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ABSTRACT OF THE THESIS

Sentiment Analysis of the Undergraduate STEM Community at UCLA

Using the Bruinwalk Course Reviews

by

Kaixin Wang

Master of Science in Statistics

University of California, Los Angeles, 2022

Professor Mark Handcock, Co-Chair

Professor Robert Gould, Co-Chair

With the rapid advancement of technologies in the recent few decades, more and

more students are entering the Science, Technology, Engineering, and Mathemat-

ics (STEM) field in college. As one of the leading universities in the world, Uni-

versity of California, Los Angeles (UCLA) has a strong group of undergraduate

programs in STEM. With the size of the STEM community expanding rapidly, it

is important that we examine the sentiment of the community through some sta-

tistical analyses. Among various approaches, sentiment analysis of the course re-

views could help us understand the feedback from the student community, which

could also provide us with many interesting insights. In this paper, we will look at

the methodologies and results from applying the sentiment analysis pipeline on

a corpus with around 7000 course reviews collected from the UCLA Bruinwalk
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website, with the goal of analyzing if students were happy (positive sentiment)

or unhappy (negative sentiment) towards the STEM courses they have taken. As

we shall see, because the reviews obtained from the Bruinwalk website were not

initially annotated, the sentiment analysis pipeline consisted of two main com-

ponents, review annotation and sentiment analysis modeling. Throughout the

study, various data visualization techniques were utilized to help us obtain a bet-

ter understanding of structure of corpus, including the features and the sentiment

annotation. Multiple NLP model architectures, such as CNN+LSTM, Transformer,

and the state-of-the-art BERT and DistilBERT architecture, were established and

compared to optimize the sentiment prediction performance. The results from the

sentiment analysis showed that around 60% of the reviews collected contained a

positive sentiment, the sentiment of the reviews was positively associated with

the student grades, together with several other interesting findings.
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CHAPTER 1

Introduction

1.1 Background

Science, Technology, Engineering, and Mathematics (STEM) is a term that de-

scribes a group of academic disciplines (Kirtibas Singh and Renuga Devi, 2021),

which also has implications for workforce development, national security con-

cerns and immigration policy (Gonzalez and Kuenzi, 2017). In STEM, the word

science refers to two of the three major branches of science: natural sciences, which

includes biology, physics, and chemistry, and formal sciences, which includes

mathematics, statistics, and engineering. The third major branch of science, social

sciences, such as psychology, sociology, and political science, is instead grouped

with humanities and arts, which collectively form the counterpart of STEM – Hu-

manities, Arts, and Social Sciences (HASS). With the rapid advancement of tech-

nologies in the recent years, STEM is playing a more important in higher educa-

tion, reflected in students’ studies, research, and future careers.

As one of the leading universities in the world, University of California, Los

Angeles (UCLA) together with its professional schools offers more than 5000

courses in a wide range of academic programs. Each academic department at

UCLA typically offers two types of courses, the lower-division courses for General
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Education (GE) and major preparation purposes, as well as the upper-division,

more advanced major coursework. Based on Higher Education Research Institute

(HERI) at UCLA, UCLA’s STEM is defined to include disciplines in the Life Sci-

ences, Physical Sciences, Engineering, Mathematics, Computer Science, and the

Health Sciences. As mentioned in the ”STEM programs and initiatives” at UCLA,

”current STEM programs include those that strengthen undergraduate science ed-

ucation at UCLA by broadening access to research opportunities as well as better

preparing undergraduates, especially those from underrepresented groups, for

college success. Programs also promote workforce training and preparing future

faculty for successful careers in STEM 1.”

A variety of statistics are recorded and calculated at UCLA each year, such as

the admission rate, enrollment rate and the graduation rate. Based on the official

facts and figures provided on the UCLA website, the proportion of students who

enrolled in a STEM major (shortened as the STEM ratio) has been increasing in

each academic year during the past decade 2. Figure 1.1 shows the STEM ratio

in four major STEM fields at UCLA from academic year 2009-2010 to 2019-2020,

using the information from multiple annual reports.

From Figure 1.1, we observe the STEM ratio in Life Sciences and Physical Sci-

ences has been increasing in the undergraduate community in the past decade, as

well as the overall ratio across all four STEM fields; in the graduate community,

the STEM ratio in Engineering and Applied Sciences has been rising, although the

ratio in the other three fields is relatively stable; lastly, in the overall community,

1https://ceils.ucla.edu/stem-programs-initiatives/.

2https://www.ucla.edu/about/facts-and-figures.
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(a) Undergraduate (b) Graduate

(c) All students

Figure 1.1: STEM ratio of undergraduate students (Figure 1.1a), graduate students

(Figure 1.1b) and the overall community (Figure 1.1c) at UCLA from 2009-2020.

the STEM ratio in most of the STEM fields has increased, as well as the overall

ratio over all STEM fields. These results show that a larger proportion of UCLA
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students have chosen to major in STEM in the recent decade, which further re-

inforces the importance to examine the STEM community at UCLA to sustain or

further improve the teaching and studying ecosystem.

1.2 Objectives

As STEM is becoming more and more important in higher education, it is impor-

tant that we diagnose the healthiness of the STEM community at UCLA to create a

more welcoming and diverse community. The objective of this study was to con-

duct sentiment analysis on course reviews, aiming to see if students had a good

experience taking the STEM courses at UCLA. Note that this project focused on

analyzing the undergraduate STEM community at UCLA only, since the under-

graduates take up 80% of the entire student population, and most of the reviews

came from the undergraduate community. In the following Chapter 2, we will

look at the candidate dataset that were available for the study, the dataset selec-

tion process, the way the dataset was curated, and various visualization results

from the exploratory data analysis. The prior work done in sentiment analysis,

as well as the state-of-the-art models in NLP will then be introduced (Chapter 3),

followed by the methodologies used in implementing the sentiment analysis on

UCLA course reviews (Chapter 4). In Chapter 5, we will look at the results ob-

tained from applying the sentiment analysis pipeline from using various visual-

ization techniques. Lastly, we will summarize the results and discuss the possible

improvements and future directions in Chapter 6. The flowchart in Figure 1.2 de-

scribes the overall workflow of the sentiment analysis pipeline developed in this

study.
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Dataset Creation

Data Cleaning
and Preprocessing

Exploratory Data
Analysis (EDA)

Automated Labeling

Sentiment Analysis Modeling

Post-annotation EDA

Pre-trained Model

Cross-domain
Validation

Preparation

Modeling

Evaluation

Figure 1.2: Flowchart for the sentiment analysis pipeline on the undergraduate

STEM community at UCLA.
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CHAPTER 2

Dataset

2.1 Choosing the Dataset

Choosing the right dataset is essential to any type of data analysis. Three major

data sources were considered for collecting the course reviews: the official UCLA

course evaluation database 1, the RateMyProfessors 2 review website, and the Bru-

inwalk review website 3.

The official UCLA course evaluation system is built to help improve the ex-

isting courses by sending out online course evaluation forms to students at the

end of each term. Most of the surveys are designed by UCLA’s Center for the Ad-

vancement of Teaching (CAT) and they typically contain a set of multiple-choice

questions and short-answer questions. Students can provide their feedback on the

content of the courses, as well as their feedback to the instructors and the teach-

ing assistants. This database contains quite formal and rich student reviews, but

because the evaluation database is highly confidential and is the internal use at

UCLA CAT and the College Faculty Executive Committee, we don’t have direct

1https://teaching.ucla.edu/eip/.

2https://www.ratemyprofessors.com.

3https://www.Bruinwalk.com.
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access to it.

The RateMyProfessors website (RMP) is a public online review website, where

students can write reviews for courses and colleges or universities in the United

States, Canada, and United Kingdom. RMP is currently the largest online review

website for professor ratings, which includes information for over 8000 schools,

1.7 million professors, totaling over 19 million ratings. One drawback of RMP,

however, is that the reviews are fully categorized based on the instructor, meaning

it’s very difficult to locate reviews based on the course numbers. As we shall see

the next, in the Bruinwalk review database, each review corresponds to a course

and an instructor, which makes it much easier to look up the reviews.

