T )〉 − α| > r + 2δ.

Lemma 9.2 provides us with q(0) ∈ H−1(T) with ‖q(0) − z‖
Ḣ−

1
2 (T)

< R such that, passing

to a subsequence, qn(0) converges to q(0) in H−1(T) as n→∞. The continuity of the KdV

flow in H−1 then guarantees that qn(T ) converges in H−1(T) to the solution q(T ) to (KdV)

with initial data q(0), as n→∞. Therefore,

|〈l, q(T )〉 − α| ≥ |〈l, qn(T )〉 − α| − |〈l, qn(T )− g(T )〉|

> r + 2δ − ‖l‖H1(T)‖qn(T )− q(T )‖H−1(T)

> r.

Proof of Theorem 1.4. We follow an argument parallel to the one in the proof of Theorem

1.5. Let us focus only on the aspects that require a modifies treatment.

The first point of divergence is the extraction of a subsequential limit q(0) from qn(0) by

an application of Lemma 9.2. Here, we need to use a variant of that Lemma for the line; the

same argument can work in the non-compact setting, the sole difference being that it can give

us only weak convergence. That way we obtain q(0) ∈ H−1(R) with ‖q(0) − z‖
Ḣ−

1
2 (R)

< R

such that, passing to a subsequence, qn(0) converges to q(0) weakly in H−1(R).
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Next, instead of strong H−1 convergence of qn(T ), we can aim for the analogous weak

result. The only obstacle on our way towards this is to show that the set Q = {qn(0) : n ∈ N}

is equicontinuous in H−1(R); then we will be able to apply Theorem 8.5 and carry out the

rest of the argument the same way we did for the circle case. However, one can readily see

that the equicontinuity of Q is guaranteed by the fact that Q ⊆ Q1 +Q2, where

Q1 = {qn(0)− zn : n ∈ N}, Q2 = {zn : n ∈ N},

and Lemma 2.7.
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CHAPTER 11

Equivalent formulations of symplectic non-squeezing

In the introduction we listed two other equivalent formulations of Gromov’s Theorem. In

[KVZ] the corresponding alternative expressions of symplectic non-squeezing are derived for

the cubic NLS on R2. It is not suprising that the analogous statements are true for the KdV

equation, both in the circle and in the line setting. Below we will present the two equivalent

formulations of Theorem 1.3 and Theorem 1.5. The proofs of the respective results on the

line can be reconstructed from the following arguments and the proofs of Theorems 1.2 and

1.4.

Corollary 11.1. Fix z ∈ Ḣ−
1
2 (T), l ∈ H

1
2 (T) with ‖l‖

Ḣ
1
2

= 1, α ∈ C, 0 < R < ∞, and

T > 0. Then there exists solution q ∈ H− 1
2 (T) to (KdV) such that

‖q(0)− z‖
Ḣ−

1
2 (T)
≤ R, |〈l, q(T )〉 − α| ≥ R.

Proof. Let qn ∈ Ḣ−
1
2 (T) be the witnesses to symplectic non-squeezing for (KdV) given by

Theorem 1.3 for the radii 0 < R− 1
n
< R+ 1

n
<∞, for n ∈ N sufficiently large. We can find

a subsequence along which qn(0) converges to some q(0) ∈ Ḣ− 1
2 (T) in H−1(T). Moreover,

for this limit we have that

‖q(0)− z‖
Ḣ−

1
2 (T)
≤ R.

By the continuity of the solution map for (KdV), qn(T ) converges to q(T ) in H−1(T). In

addition, the fact that

‖qn(T )‖
H−

1
2 (T)

< C
(
‖qn(0)‖

H−
1
2 (T)

)
< C

(
‖z‖

Ḣ−
1
2 (T)

+R
)

and uniqueness of limits ensure that passing to a subsequence qn(T ) converges to q(T ) weakly
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in Ḣ−
1
2 Then for any ε > 0

|〈q(T ), l〉 − α| ≥ |〈qn(T ), l〉 − α| − |〈qn(T )− q(T ), l〉|

> R− ε

for n large enough, so we conclude that

|〈q(T ), l〉 − α| ≥ R.

Corollary 11.2. Fix z ∈ H−1(T), l ∈ H1(T) with ‖l‖
Ḣ

1
2

= 1, α ∈ C, 0 < R < ∞, and

T > 0. Then there exists solution q ∈ H−1(T) to (KdV) such that

‖q(0)− z‖
Ḣ−

1
2 (T)
≤ R, |〈l, q(T )〉 − α| ≥ R.

Proof. Let qn ∈ H−1(T) be the witnesses to symplectic non-squeezing for (KdV) that we

obtain from Theorem 1.5 for the radii 0 < R− 1
n
< R+ 1

n
<∞, for n ∈ N sufficiently large.

