UC Irvine

SSOE Research Symposium Dean's Awards

Title

Glove Band: Air Violin

Permalink

https://escholarship.org/uc/item/7fb5n0jr

Authors

Zhu, Tangqin Zhu, Canting Zhuang, Zhengyang et al.

Publication Date

2025-04-08

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Glove Band

Tangqin Zhu <u>tangqin@uci.edu</u>, Canting Zhu <u>cantingz@uci.edu</u>, Zhengyang Zhuang <u>zzhuang13@uci.edu</u>,
Thomas Yeung <u>yeungks@uci.edu</u>, Aarav Awasthy <u>aawasthy@uci.edu</u>

Professor Maxim Shcherbakov

University of California, Irvine

Right Glove

• MPU-6050

(Accel.)

Abstract

The Glove Band is an innovative wearable musical instrument that emulates various instruments through finger gestures and hand movements. It bridges the gap between traditional playing techniques and modern digital synthesis, offering an intuitive and expressive way to create music. The glove is embedded with sensors that translate user movements into musical notes and dynamic controls, which are processed by a microcontroller and output through a speaker. By enhancing gesture-based interaction, the Glove Band provides a versatile musical experience and makes instrument emulation more accessible and interactive.

Objectives

- 1. Finalize a fully functional prototype with integrated gesture detection and real-time sound synthesis.
- 2. Enhance gesture recognition accuracy to improve responsiveness and musical expressiveness.
- 3. Optimize the hardware design for better ergonomics and seamless instrument emulation.
- 4. Develop and refine software for customizable gesture mapping, sound modulation, and instrument selection.
- 5. Prepare a polished demonstration for the Senior Design Review, ensuring smooth operation and user-friendly interaction.

Materials & Testings

Materials

- 1. Gloves
- 2. SoftPot Linear Potentiometers
- 3. Accelerometer (MPU-6050)
- 4. Function buttons (4x)
- 5. Arduino Leonardo

Testings

- 1. Gesture to Output latency: ≤ 20 ms
- 2. MIDI Note Detection Accuracy ≥ 95%
- 3. Accelerometer Sensitivity: 0.1 20 m/s²
- 4. Sliding Potentiometer Resolution: ≤ 0.5 mm
- 5. Finger Press Detection Accuracy: ≥ 98%

Diagrams and Prototype

Figure 1. Design diagrams of both hands of the prototype

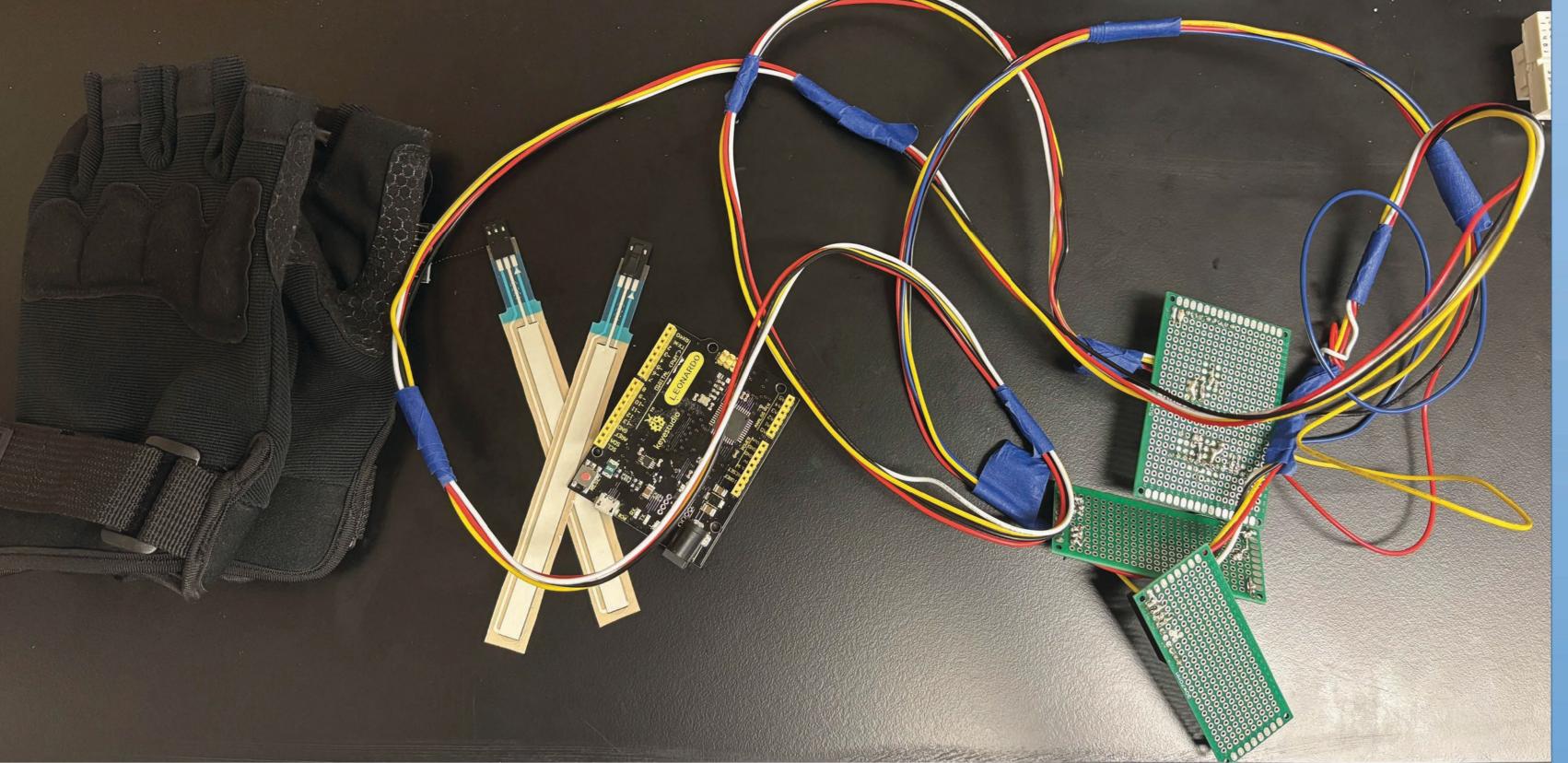


Figure 2. Prototype of both hands with all sensors connected

Flowchart

Arduino LeonardoAnalog & Digital Signal Processing

- Gesture Detection
- MIDI Generation
- MIDI Interpretation
- Audio SynthesisInstrument Mapping
- Speaker / Headphones
- Figure 3. Flowchart of the prototype

Videos

Velocity measure:

Left Glove

Potentiomet

SoftPot

Adding potentiometer:

Adding bend sound:

Final demo:

Key Standards Used

- 1. Hardware Safety: IEEE 1625 for Battery-powered wearable safety
- 2. PCB Design: IPC-2221, RoHS for PCB manufacturing & environmental safety
- 3. Microcontroller Communication: I2C, SPI, UART for Data exchange between sensors & microcontrollers
- 4. Musical Communication: MIDI for Digital music note transmission
- 5. Gesture Processing: IEEE 754 for Floating-point calculations for accurate gesture detection