The Bruinwalk.com website (shortened as Bruinwalk) is a review website op-

erated by the Daily Bruin (student media at UCLA) and founded in 1998. Bru-

inwalk is built for students, run by students, and it provides anonymous profes-

sor reviews and reviews of apartments near UCLA. Its goal is to supplement the

Daily Bruin’s mission of creating a comprehensive record of life at UCLA by al-

lowing students to share reviews and advice about academic study and housing.

One of the biggest advantages the Bruinwalk dataset has, is that all reviews are for

UCLA courses only, and the reviews are written by students verified to have stud-

ied at UCLA. Furthermore, each review corresponds to a course and an instructor,

which means visitors to the website can search for reviews both by the course and

by the instructor. Some Bruinwalk reviews also feature the grade distribution of

the class in the past, which are directly synchronized from the UCLA registrar.

By comparison, the Bruinwalk database is the best fit to this study – the

database is designed for UCLA courses only, and it contains a rich set of features

7



which supplements the analysis. In fact, many institutions also have their own

course review website, and some have been used for similar type of research,

referred to as the institution-based course review analysis. Since no such prior

work has been done on the Bruinwalk dataset, it will be interesting to see the

findings through the analysis.

2.2 Creating the Dataset

Among all the steps in creating the dataset, the most important one was to decide

from which STEM courses the reviews should be selected from, as well as decid-

ing the features of interests. Based on the four major STEM fields shown in Figure

1.1, 8 major/specialization were selected: Biology from Life Sciences; Chemistry,

Mathematics, Physics, Program in Computing, and Statistics from Physical Sci-

ences; Computer Science and Electrical Engineering from Engineering and Ap-

plied Sciences. The assumption was that courses from these major/specialization

could represent the entire STEM community, considering that they took up a large

proportion of the STEM population in the recent years. To refine the selection of

the reviews, most of the lower-division preparation courses and upper-division

major courses in each major/specialization were selected. Table A.1 in the ap-

pendix shows the courses selected from each major/specialization in detail. From

the Bruinwalk review interface, in addition to the name of the course and the

review content, other features selected were the instructor of the course, grade re-

ceived by the reviewer, time the course was taken, time the review was written,

etc. Table A.2 lists the full set of features selected for each review.

After determining the scope of the reviews, the next step was to collect the

8



reviews. Because the Bruinwalk database doesn’t have an associated application

programming interface (API), the reviews were directly collected from the website

using web-scrapping. The implementation was through a simple Python script,

which enabled automated web-scrapping. At the end of this step, a dataset with

7547 course reviews and 9 features was created. Notice that all reviews collected

were undergraduate-level courses – there were almost no reviews for graduate-

level courses on Bruinwalk, further supporting the point mentioned in the first

chapter. Three features in the dataset contained missing values, the Year, Quarter

and Grade columns. Those missing information won’t have a big impact on the

analysis, as the sentiment analysis modeling would only depend on the review

content. However, the supplementary features were selected to help us better

understand and visualize the structure of the data.

2.3 Data Cleaning and Preprocessing

The next important step in preparing the dataset, was to apply data cleaning and

preprocessing to the raw data collected. A three-step process was applied as fol-

lows, (1) removing comments that were not relevant to the rating of the courses,

e.g., there were around 170 reviews that students wrote to selling their textbooks;

(2) removing comments that were non-English – this is because translating non-

English utterances into English would require using extra model architectures

(which are typically different from those used in sentiment analysis), and because

there were only less than 10 such reviews in the curated dataset, directly remov-

ing them would be more efficient, and (3) removing excessive whitespaces and

symbols (e.g., extra spaces and emojis). After the data cleaning and preprocessing

9



step, the Bruinwalk review corpus contained 7355 observations. In the next sec-

tion, we will look at miscellaneous properties of the dataset through using various

visualization techniques in the exploratory data analysis.

2.4 Exploratory Data Analysis (EDA)

Before implementing sentiment analysis pipeline on the Bruinwalk review corpus,

it would be beneficial to have a better understanding of the structure of the data

collected. In this chapter, we will look at how to visualize the Bruinwalk review

corpus using various exploratory data analysis (EDA) techniques, including the

time-series plots, countplots based on the features, and the word frequency plots.

2.4.1 Time-series Plots

As we saw earlier, there are three time-series related features in the corpus, Year

(academic year the reviewer took the course), Quarter (academic quarter associ-

ated with the Year variable), and Date (date the reviewer wrote the review on

Bruinwalk in the format of day, month, and year). Since there are missing values

in the Year and Quarter fields, those values were filled in as ”N/A” for clearer vi-

sualization results. We first look at the distribution based on the Year and Quarter

columns – Figure 2.1 shows the distribution of the reviews based on the academic

year and quarter the courses were taken.

From Figure 2.1a, we observe most of the reviews collected were for courses

taken from academic year 2015 to 2021, with a higher weight on most recent years,

2019 and 2020. From Figure 2.1b, we observe a decreasing number of reviews

10



(a) Academic year. (b) Academic quarter.

Figure 2.1: Number of reviews based on the academic year (Figure 2.1a) and aca-

demic quarter (Figure 2.1b) the reviewer took the course.

when going from the Fall quarter to the Summer quarter. From both plots, we

see that around 20% of the reviews didn’t come with the Year and Quarter values.

This indicates it would be more informative to look at the Date variable, which

has more complete information. Based on this feature, we can visualize the distri-

bution of the day, month, or year each review was written. Figure 2.2 shows the

distributions based on the the year each review was written.

From 2.2a, we observe the distribution based on the review year has a larger

spread, especially for reviews written between year 2000 and 2010. We saw in

Figure 2.1 that round 1500 reviews had missing Year and Quarter values, and

hence it would be interesting to see in which years those reviews were written.

Based on the results in Figure 2.2b, we see the reviews with the missing values

were all written before 2015. One explanation for this observation, is that the

11



(a) Review year. (b) Reviews with missing Year value.

Figure 2.2: Distribution of the review year (Figure 2.2a) and the distribution of the

review year for reviews that contained missing Year and Quarter values (Figure

2.2b).

Bruinwalk website made some significant improvements to its interface in 2016,

after which the reviewers were allowed to add the Year and Quarter information

to their reviews. Overall speaking, we see a peak of the course reviews in the

most recent years (2019 to 2021) based on both the time the course was taken and

the review year. The result indicates that more students are actively giving their

feedback to the community.

2.4.2 Countplots

In addition to the time-series features, there are several other interesting features,

such as the grade the reviewer received, the major/specialization of the course,

etc. Similar as before, we can visualize the distribution of the reviews based on

12



each feature.

Figure 2.3a shows the countplot of the reviews based on the grade the reviewer

received in the course, from which we observe most of the reviews came from stu-

dents who received a grade of ”B” or better. This suggests an interesting research

question for the study, which is whether there is an association between the sen-

timent of the review and the grade the reviewer received. This question will be

answered after applying the sentiment analysis pipeline. Figure 2.3b shows the

distribution of the reviews based on the major/specialization they belong to, from

which we see around 30% of the reviews were written for the Mathematics major,

around 16% were for the Chemistry major, and around 11% were for the Statis-

tics major. This result aligns with our expectation, since the number of reviews

associated with each major/specialization are typically influenced by two factors,

the number of students in the department, and the number of courses (and sub-

majors) in the department. For example, the Mathematics department at UCLA

provides a group of majors, minors, and specializations, and it offers a large range

of courses. This indicates it would also be interesting to examine the sentiment to-

wards each major/specialization through the sentiment analysis pipeline.

We looked at the distribution of the reviews based on a single variable, now we

can take one step further and nest multiple features. Figure 2.4 shows the review

distribution for individual courses, and Figure 2.5 shows the distribution of the re-

views based on the grade, both of which are grouped by the major/specialization.

We observe most of the course reviews were for lower-level major preparation

courses (i.e., courses with number below or equal to 99), and some courses re-

ceived many more reviews than the others. We can also see the grade distribution

varies among different major/specialization, for example, unlike in the other ma-
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(a) Grade received. (b) Major/specialization.