Once again, we take advantage of Lemma 9.2, which provides us with q(0) ∈ H−1(T) such

that qn(0) converges to q(0) in H−1(T), and satisfies

‖q(0)− z‖
Ḣ−

1
2 (T)
≤ R.

By the continuity of the solution map for (KdV), qn(T ) converges to q(T ) in H−1(T). This

suggests that for any ε > 0

|〈q(T ), l〉 − α| ≥ |〈qn(T ), l〉 − α| − |〈qn(T )− q(T ), l〉|

> R− ε

for n large enough, so

|〈q(T ), l〉 − α| ≥ R.

Corollary 11.3. For every z ∈ Ḣ−
1
2 (T), l ∈ H

1
2 (T) with ‖l‖

Ḣ
1
2 (T)

= 1, 0 < R < ∞ and

T > 0,

Area({〈l, q(T )〉 : q solves (KdV), q(0) ∈ Ḣ−
1
2 (T), ‖q(0)− z‖

Ḣ−
1
2 (T)

< R}) ≥ πR2.
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Proof. Without loss of generality, we may assume that ‖z‖
Ḣ−

1
2 (T)

< δ0
10

and R < δ0
10

; the

general case then follows by rescaling. Under these extra assumptions we ensure the well-

posedness of (HN
κ ) on {q ∈ HN : ‖q − z‖

Ḣ−
1
2 (T)

< R} up to time TN , where TN → ∞ as

N →∞.

Our goal is to prove a bound for the area of the set

O := {〈l, q(T )〉 : q solves (KdV), q(0) ∈ Ḣ−
1
2 (T), ‖q(0)− z‖

Ḣ−
1
2 (T)

< R}.

We define for 0 < r < R the sets

Kr := {〈l, q(T )〉 : q solves (KdV), q(0) ∈ Ḣ−
1
2 (T), ‖q(0)− z‖

Ḣ−
1
2 (T)
≤ r}.

For any fixed 0 < r < R,

|〈l, q(T )〉| ≤ ‖l‖
H

1
2 (T)
‖q(T )‖

H−
1
2 (T)

< ‖l‖
H

1
2 (T)

C(‖z‖
Ḣ−

1
2 (T)

+ r)

so each Kr is bounded. One can establish that each Kr is also closed, hence compact. Note

also that

O =
⋃

0<r<R

Kr.

Suppose that Area(O) < πR2. Then there exists δ > 0 such that

Area(Bδ) := Area({z ∈ C : dist(z,KR−δ) ≤ 4δ}) < π(R− 4δ)2.

We will use the analogous formulation of Gromov’s theorem for a sequence of finite dimen-

sional systems that approximate our flow and follow the arguments used in the proofs of

Theorems 9.3 and 1.3 to reach a contradiction. First of all, for each κ ≥ 1 and N ∈ 2N we

consider the set

ANκ := {〈lN , q(T )〉 : q solves (HN
κ ), q(0) ∈ Ḣ−

1
2 (T), ‖q(0)− zN‖Ḣ− 1

2 (T)
< R− 4δ}

where zN = P≤Nz ∈ Ḣ−
1
2 (T), lN = 1

‖P≤N l‖
Ḣ

1
2 (T)

P≤N l ∈ Ḣ
1
2 (T). By the equivalent formulation

of Gromov’s theorem stated in the introduction, we get that

Area(ANκ ) ≥ π(R− 4δ)2.
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If all q that solve HN
κ with initial data q(0) ∈ Ḣ− 1

2 (T), ‖q(0)− zN‖Ḣ− 1
2 (T)

< R− 4δ satisfied

that dist(〈lN , q(T )〉,KR−δ) ≤ 4δ, then we would get that ANκ ⊆ Bδ, which would in turn

yield

Area(ANκ ) ≤ Area(Bδ) < π(R− 4δ)2,

resulting in a contradiction. This asserts that, for each κ ≥ 1 and N ∈ 2N, there exists qNκ

that solves (HN
κ ) with qNκ (0) ∈ Ḣ− 1

2 (T),

‖qNκ (0)− P≤Nz‖Ḣ− 1
2 (T)

< R− 4δ, dist(〈lN , qNκ (T )〉,KR−δ) > 4δ.

Using Lemma 9.2 as in the proof of Theorem 9.3, we obtain qκ(0) ∈ H−1(T) such that qNκ (0)

converges to qκ(0) in H−1(T) as N →∞, which also satisfies

‖qκ(0)− z‖
Ḣ−

1
2
< R− 3δ.

Moreover, an argument similar to the one in the proof of Theorem 9.3 gives us for the solution

qκ to (Hκ) with initial data qκ(0)

dist(〈l, qκ(T )〉,KR−δ) > 3δ.

Next, we use Lemma 9.2 again as in the proof of Theorem 1.3 to get q(0) ∈ Ḣ− 1
2 (T) such

that qκ(0) converges to q(0) in H−1(T) as κ→∞, with

‖q(0)− z‖
Ḣ−

1
2
< R− 2δ.