Figure 2.3: Distribution of the reviews based on the grade the reviewer received

(Figure 2.3a) and the major/specialization of the course (Figure 2.3b).

jors/specializations, course reviews in the Chemistry, Electrical Engineering and

Physics major are less dominated with the grade ”A” or better, and instead they

contained many missing values in grade.

The remaining two non-text variables in the Bruinwalk corpus are the Upvote

and Downvote variable, which represents the number of up-votes and down-

votes received by each review, respectively. Figure 2.6 shows the distribution

based on the Upvote and Downvote variables, where we see many of the reviews

didn’t receive any upvotes or downvotes. This is within our expectation, as most

of the reviews might not be highly polarized in sentiment and hence did not re-

ceive any upvotes or downvotes. However, it would be interesting to analyze the

distribution based on the upvotes for reviews that received at least one downvote,

and vice versa. From Figure 2.7, we observe most of the reviews that received at
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Figure 2.4: Distribution of the reviews based on the courses, grouped by the ma-

jor/specialization.

least one upvote didn’t get any downvotes; however, there were quite a few re-

views that received downvotes but at the same time got some upvotes.

The observations from the distributions based on the upvotes and downvotes

suggest that the Bruinwalk reviews could be highly subjective – students who

took the same course in the same term might still have very different point of

views. This leads us to the next part in the EDA, word frequency analysis, from

which we could gain a better understanding of the content of the reviews.

15



Figure 2.5: Distribution of the grades, grouped by the major/specialization.

(a) Upvotes. (b) Downvotes.

Figure 2.6: Distribution of the reviews based on the number of upvotes (Figure

2.6a) and the downvotes (Figure 2.6b) received on Bruinwalk.
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(a) Upvotes. (b) Downvotes.

Figure 2.7: Distribution of the upvotes for reviews with non-zero downvotes (Fig-

ure 2.7a) and downvotes for reviews with non-zero upvotes (Figure 2.7b)

2.4.3 Word Frequency Plots

The last and the most important feature in the Bruinwalk corpus is the content

of the review, since ultimately the sentiment analysis models will be built on this

feature only. One common approach to visualize the word distribution in a col-

lection of utterances is through the word frequency plot. Figure 2.8 shows the

frequency of the top 20 most common words in the Bruinwalk review corpus. We

see from this plot that ”class” is the word that appeared the most frequently, and

words such as ”lecture”, ”exam”, ”homework” and ”test” are also very common.

Notice that the typical stopwords such as ”and”, ”or”, ”I”, ”the” (i.e., words with-

out actual meanings) were removed from the corpus when creating the frequency

plot to better highlight the more unique words. Also, different forms of the same

17



word were combined into a single word (e.g., ”lecture” and ”lectures”) to avoid

repeated words or phrases.

Figure 2.8: Top 20 words (excluding the stopwords) in the Bruinwalk review cor-

pus.

In addition to the traditional word frequency plot, a novel method to visualize

the word importance, is through the word cloud. A word cloud (also called a tag

cloud) displays the top words from the utterances provided in the corpus, where

the color and font size of the words reflect their importance. Figure 2.9 shows the

word cloud of all reviews in the Bruinwalk corpus, from which we can easily see

that the most common words in the corpus are ”lecture’, ”exam”, ”homework”,
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”test”, ”question”, and ”office hour”. Notice that the word ”class” was treated

as a stopword in the Bruinwalk corpus and was removed from the cloud map.

This is based on the observation from Figure 2.8, that ”class” is dominating the

importance ranking, and it would be more interesting to highlight the weights of

the other important tokens in the word cloud.

Figure 2.9: Word cloud of all reviews in the Bruinwalk corpus.
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CHAPTER 3

Prior Work

In this chapter, we will look at the prior work done in sentiment analysis and nat-

ural language processing, as well as the common evaluation metrics used in ma-

chine learning classification problems. This chapter will us better understand the

logic behind the sentiment analysis pipeline, which will be introduced in Chapter

4.

Natural Language Processing (NLP) is a rising branch of machine learning that

is being advanced rapidly. Various topics are being studied in NLP, such as text

classification, language translation, language generation, etc. NLP problems are

very challenging in that natural languages are highly subjective and people with

different culture or background could interpret the same piece of utterance very

differently. Sentiment analysis is one of the most well studied text classification

problems. It aims to classify the sentiment of the utterances as positive or negative

through machine learning modeling. The early-stage NLP models typically con-

sist of two components, the word embedding and the model architecture, while

the more recent models use the attention mechanisms to replace the traditional

word embedding. Various types of word embeddings and model architectures

have been developed and applied to different corpora in NLP. The IMDb review

corpus is one of the classical corpora where sentiment analysis has been studied
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on.

The Internet Movie Database (IMDb) is an online database that consists of mil-

lions of reviews for movies, television series, video games, etc. The IMDb review

corpus is built for binary sentiment analysis classification, which contains 25000

highly polar movie reviews for training, and 25000 reviews for testing (Maas et al.,

2011). Each review comes with the review content and the associated sentiment la-

bel. Various types of model architectures have achieved good performance on this

corpus. Based on the leaderboard provided by PapersWithCode 1, the current top

ten models achieved an accuracy over 95% on the testing set (see Table B.1 for the

top models in detail). Among the top models, we will focus on some well-studied

and widely used architectures – CNN+LSTM, Transformer, BERT, and DistilBERT,

all of which have achieved quite good model performance as shown in Table 3.1.

Rank Architecture Accuracy

5 BERT large finetune UDA 95.8

6 BERT large+ITPT 95.79

8 BERT base+ITPT 95.63

9 BERT large 95.49

17 DistilBERT 92.82

19 BP-Transformer + GloVe 92.12

23 CNN+LSTM 88.9

Table 3.1: Top models in sentiment analysis on the IMDb review corpus.

From the table, we see the Transformer, BERT, and DistilBERT models achieved

scores above 92%, although the CNN+LSTM model achieved a slightly lower

1https://paperswithcode.com/sota/sentiment-analysis-on-imdb.
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score of 88%. In the following sections of the chapter, we will look at some es-

tablished work in sentiment analysis and NLP. We will begin with several widely

applied word embedding mechanisms, followed by the introduction different

model architectures, including the fundamental CNN+LSTM architecture, the

novel Transformer model, and state-of-the-art of NLP, BERT and DistilBERT.

3.1 Word Embeddings

Word embedding is a word representation method used in text analysis, which

converts words or phrases into high-dimensional numeric vectors so that similar

words have similar vector representations and are closer in the vector space. Word

embedding models are typically learnt through language modeling and feature

learning methods, and the state-of-the-art word embeddings include word2vec,

GLoVe, fastText, etc. Other useful methods related to word embeddings are Prin-

cipal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embed-

ding (t-SNE), which have been used to reduce the dimensionality in the word

vector spaces and to visualize word embeddings, respectively.

To better understand the idea of embedding the words, suppose we have

the following words in the vocabulary: ”man”, ”woman”, ”boy”, ”girl”, ”king”,

”queen”, ”prince”, ”princess”, and ”monarch” 2. The simplest method to vec-

torize the words is the one-hot embedding, where the dimension of each word

vector is the size of the vocabulary. Table 3.2 shows the vector representation of

each word in the vocabulary using one-hot embedding.

2Word embedding examples based on https://www.shanelynn.ie/get-busy-with-word-
embeddings-introduction.
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Word
Vector Representation

1 2 3 4 5 6 7 8 9

man 1 0 0 0 0 0 0 0 0

woman 0 1 0 0 0 0 0 0 0

boy 0 0 1 0 0 0 0 0 0

girl 0 0 0 1 0 0 0 0 0

king 0 0 0 0 1 0 0 0 0

queen 0 0 0 0 0 1 0 0 0

prince 0 0 0 0 0 0 1 0 0

princess 0 0 0 0 0 0 0 1 0

monarch 0 0 0 0 0 0 0 0 1

Table 3.2: One-hot word embedding for the example vocabulary.

However, the one-hot mechanism is inefficient as it forms very high-dimensional

vectors when the vocabulary is large. Hence, a better solution is to vectorize the

words base on their semantic similarity. For instance, Table 3.3 shows one pos-

sible way to encode the words in the example vocabulary using three features,

femininity, youth and royalty, where each feature varies between 0 and 1.

Comparing to the one-hot representation, we see the second approach not

only reduces the dimensionality of the vectors, but it also captures the semantic

similarity and relationships of the words. The semantic similarity of two words

is reflected by the distance (Euclidean distance in Table 3.3’s example) between

the two vectors. For example, the distance between the vectors of ”girl” and

”princess” is smaller than that between ”girl” and ”prince”. The semantic rela-

tionships are also maintained, meaning the vector arithmetics is meaningful. For

example, the change in the word vector when moving from ”man” to ”woman”,
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Word
Vector Representation

Femininity Youth Royalty

man 0 0 0

woman 1 0 0

boy 0 1 0

girl 1 1 0

king 0 0 1

queen 1 0 1

prince 0 1 1

princess 1 1 1

monarch 0.5 0.5 1

Table 3.3: Word embedding example base on the word semantic similarity.

as well as moving from ”boy” to ”girl”, can be represented as [1, 0, 0].

3.1.1 word2vec

The word2vec word embedding algorithm uses a set of artificial neural network

(ANN) model to learn the vector representation of words from a large input cor-

pus. The vector representation of the words is chosen based on the cosine similar-

ity, a metric that measures the semantic similarity of the word vectors (Mikolov

et al., 2013). Pre-trained word2vec word embedding models have been applied to

various language modeling tasks in NLP, such as the text classification problems,

and achieved good model performance. The pre-trained word2vec embedding

weights are available in sizes varying from 10 to 1000 dimensions, among which

the 300-dimension version is the most frequently used.
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3.1.2 GloVe

GloVe (Global Vectors) is another commonly used word embedding method in

NLP. It is an unsupervised learning algorithm for obtaining vector representa-

tions of words. The model training is performed on aggregated global word-word

co-occurrence statistics from a corpus, and the resulting representations indicate

linear sub-structures of the word vector space (Pennington et al., 2014). Similar to

word2vec, the words are mapped into the vector space using a similarity measure

(Euclidean distance or cosine similarity) so that the distance between each pair of

the vectors reflect their similarity in the semantic space.

3.1.3 Limitations

Although word embedding methods have proven to be efficient in many NLP

tasks, one limitation of this type of algorithm is that words with multiple mean-

ings are conflated into a single representation (i.e., a single vector representation in

the semantic space). In other words, polysemy (a word or phrase that has multiple

related but different meanings) and homonymy (words that have similar spelling

and pronunciation, but with different meanings) are not handled properly. This is

mainly because the word embedding models didn’t take into consideration of the

context of the text during their training process. As we shall see in the next sec-

tion, architectures such as Transformer and BERT were trained using techniques

that contextualize the text, which resulted in more meaningful and efficient word

representations.
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3.2 Model Architectures

In this section, we will introduce three types of model architectures in NLP,

CNN+LSTM, Transformer and BERT (DistilBERT), all of which are general-

purpose language modeling.

3.2.1 CNN, LSTM and CNN+LSTM

CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory) are

two fundamental model architectures in deep learning. Unlike traditional neu-

ral networks, CNN uses convolutional layers to calculate the connection weights

between the neurons, making the computation much more efficient than in the

fully-connected (or dense) layers (Kim, 2014). LSTM is one type of the Recurrent

Neural Network (RNN) models – it is an architecture that captures the spatial,

temporal, and spatio-temporal dependencies of the data (Amato et al., 2020). The

CNN+LSTM architecture combines the convolutional layers and the LSTM layers,

which has proven to be better than CNN or LSTM alone in many NLP tasks, such

as in sentiment analysis (Camacho-Collados and Pilehvar, 2017) and politeness

analysis (Niu and Bansal, 2018).

Figure 3.1 illustrates the architecture of the CNN+LSTM model developed for

politeness analysis. Politeness analysis is a text classification problem in NLP,

and it can be thought as a sibling of the sentiment analysis. Instead of detecting

utterances as positive or negative, politeness analysis aims to classify the utter-

ances as polite or impolite. As we see from the architecture, the input text is

first passed to the word embedding layer to generate the high-dimensional nu-
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Figure 3.1: Architecture of CNN+LSTM from politeness analysis (Niu and Bansal,

2018).

meric vectors, which then go into the bi-directional LSTM layers. The weights

are then passed to the convolutional layers, followed by sub-sampling operation

(e.g., max-pooling), an operation used to reduce the computational space in the

fully-connected layers that follow. This sequential convolutional recurrent struc-

ture is called an encoder-decoder structure. Lastly, the weights generated from the

fully-connected layers are passed to the softmax layer to compute the probability

of each class, which results in the final prediction using the softmax method. This

CNN+LSTM architecture serves as the benchmark in many NLP modeling tasks.

However, the architecture is largely limited by the word embedding layer, which
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lacks the contextualization of the text input. As we shall see next, the Transformer

and the Transformer-based BERT and DistilBERT models overcame this issue by

introducing the attention mechanism and reformulating the architecture.

3.2.2 Transformer

The traditional CNN+LSTM architecture is a complex convolutional and recur-

rent neural network in an encoder-decoder configuration. People later developed

a mechanism named attention, to connect the encoder and decoder layers more ef-

ficiently. However, the CNN+LSTM with the attention mechanism is still not the

optimal, since the computation in the recurrent and convolutional layers could be

highly expensive when the data is large and complex. A much simpler network

architecture, the Transformer, which based solely on the attention mechanisms

and dispensing with recurrence and convolutions entirely, was then introduced

in the well-known Attention is All You Need paper (Vaswani et al., 2017).

Attention is a mechanism frequently used in sequence modeling, which allows

the modeling of dependencies without basing on the distance in the input or the

output sequences. An attention is essentially a function that maps a query and

a set of key-value pairs to an output, where the query, keys, values, and output

are vectors. The output is computed as the sum of the values, weighted by the

values and a function of the keys. The Transformer model used the multi-head

self-attention mechanism to entirely replace the traditional convolution and re-

currence structures. Self-attention is a special type of attention mechanism that

relates different positions of a single sequence to compute the representation of

the sequence (Vaswani et al., 2017). In multi-head attention, the calculation for
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multiple attention heads can be performed in parallel, which enables a faster and

more efficient computation process.

Figure 3.2: Architecture of Transformer (Vaswani et al., 2017).

Figure 3.2 shows the structure of the famous Transformer model. The model

consists of an encoder and a decoder structure. The encoder is composed of a

set of 6 identical layers, where each layer uses a multi-head self-attention mech-

anism, followed by a simple fully-connected feed-forward neural network. The

decoder is also composed of 6 identical layers, but in addition to the multi-head

self-attention and the feed-forward neural network layers, it has a third sub-layer
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that performs multi-head attention over the output of the encoder layers, referred

to as the masked multi-head self-attention layer shown in the figure.

The Transformer models have achieved good performance on various NLP

tasks, such as language translation, paragraph generation, and question-and-

answering. There are many publicly available pre-trained Transformer models

that can be directly applied to downstreaming tasks. As we shall see the next,

BERT, the state-of-the-art in NLP modeling, is also a Transformer-based model.

3.2.3 BERT

BERT (Bidirectional Encoding Representations of the Transformer) is a pre-trained

machine learning model based on the original Transformer class, which achieved

the state-of-the-art performance in many NLP tasks. The original English-

language BERT class contains two models – the base model, which has 12 en-

coders with 12 bi-directional self-attention heads, and the large model, with 24

encoders with 16 bi-directional self-attention heads. During the training process,

BERT was pre-trained on two tasks: language modeling (where 15% of the input

tokens were masked and the model was trained to predict those tokens from

context), and next sentence prediction (in which the model was trained to predict

whether a chosen next sentence was probable given the previous sentence). Since

the BERT architecture is a pre-trained model, without repeating the computation-

ally expensive training process, the model can be directly applied to downstream

tasks.

BERT can be applied to downstream tasks in two major ways, the feature-

based approach and the fine-tuning approach. The feature-based approach uses
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Figure 3.3: Overall pre-training and fine-tuning procedures for BERT (Devlin

et al., 2018).

task-specific architectures, where the pre-trained word representations are used

as the additional features. The fine-tuning approach contains a small set of task-

specific parameters, where the model is trained on the downstream tasks by fine-

tuning the pre-trained parameters in BERT. Figure 3.3 illustrates the pre-training

and fine-tuning process used in BERT.