Imitating the proof of Theorem 1.3 once again, we can see that qκ(T ) converges in H−1(T)

to the solution q(T ) to (KdV) with initial data q(0) at time T , so

dist(〈l, q(T )〉,KR−δ) > 2δ.

This results in a contradiction, since we found z = 〈l, q(T )〉 ∈ KR−δ so that dist(z,KR−δ) >

2δ. We conclude that

Area(O) ≥ πR2.
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Corollary 11.4. For every z ∈ H−1(T), l ∈ H1(T) with ‖l‖
Ḣ

1
2

= 1, 0 < R <∞ and T > 0,

Area({〈l, q(T )〉 : q solves (KdV), q(0) ∈ Ḣ−s(T), ‖q(0)− z‖
Ḣ−

1
2 (T)

< R}) ≥ πR2.

Proof. Once again, we consider

O := {〈l, q(T )〉 : q solves (KdV), q(0) ∈ H−1(T), ‖q(0)− z‖
Ḣ−

1
2 (T)

< R}

and for 0 < r < R

Kr := {〈l, q(T )〉 : q solves (KdV), q(0) ∈ H−1(T), ‖q(0)− z‖
Ḣ−

1
2 (T)
≤ r}.

Assuming that Area(O) < πR2, we find δ > 0 such that

Area(Bδ) := Area({z ∈ C : dist(z,KR−δ) ≤ 4δ}) < π(R− 4δ)2.

We can find a sequence zn ∈ H−1(T) ∩ Ḣ− 1
2 (T) such that zn → z in H−1(T). Arguing as

before and applying Corollary 11.3 for the parameters zn, we obtain for each n some solution

to (KdV) qn that satisfies

‖qn(0)− zn‖Ḣ− 1
2
< R− 4δ, dist(〈l, qn(T )〉,KR−δ) > 4δ.

Lemma 9.2 provides us with q(0) ∈ H−1(T) with ‖q(0)− z‖
Ḣ−

1
2
< R− 3δ such that passing

to a subsequence qn(0) converges to q(0) in H−1(T) as n → ∞. Then qn(T ) converges to

q(T ) in H−1(T), yielding that

dist(〈l, q(T )〉,KR−δ) > 3δ.

Since 〈l, q(T )〉 ∈ KR−δ, this is a contradiction. We conclude that

Area(O) ≥ πR2.
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[KVZ18] Rowan Killip, Monica Vişan, and Xiaoyi Zhang. “Low regularity conservation
laws for integrable PDE.” Geom. Funct. Anal., 28(4):1062–1090, 2018.

[KVZ19] Rowan Killip, Monica Visan, and Xiaoyi Zhang. “Symplectic non-squeezing for
the cubic NLS on the line.” Int. Math. Res. Not. IMRN, (5):1312–1332, 2019.

[Kwa18] Chulkwang Kwak. “Periodic fourth-order cubic NLS: Local well-posedness and
non-squeezing property.” J. Math. Anal. Appl., 461(2):1327–1364, 2018.

[Men17] Dana Mendelson. “Symplectic non-squeezing for the cubic nonlinear Klein-Gordon
equation on T3.” J. Funct. Anal., 272(7):3019–3092, 2017.

[MGK68] Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal. “Korteweg-de Vries
equation and generalizations. II. Existence of conservation laws and constants of
motion.” J. Mathematical Phys., 9:1204–1209, 1968.

[Mia17] Qianyun Miao. “Symplectic non-squeezing for mass subcritical fourth-order
Schrödinger equations.” Colloq. Math., 149(1):137–164, 2017.

[Mol11] Luc Molinet. “A note on ill posedness for the KdV equation.” Differential Integral
Equations, 24(7-8):759–765, 2011.

[Mol12] Luc Molinet. “Sharp ill-posedness results for the KdV and mKdV equations on
the torus.” Adv. Math., 230(4-6):1895–1930, 2012.

[Rou10] David Roumégoux. “A symplectic non-squeezing theorem for BBM equation.”
Dyn. Partial Differ. Equ., 7(4):289–305, 2010.

[Yan17] Kai Yang. “The symplectic non-squeezing properties of mass subcritical Hartree
equations.” J. Math. Anal. Appl., 449(1):427–455, 2017.

73


	Introduction
	Preliminaries
	Diagonal Green's function
	Equicontinuity

	Well-posedness of the approximating equations
	From the Line to the Circle
	Finite Dimensional Approximation: From the Circle to the Line
	`Cutting' on the circle
	`Unwrapping' on the line
	Local behavior

	Weak well-posedness for the H flow
	Symplectic non-squeezing for the H flow on the line
	Symplectic non-squeezing for the KdV flow on the line
	Symplectic non-squeezing for the KdV flow on the circle
	Proof of Theorems 1.4 and 1.5 
	Equivalent formulations of symplectic non-squeezing
	References