3.2.4 DistilBERT

One property of the BERT model is that it contains a very large number of pre-

trained parameters (110 million in the base model, and 340 million in the large

model). This rich set of parameters could potentially help improve the model per-

formance in many tasks, however, it would be not efficient when there is a con-

strained amount of computation power and time. Hence, a distill version of BERT

was introduced using knowledge distillation, known as the DistilBERT model.

Knowledge distillation is a compression technique in which a compact model
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(i.e., the student model) is trained to reproduce the behavior of a larger model

(i.e., the teacher model) or an ensemble of models (Hinton et al., 2015). Before the

development of DistilBERT, most prior work investigated the use of knowledge

distillation for building task-specific language models. DistilBERT, on the other

hand, leveraged knowledge distillation on the general-purpose BERT model, a

process that successfully reduced the model size by 40%, while retaining 97% of

the model performance and becoming 60% faster. This faster and lighter model is

less expensive to pre-train, and it has achieved performance comparable to BERT

on many NLP tasks, despite that it is much more compact (Sanh et al., 2019).

3.3 Evaluating the NLP Models

To fairly compare the model performance, it’s important to choose the right eval-

uation metrics. Because there are only ”right” and ”wrong” predictions in classifi-

cation problems, it’s not meaningful to compute the prediction scores such as the

variation explained (R2), or the mean squared error (MSE). Instead, we can eval-

uate the classification models based on their prediction accuracy, recall, precision,

and F1-score.

Accuracy is the metrics that tells the proportion of the samples correctly clas-

sified by the model. It’s defined as the ratio of the number of correctly classified

samples to the total number of samples in the pool of interest. The sentiment anal-

ysis models shown in Table 3.1 were ranked based on their accuracy on the IMDb

testing set. Formally, the accuracy is defined as follows:
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accuracy =
TP + TN

P + N
(3.1)

where

Predicted Condition

Positive (PP) Negative (PN)

Actual Condition
Positive (P) True Positive (TP) False Negative (FN)

Negative (N) False Positive (FP) True Negative (TN)

Table 3.4: Terms used in binary classification problems.

Besides the model accuracy, people also use other metrics to evaluate the

model’s ability to predict a certain class. In classification problems, the recall of a

class is the fraction of the true positives to the sum of the true positives and false

negatives, which is also referred to as the true positive rate (TPR), or sensitivity.

The precision of a class is the fraction of the true positives to the sum of the true

positives and false positives, which is also known as the positive predictive value

(PPV). Another useful metric is the specificity, which is the ratio of the true neg-

atives to the sum of the true negatives and the false positives, which is typically

used together with sensitivity. Equation 3.2 - 3.4 summarize the definition of the

three metrics.

recall =
TP
P

=
TP

TP + FN
(3.2)

precision =
TP

TP + FP
(3.3)
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specificity =
TN
N

=
TN

TN + FP
(3.4)

In addition to the precision and recall, another frequently used metric is the F1-

score, computed as the harmonic mean of the recall and precision (see Equation

3.5 for the formula). It is a summary of the recall and precision, with the highest

possible value being 1, indicating a perfect score in both the recall and the pre-

cision, and the lowest possible value being 0, if either the recall or the precision

is zero. The F1-score is more commonly used than the precision or recall alone,

especially in the cases where the classes are considered as equally important.

F1-score = 2 · recall · precision
recall + precision

=
TP

TP + 1
2
(FP + FN)

(3.5)

Consider the example of a test for diagnosing a disease. The sensitivity (recall)

is the test’s ability to correctly identify patients who have the disease, and the

specificity is its ability to correctly identify the healthy patients (see Equation 3.6

and 3.7 for the probabilistic representation). From this example, we see there is

always a trade-off between the sensitivity and specificity, and depending on the

scenario, one metric might be favored more than the other.

sensitivity = P(positive test result|patient has the disease) (3.6)

specificity = P(negative test result|patient doesn’t have the disease) (3.7)

34



CHAPTER 4

Methodology

Having introduced the prior work done in sentiment analysis, in this chapter, we

will look at how the sentiment analysis pipeline was designed and implemented

in the study. In particular, the pipeline consisted of two components, the auto-

mated labeling step to annotate the raw Bruinwalk reviews, and the sentiment

analysis modeling step to pre-train a model using the annotated Bruinwalk re-

views.

4.1 Bruinwalk Review Automated Annotation

We looked at the structure of the Bruinwalk corpus back in Chapter 2, but one

issue of this dataset is that there was no sentiment label for each review. Having an

unlabeled corpus is a commonly encountered problem in NLP, in which case we

need to first generate the annotation before supervised learning tasks can be done.

One way to annotate the text is through automated labeling, which is to train

a model based on some existing human-labeled or manually validated corpus,

and then use the trained model to annotate the unlabeled corpus (Madaan et al.,

2020). Leveraging the prior work done on the IMDb review corpus, we can train

a sentiment analysis model and use it to label the Bruinwalk corpus.
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4.1.1 Model Architecture Selection

As we saw in the previous chapter, the CNN+LSTM, Transformer, BERT and Dis-

tilBERT models have achieved state of the art performance in sentiment analysis

on the IMDb dataset. Therefore, these model architectures were re-built and used

in the automated labeling process. The word embedding used in the CNN+LSTM

architecture was the 300-dimensional word2vec, as it’s currently one of the most

ubiquitous and well-established word embedding models.

4.1.2 Cross-domain Validation

To make sure the re-established models achieved comparable performance to the

benchmark listed in Table 3.1, the models were validated on a second corpus,

the US airlines Twitter review corpus (shortened as airline review corpus) using

cross-domain validation. The airline review corpus contains around 10K Twitter

posts that are customer reviews for various US airlines. Each review is equipped

with a sentiment label, negative (-1), neutral (0) or positive (1). To be consistent

with the IMDb corpus, only the negative and positive reviews were selected in

validating the models. Cross-domain validation is a machine learning technique

to test a model’s generalizability to data in different domains (Heredia et al., 2016),

which is to train a model using one dataset, and test it on a dataset from a different

domain. We want the model to generalize well so that it can both interpolate and

extrapolate well on various types of data, including the Bruinwalk corpus.

To enable faster and larger amount of computation, the models were trained

using Google Colab Pro, a service that provides faster and more GPUs and more

computation memory. However, because there was still limited amount of com-
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putation resources, the DistilBERT architecture was selected over BERT, consid-

ering DistilBERT is more compact while maintaining comparable performance to

BERT. Hence, the models that were reproduced in the automated labeling step

were the CNN+LSTM, Transformer and the DistilBERT models.

The implementation of CNN+LSTM and Transformer was through Tensorflow

Keras, an open-source Python package that provides a large variety of tools for

neural network modeling in machine learning and deep learning. The implemen-

tation of DistilBERT was through the HuggingFace transformers module, a repos-

itory for Transformer-based machine learning models and datasets. To search for

the best setup of each architecture, hyperparameter optimization was applied us-

ing grid search based on the performance on the IMDb testing set (Shekar and

Dagnew, 2019). The primary evaluation metrics used was the accuracy, and to be

less biased, the recall, precision and F1-score were also evaluated. See Table C.1 in

the appendix for the hyperparameters selected for each model. After getting the

optimal setup, each model was then validated on the entire airline review corpus.

Table 4.1 shows the cross-domain validation performance using each model.

Model
IMDb Testing Set Airline Reviews

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

LSTM-CNN 87.7% 88.0% 88.0% 87.5% 69.5% 78.4% 69.4% 72.4%

Transformer 87.3% 87.5% 87.0% 87.5% 73.2% 80.0% 73.0% 74.9%

DistilBERT 91.2% 91.0% 91.5% 91.0% 81.4% 86.4% 81.4% 82.5%

Table 4.1: Model performance on the IMDb testing set and the airline reviews

corpus.

From this table, we see the results are quite comparable to the benchmarks

shown in the leaderboard, where the DistilBERT model achieved the best perfor-
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mance on both the IMDb testing set and the airline review corpus, followed by

Transformer and the CNN+LSTM model. The observation that the model perfor-

mance on the airline review corpus was slightly worse than those on the IMDb

testing set, but still reasonably good, indicates the models could generalize quite

well to corpora in different domains. After the validation step, each model was

used to predict the sentiment (i.e., automated labeling) of the Bruinwalk reviews.

4.1.3 Testing Set Performance Evaluation

To evaluate the predictions, a small subset of the Bruinwalk reviews was manually

annotated. The selection of the reviews was based on the upvotes and downvotes

variables, where 50 reviews with the highest number of upvotes and 50 with the

most downvotes were selected, respectively. This set of 100 reviews was then

labeled based on their sentiment. After creating and annotating the small testing

set, the predictions were evaluated based on the same metrics as in the cross-

domain validation procedure.

Since there are three sets of the sentiment labels, model ensembling was used

to create a summary of the predictions, a method that could potentially generate

better annotation by internally canceling some prediction errors (Minaee et al.,

2019). Majority voting is a commonly used ensemble method in machine learn-

ing, which is to combine the predictions from multiple models using a majority

vote. Figure 4.1 shows the distribution of the votes received by the reviews using

majority voting.

From the figure, we see around 60% of the reviews received the same annota-

tion from all three models (i.e., three votes). This indicates that most of the pre-
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dictions from the models were quite consistent. Table 4.2 shows the performance

of the individual models, as well as the majority voting ensemble method, on the

manually annotated Bruinwalk testing set.

Figure 4.1: Majority voting results from ensembling the CNN+LSTM, Trans-

former, and the DistilBERT models.

Model
Metrics

Accuracy Precision Recall F1-score

CNN+LSTM 72.0% 71.6% 71.7% 71.2%

Transformer 78.0% 79.2% 77.8% 78.0%

DistilBERT 87.0% 87.5% 87.0% 86.6%

Majority Voting 83.0% 83.2% 82.7% 83.0%

Table 4.2: Model performance on the manually annotated Bruinwalk testing set.
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From Table 4.2, we observe the DistilBERT model achieved better performance

than the other two architectures. Comparing the majority voting method with

the individual models, we see majority voting did better than CNN+LSTM and

Transformer alone, but it did slightly worse than the DistilBERT model. Based

on the results, the automated labeled annotation from the DistilBERT model was

chosen as the final annotation for the Bruinwalk corpus.

4.2 Bruinwalk Review Sentiment Analysis Modeling

The final step in the sentiment analysis pipeline, is to train a model using the au-

tomated labeled Bruinwalk reviews. There are two main benefits for pre-training

this model: firstly, we can further examine the quality of the labels by cross-

domain validation, and secondly, we can later utilize this pre-trained model to

label new reviews on Bruinwalk, and to get more insights from the reviews in

future investigation.

Stratified sampling was used create the training and testing set of the Bru-

inwalk review corpus. The reviews were stratified into 10 strata based on their

sentiment score, where the sentiment score is a number between 0 and 1 – a value

closer to 0 means the model has a strong confidence that the review is negative,

versus a value closer to 1 indicates a strong confidence in the review being posi-

tive. In each stratum, 50% of the reviews were randomly selected into the training

set, and the remaining half went into the testing set. Figure 4.2 shows the distribu-

tion of the sentiment score in the training and testing set. From this figure, we see

from using the stratified sampling, the obtained training and testing set have sim-

ilar distribution in the sentiment score, which is close to the train-test split setup
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used in the IMDb corpus.

(a) Training set. (b) Testing set.

Figure 4.2: Distribution of the sentiment score in the Bruinwalk training and test-

ing set based on a 50% split from stratified sampling.

Based on the observation that the DistilBERT model achieved the best perfor-

mance, DistilBERT was selected as the pre-training architecture. The model was

trained with the Bruinwalk training set, validated on the Bruinwalk testing set,

IMDb testing set and the airline review corpus, and was tested on the manually

annotated Bruinwalk testing set. We will later refer to this model as the Bruin-

walk sentiment analysis model. Table 4.3 shows the model performance on the

validation sets and the testing sets.

From the table, we see the Bruinwalk sentiment analysis model achieved com-

parable results to the models trained with the IMDb reviews. This further verified

that the labels obtained from the automated labeling process are quite reliable, and

the automated labeled corpus can help train a model that generalizes well to cross-
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Model
Metrics

Accuracy Precision Recall F1-score

Bruinwalk Testing Set 85.3% 85.5% 85.5% 85.5%

IMDb Testing Set 84.0% 84.5% 84.0% 84.0%

Airline Reviews 86.0% 88.0% 85.6% 86.7%

Annotated Bruinwalk Test Set 85.4% 85.0% 85.5% 84.9%

Table 4.3: DistilBERT-based Bruinwalk sentiment analysis model performance on

the cross-domain validation sets and the testing sets.

domain data. After validating the model, we could utilize this pre-trained model

to label new Bruinwalk reviews in the future studies, and to gain more insights

in the long run. The pre-trained model is published on the HuggingFace spaces

(similar to GitHub repositories), and it can be easily retrieved via the model alias

kaixinwang/NLP 1. The HuggingFace spaces also have an interactive demo of

the analysis, which allows the user to enter a text input, after which the program

utilizes the pre-trained model to make the prediction, and the predicted sentiment

label and the associated prediction score of the input will be returned 2.

1Model repo at https://huggingface.co/kaixinwang/NLP.

2Interactive demo available at https://huggingface.co/spaces/kaixinwang/NLP.
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CHAPTER 5

Results and Evaluation

In the previous chapter, we looked at the implementation of the sentiment analysis

pipeline and its validation process. Similar to the EDA step prior to the model-

ing, in this chapter, we will analyze the results using similar data visualization

methods, such as visualizing the distribution of the sentiment label and score,

time-series plots, word frequency plots, etc.

5.1 Distribution of the Sentiment Annotation

As we saw in the previous chapter, the predictions from the sentiment analysis

models included both a sentiment score that is continuous between 0 and 1, and

a discrete sentiment label that is either -1 (negative) or 1 (positive). The sentiment

score can be thought as a measure of the prediction confidence, since reviews with

a score above or equal to 0.5 are considered positive, and the rest are classified as

negative. Figure 5.1 shows the distribution of the sentiment score and the senti-

ment label. From Figure 5.1a, we see there are slightly more positive reviews than

the negative reviews in the Bruinwalk corpus, and from Figure 5.1b, we see most

of the reviews have a prediction score above 90% or below 10%, which indicates

the DistilBERT model had quite strong confidence in its predictions.
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(a) Sentiment label. (b) Sentiment score.

Figure 5.1: Distribution for two types of sentiment annotation.

Figure 5.2 shows the distribution of the sentiment score within each ma-

jor/specialization. We observe that some distributions are more skewed towards

the regions where the score is above 90% or below 10%, such as in Chemistry,

Mathematics and Statistics, while the other distributions have a larger spread.

This reflects that the DistilBERT model had stronger confidence in predicting the

reviews from certain STEM fields, and predicting the reviews from the other fields

was more challenging.

Figure 5.3 shows the distribution of the reviews based on the grade and ma-

jor/specialization, grouped by the sentiment label. Figure 5.3a verified that there

is approximately a positive association between the letter grade and the sentiment

– students who received a better letter grade tend to write a review that is positive.

It’s clear from Figure 5.3b that some majors/specializations have a quite balanced

distribution between the positive and the negative reviews, such as Electrical En-
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Figure 5.2: Sentiment score distribution based on the major/specialization.

gineering, Mathematics, PIC, Physics and Statistics, while the other distributions

are slightly skewed. For example, there are more positive reviews than the nega-

tive ones in Biology, and there are more negative reviews than the positive ones

in Chemistry and Computer Science.

To further confirm the positive association between the grade and the senti-

ment of the reviews, Figure 5.4 shows the relation between the positive sentiment

rate and the grades. From these two plots, we observe a clear positive association

between the letter grade (A+ to F) and the sentiment, although with some light

violations – for example, the positive sentiment rate for the grade D- is 100%, as

there was only one review belonging to this group and the review was classified

as positive. For the non-letter grades listed in the plots, it’s more difficult to con-

clude a general trend or a association relation since it’s less meaningful to rank the

categories in a numeric order. However, we can still observe an overall positive
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(a) Grade. (b) Major/Specialization.

Figure 5.3: Number of reviews based on the grade (Figure 5.3a) and ma-

jor/specialization (Figure 5.3b), colored by the sentiment label.

Figure 5.4: Positive sentiment rate vs. grade for the Bruinwalk reviews.
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association, e.g., the positive rate is higher for the grade P (passed) than NP (not

passed), which is also the case for the pair S (satisfied) and U (unsatisfied).

We can also look at the time-series plots based on the annotated Bruinwalk

corpus. Figure 5.5 shows the distribution based on the year of the course and the

year the review was written, colored by the sentiment label. We see from both

plots that the positive reviews are dominating in more recent years, such as 2020

and 2021, although for most of the years, the distribution is quite balanced in

sentiment.

Figure 5.6 shows the positive sentiment rate with respect to the course year and

the review year. From Figure 5.6b, we observe reviews written in the most recent

years (2019 to 2021) have a relatively high positive sentiment rate. In addition, we

see reviews written from 2019 to 2021 have large sample sizes (between 1000 and

2000 reviews), which take up around 40% of the entire Bruinwalk corpus. Simi-

larly in Figure 5.6a, we see most of the reviews were written for courses in 2019

and 2020. However, we observe a higher positive sentiment rate for courses in

earlier years (e.g., 2000, 2003 and 2013), which have smaller sample sizes, and we

observe slightly lower positive sentiment rate when the sample size gets larger,

such as for years between 2017 and 2020. The observation that the positive sen-

timent rate is also associated with the sample size indicates the bias in selecting

the samples, which is not a rigorous random sampling procedure. Same behavior

could also be observed in the grade distribution (Figure 5.4).
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(a) Academic year. (b) Review year.

Figure 5.5: Review distribution based on the academic year the course was taken

(Figure 5.5a) and the year the review was written (Figure 5.5b), colored by the

sentiment label.

(a) Year of the course. (b) Year of the review.

Figure 5.6: Positive sentiment rate vs. course year (Figure 5.6a) and positive sen-

timent rate vs. review year (Figure 5.6b).
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We saw the distribution based on the academic year/quarter and the review

year/quarter are slightly different. To better understand where the difference

came from, it’s helpful to look at the distribution based on the elapse between

the review time and the time the course was taken. Figure 5.7 shows the distribu-

tion based on the time elapse between the year variables and the elapse between

the quarter variables. From the year elapse plot, we see most of the reviews were

written in the year that the student took the course (elapse of 0), around 1300 re-

views were written within one to two years after taking the course (elapse of 1

or 2), and very few had an elapse greater than two years (elapse of 2 or larger).

Likewise, in the quarter elapse plot, most of the reviews were written while still

taking the course or immediately after taking the course, although some reviews

were written one to three quarters afterwards. A new observation from Figure

5.7b, is that there are negative values in the quarter elapse. Upon manually check-

ing the corpus, the reviews that had a negative quarter elapse typically came with

the wrong information in the academic year or quarter column. For example,

there were reviews labeled for Fall 2021 courses but written in June 2021. This

indicates that some improvement can be made to the Bruinwalk review interface

so that users can more easily and accurately fill out the information.

The last step in the post-annotation EDA, is to analyze the distribution based

on individual courses. Figure 5.8 shows the distribution of the reviews based on

the courses, colored by the sentiment label. It’s clear that some courses are heavily

dominated by the positive reviews, such as Life Sciences 30A, Computer Science

32 and Electrical Engineering 102, although there are also a few courses domi-

nated by the negative reviews, such as Chemistry 20A and Chemistry 20B. If we

rank the courses base on the positive sentiment rate (shown in Figure 5.9a), we see
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(a) Year elapse. (b) Quarter elapse.

Figure 5.7: Distribution of the reviews based on the elapse between the review

year and the academic year (Figure 5.7a) and the elapse between review quarter

and the academic quarter (Figure 5.7b).

some courses had a positive rate of 100%, resulted from the fact that there were

very few reviews for some courses, all of which were classified as positive in the

modeling step. To fix the issue of small sample size in some courses, a constraint

was added to filter down to courses with a large enough sample size. Figure 5.9b

shows the top 20 courses ranked based on the positive sentiment rate, where each

course had at least 10 samples. From this plot, we see a much smoother distribu-

tion of the positive sentiment rate than before, aligning with the observation from

Figure 5.8.
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Figure 5.8: Sentiment label distribution of the selected course reviews.

(a) Top 20 courses. (b) Top 20 courses (with 10 or more reviews).

Figure 5.9: Top 20 courses ranked based on the positive sentiment rate.
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5.2 Word Frequency Plots

Now that the reviews are now annotated, we can re-construct the word frequency

plot the word cloud map to compare the positive and negative sentiment groups.

Figure 5.10b and 5.10a shows the frequency distribution of the 20 most common

words in the negative and positive sentiment group, respectively. Like in the over-

all word frequency plot, it’s clear that the word ”class” is dominating in both

classes. By treating the word ”class” as a stopword, Figure 5.11 shows the word

cloud in the negative and positive sentiment groups.

(a) Negative (b) Positive

Figure 5.10: Top 20 most common words in the Bruinwalk corpus.

From the word frequency plots and the word clouds, we see some words and

phrases appeared frequently in both groups of reviews, such as ”lecture”, ”profes-

sor”, ”final”, ”exam”, etc. Some differences are that words such as ”office hour”

and ”take” appeared more frequently in the positive reviews, while the words ”ta

(TA)” and ”student” appeared more often in the negative reviews. We can see
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(a) Negative

(b) Positive

Figure 5.11: Word cloud of reviews grouped by the sentiment.

that words that contain positive sentiment tend to appear more frequently in the

positive reviews, while words that have a negative meaning, such as criticism,

appeared more often in the negative group.

53



5.3 SHAP Analysis

One of the biggest challenges in machine learning is to balance the trade-off be-

tween the model accuracy and model interpretability. This is especially the case

for NLP modeling. As the name ”black-box” model suggests, it’s typically hard to

obtain a good understanding of how the NLP model learned the relation between

the inputs (the text) and the output (the sentiment label) by optimizing the con-

nection weights of the latent nodes. One novel approach to quantify the impact of

the inputs on predicting the output, is the SHapley Additive exPlanations (SHAP)

analysis. In brief, SHAP gives each feature an importance value based on its con-

tribution to a particular prediction (Lundberg and Lee, 2017). SHAP has been

applied to different types of machine learning models, including the tree ensem-

bling models (e.g., Extreme Gradient Boosting, or XGBoost model), NLP models

(e.g., Transformer model), deep neural network models, as well as many other

general-purpose models (e.g., Support Vector Machine models, Gaussian Process

Regression models, etc.).

To understand how the DistilBERT model established in this study made the

sentiment predictions, SHAP was applied to visualize the feature importance. Fig-

ure 5.12 shows the SHAP summary plot on predicting the small annotated Bru-

inwalk test set (i.e., the set that contains 100 polar Bruinwalk reviews that were

manually annotated). The x-axis shows the average marginal contribution (i.e.,

the mean SHAP value) of each feature in predicting the sentiment label, where

a positive value means the feature had a positive effect on the prediction score,

and a larger magnitude indicates a higher feature importance. The results from

Figure 5.12 align with our expectation, where words that contain strong positive
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sentiment (e.g., ”thank”, ”appreciate” and ”like”) were found to have a positive

contribution to the prediction, whereas words that have negative sentiment, such

as ”run” and ”awful”, had an negative contribution. An interesting finding is

that the word ”goat” (shortcut for ”greatest of all time”) was treated as a negative

word in predicting the sentiment, although we would expect the opposite trend.

One possible reason is that ”goat” wasn’t a common word in the training data

lexicon, meaning the model needs to extrapolate the effect of this unseen feature

when making the predictions.

Figure 5.12: SHAP summary plot.

Another interesting way to interpret the NLP model is to look at the combined

effect of certain tokens, which could also highlight the effect of word contextual-

ization. Figure 5.13 shows how the model predicted the sentiment of one example

review by ranking different groups of words base on their mean SHAP values.
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From this plot, we see the words ”easy”, ”lecture”, ”were” and ”recorded” to-

gether gave a relatively high positive contribution to the sentiment score. The

group that gave a relatively strong negative contribution is the one that contained

the word ”didn(’t)”, which is also within our expectation. Because the selected

review used in this example is strongly positive in sentiment (with a score greater

than 98%), it makes sense that SHAP found most of the words, as well as the

combined effect of the words, had a positive impact on the prediction score. This

observation also indicates the sentiment analysis model built in the study was

able to learn the right patterns between the utterances and the sentiment label.

Figure 5.13: Combined-effect SHAP summary plot.
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CHAPTER 6

Discussion and Conclusion

6.1 Summary

In this paper, we looked at the results from applying the sentiment analysis

pipeline on the Bruinwalk reviews. The process started with collecting and clean-

ing the course reviews from the Bruinwalk website, exploratory data analysis on

the unlabeled corpus, followed by the automated labeling and the cross-domain

validation steps, and it ended with pre-training a new sentiment analysis model

using the automated annotated Bruinwalk reviews. This is the first time that the

sentiment analysis pipeline is designed and applied to the Bruinwalk reviews,

and as we saw in the previous chapters, the final pre-trained model (published on

HuggingFace) achieved quite comparable results to the benchmarks. Saving the

pre-trained model will allow future explorations on this topic, such as annotating

more Bruinwalk reviews in the STEM fields, or to extend the current analysis to

the entire UCLA community. There are some interesting results from the analysis:

the Bruinwalk corpus contained slightly more positive reviews (60%) than the

negative ones (40%); most of the reviews were written in the most recent years

(2019 to 2021), and reviews from year 2020 and 2021 are more dominated by the

positive sentiment. In addition, we found that the review sentiment has a positive

57



association with the grade the reviewer received, and the positive sentiment rate

varies among different major/specialization and courses, meaning the reviews

for some courses could be highly polarized. Overall speaking, from the modeling

results, the feedback from the undergraduates at UCLA suggested that most of

the students had a positive experience taking courses in the STEM community.

6.2 Limitations and Future Steps

One major limitation of the current analysis, is that comparing to the official evalu-

ation data from UCLA, the Bruinwalk corpus could be a more biased sample. This

means the Bruinwalk sample might not represent the entire undergraduate STEM

community at UCLA. One possible future direction is to apply the sentiment anal-

ysis pipeline to the official evaluation data, and compare the results to what we

observed in this study. This would help us ”visualize” the differences between the

two types of review data, and what’s more important, since the feedback from the

official evaluation data are assumed to be more formal and rigorous, the sample

could better represent the true population, and hence the results generated from

the sentiment analysis would be representative.

Another future direction is to generalize the current analysis to the entire

STEM community at UCLA, or even to the entire UCLA community. Generaliz-

ing to the STEM community would help us understand the difference between

the undergraduate and graduate community through student feedback, and gen-

eralizing to the entire UCLA community would enable us to have a wider variety

of analyses, such as comparing the STEM community with the HASS community.

However, extending the scope of the study would again require having a sample
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that is more representative of the true population, meaning it’s imperative to gain

access to the formal evaluation data.

Although the official evaluation reviews are assumed to be more representa-

tive of the true STEM community at UCLA, the dataset will still be biased, since

the reviews are always subjective and they can be highly polarized. In the future

study, it will be helpful to collect some official statistics, such as the grade dis-

tribution from the Registrar, or the enrollment rate in different courses, and then

use them to re-weigh the distributions obtained from the sentiment analysis via

post-stratification (Holt and Smith, 1979).

Lastly, as we saw in the previous chapters, the Bruinwalk reviews didn’t come

with the sentiment label, which implies a few possible improvements to the cur-

rent Bruinwalk review system. One helpful feature to add on would be an overall

score to the course (e.g., a rating between 1 to 5), or a sentiment tag (e.g., would or

would not recommend taking the course), which would serve as a good summary

that supplements the review contents. It would also be beneficial if a word auto-

detection feature could be implemented so that reviews that are not relevant to

the course contents (such as selling the textbooks), or reviews that contain explicit

words, will be filtered out. Ensuring the quality of the reviews and the review

forum would help maintain a positive and welcoming community, and thus en-

couraging more students to share their feedback to the community.
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APPENDIX A

Dataset

Major/Specialization Courses

Biology
LIFE SCI 7A, 7B, 7C, 30A, 30B, 40, 107; NEUROSC

M101A, M101B, M101C, 102

Chemistry CHEM 20A, 20AH, 20B, 20BH, 20L, 30A, 30B, 110A, 113A

Computer Science
COM SCI 31, 32, 33, 35L, 111, 118, 130, 131, 180, 181,

M51A, M146, M152A

Electrical Engineering
EC ENGR 101A, 101B, 102, 110, 111, 113, 115A, 121B,

131A, 132A, 133A, 141, 170A

Mathematics
MATH 31A, 31B, 32A, 32B, 33A, 33B, 61, 115A, 115AH,

131A, 131AH, 142, 151A, 151B

Physics
PHYSICS 1A, 1AH, 1B, 1BH, 1C, 1CH, 4AL, 4BL, 110A,

110B, 115A, 115B, 115C; ASTR 81, 82, 117, 127, 140

Program in Computing COMPTNG 10A, 10B, 10C, 16A, 40A

Statistics
STATS 10, 13, 20, 100A, 100B, 100C, 101A, 101B, 101C,

102A, 102B, 102C, 112, 140SL, 141SL, C151, C173, C183

Table A.1: Undergraduate STEM courses at UCLA selected in the analysis.
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Variable Description

Course
Course name in the format of ”Major/Specialization +

course number”.

Review Review of the course.

Professor Instructor of the course.

Grade Grade the reviewer received.

Quarter
Quarter the reviewer took the course. Four categories are

available: Fall, Winter, Spring, and Summer.

Year Year the reviewer took the course.

Date
Date (day, month, and year) the review was submitted on

Bruinwalk.com.

Upvotes Number of upvotes the review received.

Downvotes Number of downvotes the review received.

Table A.2: Features collected for each Bruinwalk review.
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APPENDIX B

Prior Work

Rank Architecture Accuracy

1 NB-weighted-BON + dv-cosine 97.4

2 XLNet 96.21

3 EFL 96.1

4 GraphStart 96.0

5 BERT large finetune UDA 95.8

6 BERT large+ITPT 95.79

7 L MIXED 95.68

8 BERT base+ITPT 95.63

9 BERT large 95.49

10 ULMFiT 95.4

11 Block-sparse LSTM 94.99

12 CEN-tpc 94.52

13 oh-LSTM 94.1

14 Virtual adversarial training 94.1

15 Nyströmformer 93.2

16 Modified LMU 93.2

17 DistilBERT 92.82

18 seq2-bown-CNN 92.33

19 BP-Transformer + GloVe 92.12

20 BCN+Char+CoVe 91.8

21 ToWE-SG 90.8

22 LSTM with dynamic skip 90.1

23 CNN+LSTM 88.9

Table B.1: Top 23 models from sentiment analysis on the IMDb dataset.
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APPENDIX C

Hyperparameters

Architecture batch size epochs learning rate hidden dim n heads

CNN+LSTM (IMDb) 32 3 1e-3 20 N/A

Transformer (IMDb) 16 5 1e-5 32 4

DistilBERT (IMDb) 32 2 5e-5 default 6

DistilBERT (Bruinwalk) 16 3 5e-5 default 6

Table C.1: Optimal hyperparameters selected for each model in the sentiment

analysis pipeline.

As mentioned in Chapter 4, hyperparameter selection was applied to select

the optimal setup of each model architecture. The selection was done through

the grid search, which is to fit the models with all possible combinations of the

given set of hyperparameters, and then compare the their performance based on

certain metrics. Table C.1 shows the hyperparameters selected for each model

in the sentiment analysis pipeline, using the accuracy as the primary evaluation

metric, and the recall, precision, and F1-score as the secondary metrics.
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